
Numerical methods for conservation laws.
Application to gas dynamics and plasma physics

Emmanuel Franck

Soutenance d’habilitation à diriger des recherches
IRMA Strasbourg, 17 Janvier 2023

1Inria Nancy Grand Est, France
2IRMA, Strasbourg University, France

E. Franck 1/35

1/35

Outline

Introduction

Implicit relaxation schemes for PDEs

Numerical solvers based on deep learning

Research program

E. Franck 2/35

2/35

Introduction

E. Franck 3/35

3/35

Central problem: stiff hyperbolic and kinetic equations

General hyperbolic system
Ü We consider U(t, x) ∈ Rn. General equations:

∂tU + ∂xF (U) = S(U)

with F (U) the flux and S(U) the source term.

E. Franck 4/35

4/35

Central problem: stiff hyperbolic and kinetic equations

General hyperbolic system
Ü We consider U(t, x) ∈ Rn. General equations:

∂tU +
1

ε
∂xF (U) =

1

ε
S(U)

Ü Limit: long time limit

Ü Scaling: t̃ = εt,

Limit
Ü Asymptotic limit:

∂xF(U) = S(U)

Ü Exemple: Shallow Water equations with topography and vanishing initial velocity.{
∂th + ∂x (hu) = 0
∂thu + ∂x (hu2 + gh2) = h∂xz

→
{

u = 0
h∂x (h + z) = 0

E. Franck 4/35

4/35

Central problem: stiff hyperbolic and kinetic equations

General hyperbolic system
Ü We consider U(t, x) ∈ Rn. General equations:

∂tU + ∂xF (U) =
σ

ε
R(U)

with S(U) = σR(U)

Ü Limit: Relaxation limit,

Ü Scaling: σ̃ = εσ

Limit
Ü Asymptotic limit:

∂tu + ∂xG(u) = 0

with u ∈ Rd wiht d < n.

Ü Exemple: Vlasov-Poisson in the collisional regime.{
∂t f + v∂x f + ∂xφ∂v f = σ

ε
(Mρ,u,T − f)

−∆φ =
∫
f

→

 ∂tρ+ ∂x (ρu) = 0
∂tρu + ∂x (ρu2 + p) = 0
∂tE + ∂x (Eu + pu) = 0

E. Franck 4/35

4/35

Central problem: stiff hyperbolic and kinetic equations

General hyperbolic system
Ü We consider U(t, x) ∈ Rn. General equations:

∂tU +
1

ε
∂xF (U) =

σ

ε2
R(U)

with S(U) = σR(U)

Ü Limit: Diffusion limit,

Ü Scaling: σ̃ = εσ,t̃ = εt

Limit
Ü Asymptotic limit:

∂tu + ∂xG(u) = ∂x (D(u)∂xu)

with u ∈ Rd wiht d < n.

Ü Exemple: P1 radiative model.{
∂tE + 1

ε
∂xF = 0

∂tF + 1
3ε
∂xE = − σ

ε2 F
→ ∂tE − ∂x

(
1

3σ
∂xE

)
= 0

E. Franck 4/35

4/35

Central problem: stiff hyperbolic and kinetic equations

General hyperbolic system
Ü We consider U(t, x) ∈ Rn. General equations:

∂tU +
1

ε
∂xFf (U) + ∂xFl (U) = S(U)

with F (U) = 1
ε

Ff (U) + Fl (U).

Ü Limit: fast wave limit,

Ü Scaling: λ̃ = ελ with λ the maximal eigenvalue of F(U).

Limit
Ü Asymptotic limit (very formal):{

∂tU + P∂xF l (U) = S(U)
∂xF f (U) = 0

with P the projector on ker(∂xFf (U))
� Example: Euler in the low Mach limit (next section).
Ü [Gui15] for reduced MHD.

E. Franck 4/35

4/35

Numerical difficulties associated to stiff problems

Spatial discretization
Ü For hyperbolic systems, we use classical Finite Volume schemes.

