
Neural implicit representation for PDEs and hybrid
numerical methods

J. Aghili12, H. Barucq3, F. Foucher3, E. Franck12, V.
Michel-Dansac12, L. Navoret12, N. Victorion3, V. Vigon12

....

1Inria Nancy Grand Est, France
2IRMA, Strasbourg university, France
3Inria Bordeaux, Pau center, France

E. Franck 1/43

1/43

Outline

Introduction

Physics-informed Neural Networks

New paradigm: Operator learning

Application to numerical methods

Conclusion

E. Franck 2/43

2/43

Numerical methods and implicit neural representation

E. Franck 3/43

3/43

Numerical methods
■ We begin with a simple example: Lt,xu = ∂tu −∆u = 0

u(t = 0, x) = u0(x)
u(x) = g on ∂Ω

■ Solving a PDE amounts to solving a infinite-dimensional problem.
■ Numerical method: transform the PDE into a finite-dimensional problem of dimension

N with convergence to the PDE solution when N → ∞
■ How to summarize most of numerical methods? (drawing from S. Mishra)

■ Definitions:
□ E, the encoder, transforms the data (initial conditions, RHS) into a finite

dimensional vector. Transformed data are called degree of freedoms (DoF).
□ D, the decoder, transforms degrees of freedom into a function.
□ A, the approximator, transforms the DoF of the RHS into the DoF of the

approximate solution.

E. Franck 4/43

4/43

Why numerical methods require a mesh?

Polynomial Lagrange interpolation
We consider a domain [a, b]. There exists a polynomial P of degree k such that, for any
f ∈ C0([a, b]),

|f (x)− P(x)| ≤ |b − a|k max
x∈[a,b]

|f k+1(x)|.

■ On small domains (|b − a| ≪ 1) or for large k, this polynomial gives a very good
approximation.

■ Very high degrees k can generate oscillations.

■ To enfore small domains: we introduce a mesh and a cell-wise polynomial
approximation

First step: choose a parametric function
We define a mesh by splitting the geometry in small sub-intervals [xi , xi+1], and we
propose the following candidate to approximate the PDE solution u

u|[xi ,xi+1]
(t, x) =

k∑
j=1

αj (t)ϕj (x).

This is a piecewise polynomial representation.

E. Franck 5/43

5/43

Finite element, finite volume, discontinuous Galerkin

Finite element method
■ Encoder: transforms the function f into α(t) the FE DoF (pointwise values,

face/edge integral values, . . .)

■ Decoder: D(α)(t, x) =
∑N

i=1 αi (t)ϕi (x) with ϕi (x) a compactly supported basis
function defined on the whole mesh

■ Approximator: we plug the decoder in the weak form of the equations to obtain an
ODE or an algebraic system on α

Finite volume and discontinuous Galerkin method
■ Encoder: transforms the function f into α(t) the FE DoF (average values, modal

values, nodal values, . . .)

■ Decoder: D(α)(t, x)|Ωj
=
∑N

i=1 αi (t)ϕi (x) with ϕi (x) a local cell-wise basis function.

■ Approximator: we plug the decoder in the weak form of the equations to obtain an
ODE or an algebraic system on α, in each cell

■ For this method, the decoder generates a finite-dimensional vector space.
■ The method projects a form of the equation on this finite-dimensional space.

Uniqueness is ensured by the Hilbert projection theorem.
■ Convergence is ensured: increasing the number of DoF (mesh, polynomial degree)

makes the error decrease.

E. Franck 6/43

6/43

Spectral methods

Spectral theorem
The spectral theorem in Hilbert spaces proposes an approximation of any function in H by

u(x) =
N∑
i=1

αiϕi (x),

with ϕi (x) the orthonormal global Hilbert basis, and αi = ⟨f ,ϕi ⟩.

Spectral method
■ Encoder: Projection of the function f in the spectral basis. DoF: αi = ⟨f ,ϕi ⟩
■ Decoder: D(α)(t, x) =

∑N
i=1 αi (t)ϕi (x) with ϕi (x) the first modes of the Hilbert

basis.

■ Approximator: we plug the decoder in the weak/strong form of the equations to
obtain an ODE or an algebraic system on α.

■ For this method, the decoder generates a finite-dimensional vector space.
■ The method projects a form of the equation on this finite-dimensional space, using the

Unicity by Hilbert projection theorem.
■ Convergence is ensured: increasing the number of DoF (number of modes) makes the

error decrease.

E. Franck 7/43

7/43

Mesh-free methods

Idea
Represent the solution as a sum of radial basis functions localized at some points:

u(x) =
N∑
i=1

αiϕi (|x − xj |)

with ϕi (r) a radial basis function such as ϕ(r) = e−(εr)2 or ϕ(r) = 1
1+(εr)2

. Larger values

of ε give more localized functions.

Radial basis method
■ Encoder: Projection of the function f . DoF: weights of the radial functions

■ Decoder: D(α)(t, x) =
∑N

i=1 αi (t)ϕ(|x − xi |) with ϕ(x) a radial basis function.

■ Approximator: just like before, the decoder is plugged in the equation.

■ Like before, we have a finite-dimensional function space.
■ Convergence: increasing the number of points (DoF) makes the error decrease.

