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Numerical methods

B We begin with a simple example:

Lixu=0tu—Au=0
u(t =0, x) = up(x)
u(x) = g on 90
B Solving a PDE amounts to solving a infinite-dimensional problem.
B Numerical method: transform the PDE into a finite-dimensional problem of dimension
N with convergence to the PDE solution when N — oo

B How to summarize most of numerical methods? (drawing from S. Mishra)

G
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B Definitions:

0 &, the encoder, transforms the data (initial conditions, RHS) into a finite
dimensional vector. Transformed data are called degree of freedoms (DoF).

L D, the decoder, transforms degrees of freedom into a function.

O A, the approximator, transforms the DoF of the RHS into the DoF of the

approximate solution. (4 \
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Why numerical methods require a mesh?

Polynomial Lagrange interpolation

We consider a domain [a, b]. There exists a polynomial P of degree k such that, for any
f € CO([a, b)),

f(x) — P(x)| < |b— a|¥ LX)
[f(x) = P(x)| < |b—a x?[iff,]' (€3]

B On small domains (|b — a| <« 1) or for large k, this polynomial gives a very good
approximation.

B Very high degrees k can generate oscillations.

B To enfore small domains: we introduce a mesh and a cell-wise polynomial
approximation

First step: choose a parametric function

We define a mesh by splitting the geometry in small sub-intervals [x;, x;+1], and we
propose the following candidate to approximate the PDE solution u

k
u\[vaXerl](t'X) = Zaj(t)¢j(x)-
=

This is a piecewise polynomial representation. /-\
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Finite element, finite volume, discontinuous Galerkin

Finite element method

B Encoder: transforms the function f into c(t) the FE DoF (pointwise values,
face/edge integral values, . ..)

B Decoder: D(a)(t,x) = vazl a;(t)pi(x) with ¢;(x) a compactly supported basis
function defined on the whole mesh

B Approximator: we plug the decoder in the weak form of the equations to obtain an
ODE or an algebraic system on «

A\

Finite volume and discontinuous Galerkin method

B Encoder: transforms the function f into a(t) the FE DoF (average values, modal
values, nodal values, ...)

B Decoder: D(a)(t, X)|Qj = Z,N=1 ai(t)ei(x) with ¢;(x) a local cell-wise basis function.

B Approximator: we plug the decoder in the weak form of the equations to obtain an
ODE or an algebraic system on «, in each cell

A\

B For this method, the decoder generates a finite-dimensional vector space.

B The method projects a form of the equation on this finite-dimensional space.
Uniqueness is ensured by the Hilbert projection theorem.

B Convergence is ensured: increasing the number of DoF (mesh, polynomial degree)

makes the error decrease. (6/ \
43
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Spectral methods

Spectral theorem

The spectral theorem in Hilbert spaces proposes an approximation of any function in H by

N
u(x) = aigi(x),
i=1

with ¢;(x) the orthonormal global Hilbert basis, and a; = (f, ¢;).

Spectral method

B Encoder: Projection of the function f in the spectral basis. DoF: «; = (f, ¢;)

B Decoder: D(a)(t,x) = Z{\’:l a;(t)pi(x) with ¢;(x) the first modes of the Hilbert
basis.

B Approximator: we plug the decoder in the weak/strong form of the equations to
obtain an ODE or an algebraic system on a.

B For this method, the decoder generates a finite-dimensional vector space.

B The method projects a form of the equation on this finite-dimensional space, using the
Unicity by Hilbert projection theorem.

Convergence is ensured: increasing the number of DoF (number of modes) makes the

error decrease. (7 \
/a3
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Mesh-free methods

Represent the solution as a sum of radial basis functions localized at some points:
N
u(x) =D aidillx = xl)
i=1
. . . . 2
with ¢;(r) a radial basis function such as ¢(r) = e~ (1" or ¢(r) = ﬁg Larger values
of £ give more localized functions.

IRZCS) ,(0

Radial basis method

B Encoder: Projection of the function f. DoF: weights of the radial functions

B Decoder: D(a)(t, x) = Z{\’:l ai(t)(]x — xi|) with ¢(x) a radial basis function.
B Approximator: just like before, the decoder is plugged in the equation.

B |ike before, we have a finite-dimensional function space.
B Convergence: increasing the number of points (DoF) makes the error decrease. (8 \
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Reduced basis methods

For many years, there has been research to propose reduced order models (including
experts here in Bordeaux!).

One of the classical approaches is the Reduced basis method.

It represents a subset of solutions like

N
u(x) = 3 aigi(x),

i=1
where ¢;(x) is a spectral basis computed to efficiently represent a subset of solutions
associated to a subset of parameters.
Such methods can be viewed as data-driven Spectral methods.
They have properties similar to the spectral method'’s.
Example:

2
P 1
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tp + ( 5 ) R. P
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Reduced basis methods

For many years, there has been research to propose reduced order models (including
experts here in Bordeaux!).

One of the classical approaches is the Reduced basis method.