Ü For equations such as

∂tU +
1

εα
∂xF (U) =

1

εβ
S(U),

the equivalent equations associated with FV schemes are of the form:

∂tU +
1

εα
∂xF (U) =

∆x

εα
∂x (A(U)∂xU) +

1

εβ
S(U) + O(∆x2),

with A the viscosity matrix.

Ü In general, the error is in O
(

∆x
εα

)
.

Time scheme
In general, for stiff hyperbolic systems, we use explicit schemes. They come with a CFL
condition like: ∆t < min(εα∆x , εβ)

Main issue

Since ∆x or/and ∆t scale with ε, at fixed accuracy the CPU grow up with 1
ε

or 1
ε2 .

E. Franck 5/35

5/35

Implicit relaxation schemes for PDEs

E. Franck 6/35

6/35

Euler equations and the low Mach regime

Ü Euler equations: 
∂tρ+∇ · (ρu) = 0

∂t(ρu) +∇ · (ρu ⊗ u + pId) = 0

∂tE +∇ · (Eu + pu) = 0

with ρ(t, x) > 0 the density, u(t, x) the velocity and E(t, x) > 0 the total energy.

Ü Hyperbolic system with nonlinear waves. Waves speed: three differents eigenvalues:
(u, n) and (u, n)± c with the sound speed c2 = γ p

ρ
.

Physic interpretation:

Ü Two important velocity scales: u and c, and their ratio (the Mach number) M = |u|
c

.

Ü When M tends to zero, we obtain the incompressible Euler equations:
∂tρ+ u · ∇ρ = 0

ρ∂tu + ρu · ∇u +∇p2 = 0

∇ · u = 0

In 1D, we only have an advection of ρ.

Ü Aim: construct an scheme valid at the limit with a uniform cost compared to M.

Ü Other related problems: Euler with gravity, low-Mach and low-β MHD.

E. Franck 7/35

7/35

Euler equations and the low Mach regime
Ü Euler equations:

∂tρ+∇ · (ρu) = 0

∂t(ρu) +∇ · (ρu ⊗ u + pId) = 0

∂tE +∇ · (Eu + pu) = 0

−→


∂tρ+∇ · (ρu) = 0

∂t(ρu) +∇ · (ρu ⊗ u) +
1

M2
∇p = 0

∂tE +∇ · (Eu + pu) = 0

with ρ(t, x) > 0 the density, u(t, x) the velocity and E(t, x) > 0 the total energy.

Ü Hyperbolic system with nonlinear waves. Waves speed: three differents eigenvalues:
(u, n) and (u, n)± c with the sound speed c2 = γ p

ρ
.

Physic interpretation:

Ü Two important velocity scales: u and c, and their ratio (the Mach number) M = |u|
c

.

Ü When M tends to zero, we obtain the incompressible Euler equations:
∂tρ+ u · ∇ρ = 0

ρ∂tu + ρu · ∇u +∇p2 = 0

∇ · u = 0

In 1D, we only have an advection of ρ.

Ü Aim: construct an scheme valid at the limit with a uniform cost compared to M.

Ü Other related problems: Euler with gravity, low-Mach and low-β MHD.

E. Franck 7/35

7/35

Explicit vs implicit schemes

Ü Explicit scheme: issues with the CFL condition for low Mach flow:

Ü Fast perturbative phenomena: acoustic waves at velocity c
Ü Important phenomena: transport at velocity u
Ü Expected CFL condition ∆t < ∆x

|u| ; in practice, we need ∆t < ∆x
c

= M ∆x
|u|

Ü At the end, we need a ∆t multiplied by M compared to the expected ∆t

First solution
Implicit time scheme. No CFL condition. Taking a larger time step, it allows to “filter”
the fast acoustic waves which are not import to capture the limit regime.

Ü Implicit scheme: Newton method + GMRES

Ü Simpler example (linearized Euler equations around u0 = 0):

{
∂tp + 1

M
∇ · u = 0

∂tu + 1
M
∇p = 0

→
{

pn+1 + ∆t
M
∇ · un+1 = pn

un+1 + ∆t
M
∇pn+1 = un

Ü Matrix to invert: (M
∆t

Id ∇·
∇ M

∆t
Id

)
Ü If ∆t � M, the problem is ill-posed, and the matrix is difficult to invert.

