Neural implicit representation for PDEs and hybrid numerical methods

J. Aghili¹², H. Barucq³, F. Foucher³, E. Franck¹², V. Michel-Dansac¹², L. Navoret¹², N. Victorion³, V. Vigon¹²

. . . .

¹Inria Nancy Grand Est, France

²IRMA, Strasbourg university, France

³Inria Bordeaux, Pau center, France

Outline

Introduction

Physics-informed Neural Networks

New paradigm: Operator learning

Application to numerical methods

Conclusion

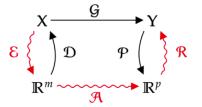
Numerical methods and implicit neural representation

Numerical methods

We begin with a simple example:

$$\begin{cases} L_{t,x}u = \partial_t u - \Delta u = 0 \\ u(t = 0, x) = u_0(x) \\ u(x) = g \text{ on } \partial\Omega \end{cases}$$

- Solving a PDE amounts to solving a infinite-dimensional problem.
- Numerical method: transform the PDE into a finite-dimensional problem of dimension N with convergence to the PDE solution when N → ∞
- How to summarize most of numerical methods? (drawing from S. Mishra)



- Definitions:
 - E, the encoder, transforms the data (initial conditions, RHS) into a finite dimensional vector. Transformed data are called degree of freedoms (DoF).
 - \square \mathcal{D} , the **decoder**, transforms degrees of freedom into a function.
 - A, the approximator, transforms the DoF of the RHS into the DoF of the approximate solution.

Why numerical methods require a mesh?

Polynomial Lagrange interpolation

We consider a domain [a, b]. There exists a polynomial P of degree k such that, for any $f \in C^0([a, b])$,

$$|f(x) - P(x)| \le |b - a|^k \max_{x \in [a,b]} |f^{k+1}(x)|.$$

- On small domains ($|b-a| \ll 1$) or for large k, this polynomial gives a very good approximation.
- Very high degrees k can generate oscillations.
- To enfore small domains: we introduce a mesh and a cell-wise polynomial approximation

First step: choose a parametric function

We define a mesh by splitting the geometry in small sub-intervals $[x_i, x_{i+1}]$, and we propose the following candidate to approximate the PDE solution u

$$u_{|[x_i,x_{i+1}]}(t,x) = \sum_{j=1}^k \alpha_j(t)\phi_j(x).$$

This is a piecewise polynomial representation.

E. Franck

Finite element, finite volume, discontinuous Galerkin

Finite element method

- **Encoder**: transforms the function f into $\alpha(t)$ the FE DoF (pointwise values, face/edge integral values, ...)
- **Decoder**: $D(\alpha)(t,x) = \sum_{i=1}^{N} \alpha_i(t)\phi_i(x)$ with $\phi_i(x)$ a compactly supported basis function defined on the whole mesh
- \blacksquare Approximator: we plug the decoder in the weak form of the equations to obtain an ODE or an algebraic system on α

Finite volume and discontinuous Galerkin method

- **Encoder**: transforms the function f into $\alpha(t)$ the FE DoF (average values, modal values, nodal values, ...)
- **Decoder**: $D(\alpha)(t,x)_{|\Omega_i} = \sum_{i=1}^N \alpha_i(t)\phi_i(x)$ with $\phi_i(x)$ a local cell-wise basis function.
- **Approximator**: we plug the decoder in the weak form of the equations to obtain an ODE or an algebraic system on α , in each cell
- For this method, the decoder generates a finite-dimensional vector space.
- The method projects a form of the equation on this finite-dimensional space.
 Uniqueness is ensured by the Hilbert projection theorem.
- Convergence is ensured: increasing the number of DoF (mesh, polynomial degree)
 makes the error decrease.

(nría-

Spectral methods

Spectral theorem

The spectral theorem in Hilbert spaces proposes an approximation of any function in \boldsymbol{H} by

$$u(x) = \sum_{i=1}^{N} \alpha_i \phi_i(x),$$

with $\phi_i(x)$ the orthonormal global Hilbert basis, and $\alpha_i = \langle f, \phi_i \rangle$.

Spectral method

- **Encoder**: Projection of the function f in the spectral basis. DoF: $\alpha_i = \langle f, \phi_i \rangle$
- **Decoder**: $D(\alpha)(t,x) = \sum_{i=1}^{N} \alpha_i(t)\phi_i(x)$ with $\phi_i(x)$ the first modes of the Hilbert basis.
- **Approximator**: we plug the decoder in the weak/strong form of the equations to obtain an ODE or an algebraic system on α .
- For this method, the decoder generates a finite-dimensional vector space.
- The method projects a form of the equation on this finite-dimensional space, using the Unicity by Hilbert projection theorem.
- Convergence is ensured: increasing the number of DoF (number of modes) makes the error decrease.

(nría-

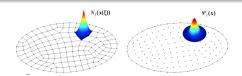
Mesh-free methods

Idea

Represent the solution as a sum of radial basis functions localized at some points:

$$u(x) = \sum_{i=1}^{N} \alpha_i \phi_i(|x - x_j|)$$

with $\phi_i(r)$ a radial basis function such as $\phi(r) = e^{-(\varepsilon r)^2}$ or $\phi(r) = \frac{1}{1+(\varepsilon r)^2}$. Larger values of ε give more localized functions.



Radial basis method

- **Encoder**: Projection of the function f. DoF: weights of the radial functions
- **Decoder**: $D(\alpha)(t,x) = \sum_{i=1}^{N} \alpha_i(t)\phi(|x-x_i|)$ with $\phi(x)$ a radial basis function.
- **Approximator**: just like before, the decoder is plugged in the equation.
- Like before, we have a finite-dimensional function space.
- Convergence: increasing the number of points (DoF) makes the error decrease.

Reduced basis methods

- For many years, there has been research to propose reduced order models (including experts here in Bordeaux!).
- One of the classical approaches is the Reduced basis method.
- It represents a subset of solutions like

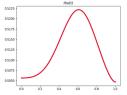
$$u(x) = \sum_{i=1}^{N} \alpha_i \phi_i(x),$$

where $\phi_i(x)$ is a spectral basis computed to efficiently represent a subset of solutions associated to a subset of parameters.

- Such methods can be viewed as data-driven Spectral methods.
- They have properties similar to the spectral method's.
- Example:

$$\partial_t \rho + \partial_x \left(\frac{\rho^2}{2} \right) = \frac{1}{R_e} \partial_{xx} \rho$$

■ Reynolds number Re = 40, 10 modes



Reduced basis methods

- For many years, there has been research to propose reduced order models (including experts here in Bordeaux!).
- One of the classical approaches is the Reduced basis method.
- It represents a subset of solutions like

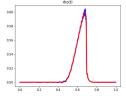
$$u(x) = \sum_{i=1}^{N} \alpha_i \phi_i(x),$$

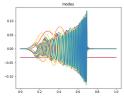
where $\phi_i(x)$ is a spectral basis computed to efficiently represent a subset of solutions associated to a subset of parameters.