It represents a subset of solutions like

N
u(x) =D aigi(x),
i=1

where ¢;(x) is a spectral basis computed to efficiently represent a subset of solutions
associated to a subset of parameters.

Such methods can be viewed as data-driven Spectral methods.
They have properties similar to the spectral method'’s.

Example:
2
P 1
0, ax ~ ziaxx
o (2) Re P

Reynolds number Re = 400000, 40 modes
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Properties

Space and space-time decoder

B Classical methods (FE/FV/DG/...) involve a decoder where only the space
representation is fixed:

N

u(t,x) = Z a;i(t)pi(x).
i=1
B Plugging this decoder in the equation, we obtain an ODE to solve.

B A more recent approach, space-time methods, proposes to fix both space and time
representations:

N
u(t,x) = Z aidi(t, x).
i=1

B Plugging this decoder in the equation we obtain an algebraic system to solve.

Explicit vs implicit representations

B Representations are called explicit if the degrees of freedom can be explicitly computed
and understood from the function.

B FE/FV/DG/spectral methods use explicit representations (average value, ...).

B The radial basis method, however, uses a partially explicit representation. It is difficult
to understand the DoF from the function, but they can easily be computed by
inverting the mass matrix (projector).

\10 /43‘
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Key idea

Every previously mentioned space and space-time methods consists in:

1. choosing a linear representation (linear combination of basis functions), either local
(on a mesh) or global;

2. plugging this representation into the equation to obtain algebraic relations (linear for

linear problems, nonlinear for nonlinear problems) or ODEs.

3. solving this algebraic relation with a linear solver or Newton’s method, using a time
scheme to solve the ODE.

In all these cases, the decoder is linear with respect to the DoFs, and the representation is

either explicit or partially explicit.

| \

Choose a nonlinear representation given by a neural network. We replace a sum of simple

functions with a composition of simple functions.

Important points

| \

Finite-dimensional spaces associated to a nonlinear decoder are not vector spaces. So:
B the projector is not unique, and the representations will be implicit.

B Existence and uniqueness? algebraic system replaced with non-convex optimization.
B Convergence is harder to study and understand.

7

E. Franck

[
\



Nonlinear models

B Nonlinear version of classical models: f is represented by the DoF «;, u;, w; or X;:
—1
Fx: 0 X) = Za;e(xi”")zf (Xfl‘r'), f(x; o,w) = Za;sin(w;x)
i=1 i=1

B Neural networks (NN).

A layer is a function L;(x/) : R% — R%+1 given by

Li(x)) = o(Aix; + b)),

A; € R9+1:9 b € RY+1 and o() a nonlinear function applied component by component.

Neural network

A neural network is parametric function obtained by composition of layers:

fo(x) = Lpo....oLi(x)

with € the trainable parameters composed of all the matrices A; ;1 and biases b;.

B Goal: using these models, we expect to require fewer DoFs, not to require a mesh,
and to deal with larger dimensions.
B Key point: in the NN framework, derivatives can be exactly computed through
automatic differentiation tools. ,12 \
/a3
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NN vs Polynomial

B We compare over-parametrized NN and polynomial regression on the Runge function.

B Regression: 120 data and approximately 800 parameters in each model.
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NN vs Polynomial

B We compare over-parametrized NN and polynomial regression on the Runge function.

B Regression: 120 data and approximately 800 parameters in each model.

loss history k=2, epoch = 4959 preiction error
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NN vs Polynomial

B We compare over-parametrized NN and polynomial regression on the Runge function.

B Regression: 120 data and approximately 800 parameters in each model.

s sy 2 cpch = 30999 o
10 100 N — edction | 07
N
w
" .
o
.
o
s sy cpon = 10099 ——
10 10 N — peedction | ons
o8 020
o
s sy o
0 - 010
o
o %00 10000 15000 20000 1o 65 00 o5 1o io 65 00 o5 10
B The polynomial model tends to oscillate in the over parameterized regime.

Problematic for overfitting.

E. Franck
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NN vs Polynomial

B We compare over-parametrized NN and polynomial regression on the Runge function.

B Regression: 120 data and approximately 800 parameters in each model.

loss history. k=2, epoch = 49 prediction error
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NN vs Polynomial

B We compare over-parametrized NN and polynomial regression on the Runge function.
B Regression: 120 data and approximately 800 parameters in each model.

loss history. k=2, epoch = 899

N
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B The ANN generates very smooth/low frequency approximations.

B |t is related to the spectral bias. The low frequencies are learned before the high
frequencies.

B Seems very helpful to use it for global and high dimensional representation. ,13 \
/a3
E. Franck

4



Physics-informed Neural Networks

E. Franck
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Space-time approach: PINNs |

Idea of PINNSs

B For u in some function space H, we wish to solve the following PDE:

Oru = F(u, Vu, Au) = F(u).
B (Classical representation for space-time approach: u(t, x) = ZIN:I 0i0i(x, t)

B Deep representation: u(t, x) = upn(x, t; @) with un, a NN with trainable parameters 6.