E. Franck 8/35

8/35

First idea: physics-based preconditioning
Ü Coming back to the example, consider the parabolization by Knoll-Keyes [04] and

Chacon [08-10]:


pn+1 +

∆t

M
∇ · un+1 = pn

un+1 +
∆t

M
∇pn+1 = un

→


pn+1 −

∆t2

M2
∆pn+1 = ...

un+1 = un −
∆t

M
∇pn+1

Ü The matrix to invert becomes: (
M2

∆t2
Id −∆

)
Ü If ∆t � M, we invert a Laplacian (for instance with multigrid (MG) approaches).

Physics-based preconditioning
Use the same parabolization approach with approximation for nonlinear problems like
Euler or MHD, solve the parabolic model with MultiGrid and use this solving as right
preconditioning.

Remarks
The approach is efficient but boundary conditions are tricky, and analyzing failures is
difficult.

E. Franck 9/35

9/35

Second idea: relaxation approach

Relaxation approach
Keep the idea to replace the original model by one that is simpler to solve, use it as a
solver rather than a preconditioner.

Ü Relaxation [JX95] : Used to design new schemes.
Ü Idea: Approximate the model

∂tU + ∂xF(U) = 0, by ∂t f + A(f) =
1

ε
(Q(f)− f)

At the limit (Hilbert expansion) and taking Pf = U (P ∈ Rn,m with n < m) we obtain

∂tU + ∂xF(U) = ε∂x (D(U)∂xU) + O(ε2)

Ü Time scheme: Splitting
Ü We first solve

f∗ − fn

∆t
+ A(f∗,n) = 0,

Ü We solve the stiff source term using an implicit scheme.

Advantages of this approach
Ü In general, we construct A with a simpler structure than F, to easily designed a

Godunov numerical flux.
Ü Here we use it to construct some simpler implicit schemes.

E. Franck 10/35

10/35

Xin-Jin relaxation method
Ü We consider the following nonlinear hyperbolic system

∂tU + ∂xF (U) = 0,

with a function U ∈ RN , x ∈ Rd .

Ü Aim: Find a way to approximate this system with a sequence of simple systems.

Ü Idea: Xin-Jin relaxation method (very popular in the hyperbolic and Finite Volume
community) [JX95]-[Nat96]-[ADN00].∂tU + ∂xV = 0

∂tV + λ2∂xU =
1

ε
(F (U)− V)

Limit scheme for the hyperbolic relaxation
The limit equation of the relaxation system is

∂tU + ∂xF (U) = ε∂x ((λ2Id − |A(U)|2)∂xU) + O(ε2),

with A(U) the Jacobian of F (U).

Ü Conclusion: the relaxation system is an approximation of the original hyperbolic
system (with an error in ε).

E. Franck 11/35

11/35

Xin-Jin implicit scheme

Main property
Ü Relaxation system: ”the nonlinearity is local and the non-locality is linear”.

Ü Main idea: splitting scheme between implicit transport and implicit relaxation.

Ü Key point: we have ∂tU = 0 during the relaxation step. Therefore F (U) is explicit.

Ü Relaxation step: we use a θ scheme:Un+1 = Un

V n+1 = θ
∆t

ε
(F (Un+1)− V n+1) + (1− θ)

∆t

ε
(F (Un)− V n)

Ü Transport step (order 1) :(
Id + ∆t

(
0 1
λ2 0

)
∂x

)(
Un+1

V n+1

)
=

(
Un

V n

)
We plug the equation on V in the equation on U and obtain

(Id −∆t2λ2∂xx)Un+1 = Un −∆t∂xV n, V n+1 = V n −∆tλ2∂xUn+1

Numerical error of first splitting scheme

∂tU + ∂xF (U) = ∆t

(
2− ω
ω

)
∂x ((λ2Id − |A(U)|2)∂xU) + O(∆t2)

E. Franck 12/35

12/35

Xin-Jin implicit scheme

Main property
Ü Relaxation system: ”the nonlinearity is local and the non-locality is linear”.