E. Franck 8/43

8/43

Reduced basis methods
■ For many years, there has been research to propose reduced order models (including

experts here in Bordeaux!).
■ One of the classical approaches is the Reduced basis method.
■ It represents a subset of solutions like

u(x) =
N∑
i=1

αiϕi (x),

where ϕi (x) is a spectral basis computed to efficiently represent a subset of solutions
associated to a subset of parameters.

■ Such methods can be viewed as data-driven Spectral methods.
■ They have properties similar to the spectral method’s.
■ Example:

∂tρ+ ∂x

(
ρ2

2

)
=

1

Re
∂xxρ

■ Reynolds number Re = 40, 10 modes

E. Franck 9/43

9/43

Reduced basis methods
■ For many years, there has been research to propose reduced order models (including

experts here in Bordeaux!).
■ One of the classical approaches is the Reduced basis method.
■ It represents a subset of solutions like

u(x) =
N∑
i=1

αiϕi (x),

where ϕi (x) is a spectral basis computed to efficiently represent a subset of solutions
associated to a subset of parameters.

■ Such methods can be viewed as data-driven Spectral methods.
■ They have properties similar to the spectral method’s.
■ Example:

∂tρ+ ∂x

(
ρ2

2

)
=

1

Re
∂xxρ

■ Reynolds number Re = 400000, 40 modes

E. Franck 9/43

9/43

Properties

Space and space-time decoder
■ Classical methods (FE/FV/DG/. . .) involve a decoder where only the space

representation is fixed:

u(t, x) =
N∑
i=1

αi (t)ϕi (x).

■ Plugging this decoder in the equation, we obtain an ODE to solve.

■ A more recent approach, space-time methods, proposes to fix both space and time
representations:

u(t, x) =
N∑
i=1

αiϕi (t, x).

■ Plugging this decoder in the equation we obtain an algebraic system to solve.

Explicit vs implicit representations
■ Representations are called explicit if the degrees of freedom can be explicitly computed

and understood from the function.

■ FE/FV/DG/spectral methods use explicit representations (average value, . . .).

■ The radial basis method, however, uses a partially explicit representation. It is difficult
to understand the DoF from the function, but they can easily be computed by
inverting the mass matrix (projector).

E. Franck 10/43

10/43

Key idea

Summary
Every previously mentioned space and space-time methods consists in:
1. choosing a linear representation (linear combination of basis functions), either local

(on a mesh) or global;
2. plugging this representation into the equation to obtain algebraic relations (linear for

linear problems, nonlinear for nonlinear problems) or ODEs.
3. solving this algebraic relation with a linear solver or Newton’s method, using a time

scheme to solve the ODE.

In all these cases, the decoder is linear with respect to the DoFs, and the representation is
either explicit or partially explicit.

Idea
Choose a nonlinear representation given by a neural network. We replace a sum of simple
functions with a composition of simple functions.

Important points
Finite-dimensional spaces associated to a nonlinear decoder are not vector spaces. So:
■ the projector is not unique, and the representations will be implicit.
■ Existence and uniqueness? algebraic system replaced with non-convex optimization.
■ Convergence is harder to study and understand.

E. Franck 11/43

11/43

Nonlinear models
■ Nonlinear version of classical models: f is represented by the DoF αi , µi , ωi or Σi :

f (x ;α,µ, Σ) =
∑
i=1

αie
(x−µi)Σ

−1
i (x−µi), f (x ;α,ω) =

∑
i=1

αi sin(ωix)

■ Neural networks (NN).

Layer

A layer is a function Ll (xl) : Rdl → Rdl+1 given by

Ll (xl) = σ(Alxl + bl),

Al ∈ Rdl+1,dl , b ∈ Rdl+1 and σ() a nonlinear function applied component by component.

Neural network
A neural network is parametric function obtained by composition of layers:

fθ(x) = Ln ◦ ◦ L1(x)

with θ the trainable parameters composed of all the matrices Al ,l+1 and biases bl .

■ Goal: using these models, we expect to require fewer DoFs, not to require a mesh,
and to deal with larger dimensions.

■ Key point: in the NN framework, derivatives can be exactly computed through
automatic differentiation tools.

E. Franck 12/43

12/43

NN vs Polynomial

■ We compare over-parametrized NN and polynomial regression on the Runge function.

■ Regression: 120 data and approximately 800 parameters in each model.

E. Franck 13/43

13/43

NN vs Polynomial

■ We compare over-parametrized NN and polynomial regression on the Runge function.

■ Regression: 120 data and approximately 800 parameters in each model.

E. Franck 13/43

13/43

NN vs Polynomial

■ We compare over-parametrized NN and polynomial regression on the Runge function.

■ Regression: 120 data and approximately 800 parameters in each model.

■ The polynomial model tends to oscillate in the over parameterized regime.
Problematic for overfitting.

E. Franck 13/43

13/43

NN vs Polynomial

■ We compare over-parametrized NN and polynomial regression on the Runge function.

■ Regression: 120 data and approximately 800 parameters in each model.

E. Franck 13/43

13/43

NN vs Polynomial
■ We compare over-parametrized NN and polynomial regression on the Runge function.
■ Regression: 120 data and approximately 800 parameters in each model.

■ The ANN generates very smooth/low frequency approximations.
■ It is related to the spectral bias. The low frequencies are learned before the high

frequencies.
■ Seems very helpful to use it for global and high dimensional representation.