B Since ANNs are CP functions, we can compute Otunn(x, t;0), Oxp unn(x, t; 0) and
r(x, t) = Orunn(x, t;0) — F(unn(x, t;0), Vunn(x, t; 0), Aupn(x, t; 0))
B First idea: we solve the nonlinear problem
r(xitn) =0, V1I<j<N,, Vi<n<N;

with N; x Ny equal to the number of parameters.
B Problem: The subspace of NN functions is not a vector space. The existence of the
solution to the discrete problem cannot be ensured.

We move away from solving algebraic equations on the parameters, and go towards
non-convex optimization.

| 65
E. Franck \ /43‘




Space-time approach: PINNs [l
B We define the residual of the PDE:
R(t, x) = Orunn(t, x;0) — F(unn(t, x; 6), Oxtnn(t, x; 0), Oxxtnn(t, x; 0))

B To learn the parameters 6 in unn(t, x; 0), we minimize:
9 = arg min (J,(e) + Jp(0) + J,-(e)),
0

with

J,(e)z/OT/Q|R(t,X)|2dxdt

and

)
— 0 == X 2X H = unn(V, X; — up(x 2X.
J(0) = /0 /anuunn(r,x,e) g()3dxdt,  Ji(0) /Q (0, x: 0) — 1o ()| 3d

B |f these residuals are all equal to zero, then upn(t, x; 0) is a solution of the PDE.

B To complete the determination of the method, we need a way to compute the
integrals.

B Important point: the derivatives are computed exactly using automatic differentiation
tools and back propagation. Valid for any decoder proposed.
16/
\ 43
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Monte Carlo

B How to compute the integrals? With a Monte Carlo approach.
' The Monte-Carlo method stems from the Law of large numbers

O We consider a function g : R — R. We define X a random variable with law 1
) The method comes from

( Zf(X M[f(X)]) — N(0,1)

with X; an random example sampled with the law p
U It makes it possible to compute integrals. Indeed

/ F(x)dx = / F(x)Uadx = E[f(X)]
Q Rd

with Uq the density of the uniform law Q and X random variable following this law
B The variance can be reduced through importance sampling

]E[f(X)]:/Qf(x)dx:/ ) L ax = B [f(X)]

2 g(x) £ le(x)

Var(p,

B |f Var(Uq) > Var(g), the error is reduced

E. Franck
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Space-time approach: PINNs Il
B \We define the residual of the PDE:
R(t, x) = Otunn(t, x;0) — F(unn(t, x; 0), Oxunn(t, x; 0), Oxxtnn(t, x;0))
To learn upn(t, x; 6), we minimize:

min (J;(6) + Jo(6) + Ji(0)).

with
N N
Jr(0) =D IR(ta, x1)
n=1 j=1

with (tn, x;) sampled uniformly or through importance sampling, and

Ny N N;
I6(0) = D3 lunn(tn, xi:0) — g(x)2, Ji(0) = D [unn(0, xi; 0) — uio(xi)|2.
n=1 i=1 i=1

B To avoid an extra loss for the BC and initial conditions, we use:
T (t, x) = uo(x) + t(¢(x) * ug(x)),

with ¢(x) = g(x) on the boundary, and taking some other value within the domain.

B We solve the problem with usual gradient-type methods from Deep-Learning. (18 \
/a3
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Example: viscous Burgers equation

2
Application: viscous Burgers equation O¢p + Ox (%) = vOxxp-

Solving for different values of the y parameters:
v = 2110000 pts, medium-sized NN.

beginning of training

iter = 200
loss = 0.0774
L2 error: 4.7142e-01

t=024

iter = 400
loss = 0.0318
L2 error: 4.0850e-01

t=024

0s

t=0.80 t=135

t=0.80 t=135
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Example: viscous Burgers equation

Solving for different values of the p parameters:

| |
|
"y = %. 10000 pts, medium-sized NN.
B middle of training

iter = 2000

loss = 0.0000

L2 error: 9.0829e-03

t=024

-1

-10 05 0o 0s
x

iter = 2200

loss = 0.0000

L2 error: 8.2614e-03
t=024

t=0.80
1
0
-1
-10 05 0o 05 10
x
t=0.80
1
0
-1
-10 05 00 05 10

2
Application: viscous Burgers equation 0¢p + Ox (%) = VOxxp-

t=135

-10 05 0o 05 10
x

t=135
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R R R R RRRRRERERRERERRREEEE==S=————————
Example: viscous Burgers equation

2
B Application: viscous Burgers equation 9¢p + Ox (%) = vOxxp-

B Solving for different values of the p parameters:
® =21 10000 pts, medium-sized NN.
B end of training

iter = 4800
loss = 0.0000
L2 error: 4.6718e-03

t=0.24 t=0.80 t=135
1 1 1
0 0 0 /\/
-1 -1 -1
-10 05 0o 05 10 -10 05 oo 0s 10 -10 05 00 05 10
x x x
iter = 5000
loss = 0.0000
L2 error: 4.7307e-03
t=024 t=0.80 t=135
1 1 1
0 0 0 /\/
-1 -1 -1