- Such methods can be viewed as data-driven Spectral methods.
- They have properties similar to the spectral method's.
- Example:

$$\partial_t \rho + \partial_x \left(\frac{\rho^2}{2} \right) = \frac{1}{R_e} \partial_{xx} \rho$$

Reynolds number Re = 400000, 40 modes





Properties

Space and space-time decoder

Classical methods (FE/FV/DG/...) involve a decoder where only the space representation is fixed:

$$u(t,x)=\sum_{i=1}^N\alpha_i(t)\phi_i(x).$$

- Plugging this decoder in the equation, we obtain an ODE to solve.
- A more recent approach, space-time methods, proposes to fix both space and time representations:

$$u(t,x) = \sum_{i=1}^{N} \alpha_i \phi_i(t,x).$$

Plugging this decoder in the equation we obtain an algebraic system to solve.

Explicit vs implicit representations

- Representations are called explicit if the degrees of freedom can be explicitly computed and understood from the function.
- FE/FV/DG/spectral methods use explicit representations (average value, ...).
- The radial basis method, however, uses a partially explicit representation. It is difficult to understand the DoF from the function, but they can easily be computed by inverting the mass matrix (projector).

(nría-

Key idea

Summary

Every previously mentioned space and space-time methods consists in:

- choosing a linear representation (linear combination of basis functions), either local (on a mesh) or global;
- plugging this representation into the equation to obtain algebraic relations (linear for linear problems, nonlinear for nonlinear problems) or ODEs.
- solving this algebraic relation with a linear solver or Newton's method, using a time scheme to solve the ODE.

In all these cases, the decoder is linear with respect to the DoFs, and the representation is either explicit or partially explicit.

Idea

Choose a nonlinear representation given by a neural network. We replace a sum of simple functions with a composition of simple functions.

Important points

Finite-dimensional spaces associated to a nonlinear decoder are not vector spaces. So:

- the projector is not unique, and the representations will be implicit.
- Existence and uniqueness? algebraic system replaced with non-convex optimization.
- Convergence is harder to study and understand.

Nonlinear models

■ Nonlinear version of classical models: f is represented by the DoF α_i , μ_i , ω_i or Σ_i :

$$f(x; \alpha, \mu, \Sigma) = \sum_{i=1}^{n} \alpha_i e^{(x-\mu_i) \sum_{i=1}^{n-1} (x-\mu_i)}, \quad f(x; \alpha, \omega) = \sum_{i=1}^{n} \alpha_i \sin(\omega_i x)$$

Neural networks (NN).

Layer

A layer is a function $L_l(\mathbf{x}_l): \mathbb{R}^{d_l} \to \mathbb{R}^{d_{l+1}}$ given by

$$L_I(\mathbf{x}_I) = \sigma(A_I\mathbf{x}_I + \mathbf{b}_I),$$

 $A_l \in \mathbb{R}^{d_{l+1},d_l}$, $\mathbf{b} \in \mathbb{R}^{d_{l+1}}$ and $\sigma()$ a nonlinear function applied component by component.

Neural network

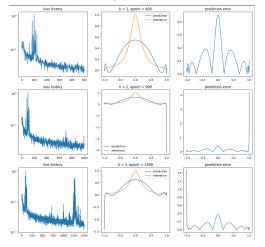
A neural network is parametric function obtained by composition of layers:

$$f_{\theta}(\mathbf{x}) = L_n \circ \ldots \circ L_1(\mathbf{x})$$

with θ the trainable parameters composed of all the matrices $A_{l,l+1}$ and biases \mathbf{b}_l .

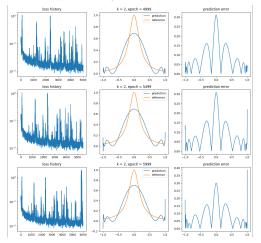
- Goal: using these models, we expect to require fewer DoFs, not to require a mesh, and to deal with larger dimensions.
- Key point: in the NN framework, derivatives can be exactly computed through automatic differentiation tools

- We compare over-parametrized NN and polynomial regression on the Runge function.
- Regression: 120 data and approximately 800 parameters in each model.

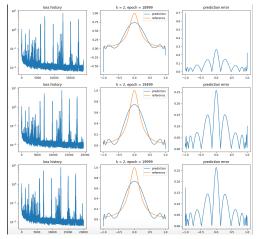


 $^{13}/_{43}$

- We compare over-parametrized NN and polynomial regression on the Runge function.
- Regression: 120 data and approximately 800 parameters in each model.



- We compare over-parametrized NN and polynomial regression on the Runge function.
- Regression: 120 data and approximately 800 parameters in each model.

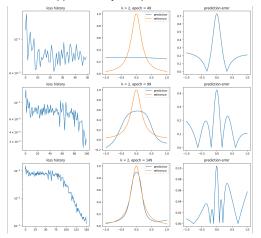


The polynomial model tends to oscillate in the over parameterized regime. Problematic for overfitting.

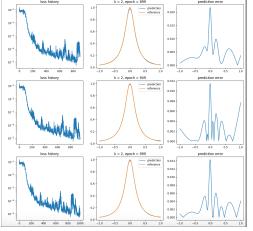
(nría-

 $(^{13}/_{43})$

- We compare over-parametrized NN and polynomial regression on the Runge function.
- Regression: 120 data and approximately 800 parameters in each model.



- We compare over-parametrized NN and polynomial regression on the Runge function.
- Regression: 120 data and approximately 800 parameters in each model.



- The ANN generates very smooth/low frequency approximations.
- It is related to the spectral bias. The low frequencies are learned before the high frequencies.

Physics-informed Neural Networks

Space-time approach: PINNs I

Idea of PINNs

• For u in some function space \mathcal{H} , we wish to solve the following PDE:

$$\partial_t u = \mathcal{F}(u, \nabla u, \Delta u) = F(u).$$

- Classical representation for space-time approach: $u(t,x) = \sum_{i=1}^N \theta_i \phi_i(x,t)$
- **Deep representation**: $u(t,x) = u_{nn}(x,t;\theta)$ with u_{nn} a NN with trainable parameters θ .
- Since ANNs are C^p functions, we can compute $\partial_t u_{nn}(x, t; \theta)$, $\partial_{x^p} u_{nn}(x, t; \theta)$ and

$$r(x,t) = \partial_t u_{nn}(x,t;\theta) - \mathcal{F}(u_{nn}(x,t;\theta), \nabla u_{nn}(x,t;\theta), \Delta u_{nn}(x,t;\theta))$$

First idea: we solve the nonlinear problem

$$r(x_i, t_n) = 0, \quad \forall 1 \le j \le N_x, \quad \forall 1 \le n \le N_t$$

with $N_t * N_x$ equal to the number of parameters.

Problem: The subspace of NN functions is not a vector space. The existence of the solution to the discrete problem cannot be ensured.

Conclusion

We move away from solving algebraic equations on the parameters, and go towards non-convex optimization.