Ü Main idea: splitting scheme between implicit transport and implicit relaxation.

Ü Key point: we have ∂tU = 0 during the relaxation step. Therefore F (U) is explicit.

Ü Relaxation step: we use a θ scheme:Un+1 = Un

V n+1 = θ
∆t

ε
(F (Un)− V n+1) + (1− θ)

∆t

ε
(F (Un)− V n)

Ü Transport step (order 1) :(
Id + ∆t

(
0 1
λ2 0

)
∂x

)(
Un+1

V n+1

)
=

(
Un

V n

)
We plug the equation on V in the equation on U and obtain

(Id −∆t2λ2∂xx)Un+1 = Un −∆t∂xV n, V n+1 = V n −∆tλ2∂xUn+1

Numerical error of first splitting scheme

∂tU + ∂xF (U) = ∆t

(
2− ω
ω

)
∂x ((λ2Id − |A(U)|2)∂xU) + O(∆t2)

E. Franck 12/35

12/35

Xin-Jin implicit scheme

Main property
Ü Relaxation system: ”the nonlinearity is local and the non-locality is linear”.

Ü Main idea: splitting scheme between implicit transport and implicit relaxation.

Ü Key point: we have ∂tU = 0 during the relaxation step. Therefore F (U) is explicit.

Ü Relaxation step: we use a θ scheme:Un+1 = Un(
Id + θ

∆t

ε

)
V n+1 = θ

∆t

ε
F (Un) + (1− θ)

∆t

ε
(F (Un)− V n)

Ü Transport step (order 1) :(
Id + ∆t

(
0 1
λ2 0

)
∂x

)(
Un+1

V n+1

)
=

(
Un

V n

)
We plug the equation on V in the equation on U and obtain

(Id −∆t2λ2∂xx)Un+1 = Un −∆t∂xV n, V n+1 = V n −∆tλ2∂xUn+1

Numerical error of first splitting scheme

∂tU + ∂xF (U) = ∆t

(
2− ω
ω

)
∂x ((λ2Id − |A(U)|2)∂xU) + O(∆t2)

E. Franck 12/35

12/35

Xin-Jin implicit scheme

Main property
Ü Relaxation system: ”the nonlinearity is local and the non-locality is linear”.

Ü Main idea: splitting scheme between implicit transport and implicit relaxation.

Ü Key point: we have ∂tU = 0 during the relaxation step. Therefore F (U) is explicit.

Ü Relaxation step: we use a θ scheme:
Un+1 = Un

V n+1 = V n +
∆t

ε+ θ∆t︸ ︷︷ ︸
ω

(F (Un)− V n)

Ü Transport step (order 1) :(
Id + ∆t

(
0 1
λ2 0

)
∂x

)(
Un+1

V n+1

)
=

(
Un

V n

)
We plug the equation on V in the equation on U and obtain

(Id −∆t2λ2∂xx)Un+1 = Un −∆t∂xV n, V n+1 = V n −∆tλ2∂xUn+1

Numerical error of first splitting scheme

∂tU + ∂xF (U) = ∆t

(
2− ω
ω

)
∂x ((λ2Id − |A(U)|2)∂xU) + O(∆t2)

E. Franck 12/35

12/35

Xin-Jin implicit scheme

Main property
Ü Relaxation system: ”the nonlinearity is local and the non-locality is linear”.

Ü Main idea: splitting scheme between implicit transport and implicit relaxation.

Ü Key point: we have ∂tU = 0 during the relaxation step. Therefore F (U) is explicit.

Ü Relaxation step: we use a θ scheme:
Ü Transport step (order 1) :(

Id + ∆t

(
0 1
λ2 0

)
∂x

)(
Un+1

V n+1

)
=

(
Un

V n

)
We plug the equation on V in the equation on U and obtain

(Id −∆t2λ2∂xx)Un+1 = Un −∆t∂xV n, V n+1 = V n −∆tλ2∂xUn+1

Numerical error of first splitting scheme

∂tU + ∂xF (U) = ∆t

(
2− ω
ω

)
∂x ((λ2Id − |A(U)|2)∂xU) + O(∆t2)

E. Franck 12/35

12/35

Generic kinetic relaxation schemes

Kinetic relaxation systems
Ü Model under consideration:

∂tU + ∂xF (U) = 0

Ü Lattice: W = {λ1,,λnv } a set of velocities.