10 905 00 05 10 10 95 00 05 10 10 05 00 05 10
x x x
19
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R R R R RRRRRERERRERERRREEEE==S=————————
Example: viscous Burgers equation

2
Application: viscous Burgers equation Otp + Ox (%) = vOxxp-

Solving for different values of the p parameters:

v = 2910000 pts, medium NN.
beginning of training

iter = 600
loss = 0.0885
L2 error: 4.360le-01

t=024

-1

t=0.80

t=135

-10 05 0o 0s 10 -10 05 () 05 10 -10 05 0o 05 10
x x x
iter = 800
loss = 0.0233
L2 error: 2.090le-01
t=024 t=0.80 t=135
1 1 1
0 0 0
-1 -1 -1
-10 05 0o 0s 10 -10 05 0o 05 10 -10 05 0o 05 10
x x x
/43
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Example: viscous Burgers equation

2
B Application: viscous Burgers equation 9¢p + Ox (%) = vOxxp-

B Solving for different values of the p parameters:
B =20 10000 pts, medium NN.
|

middle of training

iter = 2000
loss = 0.0003
L2 error: 1.8053e-02
t=024 t=0.80 t=135

1 1 1

0 0 0 /l/

-1 -1 -1

-10 05 00 0s 10 -10 05 00 05 10 -10 05 00 05 10
x X x
iter = 2200
loss = 0.0002
L2 error: 1.7773e-02
t=024 t=0.80 t=135

1 1 1

0 0 0 /\/

-1 -1 -1

-10 05 00 05 10 -10 05 00 05 10 10 05 00 05 10
x x x
/43
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R R R R RRRRRERERRERERRREEEE==S=————————
Example: viscous Burgers equation

2
B Application: viscous Burgers equation 0¢p + Ox (%) = VOxxp-
B Solving for different values of the p parameters:
By = 2% 10000 pts, medium NN.
B end of training
iter = 4800
loss = 0.0001
L2 error: 5.9728e-03
t=0.24 t=0.80 t=135
1 1 1
0 0 0 /\/
-1 -1 -1
-10 05 0o 05 10 -10 05 0o 05 10 -10 05 0o [ 10

iter = 5000
loss = 0.0001
L2 error: 5.2593e-03

t=024 t=0.80 t=135
1 1 1
0 0 0 /\/
-1 -1 -1

E. Franck y



R R R R RRRRRERERRERERRREEEE==S=————————
Example: viscous Burgers equation

2
Application: viscous Burgers equation O¢p + Ox (%) = vOxxp-

Solving for different values of the y parameters:
v = 229210000 pts, medium NN.

beginning of training

iter = 200
loss = 0.0774
L2 error: 4.7142e-01

t=024 t=0.80 t=135

iter = 400
loss = 0.0318
L2 error: 4.0850e-01
t=024 t=0.80 t=135
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Example: viscous Burgers equation

2
Application: viscous Burgers equation Otp + Ox (%) = vOxxp-

Solving for different values of the p parameters:
v = 2292 10000 pts, medium NN.

middle of training

iter = 2000
loss = 0.2076
L2 error: 6.2666e-01

t=024 t=0.80 t=135

iter = 2200
loss = 0.1361
L2 error: 6.0138e-01

t=024 t=0.80 t=135

E. Franck



Example: viscous Burgers equation

2
B Application: viscous Burgers equation 9¢p + Ox (%) = vOxxp-

B Solving for different values of the u parameters:
"y = %7:)2. 10000 pts, medium NN.
[ |

end of training

iter 4800
loss 0.0272
L2 error: 4.0909e-01

t=024 t=0.80 t=135
1 1 1
"
1
0 0 0 -
! -
-
-1 -1 -1
-10 05 00 0s 10 -10 05 00 05 10 -10 05 00 05 10
x
iter = 5000
loss = 0.0212
L2 error: 4.0300e-01
t=024 t=0.80 t=135
1 1 1

o
o

-10 05 0o 05 10 -10 05 0o 05 10 -10 05 00 05 10
x x x
19
43

. Franck \ y

m



R R R R RRRRRERERRERERRREEEE==S=————————
Example: viscous Burgers equation

2
B Application: viscous Burgers equation 0¢p + Ox (%) = VOxxp-
B Solving for different values of the p parameters:
B = 2902 40000 pts, larger NN.
B end of training
iter = 4800
loss = 0.0006
L2 error: 2.301lle-01
t=0.24 t=0.80 t=135
1 1 1
0 0 0 /l/‘
-1 -1 -1
-10 05 0o 05 10 -10 05 0o 05 10 -10 05 00 05 10
x x x
iter = 5000
loss = 0.0004
L2 error: 2.2456e-01
t=0.24 t=0.80 t=135
1 1 1
0 0 0 /‘/‘
-1 -1 -1
-10 05 00 05 10 -10 05 0o [ 10 -10 05 00 0s 10 ﬂ
x X
19
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PINNSs for parametric PDEs

B Advantages of PINNs: mesh-less approach, not too sensitive to the dimension.