(nría-

Space-time approach: PINNs II

We define the residual of the PDE:

$$R(t,x) = \partial_t u_{nn}(t,x;\theta) - \mathcal{F}(u_{nn}(t,x;\theta),\partial_x u_{nn}(t,x;\theta),\partial_{xx} u_{nn}(t,x;\theta))$$

■ To learn the parameters θ in $u_{nn}(t, x; \theta)$, we minimize:

$$\theta = \underset{\theta}{\operatorname{arg \, min}} \left(J_r(\theta) + J_b(\theta) + J_i(\theta) \right),$$

with

$$J_r(\theta) = \int_0^T \int_{\Omega} |R(t,x)|^2 dx dt$$

and

$$J_b(\theta) = \int_0^T \int_{\partial \Omega} \|u_{nn}(t, x; \theta) - g(x)\|_2^2 dx dt, \quad J_i(\theta) = \int_{\Omega} \|u_{nn}(0, x; \theta) - u_0(x)\|_2^2 dx.$$

- If these residuals are all equal to zero, then $u_{nn}(t,x;\theta)$ is a solution of the PDE.
- To complete the determination of the method, we need a way to compute the integrals.
- Important point: the derivatives are computed exactly using automatic differentiation tools and back propagation. Valid for any decoder proposed.

Monte Carlo

- How to compute the integrals? With a Monte Carlo approach.
 - ☐ The Monte-Carlo method stems from the **Law of large numbers**.
 - \square We consider a function $g:\mathbb{R}^d o\mathbb{R}$. We define X a random variable with law μ .
 - ☐ The method comes from:

$$\frac{\mathit{Var}(\mu)}{\sqrt{N}} \left(\frac{1}{N} \sum_{i=1}^{N} f(X_i) - \mathbb{E}_{\mu}[f(X)] \right) \to \mathcal{N}(0,1)$$

with X_i an random example sampled with the law μ

☐ It makes it possible to compute integrals. Indeed:

$$\int_{\Omega} f(x) dx = \int_{\mathbb{R}^d} f(x) \mathcal{U}_{\Omega} dx = \mathbb{E}[f(X)]$$

with \mathcal{U}_Ω the density of the uniform law Ω and X random variable following this law.

■ The variance can be reduced through importance sampling:

$$\mathbb{E}[f(X)] = \int_{\Omega} f(x) dx = \int_{\Omega} \frac{f(x)}{g(x)} g(x) dx = \mathbb{E}_g \left[\frac{f(X)}{g(X)} \right]$$

If $Var(\mathcal{U}_{\Omega}) > Var(g)$, the error is reduced.

E. Franck

Space-time approach: PINNs III

We define the residual of the PDE:

$$R(t,x) = \partial_t u_{nn}(t,x;\theta) - \mathcal{F}(u_{nn}(t,x;\theta),\partial_x u_{nn}(t,x;\theta),\partial_{xx} u_{nn}(t,x;\theta))$$

To learn $u_{nn}(t, x; \theta)$, we minimize:

$$\min_{\theta} \left(J_r(\theta) + J_b(\theta) + J_i(\theta) \right),$$

with

$$J_r(\theta) = \sum_{i=1}^{N} \sum_{i=1}^{N} |R(t_n, x_i)|^2$$

with (t_n, x_i) sampled uniformly or through importance sampling, and

$$J_b(\theta) = \sum_{i=1}^{N_b} \sum_{j=1}^{N_b} |u_{nn}(t_n, x_i; \theta) - g(x_i)|^2, \quad J_i(\theta) = \sum_{j=1}^{N_i} |u_{nn}(0, x_i; \theta) - u_0(x_i)|^2.$$

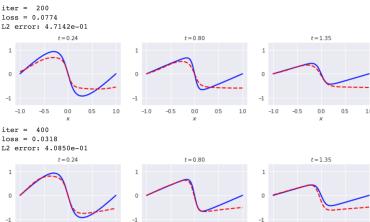
To avoid an extra loss for the BC and initial conditions, we use:

$$\bar{u}_{\theta}(t,x) = u_0(x) + t(\phi(x) * u_{\theta}(x)),$$

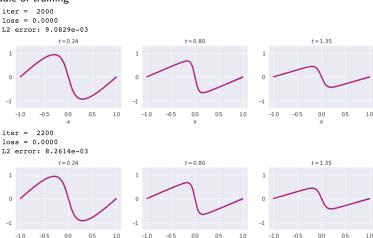
with $\phi(x) = g(x)$ on the boundary, and taking some other value within the domain.

We solve the problem with usual gradient-type methods from Deep-Learning.

- Application: viscous Burgers equation $\partial_t \rho + \partial_x \left(\frac{\rho^2}{2}\right) = \nu \partial_{xx} \rho$.
- Solving for different values of the μ parameters:
- $\nu = \frac{0.1}{\pi}$. 10000 pts, medium-sized NN.
- beginning of training



- Application: viscous Burgers equation $\partial_t \rho + \partial_x \left(\frac{\rho^2}{2}\right) = \nu \partial_{xx} \rho$.
- Solving for different values of the μ parameters:
- $\nu = \frac{0.1}{\pi}$. 10000 pts, medium-sized NN.
- middle of training



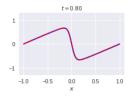
■ Application: viscous Burgers equation $\partial_t \rho + \partial_x \left(\frac{\rho^2}{2}\right) = \nu \partial_{xx} \rho$.

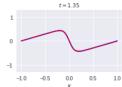
1.0

- Solving for different values of the μ parameters:
- = $\nu = \frac{0.1}{\pi}$. 10000 pts, medium-sized NN.
- end of training

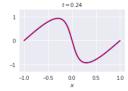
-1 -1.0 -0.5

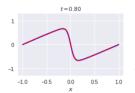
loss = 0.0000 L2 error: 4.6718e-03 t=0.24

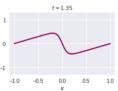




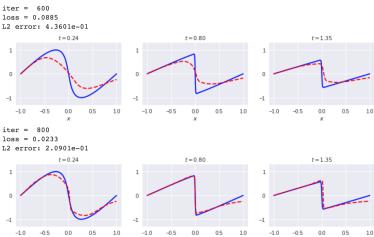
iter = 5000
loss = 0.0000
L2 error: 4.7307e-03





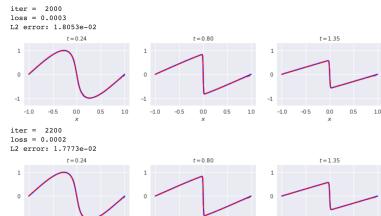


- Application: viscous Burgers equation $\partial_t \rho + \partial_x \left(\frac{\rho^2}{2}\right) = \nu \partial_{xx} \rho$.
- \blacksquare Solving for different values of the μ parameters:
- $\nu = \frac{0.01}{\pi}$. 10000 pts, medium NN.
- beginning of training



- Application: viscous Burgers equation $\partial_t \rho + \partial_x \left(\frac{\rho^2}{2}\right) = \nu \partial_{xx} \rho$.
- Solving for different values of the μ parameters:
- $\nu = \frac{0.01}{\pi}$. 10000 pts, medium NN.
- middle of training

-1 -1.0 -0.5



1.0

-1.0

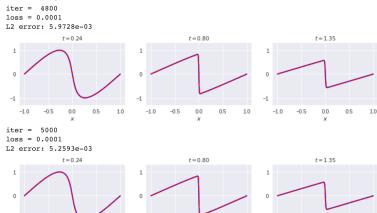
1.0

-1.0

1.0

- $\qquad \text{Application: viscous Burgers equation } \partial_t \rho + \partial_x \left(\frac{\rho^2}{2}\right) = \nu \partial_{xx} \rho.$
- Solving for different values of the μ parameters:
- $\nu = \frac{0.01}{\pi}$. 10000 pts, medium NN.
- end of training