E. Franck 13/43

13/43

Physics-informed Neural Networks

E. Franck 14/43

14/43

Space-time approach: PINNs I

Idea of PINNs
■ For u in some function space H, we wish to solve the following PDE:

∂tu = F(u,∇u,∆u) = F (u).

■ Classical representation for space-time approach: u(t, x) =
∑N

i=1 θiϕi (x , t)

■ Deep representation: u(t, x) = unn(x , t; θ) with unn a NN with trainable parameters θ.

■ Since ANNs are Cp functions, we can compute ∂tunn(x , t; θ), ∂xpunn(x , t; θ) and

r(x , t) = ∂tunn(x , t; θ)−F(unn(x , t; θ),∇unn(x , t; θ),∆unn(x , t; θ))

■ First idea: we solve the nonlinear problem

r(xi , tn) = 0, ∀1 ≤ j ≤ Nx , ∀1 ≤ n ≤ Nt

with Nt ∗ Nx equal to the number of parameters.
■ Problem: The subspace of NN functions is not a vector space. The existence of the

solution to the discrete problem cannot be ensured.

Conclusion
We move away from solving algebraic equations on the parameters, and go towards
non-convex optimization.

E. Franck 15/43

15/43

Space-time approach: PINNs II
■ We define the residual of the PDE:

R(t, x) = ∂tunn(t, x ; θ)−F(unn(t, x ; θ), ∂xunn(t, x ; θ), ∂xxunn(t, x ; θ))

■ To learn the parameters θ in unn(t, x ; θ), we minimize:

θ = argmin
θ

(
Jr (θ) + Jb(θ) + Ji (θ)

)
,

with

Jr (θ) =

∫ T

0

∫
Ω
|R(t, x)|2dxdt

and

Jb(θ) =

∫ T

0

∫
∂Ω

∥unn(t, x ; θ)− g(x)∥22dxdt, Ji (θ) =

∫
Ω
∥unn(0, x ; θ)− u0(x)∥22dx .

■ If these residuals are all equal to zero, then unn(t, x ; θ) is a solution of the PDE.

■ To complete the determination of the method, we need a way to compute the
integrals.

■ Important point: the derivatives are computed exactly using automatic differentiation
tools and back propagation. Valid for any decoder proposed.

E. Franck 16/43

16/43

Monte Carlo

■ How to compute the integrals? With a Monte Carlo approach.

□ The Monte-Carlo method stems from the Law of large numbers.
□ We consider a function g : Rd → R. We define X a random variable with law µ.
□ The method comes from:

Var(µ)
√
N

(
1

N

N∑
i=1

f (Xi)− Eµ[f (X)]

)
→ N (0, 1)

with Xi an random example sampled with the law µ
□ It makes it possible to compute integrals. Indeed:∫

Ω
f (x)dx =

∫
Rd

f (x)UΩdx = E[f (X)]

with UΩ the density of the uniform law Ω and X random variable following this law.

■ The variance can be reduced through importance sampling:

E[f (X)] =

∫
Ω
f (x)dx =

∫
Ω

f (x)

g(x)
g(x)dx = Eg

[
f (X)

g(X)

]
■ If Var(UΩ) > Var(g), the error is reduced.

E. Franck 17/43

17/43

Space-time approach: PINNs III
■ We define the residual of the PDE:

R(t, x) = ∂tunn(t, x ; θ)−F(unn(t, x ; θ), ∂xunn(t, x ; θ), ∂xxunn(t, x ; θ))

To learn unn(t, x ; θ), we minimize:

min
θ

(Jr (θ) + Jb(θ) + Ji (θ)) ,

with

Jr (θ) =
N∑

n=1

N∑
i=1

|R(tn, xi)|2

with (tn, xi) sampled uniformly or through importance sampling, and

Jb(θ) =

Nb∑
n=1

Nb∑
i=1

|unn(tn, xi ;θ)− g(xi)|2, Ji (θ) =

Ni∑
i=1

|unn(0, xi ;θ)− u0(xi)|2.

■ To avoid an extra loss for the BC and initial conditions, we use:

ūθ(t, x) = u0(x) + t(ϕ(x) ∗ uθ(x)),

with ϕ(x) = g(x) on the boundary, and taking some other value within the domain.

■ We solve the problem with usual gradient-type methods from Deep-Learning.

E. Franck 18/43

18/43

Example: viscous Burgers equation

■ Application: viscous Burgers equation ∂tρ+ ∂x
(

ρ2

2

)
= ν∂xxρ.

■ Solving for different values of the µ parameters:

■ ν = 0.1
π
. 10000 pts, medium-sized NN.

■ beginning of training

E. Franck 19/43

19/43

Example: viscous Burgers equation
■ Application: viscous Burgers equation ∂tρ+ ∂x

(
ρ2

2

)
= ν∂xxρ.

■ Solving for different values of the µ parameters:

■ ν = 0.1
π
. 10000 pts, medium-sized NN.

■ middle of training

E. Franck 19/43

19/43

Example: viscous Burgers equation
■ Application: viscous Burgers equation ∂tρ+ ∂x

(
ρ2

2

)
= ν∂xxρ.

■ Solving for different values of the µ parameters:
■ ν = 0.1

π
. 10000 pts, medium-sized NN.