B Drawbacks of PINNSs: they are often not competitive with classical methods.

B |nteresting possibility: use the strengths of PINNs to solve PDEs parameterized by
some .

B The neural network becomes unn(t, x, w; 6).

New Optimization problem for PINNs

minJ,(G) +...,, with

J:(0) = / / / ||8tu,,,, — u,,n(t X, ), Oxtnn(t, x, 1), Oxxtunn(t, x, ) ||2dxdt

with V, a subspace of the parameters .

B Application to the Burgers equations with many viscosities [1072, 1074]:

B Training for u = 10~*: 2h. Training for the full viscosity subset: 2h. ,20 \
E. Franck /43‘




Spatial approach: Neural Galerkin |
B We solve the following PDE:
Otu = F(u,Vu, Au) = F(u).

B (Classical representation: u(t, x) = Z,N:1 0;(t)pi(x)

B Deep representation: u(t, x) = upn(x; 0(t)) with un, a neural network, with
parameters 0(t), taking x as input.

B We want that:

F(unn(x;0(t))) = Orunn(x; 0(t)) = <V9un,,(x; 9), %(:)>

B How to find an equation for di(tt)?

B We solve the minimization problem:
do(t)
dt

= argminJ(n) = arg min/ [ (Vounn(x;0), m) — F(unn(x; 0(t)))|?dx.
n n Q

B The solution is given by

do(t)
dt

M(0(t)) = F(x6(1))

with
M(G(t)):/QVgun,,(x;9)®Vgu,m(x;9)dx, F(X,O(t)):/QVgunn(x;G)F(u,,n(x;G))dx.

\21 /43
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Spatial approach: Neural Galerkin Il

How to estimate M(6(t)) and F(x, 6(t))?

Firstly: we need to differentiate the network with respect to 6§ and to x (in the
function F). This can easily be done with automatic differentiation.

Secondly: How to compute the integrals? Monte Carlo approach.

So, we use:
N
M(6(t)) = Z Vo unn(xi; 0) ® Vounn(xi; 0)
i=1
and the same for F(x, 6(t)).
Summary: we obtain an ODE in time (as usual) and a mesh-less method in space.
Like in the case of PINNs, we can apply this framework to parametric PDEs and larger

dimensions.
We solve the following PDE:

Oru = F(u,Vu, Au, a) = F(u; p).

Deep representation: u(t, x, ) = upn(x, p; 0(t))
The solution is given by

do(t)

M(O(t))T

= F(x,0(t), 1)

with

M(6(t)) = /Vu /QVeunn(x, 1;0) @ Vgunn(x, 1; 0)dxdp. 6/\
43
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Spatial approach: Neural Galerkin Il

B We solve the advection-diffusion equation 9:p + a- Vp = DAp with a Gaussian

function as initial condition.

B Case 1: with a neural network

prediction

w_theta(x, y)

~0.75 -0.50 -025 000 025 050 075
dx prediction

C»

dxv_theta(x, y)

~0.75 -0.50 -025 000 025 050 075

reference

w_reflx, y)

075 -050 025 000 025 050 075
dy prediction

-
<r

dy w_theta(x, y)

~0.75 -0.50 -025 000 025 050 075

B 3 minutes on CPU, L2 error around 0.4. Bad initialization method, naive solve, many
tricks to decrease the coast. Naive and small network.

E. Franck
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Spatial approach: Neural Galerkin Il

B We solve the advection-diffusion equation d:p + a- Vp = DAp with a Gaussian
function as initial condition.

B Case 2: with a Gaussian mixture (one Gaussian):

prediction reference
125 125
075
050 120 120
025
115 115
000
025 110 110
050 < 105 1.05
-075 w_theta(x, y) w_ref(x, y)
1.00
075 -050 -025 000 025 050 075 075 -050 -025 000 025 050 075
dx prediction dy prediction
0.75 Lo 0.75 10
050 050
025 025 Q
0.00 00 0.00 00
025 025
05 05
050 050
-0.75 dx v_theta(x, y) -10 -075 +  dyw_theta(x, y) -10
075 -050 -025 000 025 050 075 075 050 -025 000 025 050 075

B 5 sec on CPU. Error around 5.0~*. Decoder perfect to represent this test case.
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Summary

New numerical methods

New numerical methods are derived using with neural networks.
B Same spirit as classical methods: plug an Ansatz into the equation to obtain equations
on DoFs
B However, NN-based methods introduce a nonlinear Ansatz with implicit representation.
v

Many questions remain

B Accuracy? How to limit the GPU cost? Preconditioning? Domain decomposition?
B Positivity? capture of shocks? structure preservation (symplecticity)?
B Convergence and stability? (this is really trickier)

Drawbacks

B |ess accurate than classical approaches,
B convergence and theoretical study difficult,
B expensive in low dimensions and on CPU

|

Advantages

|

B mesh free

B more efficient in large dimension and for parametric PDEs, perfect for GPUs

B more general decoder coupled the exact computation of the gradient allows to impose
some properties easier. -\
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Operator Learning
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EEEEEEEEEEEEEEEEEERERRlRREEEE——
Operator learning
B New paradigm for reduced modeling. We consider the following problem:
Ga(x‘t)(u(t,x)) = Oru(t, x) + Ea(x)(u(t, x))=0 onQ,
u(t,x) = g(x) on 89Q,
u(t =0, x) = up(x).