-1.0 -0.5



1.0

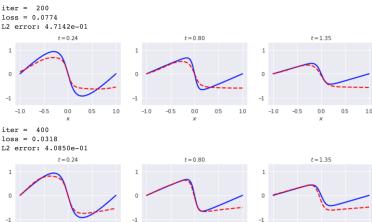
-1.0

1.0

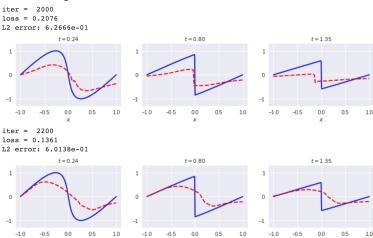
1.0

-1.0

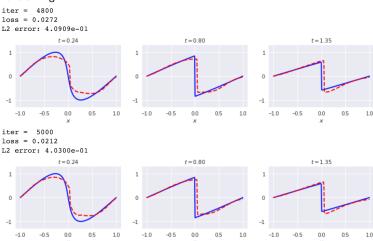
- Application: viscous Burgers equation $\partial_t \rho + \partial_x \left(\frac{\rho^2}{2}\right) = \nu \partial_{xx} \rho$.
- Solving for different values of the μ parameters:
- $\nu = \frac{0.002}{\pi}$. 10000 pts, medium NN.
- beginning of training



- Application: viscous Burgers equation $\partial_t \rho + \partial_x \left(\frac{\rho^2}{2}\right) = \nu \partial_{xx} \rho$.
- Solving for different values of the μ parameters:
- $\nu = \frac{0.002}{\pi}$. 10000 pts, medium NN.
- middle of training



- Application: viscous Burgers equation $\partial_t \rho + \partial_x \left(\frac{\rho^2}{2}\right) = \nu \partial_{xx} \rho$.
- \blacksquare Solving for different values of the μ parameters:
- $\nu = \frac{0.002}{\pi}$. 10000 pts, medium NN.
- end of training



- $\qquad \text{Application: viscous Burgers equation } \partial_t \rho + \partial_x \left(\frac{\rho^2}{2}\right) = \nu \partial_{xx} \rho.$
- Solving for different values of the μ parameters:
- $\nu = \frac{0.002}{\pi}$. 40000 pts, larger NN.
- end of training

-1.0 -0.5

loss = 0.0006L2 error: 2.3011e-01 t = 0.24t = 0.80t = 1.35-1 -1.0-0.5 0.5 -1.0 -1.0 1.0 5000 loss = 0.0004L2 error: 2.2456e-01 t = 0.24t = 0.80t = 1.35

-1.0

1.0

-1.0

1.0

PINNs for parametric PDEs

- Advantages of PINNs: mesh-less approach, not too sensitive to the dimension.
- Drawbacks of PINNs: they are often not competitive with classical methods.
- Interesting possibility: use the strengths of PINNs to solve PDEs parameterized by some μ .
- The neural network becomes $u_{nn}(t, x, \mu; \theta)$.

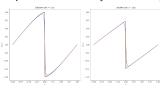
New Optimization problem for PINNs

$$\min_{ heta} J_r(heta) + ...$$
 , , with

$$J_r(\theta) = \int_{V_{tt}} \int_0^T \int_{\Omega} \left\| \partial_t u_{nn} - \mathcal{L}\left(u_{nn}(t, x, \boldsymbol{\mu}), \partial_x u_{nn}(t, x, \boldsymbol{\mu}), \partial_{xx} u_{nn}(t, x, \boldsymbol{\mu})\right) \right\|_2^2 dxdt$$

with V_{μ} a subspace of the parameters $\mu.$

• Application to the Burgers equations with many viscosities $[10^{-2}, 10^{-4}]$:



Training for $\mu = 10^{-4}$: 2h. Training for the full viscosity subset: 2h.

Spatial approach: Neural Galerkin I

■ We solve the following PDE:

$$\partial_t u = \mathcal{F}(u, \nabla u, \Delta u) = F(u).$$

- Classical representation: $u(t,x) = \sum_{i=1}^{N} \theta_i(t)\phi_i(x)$
- Deep representation: $u(t,x) = u_{nn}(x;\theta(t))$ with u_{nn} a neural network, with parameters $\theta(t)$, taking x as input.
- We want that:

$$F(u_{nn}(x;\theta(t))) = \partial_t u_{nn}(x;\theta(t)) = \left\langle \nabla_\theta u_{nn}(x;\theta), \frac{d\theta(t)}{dt} \right\rangle$$

- How to find an equation for $\frac{d\theta(t)}{dt}$?
- We solve the minimization problem:

$$\frac{d\theta(t)}{dt} = \arg\min_{\boldsymbol{\eta}} J(\boldsymbol{\eta}) = \arg\min_{\boldsymbol{\eta}} \int_{\Omega} |\langle \nabla_{\theta} u_{nn}(x;\theta), \boldsymbol{\eta} \rangle - F(u_{nn}(x;\theta(t)))|^2 dx.$$

The solution is given by

$$M(\theta(t))\frac{d\theta(t)}{dt} = F(x, \theta(t))$$

with

$$M(\theta(t)) = \int_{\Omega} \nabla_{\theta} u_{nn}(x;\theta) \otimes \nabla_{\theta} u_{nn}(x;\theta) dx, \quad F(x,\theta(t)) = \int_{\Omega} \nabla_{\theta} u_{nn}(x;\theta) F(u_{nn}(x;\theta)) dx.$$

(nría-

Spatial approach: Neural Galerkin II

- How to estimate $M(\theta(t))$ and $F(x, \theta(t))$?
- **Firstly**: we need to differentiate the network with respect to θ and to x (in the function F). This can easily be done with automatic differentiation.
- Secondly: How to compute the integrals? Monte Carlo approach.
- So, we use:

$$M(\theta(t)) \approx \sum_{i=1}^{N} \nabla_{\theta} u_{nn}(x_i; \theta) \otimes \nabla_{\theta} u_{nn}(x_i; \theta)$$

and the same for $F(x, \theta(t))$.

- Summary: we obtain an ODE in time (as usual) and a mesh-less method in space.
- Like in the case of PINNs, we can apply this framework to parametric PDEs and larger dimensions.
- We solve the following PDE:

$$\partial_t u = \mathcal{F}(u, \nabla u, \Delta u, \alpha) = \mathcal{F}(u; \mu).$$

- Deep representation: $u(t, x, \mu) = u_{nn}(x, \mu; \theta(t))$
- The solution is given by

$$M(\theta(t))\frac{d\theta(t)}{dt} = F(x, \theta(t), \mu)$$

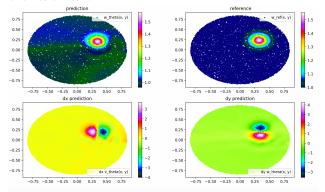
with

$$M(\theta(t)) = \int_{V_{tt}} \int_{\Omega} \nabla_{\theta} u_{nn}(x, \mu; \theta) \otimes \nabla_{\theta} u_{nn}(x, \mu; \theta) dx d\mu.$$

(nría-

Spatial approach: Neural Galerkin III

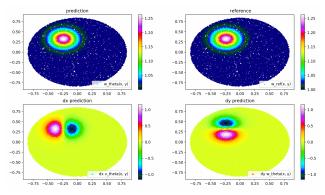
- We solve the advection-diffusion equation $\partial_t \rho + \mathbf{a} \cdot \nabla \rho = D \Delta \rho$ with a Gaussian function as initial condition.
- Case 1: with a neural network



3 minutes on CPU, L² error around 0.4. Bad initialization method, naive solve, many tricks to decrease the coast. Naive and small network.