■ end of training

E. Franck 19/43

19/43

Example: viscous Burgers equation
■ Application: viscous Burgers equation ∂tρ+ ∂x

(
ρ2

2

)
= ν∂xxρ.

■ Solving for different values of the µ parameters:
■ ν = 0.01

π
. 10000 pts, medium NN.

■ beginning of training

E. Franck 19/43

19/43

Example: viscous Burgers equation
■ Application: viscous Burgers equation ∂tρ+ ∂x

(
ρ2

2

)
= ν∂xxρ.

■ Solving for different values of the µ parameters:
■ ν = 0.01

π
. 10000 pts, medium NN.

■ middle of training

E. Franck 19/43

19/43

Example: viscous Burgers equation
■ Application: viscous Burgers equation ∂tρ+ ∂x

(
ρ2

2

)
= ν∂xxρ.

■ Solving for different values of the µ parameters:
■ ν = 0.01

π
. 10000 pts, medium NN.

■ end of training

E. Franck 19/43

19/43

Example: viscous Burgers equation

■ Application: viscous Burgers equation ∂tρ+ ∂x
(

ρ2

2

)
= ν∂xxρ.

■ Solving for different values of the µ parameters:

■ ν = 0.002
π

. 10000 pts, medium NN.

■ beginning of training

E. Franck 19/43

19/43

Example: viscous Burgers equation
■ Application: viscous Burgers equation ∂tρ+ ∂x

(
ρ2

2

)
= ν∂xxρ.

■ Solving for different values of the µ parameters:
■ ν = 0.002

π
. 10000 pts, medium NN.

■ middle of training

E. Franck 19/43

19/43

Example: viscous Burgers equation
■ Application: viscous Burgers equation ∂tρ+ ∂x

(
ρ2

2

)
= ν∂xxρ.

■ Solving for different values of the µ parameters:

■ ν = 0.002
π

. 10000 pts, medium NN.

■ end of training

E. Franck 19/43

19/43

Example: viscous Burgers equation
■ Application: viscous Burgers equation ∂tρ+ ∂x

(
ρ2

2

)
= ν∂xxρ.

■ Solving for different values of the µ parameters:
■ ν = 0.002

π
. 40000 pts, larger NN.

■ end of training

E. Franck 19/43

19/43

PINNs for parametric PDEs
■ Advantages of PINNs: mesh-less approach, not too sensitive to the dimension.
■ Drawbacks of PINNs: they are often not competitive with classical methods.
■ Interesting possibility: use the strengths of PINNs to solve PDEs parameterized by

some µ.

■ The neural network becomes unn(t, x ,µ; θ).

New Optimization problem for PINNs

min
θ

Jr (θ) + ... , , with

Jr (θ) =

∫
Vµ

∫ T

0

∫
Ω

∥∥∂tunn − L
(
unn(t, x ,µ), ∂xunn(t, x ,µ), ∂xxunn(t, x ,µ)

)∥∥2
2
dxdt

with Vµ a subspace of the parameters µ.

■ Application to the Burgers equations with many viscosities [10−2, 10−4]:

■ Training for µ = 10−4: 2h. Training for the full viscosity subset: 2h.

E. Franck 20/43

20/43

Spatial approach: Neural Galerkin I
■ We solve the following PDE:

∂tu = F(u,∇u,∆u) = F (u).

■ Classical representation: u(t, x) =
∑N

i=1 θi (t)ϕi (x)
■ Deep representation: u(t, x) = unn(x ; θ(t)) with unn a neural network, with

parameters θ(t), taking x as input.
■ We want that:

F (unn(x ; θ(t))) = ∂tunn(x ;θ(t)) =
〈
∇θunn(x ;θ),

dθ(t)

dt

〉
■ How to find an equation for dθ(t)

dt
?

■ We solve the minimization problem:

dθ(t)

dt
= argmin

η
J(η) = argmin

η

∫
Ω
| ⟨∇θunn(x ; θ),η⟩ − F (unn(x ; θ(t)))|2dx .

■ The solution is given by

M(θ(t))
dθ(t)

dt
= F (x , θ(t))

with

M(θ(t)) =

∫
Ω
∇θunn(x ; θ)⊗∇θunn(x ; θ)dx , F (x , θ(t)) =

∫
Ω
∇θunn(x ; θ)F (unn(x ; θ))dx .

E. Franck 21/43

21/43

Spatial approach: Neural Galerkin II
■ How to estimate M(θ(t)) and F (x , θ(t))?
■ Firstly: we need to differentiate the network with respect to θ and to x (in the

function F). This can easily be done with automatic differentiation.
■ Secondly: How to compute the integrals? Monte Carlo approach.

■ So, we use:

M(θ(t)) ≈
N∑
i=1

∇θunn(xi ; θ)⊗∇θunn(xi ; θ)

and the same for F (x , θ(t)).

■ Summary: we obtain an ODE in time (as usual) and a mesh-less method in space.

■ Like in the case of PINNs, we can apply this framework to parametric PDEs and larger
dimensions.

■ We solve the following PDE:

∂tu = F(u,∇u,∆u,α) = F (u;µ).