B We denote by pu(t, x) = (a(x, t), g(x), uo(x)) the parameters.
B Formally, there exists a pseudo-inverse operator G, such that G*(u) = u(t, x).

Objective
Approximate Gt by a neural network on a subspace of the data where the results do not
depend on the mesh resolution of the input/output functions.

Problem
We construct a neural network G, (p4(t, x)), which minimizes J(0) = J1(0) + J2(0), with

)
70 = [ [ [ 165t x a0, ) = i, ) e

| A\

and T
70 = [ [ [ 16u(G (tx, (o, ) e,
©
where the integrals are approximated by MC. )
B DeepOnet: Encode the function of parameters, and decode with parametric PINNS. ,26 \
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Green theory and Neural operator

B Beginning with a simple case:
U Linear elliptic equation: Au = f. On unbounded domains, the solution is given by

u(x) = /R G(x, y)F(y)dy

O Linear heat equation: d:u — Au = f(t, x). On unbounded domains, the solution is
given by

u(t, x) = /]R Gi(t, %, y)uo(y)dy + /]R /]R Ge(t, 7 %, y)F(r., y)dydT

Idea for linear problem

For bounded (and potentially complex) domains, learn the Green functions.

B No Green theory for nonlinear PDEs. How can this be adapted to nonlinear PDEs?

Idea of Neural Operators

To approximate nonlinear functions, NNs compose parametric linear maps and
nonlinear local functions.

To approximate nonlinear operators, NOs compose parametric linear operators and
nonlinear local functions.

¥27
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Neural operator |l

Neural Operator layer

Consider the vector function given by the previous layer v,(x). A kernel layer is given by

Vi) = o (W/(t)v,(x) + /Q Ge,(t,x,y)v,(y)dy)

with W(t) a learnable weight matrix and Gy a learnable kernel.

B We can also introduce a kernel like Gy(t, T, x,y) for source terms, etc.

B |n general, we add a first layer Q which transforms up(x) into vo(x) to increase the
dimension of the function, and a layer performing the inverse transform at the end.

How to learn this object independently of the discretization?

First possibility: MoDnet

Trainable parameters: (W), 0;). Gy, is a classical network. In the space-time case, W,
is a network; when the equation does not depend on time, W, is a matrix.

Evaluation of the integral: Monte Carlo for large dimensions (also low rank or
multigrid versions), or Gauss quadrature (for low dimensions).

Learning: data + physics-informed loss function.

General geometry. Large complexity, but computations are perfectly suited to GPUs.

128
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Neural operator IlI

Second possibility: Fourier approach

B \We can use

/Q G(x, Y)f(y)dy = FHF(G(x, ))F(f(.)))

with F the Fourier transform. It is exact for translation-invariant kernels (e.g.
convolution).

B |n practice, we use
FHKeF(f())
and we learn Kp, limiting frequency to kmax-

B Faster that previous approach, but limited to Cartesian grids to use FFTs. There exist
variants for general geometries.

v

More general Spectral approach

B \We can use

M

/Q G F()dy & 3 (Ko b1 ()} 28k(%)

m=1

B Variants include: Chebyshev or Legendre polynomials, Laplace transform, Fourier
transform on manifolds, etc.

| £
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Application to numerical methods
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Hybrid predictor-corrector methods

Hybrid methods

In this context, hybrid methods combine classical numerical methods and numerical
methods based on Implicit Neural representation (IRM).

Objectives

Taking the best of both worlds: the accuracy of classical numerical methods, and the
mesh-free large-dimensional capabilities of IRM-based numerical methods.

General Idea

B Offline process: train a Neural Network (PINNs, NGs or NOs) to obtain a large family
of approximate solutions.

B Online process: predict the solution associated to our test case using the NN.
B Online process: correct the solution with a numerical method.

§ \‘ 31/43
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Predictor-Corrector Newton method for elliptic problems
B \We consider a nonlinear elliptic problem:
u(x) — 0B ((x) u(x) POru) = F(x)

B To solve this PDE we use FE or FD solver 4+ Jacobian-Free Newton-Krylov method.

Train a neural operator (Fourier neural operator on a large data set) and use its prediction
as an initial guess for Newton's method.

B We only compare the average results:

mesh o9 =2 (40 sim) | ap =5 (25 sim) | ap =8 (25 sim)
100 cells | +500% +1800% +5000%

200 cells | +88% +230% +620%

400 cells | +82% +150% +220%

600 cells | +92% +220% +250%

Table: Comparison of the mean “gain” in CPU time for different values of ap.

B Failures: on all the tests, we have 0% of fail (our method being less efficient than the
classical one) in terms of number of iterations, and around 2% of fail in terms of CPU
time.