Spatial approach: Neural Galerkin III

- We solve the advection-diffusion equation $\partial_t \rho + \mathbf{a} \cdot \nabla \rho = D\Delta \rho$ with a Gaussian function as initial condition.
- Case 2: with a Gaussian mixture (one Gaussian):



■ 5 sec on CPU. Error around 5.0⁻⁴. Decoder perfect to represent this test case.

 $(^{23}/_{43})$

(nría-

Summary

New numerical methods

New numerical methods are derived using with neural networks.

- Same spirit as classical methods: plug an Ansatz into the equation to obtain equations on DoFs
- However, NN-based methods introduce a nonlinear Ansatz with implicit representation.

Many questions remain

- Accuracy? How to limit the GPU cost? Preconditioning? Domain decomposition?
- Positivity? capture of shocks? structure preservation (symplecticity)?
- Convergence and stability? (this is really trickier)

Drawbacks

- less accurate than classical approaches,
- convergence and theoretical study difficult,
- expensive in low dimensions and on CPU

Advantages

- mesh free
- more efficient in large dimension and for parametric PDEs, perfect for GPUs
- more general decoder coupled the exact computation of the gradient allows to impose some properties easier.

4/43

Operator Learning

Operator learning

New paradigm for reduced modeling. We consider the following problem:

$$\begin{cases} G_{\alpha(x,t)}(u(t,x)) = \partial_t u(t,x) + \mathcal{L}_{\alpha(x)}(u(t,x)) = 0 & \text{on } \Omega \\ u(t,x) = g(x) & \text{on } \partial\Omega, \\ u(t=0,x) = u_0(x). \end{cases}$$

- We denote by $\mu(t,x) = (\alpha(x,t), g(x), u_0(x))$ the parameters.
- Formally, there exists a pseudo-inverse operator G^+ , such that $G^+(\mu) = u(t,x)$.

Objective

Approximate G^+ by a neural network on a subspace of the data where the results do not depend on the mesh resolution of the input/output functions.

Problem

We construct a neural network $G_{\theta}^+(\mu(t,x))$, which minimizes $\mathcal{J}(\theta) = \mathcal{J}_1(\theta) + \mathcal{J}_2(\theta)$, with

$$\mathcal{J}_1(\theta) = \int_{\mathbf{V}_{t+1}} \int_{\Omega} \int_{0}^{T} \|\mathbf{G}_{\theta}^{+}(t, \mathbf{x}, \boldsymbol{\mu}_h(\mathbf{x}, t)) - \boldsymbol{u}(\mathbf{x}, t)\|_{2}^{2} dt dx d\boldsymbol{\mu}$$

and

$$\mathcal{J}_2(\theta) = \int_{\mathbf{V}_H} \int_{\Omega} \int_0^T \|G_{\boldsymbol{\mu}}(G_{\theta}^+(t,x,\boldsymbol{\mu}_h(x,t)))\|_2^2 dt dx d\boldsymbol{\mu},$$

where the integrals are approximated by MC.

DeepOnet: Encode the function of parameters, and decode with parametric PINNS.

(nría-

E. Franck

Green theory and Neural operator

- Beginning with a simple case:
 - \Box Linear elliptic equation: $\Delta u = f$. On unbounded domains, the solution is given by

$$u(x) = \int_{\mathbb{R}} G(x, y) f(y) dy$$

□ Linear heat equation: $\partial_t u - \Delta u = f(t, x)$. On unbounded domains, the solution is given by

$$u(t,x) = \int_{\mathbb{R}} G_i(t,x,y)u_0(y)dy + \int_{\mathbb{R}} \int_{\mathbb{R}} G_e(t,\tau,x,y)f(\tau,y)dyd\tau$$

Idea for linear problem

For bounded (and potentially complex) domains, learn the Green functions.

■ No Green theory for nonlinear PDEs. How can this be adapted to nonlinear PDEs?

Idea of Neural Operators

- To approximate nonlinear functions, NNs compose parametric linear maps and nonlinear local functions.
- □ To approximate nonlinear operators, NOs compose parametric linear operators and nonlinear local functions.

Neural operator II

Neural Operator layer

Consider the vector function given by the previous layer $\mathbf{v}_I(x)$. A kernel layer is given by

$$\mathbf{v}_{l+1}(x) = \sigma\left(W_l(t)\mathbf{v}_l(x) + \int_{\Omega} G_{\theta_l}(t, x, y)\mathbf{v}_l(y)dy\right)$$

with W(t) a learnable weight matrix and G_{θ} a learnable kernel.

- We can also introduce a kernel like $G_{\theta}(t, \tau, x, y)$ for source terms, etc.
- In general, we add a first layer Q which transforms $u_0(x)$ into $\mathbf{v}_0(x)$ to increase the dimension of the function, and a layer performing the inverse transform at the end.

Question

How to learn this object independently of the discretization?

First possibility: MoDnet

- **Trainable parameters:** (W_l, θ_l) . G_{θ_l} is a classical network. In the space-time case, W_l is a network; when the equation does not depend on time, W_l is a matrix.
- **Evaluation of the integral**: Monte Carlo for large dimensions (also low rank or multigrid versions), or Gauss quadrature (for low dimensions).
- Learning: data + physics-informed loss function.
- General geometry. Large complexity, but computations are perfectly suited to GPUs.

Neural operator III

Second possibility: Fourier approach

We can use

$$\int_{\Omega} G(x,y)f(y)dy \approx \mathcal{F}^{-1}(\mathcal{F}(G(x,.))\mathcal{F}(f(.)))$$

with ${\mathcal F}$ the Fourier transform. It is exact for translation-invariant kernels (e.g. convolution).

In practice, we use

$$\mathcal{F}^{-1}(K_{\theta}\mathcal{F}(f(.)))$$

and we learn K_{θ} , limiting frequency to k_{max} .

 Faster that previous approach, but limited to Cartesian grids to use FFTs. There exist variants for general geometries.

More general Spectral approach

We can use

$$\int_{\Omega} G(x,y)f(y)dy \approx \sum_{m=1}^{M} \langle K_{\theta_m} \phi_k(x) \rangle_{L^2} \psi_k(x)$$

 Variants include: Chebyshev or Legendre polynomials, Laplace transform, Fourier transform on manifolds, etc. Application to numerical methods

Hybrid predictor-corrector methods

Hybrid methods

In this context, hybrid methods combine classical numerical methods and numerical methods based on Implicit Neural representation (IRM).