■ Deep representation: u(t, x ,µ) = unn(x ,µ; θ(t))
■ The solution is given by

M(θ(t))
dθ(t)

dt
= F (x , θ(t),µ)

with

M(θ(t)) =

∫
Vµ

∫
Ω
∇θunn(x ,µ; θ)⊗∇θunn(x ,µ; θ)dxdµ.

E. Franck 22/43

22/43

Spatial approach: Neural Galerkin III

■ We solve the advection-diffusion equation ∂tρ+ a · ∇ρ = D∆ρ with a Gaussian
function as initial condition.

■ Case 1: with a neural network

■ 3 minutes on CPU, L2 error around 0.4. Bad initialization method, naive solve, many
tricks to decrease the coast. Naive and small network.

E. Franck 23/43

23/43

Spatial approach: Neural Galerkin III

■ We solve the advection-diffusion equation ∂tρ+ a · ∇ρ = D∆ρ with a Gaussian
function as initial condition.

■ Case 2: with a Gaussian mixture (one Gaussian):

■ 5 sec on CPU. Error around 5.0−4. Decoder perfect to represent this test case.

E. Franck 23/43

23/43

Summary

New numerical methods
New numerical methods are derived using with neural networks.

■ Same spirit as classical methods: plug an Ansatz into the equation to obtain equations
on DoFs

■ However, NN-based methods introduce a nonlinear Ansatz with implicit representation.

Many questions remain
■ Accuracy? How to limit the GPU cost? Preconditioning? Domain decomposition?
■ Positivity? capture of shocks? structure preservation (symplecticity)?
■ Convergence and stability? (this is really trickier)

Drawbacks
■ less accurate than classical approaches,
■ convergence and theoretical study difficult,
■ expensive in low dimensions and on CPU

Advantages
■ mesh free
■ more efficient in large dimension and for parametric PDEs, perfect for GPUs
■ more general decoder coupled the exact computation of the gradient allows to impose

some properties easier.

E. Franck 24/43

24/43

Operator Learning

E. Franck 25/43

25/43

Operator learning
■ New paradigm for reduced modeling. We consider the following problem:

Gα(x ,t)(u(t, x)) = ∂tu(t, x) + Lα(x)(u(t, x)) = 0 on Ω,
u(t, x) = g(x) on ∂Ω,
u(t = 0, x) = u0(x).

■ We denote by µ(t, x) = (α(x , t), g(x), u0(x)) the parameters.
■ Formally, there exists a pseudo-inverse operator G+, such that G+(µ) = u(t, x).

Objective

Approximate G+ by a neural network on a subspace of the data where the results do not
depend on the mesh resolution of the input/output functions.

Problem
We construct a neural network G+

θ (µ(t, x)), which minimizes J (θ) = J1(θ)+J2(θ), with

J1(θ) =

∫
Vµ

∫
Ω

∫ T

0
∥G+

θ (t, x ,µh(x , t))− u(x , t)∥22dtdxdµ

and
J2(θ) =

∫
Vµ

∫
Ω

∫ T

0
∥Gµ(G

+
θ (t, x ,µh(x , t)))∥22dtdxdµ,

where the integrals are approximated by MC.

■ DeepOnet: Encode the function of parameters, and decode with parametric PINNS.

E. Franck 26/43

26/43

Green theory and Neural operator
■ Beginning with a simple case:

□ Linear elliptic equation: ∆u = f . On unbounded domains, the solution is given by

u(x) =

∫
R
G(x , y)f (y)dy

□ Linear heat equation: ∂tu −∆u = f (t, x). On unbounded domains, the solution is
given by

u(t, x) =

∫
R
Gi (t, x , y)u0(y)dy +

∫
R

∫
R
Ge(t, τ , x , y)f (τ , y)dydτ

Idea for linear problem
For bounded (and potentially complex) domains, learn the Green functions.

■ No Green theory for nonlinear PDEs. How can this be adapted to nonlinear PDEs?

Idea of Neural Operators

□ To approximate nonlinear functions, NNs compose parametric linear maps and
nonlinear local functions.

□ To approximate nonlinear operators, NOs compose parametric linear operators and
nonlinear local functions.

E. Franck 27/43

27/43

Neural operator II

Neural Operator layer
Consider the vector function given by the previous layer v l (x). A kernel layer is given by

v l+1(x) = σ

(
Wl (t)v l (x) +

∫
Ω
Gθl (t, x , y)v l (y)dy

)
with W (t) a learnable weight matrix and Gθ a learnable kernel.

■ We can also introduce a kernel like Gθ(t, τ , x , y) for source terms, etc.
■ In general, we add a first layer Q which transforms u0(x) into v0(x) to increase the

dimension of the function, and a layer performing the inverse transform at the end.

Question
How to learn this object independently of the discretization?

First possibility: MoDnet
■ Trainable parameters: (Wl , θl). Gθl is a classical network. In the space-time case, Wl

is a network; when the equation does not depend on time, Wl is a matrix.
■ Evaluation of the integral: Monte Carlo for large dimensions (also low rank or

multigrid versions), or Gauss quadrature (for low dimensions).
■ Learning: data + physics-informed loss function.
■ General geometry. Large complexity, but computations are perfectly suited to GPUs.