B On more refined meshes, the gain is smaller (the network acts only at the beginning of
the convergence).

B |n 2D, gains are also lower, and the classical method converges more quickly (why?) 30

/i3
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Predictor-Corrector: using PINNs in a FE method

B \We consider the following elliptic problem:

Lu=—0wu-+voxu+ru=fFf, Vxe
u=g, Vx € 00

B We assume that we have a continuous prior of the solution given by a parametric
PINN wg(x)

B \We propose the following corrections of the finite element basis functions:
u(x) = ug(x) + pa(x),  u(x) = ug(x)pn(x),
with pp(x) a perturbation discretized using Py Lagrange finite element.

B For the first approach (additive prior), we solve in practice:

Lpp(x) = f — Lup(x), Vx €Q
pr(x) =g —up(x),  Vx € R

B For the second approach (multiplicative prior), we need uy(x) # 0, so we take M > 0

and we solve:
{ L(ug(x)ph(x)) = f, V¥x€Q

ph(x) = ugg(x) + M, Vxeon

‘33/43
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Theory for hybrid EF

B Approach one: we rewrite the Cea lemma for up(x) = ug(x) + pa(x). We obtain
M
llu = unll < —lju = ug — In(u — up)|
with I, the interpolator. Using the classical result of P, Lagrange interpolator we

obtain v
lu = upllgm < = CHFHE (7'“_ ”"‘”m> |ulm
a ] pym

gain

B Approach two: up(x) = up(x)ps(x). We use a modified interpolator:

N
lmod,h(f) = Z f(Xi) (ZS,'(X)UQ(X)

i1 ue(xi)

using Imod.r(f) = Ih(é)ue(x) , the Cea lemma and interpolation estimate we have:

M [z Hm (| ug (x) || oo
lu— upllpm < ;Chk“_’" <u" ] pym

[ulpm

gain
B The prior must give a good approximation of the mt" derivative. (34 \
/43
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EF for elliptic problems

B First test:
— 0wt = asin(27x) + Bsin(4wx) + v sin(8mx)

We train with (a, b, ¢) € [0, 1]® and test with (a, b, c) € [0, 1.2]3.

method: average gain  variance gain
additive prior with PINNs 273 13000
Multiplicative prior M = 3 with PINNs 92 4000
Multiplicative prior M = 100 with PINNs 272 13000
additive prior with NN 15 18
Multiplicative prior M = 3 with NN 11 175
Multiplicative prior M = 100 with NN 15 18

B The PINN is trained with the physical loss, the NN with only data, no physics.

B The NN is able to better learn the solution itself, but the approximation of derivatives
is less accurate than with the PINN.

\‘ % /43
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EF for elliptic problems

B Second test:

1
vOxu — P—ﬁxxu =r

e

We train with r € [1, 2], Pe € [10,100]. We test with (r, Pe) = (1.2,40) and
(r, Pe) = (1.5,90)

Case 1 | Classical FE Additive prior Multiplicative prior
error order | error order | gain | error order | gain
10 1.07e T | - 2703 | - 40 229¢ % | - 467
20 336e=2 | 1.97 | 8.00e~% | 1.76 | 42 9.06e—° | 1.93 | 371
40 9.09¢—3 | 1.89 | 2.01e % | 2.00 | 45 2.63e—° | 1.97 | 345
80 23273 [ 1.97 [ 5.01e ® | 1.99 | 46 6.37¢ % | 1.99 | 365
160 582e—% [ 1.99 | 1.30e=® [ 1.97 | 45 1.77e7% | 2.0 289
Case 2 | Classic additive prior Multiplicative prior
error order | error order | gain | error order | gain
10 2.65e~ T | — 1.51e 1 | - 1.7 933e~ % | - 284
20 1.06e—T | 1.32 | 6.04e 2 | 1.33 | 1.7 384 % | 1.28 | 276
40 3.46e=2 | 1.62 1.96e=2 | 1.62 1.8 1.13e=% | 1.76 | 305
80 950e=3 [ 1.86 | 5323 | 1.87 | 1.8 3.26e° | 1.80 | 201
160 2.43e=3 [ 1.86 | 2.43e3 | 1.86 1.8 8.67¢ % | 1.91 | 280
E. Franck
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Hyperbolic systems with source terms

B |n the team, most of us are interested in hyperbolic systems:
U+ V- -F(U)=S(U)

B |t is important to have a good preservation of the steady state V - F(U) = S(U).

Example: Lake at rest for shallow water:

B Exactly Well-Balanced schemes: exact preservation of the steady state.
Approximately Well-Balanced schemes: preserve with a high-accuracy than the
scheme the steady state.

B Building exact WB schemes is difficult for some equilibria, or for 2D flows.

v

Compute offline a family of equilibria with parametric PINNs (or NOs) and plug the
equilibrium in the DG basis to obtain a more accurate scheme around steady states.