Objectives

Taking the best of both worlds: the accuracy of classical numerical methods, and the mesh-free large-dimensional capabilities of IRM-based numerical methods.

General Idea

- Offline process: train a Neural Network (PINNs, NGs or NOs) to obtain a large family of approximate solutions.
- Online process: predict the solution associated to our test case using the NN.
- **Online process**: correct the solution with a numerical method.

Predictor-Corrector Newton method for elliptic problems

■ We consider a nonlinear elliptic problem:

$$u(x) - \alpha_0 \partial_{xx}(\alpha(x)|u(x)|^p \partial_x u) = f(x)$$

■ To solve this PDE we use FE or FD solver + Jacobian-Free Newton-Krylov method.

Idea

Train a neural operator (Fourier neural operator on a large data set) and use its prediction as an initial guess for Newton's method.

■ We only compare the average results:

mesh	$\alpha_0 = 2 \ (40 \ \text{sim})$	$\alpha_0 = 5 \; (25 \; \text{sim})$	$\alpha_0 = 8 \; (25 \; \text{sim})$
100 cells	+500%	+1800%	+5000%
200 cells	+88%	+230%	+620%
400 cells	+82%	+150%	+220%
600 cells	+92%	+220%	+250%

Table: Comparison of the mean "gain" in CPU time for different values of α_0 .

- Failures: on all the tests, we have 0% of fail (our method being less efficient than the classical one) in terms of number of iterations, and around 2% of fail in terms of CPU time.
- On more refined meshes, the gain is smaller (the network acts only at the beginning of the convergence).

(nría-

Predictor-Corrector: using PINNs in a FE method

We consider the following elliptic problem:

$$\begin{cases} Lu = -\partial_{xx}u + v\partial_x u + ru = f, & \forall x \in \Omega \\ u = g, & \forall x \in \partial\Omega \end{cases}$$

- We assume that we have a continuous prior of the solution given by a parametric PINN $u_{\theta}(x)$
- We propose the following corrections of the finite element basis functions:

$$u(x) = u_{\theta}(x) + p_h(x), \quad u(x) = u_{\theta}(x)p_h(x),$$

with $p_h(x)$ a perturbation discretized using P_k Lagrange finite element.

For the first approach (additive prior), we solve in practice:

$$\begin{cases} Lp_h(x) = f - Lu_\theta(x), & \forall x \in \Omega \\ p_h(x) = g - u_\theta(x), & \forall x \in \partial\Omega \end{cases}$$

For the second approach (multiplicative prior), we need $u_{\theta}(x) \neq 0$, so we take M > 0and we solve:

$$\begin{cases} L(u_{\theta}(x)p_{h}(x)) = f, & \forall x \in \Omega \\ p_{h}(x) = \frac{g}{u_{\theta}(x)} + M, & \forall x \in \partial \Omega \end{cases}$$

Theory for hybrid EF

Approach one: we rewrite the Cea lemma for $u_h(x) = u_\theta(x) + p_h(x)$. We obtain

$$||u-u_h|| \leq \frac{M}{\alpha}||u-u_\theta-I_h(u-u_\theta)||$$

with I_h the interpolator. Using the classical result of P_k Lagrange interpolator we obtain

$$\|u-u_h\|_{H^m} \leq \frac{M}{\alpha} Ch^{k+1-m} \underbrace{\left(\frac{|u-u_\theta|_{H^m}}{|u|_{H^m}}\right)}_{\text{gain}} |u|_{H^m}$$

Approach two: $u_h(x) = u_\theta(x)p_h(x)$. We use a modified interpolator:

$$I_{mod,h}(f) = \sum_{i=1}^{N} \frac{f(x_i)}{u_{\theta}(x_i)} \phi_i(x) u_{\theta}(x)$$

using $I_{mod,f}(f) = I_h(\frac{f}{u_0})u_\theta(x)$, the Cea lemma and interpolation estimate we have:

$$\|u-u_h\|_{H^m} \leq \frac{M}{\alpha} Ch^{k+1-m} \underbrace{\left(\frac{\left|\frac{u}{u_\theta}\right|_{H^m}\|u_\theta(x)\|_{L^\infty}}{|u|_{H^m}}\right)}_{gain} |u|_{H^m}$$

The prior must give a good approximation of the m^{th} derivative.

EF for elliptic problems

First test:

$$-\partial_{xx}u = \alpha\sin(2\pi x) + \beta\sin(4\pi x) + \gamma\sin(8\pi x)$$

We train with $(a, b, c) \in [0, 1]^3$ and test with $(a, b, c) \in [0, 1.2]^3$.

method:	average gain	variance gain
additive prior with PINNs	273	13000
Multiplicative prior $M = 3$ with PINNs	92	4000
Multiplicative prior $M = 100$ with PINNs	272	13000
additive prior with NN	15	18
Multiplicative prior $M = 3$ with NN	11	17.5
Multiplicative prior $M = 100$ with NN	15	18

- The PINN is trained with the physical loss, the NN with only data, no physics.
- The NN is able to better learn the solution itself, but the approximation of derivatives is less accurate than with the PINN.

EF for elliptic problems

Second test:

$$v\partial_x u - \frac{1}{P_e}\partial_{xx} u = r$$

We train with $r \in [1,2], Pe \in [10,100].$ We test with (r,Pe) = (1.2,40) and (r,Pe) = (1.5,90)

Case 1	Classical I	al FE Additive prior Multiplicative prior			Additive prior			r
	error	order	error	error order gain e		error	order	gain
10	$1.07e^{-1}$	-	$2.70e^{-3}$	-	40	$2.29e^{-4}$	-	467
20	$3.36e^{-2}$	1.97	$8.00e^{-4}$	1.76	42	$9.06e^{-5}$	1.93	371
40	$9.09e^{-3}$	1.89	$2.01e^{-4}$	2.00	45	$2.63e^{-5}$	1.97	345
80	$2.32e^{-3}$	1.97	$5.01e^{-5}$	1.99	46	$6.37e^{-6}$	1.99	365
160	$5.82e^{-4}$	1.99	$1.30e^{-6}$	1.97	45	$1.77e^{-6}$	2.0	289

Case 2	Classic		additive prior			Multiplicative prior		
	error	order	error	error order ga		error	order	gain
10	$2.65e^{-1}$	-	$1.51e^{-1}$	-	1.7	$9.33e^{-4}$	_	284
20	$1.06e^{-1}$	1.32	$6.04e^{-2}$	1.33	1.7	$3.84e^{-4}$	1.28	276
40	$3.46e^{-2}$	1.62	$1.96e^{-2}$	1.62	1.8	$1.13e^{-4}$	1.76	305
80	$9.50e^{-3}$	1.86	$5.32e^{-3}$	1.87	1.8	$3.26e^{-5}$	1.80	291
160	$2.43e^{-3}$	1.86	$2.43e^{-3}$	1.86	1.8	8.67e ⁻⁶	1.91	280

Hyperbolic systems with source terms

In the team, most of us are interested in hyperbolic systems:

$$\partial_t \mathbf{U} + \nabla \cdot \mathbf{F}(\mathbf{U}) = \mathbf{S}(\mathbf{U})$$

- It is important to have a good preservation of the steady state $abla \cdot F(U) = S(U)$.
- **Example**: Lake at rest for shallow water:
- Exactly Well-Balanced schemes: exact preservation of the steady state.
 Approximately Well-Balanced schemes: preserve with a high-accuracy than the scheme the steady state.
- Building exact WB schemes is difficult for some equilibria, or for 2D flows.