E. Franck 28/43

28/43

Neural operator III

Second possibility: Fourier approach
■ We can use ∫

Ω
G(x , y)f (y)dy ≈ F−1(F(G(x , .))F(f (.)))

with F the Fourier transform. It is exact for translation-invariant kernels (e.g.
convolution).

■ In practice, we use
F−1(KθF(f (.)))

and we learn Kθ, limiting frequency to kmax .

■ Faster that previous approach, but limited to Cartesian grids to use FFTs. There exist
variants for general geometries.

More general Spectral approach
■ We can use ∫

Ω
G(x , y)f (y)dy ≈

M∑
m=1

⟨Kθmϕk (x)⟩L2ψk (x)

■ Variants include: Chebyshev or Legendre polynomials, Laplace transform, Fourier
transform on manifolds, etc.

E. Franck 29/43

29/43

Application to numerical methods

E. Franck 30/43

30/43

Hybrid predictor-corrector methods

Hybrid methods
In this context, hybrid methods combine classical numerical methods and numerical
methods based on Implicit Neural representation (IRM).

Objectives
Taking the best of both worlds: the accuracy of classical numerical methods, and the
mesh-free large-dimensional capabilities of IRM-based numerical methods.

General Idea
■ Offline process: train a Neural Network (PINNs, NGs or NOs) to obtain a large family

of approximate solutions.

■ Online process: predict the solution associated to our test case using the NN.

■ Online process: correct the solution with a numerical method.

E. Franck 31/43

31/43

Predictor-Corrector Newton method for elliptic problems
■ We consider a nonlinear elliptic problem:

u(x)− α0∂xx (α(x)|u(x)|p∂xu) = f (x)

■ To solve this PDE we use FE or FD solver + Jacobian-Free Newton-Krylov method.

Idea
Train a neural operator (Fourier neural operator on a large data set) and use its prediction
as an initial guess for Newton’s method.

■ We only compare the average results:

mesh α0 = 2 (40 sim) α0 = 5 (25 sim) α0 = 8 (25 sim)
100 cells +500% +1800% +5000%
200 cells +88% +230% +620%
400 cells +82% +150% +220%
600 cells +92% +220% +250%

Table: Comparison of the mean “gain” in CPU time for different values of α0.

■ Failures: on all the tests, we have 0% of fail (our method being less efficient than the
classical one) in terms of number of iterations, and around 2% of fail in terms of CPU
time.

■ On more refined meshes, the gain is smaller (the network acts only at the beginning of
the convergence).

■ In 2D, gains are also lower, and the classical method converges more quickly (why?).

E. Franck 32/43

32/43

Predictor-Corrector: using PINNs in a FE method
■ We consider the following elliptic problem:{

Lu = −∂xxu + v∂xu + ru = f , ∀x ∈ Ω

u = g , ∀x ∈ ∂Ω

■ We assume that we have a continuous prior of the solution given by a parametric
PINN uθ(x)

■ We propose the following corrections of the finite element basis functions:

u(x) = uθ(x) + ph(x), u(x) = uθ(x)ph(x),

with ph(x) a perturbation discretized using Pk Lagrange finite element.

■ For the first approach (additive prior), we solve in practice:{
Lph(x) = f − Luθ(x), ∀x ∈ Ω

ph(x) = g − uθ(x), ∀x ∈ ∂Ω

■ For the second approach (multiplicative prior), we need uθ(x) ̸= 0, so we take M > 0
and we solve: {

L(uθ(x)ph(x)) = f , ∀x ∈ Ω

ph(x) =
g

uθ(x)
+M, ∀x ∈ ∂Ω

E. Franck 33/43

33/43

Theory for hybrid EF
■ Approach one: we rewrite the Cea lemma for uh(x) = uθ(x) + ph(x). We obtain

∥u − uh∥ ≤
M

α
∥u − uθ − Ih(u − uθ)∥

with Ih the interpolator. Using the classical result of Pk Lagrange interpolator we
obtain

∥u − uh∥Hm ≤
M

α
Chk+1−m

(
|u − uθ|Hm

|u|Hm

)
︸ ︷︷ ︸

gain

|u|Hm

■ Approach two: uh(x) = uθ(x)ph(x). We use a modified interpolator:

Imod ,h(f) =
N∑
i=1

f (xi)

uθ(xi)
ϕi (x)uθ(x)

using Imod ,f (f) = Ih(
f
uθ

)uθ(x) , the Cea lemma and interpolation estimate we have:

∥u − uh∥Hm ≤
M

α
Chk+1−m

(
| u
uθ

|Hm∥uθ(x)∥L∞

|u|Hm

)
︸ ︷︷ ︸

gain

|u|Hm

■ The prior must give a good approximation of the mth derivative.

E. Franck 34/43

34/43

EF for elliptic problems

■ First test:
−∂xxu = α sin(2πx) + β sin(4πx) + γ sin(8πx)

We train with (a, b, c) ∈ [0, 1]3 and test with (a, b, c) ∈ [0, 1.2]3.

method: average gain variance gain
additive prior with PINNs 273 13000
Multiplicative prior M = 3 with PINNs 92 4000
Multiplicative prior M = 100 with PINNs 272 13000

additive prior with NN 15 18
Multiplicative prior M = 3 with NN 11 17.5
Multiplicative prior M = 100 with NN 15 18

■ The PINN is trained with the physical loss, the NN with only data, no physics.