G
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Theory for hybrid DG

B Theory for the scalar case.
B The classical modal DG scheme uses the local representation:

q
ujg, (X) =D audi(x)*, with  [f, ..0k] = [1, (x — xk), .- (x — x)9]
1=0

B |f up(x) is an approximation of the equilibrium, we propose to take as basis:

Vi = [ug(x), (x — xk), ...(x — xk)9], or Vo = up(x)[1, (x — xk), .-.(x — xx)]

Lemma [Yuan Shu 2006]

Consider an nonlocal basis (v, ..., Vk,q)- If there exists constant real numbers aj, and b;
independent of the size of the cell Axy such that, in each cell Q,

vje{o,..,q} < bj(Ax )T,

q
Vi j () = aje(x — xi0)"
=0

then for any function u € H9+1(£,), there exist a constant real number C independent of
1
Axy, such that: ||Py(u) — ullpo(q,) < C||UHHq+1(Qk)(AXk)q+2.

v

B This lemma is sufficient to prove the convergence. Both bases satisfy the assumption.

‘37/43
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Theory for hybrid DG

B Theory for the scalar case.
B The classical modal DG scheme uses the local representation:

q
g, () =D augi(x)*, with  [f, ..0k] = [1, (x — x), ---(x — x)9]
1=0

B If up(x) is an approximation of the equilibrium, we propose to take as basis:

Vi = [ug(x), (x — xk), ...(x — xk)9], or Vo = ug(x)[1, (x — xk), -..(x — xx)]

More accurate estimate

Assume that the prior uy satisfies

ug(x; ) > m? >0, VYxe€Q, VYueP.

and still consider the vector space V. For any function u € H1(Q),

u
lu=Po(u)ll2@) S | — (Bxi )T ||ugl| oo ()
ug |Ha+1(Q)
v
B Adding a stability estimate, we can also prove the convergence. /\
37/
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Euler-Poisson system in spherical geometry

B We consider the Euler-Poisson system in spherical geometry
dep+ 0rq = —2q,
orq + 90 ("—2+ )—Jﬁ— A
tq r\p P == P pPOr®,
OE +0, (£(E+p)) = —22(E +p) — adro,
r%a,,(r%) =47 Gp,

B First application: we consider the barotropic pressure law p(p; k,v) = kp? such that
the steady solutions satisfy

B The PINN yields an approximation of py(x, k, )

B Second application: we consider the ideal gas pressure law p(p; k,v) = kpT(r), with
T(r) = el — ar), such that the steady solutions satisfy

T T
i <r2n—@) + i (r2md—) = 47r%Gp,
dr p dr dr dr

B The PINN yields an approximation of pg(x, k, )

B To simulate a flow around a steady solution, we need a scheme that is very accurate
on the steady solution.
38/
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Results

B Training takes about 10 minutes on an old GPU,with no data, only the PINN loss.

B We take a quadrature of degree ng = ng + 1 (sometimes, more accurate quadrature
formulas are needed).

B Barotropic case:

minimum gain average gain maximum gain
q p Q B p Q B P Q E
0 19.14 233 17.04 233.48 3.73 197.28 510.42 4.48  371.87
1 761 828 6.98 158.25 188.92 130.57 1095.68 1291.90 1024.59
2 014 022 299 12.11  16.55  23.73 89.47  109.93  169.28

B jdeal gas case:

minimum gain average gain maximum gain
q 4 Q E o Q E I Q E
0 13.30  1.05 16.24 151.96  1.88 150.63 600.13 2.91 473.83
1 6.30 7.53 5.40 72.63 77.20 51.09 321.20 302.58 257.19
2 335 345 220 18.96 22.58 13.56 55.47  63.45  47.83

B 2D shallow water equations: equilibrium with u 7% 0 4 small perturbation. Plot the
deviation to equilibrium:
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Conclusion
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Conclusion

Short conclusion

Using nonlinear implicit representations, we proposed new numerical/reduced modeling
methods whose advantages/drawbacks are very different to those of classical approaches.
We will continue to investigate hybrid approaches.

Current work: Neural operators

| \

We investigate the modification/extension of Neural Operator methods on general grids,
to multiscale problems, and to preserve some structures (PEPR NUMPEX).

Current work: Continuous ROMs

B Using PINNs or Neural Galerkin approaches, we wish to construct
discretization-independent continuous ROMs.

| A

B Encoder:
Eo(f(x1), ..., f(xn)) = B € R?
where the (x1, ..., xn) is a random point cloud.
B Decoder:
Do(B) = _ Bi(t)¢o, (x), or Dy(B) = ug(x; B)
i=1
| |

Coupling with Neural Galerkin, hyper-reduction and structure/property preserving

approaches. ﬁl \
\
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Adverts!

B For the PEPR Numpex, we are currently writing the Scimba code. It contains for
PINNSs, Neural Galerkin, Neural operator methods, ...; the goal is for this code to be
shared by different teams.

B |f you are interested to try these methods, play with Scimba, or participate contact us!

B Qur Inria team TONUS/MACARON will specialize in the hybridation between ML and
numerical methods for PDEs.

B We regularly have PhD, post-doc and even permanent positions open on these
subjects. If you are interested, contact us :)

\l 42 /43
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