Idea

Compute offline a family of equilibria with parametric PINNs (or NOs) and plug the equilibrium in the DG basis to obtain a more accurate scheme around steady states.

(nría-

Theory for hybrid DG

- Theory for the scalar case.
- The classical modal DG scheme uses the local representation:

$$u_{|\Omega_k}(x) = \sum_{l=0}^q \alpha_l \phi_l(x)^k$$
, with $[\phi_1^k, ... \phi_q^k] = [1, (x - x_k), ... (x - x_k)^q]$

If $u_{\theta}(x)$ is an approximation of the equilibrium, we propose to take as basis:

$$V_1 = [u_{\theta}(x), (x - x_k), ...(x - x_k)^q], \text{ or } V_2 = u_{\theta}(x)[1, (x - x_k), ...(x - x_k)^q]$$

Lemma [Yuan Shu 2006]

Consider an nonlocal basis $(v_{k,0},\ldots,v_{k,q})$. If there exists constant real numbers $a_{j\ell}$ and b_j independent of the size of the cell Δx_k such that, in each cell Ω_k ,

$$\forall j \in \{0, \dots, q\}, \quad \left| v_{k,j}(x) - \sum_{\ell=0}^{q} a_{j\ell}(x - x_k)^{\ell} \right| \leq b_j(\Delta x_k)^{q+1},$$

then for any function $u \in H^{q+1}(\Omega_k)$, there exist a constant real number C independent of Δx_k , such that: $\|P_h(u) - u\|_{L^{\infty}(\Omega_k)} \le C\|u\|_{H^{q+1}(\Omega_k)} (\Delta x_k)^{q+\frac{1}{2}}$.

■ This lemma is sufficient to prove the convergence. Both bases satisfy the assumption.

(nría-

E. Franck

Theory for hybrid DG

- Theory for the scalar case.
- The classical modal DG scheme uses the local representation:

$$u_{|\Omega_k}(x) = \sum_{l=0}^q \alpha_l \phi_l(x)^k$$
, with $[\phi_1^k, ... \phi_q^k] = [1, (x - x_k), ... (x - x_k)^q]$

If $u_{\theta}(x)$ is an approximation of the equilibrium, we propose to take as basis:

$$V_1 = [u_{\theta}(x), (x - x_k), ...(x - x_k)^q], \text{ or } V_2 = u_{\theta}(x)[1, (x - x_k), ...(x - x_k)^q]$$

More accurate estimate

Assume that the prior u_{θ} satisfies

$$u_{\theta}(x; \mu)^2 > m^2 > 0, \quad \forall x \in \Omega, \quad \forall \mu \in \mathbb{P}.$$

and still consider the vector space V_2 . For any function $u \in H^{q+1}(\Omega)$,

$$\|u-P_h(u)\|_{L^2(\Omega)}\lesssim \left|\frac{u}{u_\theta}\right|_{H^{q+1}(\Omega)} (\Delta x_k)^{q+1} \|u_\theta\|_{L^{\infty}(\Omega)}.$$

Adding a stability estimate, we can also prove the convergence.

Euler-Poisson system in spherical geometry

■ We consider the Euler-Poisson system in spherical geometry

$$\begin{cases} \partial_t \rho + \partial_r q = -\frac{2}{r}q, \\ \partial_t q + \partial_r \left(\frac{q^2}{\rho} + p\right) = -\frac{2}{r}\frac{q^2}{\rho} - \rho \partial_r \phi, \\ \partial_t E + \partial_r \left(\frac{q}{\rho}(E+p)\right) = -\frac{2}{r}\frac{q}{\rho}(E+p) - q \partial_r \phi, \\ \frac{1}{r^2} \partial_{rr}(r^2 \phi) = 4\pi G \rho, \end{cases}$$

■ First application: we consider the barotropic pressure law $p(\rho;\kappa,\gamma)=\kappa\rho^{\gamma}$ such that the steady solutions satisfy

$$\frac{d}{dr}\left(r^2\kappa\gamma\rho^{\gamma-2}\frac{d\rho}{dr}\right) = 4\pi r^2 G\rho.$$

- The PINN yields an approximation of $\rho_{\theta}(x, \kappa, \gamma)$
- **Second application**: we consider the ideal gas pressure law $p(\rho; \kappa, \gamma) = \kappa \rho T(r)$, with $T(r) = e^{(-\alpha r)}$, such that the steady solutions satisfy

$$\frac{d}{dr}\left(r^2\kappa\frac{T}{\rho}\frac{d\rho}{dr}\right) + \frac{d}{dr}\left(r^2\kappa\frac{dT}{dr}\right) = 4\pi r^2 G\rho,$$

- The PINN yields an approximation of $\rho_{\theta}(x, \kappa, \alpha)$
- To simulate a flow around a steady solution, we need a scheme that is very accurate on the steady solution.

Results

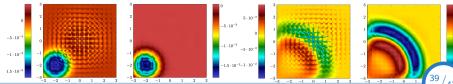
- Training takes about 10 minutes on an old GPU, with no data, only the PINN loss.
- We take a quadrature of degree $n_Q = n_G + 1$ (sometimes, more accurate quadrature formulas are needed).
- Barotropic case:

	minimum gain			a	verage ga	in	maximum gain		
q	ρ	Q	E	ρ	Q	E	ρ	Q	E
0	19.14	2.33	17.04	233.48	3.73	197.28	510.42	4.48	371.87
1	7.61	8.28	6.98	158.25	188.92	130.57	1095.68	1291.90	1024.59
2	0.14	0.22	2.99	12.11	16.55	23.73	89.47	109.93	169.28

ideal gas case:

	minimum gain			average gain			maximum gain		
q	ρ	Q	E	ρ	Q	E	ρ	Q	E
0	13.30	1.05	16.24	151.96	1.88	150.63	600.13	2.91	473.83
1	6.30	7.53	5.40	72.63	77.20	51.09	321.20	302.58	257.19
2	3.35	3.45	2.20	18.96	22.58	13.56	55.47	63.45	47.83

2D shallow water equations: equilibrium with $\boldsymbol{u} \neq 0$ + small perturbation. Plot the deviation to equilibrium:



Conclusion

Conclusion

Short conclusion

Using nonlinear implicit representations, we proposed new numerical/reduced modeling methods whose advantages/drawbacks are very different to those of classical approaches. We will continue to investigate hybrid approaches.

Current work: Neural operators

We investigate the modification/extension of Neural Operator methods on general grids, to multiscale problems, and to preserve some structures (PEPR NUMPEX).

Current work: Continuous ROMs

- Using PINNs or Neural Galerkin approaches, we wish to construct discretization-independent continuous ROMs.
- Encoder:

$$E_{\theta}(f(x_1), \dots, f(x_n)) \to \beta \in \mathbb{R}^d$$

where the $(x_1, ..., x_n)$ is a random point cloud.