■ The NN is able to better learn the solution itself, but the approximation of derivatives
is less accurate than with the PINN.

E. Franck 35/43

35/43

EF for elliptic problems
■ Second test:

v∂xu −
1

Pe
∂xxu = r

We train with r ∈ [1, 2], Pe ∈ [10, 100]. We test with (r ,Pe) = (1.2, 40) and
(r ,Pe) = (1.5, 90)

Case 1 Classical FE Additive prior Multiplicative prior
error order error order gain error order gain

10 1.07e−1 – 2.70e−3 – 40 2.29e−4 – 467
20 3.36e−2 1.97 8.00e−4 1.76 42 9.06e−5 1.93 371
40 9.09e−3 1.89 2.01e−4 2.00 45 2.63e−5 1.97 345
80 2.32e−3 1.97 5.01e−5 1.99 46 6.37e−6 1.99 365
160 5.82e−4 1.99 1.30e−6 1.97 45 1.77e−6 2.0 289

Case 2 Classic additive prior Multiplicative prior
error order error order gain error order gain

10 2.65e−1 – 1.51e−1 – 1.7 9.33e−4 – 284
20 1.06e−1 1.32 6.04e−2 1.33 1.7 3.84e−4 1.28 276
40 3.46e−2 1.62 1.96e−2 1.62 1.8 1.13e−4 1.76 305
80 9.50e−3 1.86 5.32e−3 1.87 1.8 3.26e−5 1.80 291
160 2.43e−3 1.86 2.43e−3 1.86 1.8 8.67e−6 1.91 280

E. Franck 35/43

35/43

Hyperbolic systems with source terms
■ In the team, most of us are interested in hyperbolic systems:

∂tU +∇ · F (U) = S(U)

■ It is important to have a good preservation of the steady state ∇ · F (U) = S(U).
■ Example: Lake at rest for shallow water:
■ Exactly Well-Balanced schemes: exact preservation of the steady state.

Approximately Well-Balanced schemes: preserve with a high-accuracy than the
scheme the steady state.

■ Building exact WB schemes is difficult for some equilibria, or for 2D flows.

Idea
Compute offline a family of equilibria with parametric PINNs (or NOs) and plug the
equilibrium in the DG basis to obtain a more accurate scheme around steady states.

E. Franck 36/43

36/43

Theory for hybrid DG
■ Theory for the scalar case.
■ The classical modal DG scheme uses the local representation:

u|Ωk
(x) =

q∑
l=0

αlϕl (x)
k , with [ϕk1 , ...ϕ

k
q] = [1, (x − xk), ...(x − xk)

q]

■ If uθ(x) is an approximation of the equilibrium, we propose to take as basis:

V1 = [uθ(x), (x − xk), ...(x − xk)
q], or V2 = uθ(x)[1, (x − xk), ...(x − xk)

q]

Lemma [Yuan Shu 2006]

Consider an nonlocal basis (vk,0, ... , vk,q). If there exists constant real numbers ajℓ and bj
independent of the size of the cell ∆xk such that, in each cell Ωk ,

∀j ∈ {0, ... , q},

∣∣∣∣∣vk,j (x)−
q∑

ℓ=0

ajℓ(x − xk)
ℓ

∣∣∣∣∣ ≤ bj (∆xk)
q+1,

then for any function u ∈ Hq+1(Ωk), there exist a constant real number C independent of

∆xk , such that: ∥Ph(u)− u∥L∞(Ωk)
≤ C∥u∥Hq+1(Ωk)

(∆xk)
q+ 1

2 .

■ This lemma is sufficient to prove the convergence. Both bases satisfy the assumption.

E. Franck 37/43

37/43

Theory for hybrid DG
■ Theory for the scalar case.

■ The classical modal DG scheme uses the local representation:

u|Ωk
(x) =

q∑
l=0

αlϕl (x)
k , with [ϕk1 , ...ϕ

k
q] = [1, (x − xk), ...(x − xk)

q]

■ If uθ(x) is an approximation of the equilibrium, we propose to take as basis:

V1 = [uθ(x), (x − xk), ...(x − xk)
q], or V2 = uθ(x)[1, (x − xk), ...(x − xk)

q]

More accurate estimate
Assume that the prior uθ satisfies

uθ(x ;µ)
2 > m2 > 0, ∀x ∈ Ω, ∀µ ∈ P.

and still consider the vector space V2. For any function u ∈ Hq+1(Ω),

∥u − Ph(u)∥L2(Ω) ≲

∣∣∣∣ uuθ
∣∣∣∣
Hq+1(Ω)

(∆xk)
q+1 ∥uθ∥L∞(Ω).

■ Adding a stability estimate, we can also prove the convergence.

E. Franck 37/43

37/43

Euler-Poisson system in spherical geometry
■ We consider the Euler-Poisson system in spherical geometry

∂tρ+ ∂rq = − 2
r
q,

∂tq + ∂r
(

q2

ρ
+ p
)
= − 2

r
q2

ρ
− ρ∂rϕ,

∂tE + ∂r
(

q
ρ
(E + p)

)
= − 2

r
q
ρ
(E + p)− q∂rϕ,

1
r2
∂rr (r2ϕ) = 4πGρ,

■ First application: we consider the barotropic pressure law p(ρ;κ, γ) = κργ such that
the steady solutions satisfy

d

dr

(
r2κγργ−2 dρ

dr

)
= 4πr2Gρ.