Ü Mapping matrix: P a matrix nc × nv (nc < nv) such that U = Pf , with U ∈ Rnc .

Ü Kinetic relaxation system:

∂t f + Λ∂x f =
1

ε
(f eq(U)− f)

Ü Consistency condition (Natalini - Aregba [96-98-02], Bouchut [99-03]) :{
Pf eq(U) = U
PΛf eq(U) = F (U)

(C)

Chapman-Enskog stability
Ü Limit system:

∂tU + ∂xF (U) = ε∂x
((
PΛ2∂U f eq(U)− |∂F (U)|2

)
∂xU

)
+ O(ε2)

Ü This limit system is stable if the second order operator is entropy-dissipative. We also
have partial stability results for the kinetic systems.

Ü Strong Stability: entropy theory equivalent to the H-theorem. Other criteria for
stability are given in Bouchut [04].

E. Franck 13/35

13/35

Implicit scheme based on kinetic relaxation I
Ü We define the two operators for each step :

T (∆t) : e∆tΛ∂x f n+1 = f n

R(∆t) : f n+1 = f n + ω(f eq(Un)− f n)

Ü First splitting scheme: T (∆t) ◦ R(∆t) is consistent with

Ü How to deal with the transport step with constant velocity?

Ü Semi-Lagrangian scheme,
Ü CFL-less implicit DG scheme, with a downwind strategy: block triangular matrix

using task graph numbering.

Ü Boundary conditions: studied in Drui and al [21].

E. Franck 14/35

14/35

Implicit scheme based on kinetic relaxation II

High order scheme: composition method

Ü If Ψ, a scheme that is second-order accurate in time, satisfies Ψ(∆t) = Ψ−1(−∆t)
and Ψ(0) = Id , then we can construct the high-order extension

Mp(∆t) = Ψ(γ1∆t) ◦Ψ(γ2∆t) ◦ · · · ◦Ψ(γs∆t),
with γi ∈ [−1, 1].

Ü Susuki scheme : s = 5, p = 4. Kahan-Li scheme: s = 9, p = 6.

New second-order scheme
Ü The current second-order scheme is:

Ψ(∆t) = T

(
∆t

2

)
◦ R(∆t,ω = 2) ◦ T

(
∆t

2

)
.

Ü It satisfies the time symmetry, but not Ψ(0) = Id for ε ≈ 0. Indeed,

R(∆t = 0,ω = 2) ⇐⇒ f n = 2f eq − f n 6= f n

Ü However, R(0,ω = 2) ◦ R(0,ω = 2) = Id , and so we propose the following
second-order scheme:

Ψap(∆t) = T

(
∆t

4

)
◦ R(∆t,ω = 2) ◦ T

(
∆t

2

)
◦ R(∆t,ω = 2) ◦ T

(
∆t

4

)

E. Franck 15/35

15/35

Implicit scheme based on kinetic relaxation III
Ü Error lines for the isothermal Euler equations. We have taken a CFL condition equal

to 5 times the explicit one.

Ü Rayleigh-Taylor instability

Ü Theory and parallelization: Coulette and al [17-18-19].

E. Franck 16/35

16/35

Implicit scheme based on kinetic relaxation IV
Ü We have applied this strategy to the Guiding center for plasma physics, Helie [22]:{

∂tρ−∇ ·
(
((∇φ)⊥ + B)ρ

)
= 0,

−∆φ = ρ−
∫
ρdx ,

with B = (−bθ sin(θ), bθ sin(θ), bφ)t . We choose bθ = 0.1 and bφ = 200.

Ü Scheme: Exact transport in the toroidal direction, implicit DG kinetic scheme in the
poloidal plane.