Decoder:

$$D_{\theta}(oldsymbol{eta}) = \sum_{i=1} eta_i(\mathbf{t}) \phi_{\theta_i}(\mathbf{x}), \text{ or } D_{\theta}(oldsymbol{eta}) = u_{\theta}(\mathbf{x}; oldsymbol{eta})$$

 Coupling with Neural Galerkin, hyper-reduction and structure/property preserving approaches.

(nría-

E. Franck

Adverts!

Scimba

- For the PEPR Numpex, we are currently writing the Scimba code. It contains for PINNs, Neural Galerkin, Neural operator methods, . . . ; the goal is for this code to be shared by different teams.
- If you are interested to try these methods, play with Scimba, or participate contact us!

Macaron

- Our Inria team TONUS/MACARON will specialize in the hybridation between ML and numerical methods for PDEs.
- We regularly have PhD, post-doc and even permanent positions open on these subjects. If you are interested, contact us:)

Main references

B. Liu, K. Bhattacharya, A. Stuart, A. Anandkumar	
 Neural Galerkin Scheme with Active Learning for High-Dimensional Evolution Equations, J. Bruna, B. Peherstorfer, E. Vanden-Eijnden A Stable and Scalable Method for Solving Initial Value PDEs with Neural Networks, M. Finzi, A. Potapczynski, M. Choptuik, A. Gordon Wilson Neural Operator: Fourier Neural Operator for Parametric Partial Differential Equations, Z.i Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, A. Anandkumar Neural Operator: Learning Maps Between Function Spaces, N. Kovachki, Z. Li, B. Liu, K. Azizzadenesheli, K. Bhattacharya, A. Stuart, A. Anandkumar MOD-Net: A Machine Learning Approach via Model-Operator-Data Network for Solving PDE, L. Zhang, T. Luo, Y. Zhang, Weinan E, Z. Xu, Z. Ma Deep Predictor for Newton: Accelerating hypersonic reentry simulations using deep learning-based hybridization (with guarantees), P. Novello, G. Poëtte, D. Lugato, S. Peluchon, P. Marco Congedo DeepPhysics: a physics aware deep learning framework for real-time simulation, A. Odot, R. Haferssas, S. Cotin Accelerating Newton convergence for nonlinear elliptic PDE using neural operator approach, E. Franck, R. Hild, V. Vigon, V. Michel-Dansac, J. Aghili. En cours de rédaction. Hybrid methods: Enhanced Finite element by neural networks for elliptic problems, H. Barucq, E Franck, F. Faucher, N. Victorion. En cours de rédaction 	 □ Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, M. Raissi, P. Perdikaris, G.E. Karniadakis □ An Expert's Guide to Training Physics-informed Neural Networks, S. Wang, S. Sankaran, H. Wang, P. Perdikaris □ Estimates on the generalization error of Physics Informed Neural Networks (PINNs) for approximating PDEs,
 Fourier Neural Operator for Parametric Partial Differential Equations, Z.i Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, A. Anandkumar Neural Operator: Learning Maps Between Function Spaces, N. Kovachki, Z. Li, B. Liu, K. Azizzadenesheli, K. Bhattacharya, A. Stuart, A. Anandkumar MOD-Net: A Machine Learning Approach via Model-Operator-Data Network for Solving PDE, L. Zhang, T. Luo, Y. Zhang, Weinan E, Z. Xu, Z. Ma Deep Predictor for Newton: Accelerating hypersonic reentry simulations using deep learning-based hybridization (with guarantees), P. Novello, G. Poëtte, D. Lugato, S. Peluchon, P. Marco Congedo DeepPhysics: a physics aware deep learning framework for real-time simulation, A. Odot, R. Haferssas, S. Cotin Accelerating Newton convergence for nonlinear elliptic PDE using neural operator approach, E. Franck, R. Hild, V. Vigon, V. Michel-Dansac, J. Aghili. En cours de rédaction. Hybrid methods: Enhanced Finite element by neural networks for elliptic problems, H. Barucq, E Franck, F. Faucher, N. Victorion. En cours de rédaction 	 □ Neural Galerkin Scheme with Active Learning for High-Dimensional Evolution Equations, J. Bruna, B. Peherstorfer, E. Vanden-Eijnden □ A Stable and Scalable Method for Solving Initial Value PDEs with Neural Networks, M. Finzi, A.
B. Liu, K. Bhattacharya, A. Stuart, A. Anandkumar Neural Operator: Learning Maps Between Function Spaces, N. Kovachki, Z. Li, B. Liu, K. Azizzadenesheli, K. Bhattacharya, A. Stuart, A. Anandkumar MOD-Net: A Machine Learning Approach via Model-Operator-Data Network for Solving PDE, L. Zhang, T. Luo, Y. Zhang, Weinan E, Z. Xu, Z. Ma Deep Predictor for Newton:	Neural Operator:
Accelerating hypersonic reentry simulations using deep learning-based hybridization (with guarantees), P. Novello, G. Poëtte, D. Lugato, S. Peluchon, P. Marco Congedo DeepPhysics: a physics aware deep learning framework for real-time simulation, A. Odot, R. Haferssas, S. Cotin Accelerating Newton convergence for nonlinear elliptic PDE using neural operator approach, E. Franck, R. Hild, V. Vigon, V. Michel-Dansac, J. Aghili. En cours de rédaction. Hybrid methods: Enhanced Finite element by neural networks for elliptic problems, H. Barucq, E Franck, F. Faucher, N. Victorion. En cours de rédaction	 □ Fourier Neural Operator for Parametric Partial Differential Equations, Z.i Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, A. Anandkumar □ Neural Operator: Learning Maps Between Function Spaces, N. Kovachki, Z. Li, B. Liu, K. Azizzadenesheli, K. Bhattacharya, A. Stuart, A. Anandkumar □ MOD-Net: A Machine Learning Approach via Model-Operator-Data Network for Solving PDE, L. Zhang, T.
Novello, G. Poëtte, D. Lugato, S. Peluchon, P. Marco Congedo DeepPhysics: a physics aware deep learning framework for real-time simulation, A. Odot, R. Haferssas, S. Cotin Accelerating Newton convergence for nonlinear elliptic PDE using neural operator approach, E. Franck, R. Hild, V. Vigon, V. Michel-Dansac, J. Aghili. En cours de rédaction. Hybrid methods: Enhanced Finite element by neural networks for elliptic problems, H. Barucq, E Franck, F. Faucher, N. Victorion. En cours de rédaction	Deep Predictor for Newton:
Enhanced Finite element by neural networks for elliptic problems, H. Barucq, E Franck, F. Faucher, N. Victorion. En cours de rédaction	Novello, G. Poëtte, D. Lugato, S. Peluchon, P. Marco Congedo DeepPhysics: a physics aware deep learning framework for real-time simulation, A. Odot, R. Haferssas, S. Cotin Accelerating Newton convergence for nonlinear elliptic PDE using neural operator approach, E. Franck, R.
Victorion. En cours de rédaction	Hybrid methods:
	Victorion. En cours de rédaction

Neural Networks, E. Franck, V. Michel-Dansac, L. Navoret. Arxiv preprint.