■ The PINN yields an approximation of ρθ(x ,κ, γ)
■ Second application: we consider the ideal gas pressure law p(ρ;κ, γ) = κρT (r), with

T (r) = e(− αr), such that the steady solutions satisfy

d

dr

(
r2κ

T

ρ

dρ

dr

)
+

d

dr

(
r2κ

dT

dr

)
= 4πr2Gρ,

■ The PINN yields an approximation of ρθ(x ,κ,α)

■ To simulate a flow around a steady solution, we need a scheme that is very accurate
on the steady solution.

E. Franck 38/43

38/43

Results
■ Training takes about 10 minutes on an old GPU,with no data, only the PINN loss.
■ We take a quadrature of degree nQ = nG + 1 (sometimes, more accurate quadrature

formulas are needed).
■ Barotropic case:

■ ideal gas case:

■ 2D shallow water equations: equilibrium with u ̸= 0 + small perturbation. Plot the
deviation to equilibrium:

E. Franck 39/43

39/43

Conclusion

E. Franck 40/43

40/43

Conclusion

Short conclusion
Using nonlinear implicit representations, we proposed new numerical/reduced modeling
methods whose advantages/drawbacks are very different to those of classical approaches.
We will continue to investigate hybrid approaches.

Current work: Neural operators
We investigate the modification/extension of Neural Operator methods on general grids,
to multiscale problems, and to preserve some structures (PEPR NUMPEX).

Current work: Continuous ROMs
■ Using PINNs or Neural Galerkin approaches, we wish to construct

discretization-independent continuous ROMs.

■ Encoder:
Eθ(f (x1), ... , f (xn)) → β ∈ Rd

where the (x1, ... , xn) is a random point cloud.

■ Decoder:
Dθ(β) =

∑
i=1

βi (t)ϕθi (x), or Dθ(β) = uθ(x ;β)

■ Coupling with Neural Galerkin, hyper-reduction and structure/property preserving
approaches.

E. Franck 41/43

41/43

Adverts!

Scimba
■ For the PEPR Numpex, we are currently writing the Scimba code. It contains for

PINNs, Neural Galerkin, Neural operator methods, . . . ; the goal is for this code to be
shared by different teams.

■ If you are interested to try these methods, play with Scimba, or participate contact us!

Macaron
■ Our Inria team TONUS/MACARON will specialize in the hybridation between ML and

numerical methods for PDEs.

■ We regularly have PhD, post-doc and even permanent positions open on these
subjects. If you are interested, contact us :)

E. Franck 42/43

42/43

Main references
■ PINNs:

□ Physics-informed neural networks: A deep learning framework for solving forward and inverse problems
involving nonlinear partial differential equations, M. Raissi, P. Perdikaris, G.E. Karniadakis

□ An Expert’s Guide to Training Physics-informed Neural Networks, S. Wang, S. Sankaran, H. Wang, P.
Perdikaris

□ Estimates on the generalization error of Physics Informed Neural Networks (PINNs) for approximating PDEs,
S. Mishra, R. Molinaro

■ Neural Galerkin:
□ Neural Galerkin Scheme with Active Learning for High-Dimensional Evolution Equations, J. Bruna, B.

Peherstorfer, E. Vanden-Eijnden
□ A Stable and Scalable Method for Solving Initial Value PDEs with Neural Networks, M. Finzi, A.

Potapczynski, M. Choptuik, A. Gordon Wilson

■ Neural Operator:
□ Fourier Neural Operator for Parametric Partial Differential Equations, Z.i Li, N. Kovachki, K. Azizzadenesheli,

B. Liu, K. Bhattacharya, A. Stuart, A. Anandkumar
□ Neural Operator: Learning Maps Between Function Spaces, N. Kovachki, Z. Li, B. Liu, K. Azizzadenesheli, K.

Bhattacharya, A. Stuart, A. Anandkumar
□ MOD-Net: A Machine Learning Approach via Model-Operator-Data Network for Solving PDE, L. Zhang, T.

Luo, Y. Zhang, Weinan E, Z. Xu, Z. Ma

■ Deep Predictor for Newton:
□ Accelerating hypersonic reentry simulations using deep learning-based hybridization (with guarantees), P.

Novello, G. Poëtte, D. Lugato, S. Peluchon, P. Marco Congedo
□ DeepPhysics: a physics aware deep learning framework for real-time simulation, A. Odot , R. Haferssas, S.

Cotin
□ Accelerating Newton convergence for nonlinear elliptic PDE using neural operator approach, E. Franck, R.

Hild, V. Vigon, V. Michel-Dansac, J. Aghili. En cours de rédaction.

■ Hybrid methods:
□ Enhanced Finite element by neural networks for elliptic problems, H. Barucq, E Franck, F. Faucher, N.

Victorion. En cours de rédaction
□ Approximately well-balanced Discontinuous Galerkin methods using bases enriched with Physics-Informed

Neural Networks, E. Franck, V. Michel-Dansac, L. Navoret. Arxiv preprint.

E. Franck 43/43

43/43

	Introduction
	Physics-informed Neural Networks
	New paradigm: Operator learning
	Application to numerical methods
	Conclusion