Ü CFL conditions for the classical and new schemes:

∆texp <
min(vpol , vφ)

max(∆xpol , ∆xφ)
→ ∆tnew <

vφ

∆xφ

Ü Test case: 3D Diocotron instability. CFL condition equal to 33 times the explicit one.

E. Franck 17/35

17/35

Drawback: low Mach regime

Ü Kinetic relaxation: there exists specific choices of feq accurate in the isothermal low
Mach regime (LBM community). Drawback: instabilities in other regimes.

Numerical error
Ü Error for the first order splitting scheme for Xin-Jin and vectorial kinetic relaxation:

∂tU + ∂xF (U) = ∆t

(
2− ω
ω

)
∂x ((λ2Id − |A(U)|2)∂xU) + O(∆t2)

Ü In the low Mach regime, ∂xu ≈ M, ∂xp ≈ M and c ≈ 1
M

, and so

∂tρ+ ∂x (ρu) ≈ ∆t

(
2− ω
ω

)
u2

(
∂x

(
1

M2
− 1

)
∂xρ

)
+ O(∆t2)

Ü Conclusion: Too much diffusion on the contact wave.

Ü In the 2D case:

∂tu + u · ∇u +∇p ≈
(

2− ω
ω

)
∆t

2M2
|u|2∆u + O(∆t2)

Ü Conclusion: Too much diffusion on the shear wave.

Ü In Courtès and al [21], we proposed a kinetic relaxation valid for the low Mach regime
in 1D, although proving its stability was not an easy task.

E. Franck 18/35

18/35

Suliciu relaxation for the Low-Mach regime I
Ü Idea: Linearize only the fast wave with relaxation.

Ü Non-conservative form and acoustic terms:
∂tρ+ ∂x (ρu) = 0
∂tp + u∂xp + ρc2∂xu = 0
∂tu + u∂xu + 1

ρ
∂xp = 0

Ü Idea: Relax only the acoustic part ([BCG18]) to linearize the implicit part.
∂tρ+ ∂x (ρv) = 0
∂t(ρu) + ∂x (ρuv + Π) = 0
∂tE + ∂x (Ev + Πv) = 0
∂tΠ + v∂xΠ + φλ2∂xv = 1

ε
(p − Π)

∂tv + v∂xv + 1
φ
∂xΠ = 1

ε
(u − v)

Ü Limit: 
∂tρ+ ∂x (ρu) = ε∂x [A∂xp]
∂t(ρu) + ∂x (ρu2 + p) = ε∂x [(Au∂xp) + B∂xu]

∂tE + ∂x (Eu + pu) = ε∂x
[
AE∂xp + A∂x

p2

2
+ B∂x

u2

2

]
,

with A = 1
ρ

(
ρ
φ
− 1
)

and B =
(
ρφλ2 − ρ2c2

)
.

Ü Stability: φλ > ρc2 and ρ > φ.

Avdantage
We keep the conservative form for the original variables and obtain fully linear acoustics.

E. Franck 19/35

19/35

Suliciu relaxation for the Low-Mach regime I
Ü Idea: Linearize only the fast wave with relaxation.

Ü Non-conservative form and acoustic terms:
∂tρ+ ∂x (ρu) = 0
∂tp + u∂xp + ρc2∂xu = 0
∂tu + u∂xu + 1

ρ
∂xp = 0

Ü Idea: Relax only the acoustic part ([BCG18]) to linearize the implicit part.
∂tρ+ ∂x (ρv) = 0
∂t(ρu) + ∂x (ρuv + Π) = 0
∂tE + ∂x (Ev + Πv) = 0
∂tΠ + v∂xΠ + φλ2∂xv = 1

ε
(p − Π)

∂tv + v∂xv + 1
φ
∂xΠ = 1

ε
(u − v)

Ü Limit: 
∂tρ+ ∂x (ρu) = ε∂x [A∂xp]
∂t(ρu) + ∂x (ρu2 + p) = ε∂x [(Au∂xp) + B∂xu]

∂tE + ∂x (Eu + pu) = ε∂x
[
AE∂xp + A∂x

p2

2
+ B∂x

u2

2

]
,

with A = 1
ρ

(
ρ
φ
− 1
)

and B =
(
ρφλ2 − ρ2c2

)
.

Ü Stability: φλ > ρc2 and ρ > φ.

Avdantage
We keep the conservative form for the original variables and obtain fully linear acoustics.

E. Franck 19/35

19/35

Suliciu relaxation for the Low-Mach regime I
Ü Idea: Linearize only the fast wave with relaxation.

Ü Non-conservative form and acoustic terms:
∂tρ+ ∂x (ρu) = 0
∂tp + u∂xp + ρc2∂xu = 0
∂tu + u∂xu + 1

ρ
∂xp = 0

Ü Idea: Relax only the acoustic part ([BCG18]) to linearize the implicit part.
∂tρ+ ∂x (ρv) = 0
∂t(ρu) + ∂x (ρuv + Π) = 0
∂tE + ∂x (Ev + Πv) = 0
∂tΠ + v∂xΠ + φλ2∂xv = 1

ε
(p − Π)

∂tv + v∂xv + 1
φ
∂xΠ = 1

ε
(u − v)

Ü Limit: 
∂tρ+ ∂x (ρu) = ε∂x [A∂xp]
∂t(ρu) + ∂x (ρu2 + p) = ε∂x [(Au∂xp) + B∂xu]

∂tE + ∂x (Eu + pu) = ε∂x
[
AE∂xp + A∂x

p2

2
+ B∂x

u2

2

]
,

with A = 1
ρ

(
ρ
φ
− 1
)

and B =
(
ρφλ2 − ρ2c2

)
.

Ü Stability: φλ > ρc2 and ρ > φ.

Avdantage
We keep the conservative form for the original variables and obtain fully linear acoustics.

E. Franck 19/35

19/35

Suliciu relaxation for the Low-Mach regime I
Ü Idea: Linearize only the fast wave with relaxation.

Ü Non-conservative form and acoustic terms:
∂tρ+ ∂x (ρu) = 0
∂tp + u∂xp + ρc2∂xu = 0
∂tu + u∂xu + 1

ρ
∂xp = 0

Ü Idea: Relax only the acoustic part ([BCG18]) to linearize the implicit part.
∂tρ+ ∂x (ρv) = 0
∂t(ρu) + ∂x (ρuv + Π) = 0
∂tE + ∂x (Ev + Πv) = 0
∂tΠ + v∂xΠ + φλ2∂xv = 1

ε
(p − Π)

∂tv + v∂xv + 1
φ
∂xΠ = 1

ε
(u − v)

Ü Limit: 
∂tρ+ ∂x (ρu) = ε∂x [A∂xp]
∂t(ρu) + ∂x (ρu2 + p) = ε∂x [(Au∂xp) + B∂xu]

∂tE + ∂x (Eu + pu) = ε∂x
[
AE∂xp + A∂x

p2

2
+ B∂x

u2

2

]
,

with A = 1
ρ

(
ρ
φ
− 1
)

and B =
(
ρφλ2 − ρ2c2

)
.

Ü Stability: φλ > ρc2 and ρ > φ.

Avdantage
We keep the conservative form for the original variables and obtain fully linear acoustics.

E. Franck 19/35

19/35

Suliciu relaxation for Low-Mach II
Ü Splitting: Convective part treated explicitly / Acoustic part treated implicitly.

∂tρ+ ∂x (ρv) = 0
∂t(ρu) + ∂x (ρuv +M2(t)Π) = 0
∂tE + ∂x (Ev +M2(t)Πv) = 0
∂tΠ + v∂xΠ + φλ2

c∂xv = 0

∂tv + v∂xv + M2(t)
φ

∂xΠ = 0

and


∂tρ = 0
∂t(ρu) + (1−M2(t))∂xΠ = 0
∂tE + (1−M2(t))∂x (Πv) = 0
∂tΠ + φ(1−M2(t))λ2

a∂xv = 0
∂tv + (1−M2(t)) 1

φ
∂xΠ = 0

with M(t) ≈ max

(
Mmin, min

(
max

|u|
c

, 1

))
.

Ü Eigenvalues: explicit part: v , v ±M(t) λc︸︷︷︸
≈c

; implicit part: 0, ±(1−M2(t)) λa︸︷︷︸
≈c

.

Ü Step 1: we solve

(Id − (1−M2(tn))2∆t2λ2
a∂xx)Πn+1 = Πn −∆t(1−M2(tn))φλ2

a∂xv
n

Ü Step 2: we compute vn+1 and ρun+1 using Πn+1, and E v+1 using Πn+1vn+1.

Advantages
Ü We construct an efficient Godunov relaxation scheme for the explicit part.
Ü We solve only a linear and constant Laplacian. The matrix is only assembled once.
Ü No conditioning issues coming from large gradients of ρ.

E. Franck 20/35

20/35

Suliciu relaxation for Low-Mach II
Ü Splitting: Convective part treated explicitly / Acoustic part treated implicitly.

∂tρ+ ∂x (ρv) = 0
∂t(ρu) + ∂x (ρuv +M2(t)Π) = 0
∂tE + ∂x (Ev +M2(t)Πv) = 0
∂tΠ + v∂xΠ + φλ2

c∂xv = 0

∂tv + v∂xv + M2(t)
φ

∂xΠ = 0

and


∂tρ = 0
∂t(ρu) + (1−M2(t))∂xΠ = 0
∂tE + (1−M2(t))∂x (Πv) = 0
∂tΠ + φ(1−M2(t))λ2

a∂xv = 0
∂tv + (1−M2(t)) 1

φ
∂xΠ = 0

with M(t) ≈ max

(
Mmin, min

(
max

|u|
c

, 1

))
.

Ü Eigenvalues: explicit part: v , v ±M(t) λc︸︷︷︸
≈c

; implicit part: 0, ±(1−M2(t)) λa︸︷︷︸
≈c

.

Ü Step 1: we solve

(Id − (1−M2(tn))2∆t2λ2
a∂xx)Πn+1 = Πn −∆t(1−M2(tn))φλ2

a∂xv
n

Ü Step 2: we compute vn+1 and ρun+1 using Πn+1, and E v+1 using Πn+1vn+1.

Advantages
Ü We construct an efficient Godunov relaxation scheme for the explicit part.
Ü We solve only a linear and constant Laplacian. The matrix is only assembled once.
Ü No conditioning issues coming from large gradients of ρ.

E. Franck 20/35

20/35

Suliciu relaxation for Low-Mach II
Ü Splitting: Convective part treated explicitly / Acoustic part treated implicitly.

∂tρ+ ∂x (ρv) = 0
∂t(ρu) + ∂x (ρuv +M2(t)Π) = 0
∂tE + ∂x (Ev +M2(t)Πv) = 0
∂tΠ + v∂xΠ + φλ2

c∂xv = 0

∂tv + v∂xv + M2(t)
φ

∂xΠ = 0

and


∂tρ = 0
∂t(ρu) + (1−M2(t))∂xΠ = 0
∂tE + (1−M2(t))∂x (Πv) = 0
∂tΠ + φ(1−M2(t))λ2

a∂xv = 0
∂tv + (1−M2(t)) 1

φ
∂xΠ = 0

with M(t) ≈ max

(
Mmin, min

(
max

|u|
c

, 1

))
.

Ü Eigenvalues: explicit part: v , v ±M(t) λc︸︷︷︸
≈c

; implicit part: 0, ±(1−M2(t)) λa︸︷︷︸
≈c

.

Ü Step 1: we solve

(Id − (1−M2(tn))2∆t2λ2
a∂xx)Πn+1 = Πn −∆t(1−M2(tn))φλ2

a∂xv
n

Ü Step 2: we compute vn+1 and ρun+1 using Πn+1, and E v+1 using Πn+1vn+1.

Advantages
Ü We construct an efficient Godunov relaxation scheme for the explicit part.
Ü We solve only a linear and constant Laplacian. The matrix is only assembled once.
Ü No conditioning issues coming from large gradients of ρ.

E. Franck 20/35

20/35

Results in 2D: Kelvin-Helmholtz instability

Ü Kelvin-Helmholtz instability. Density:

Ü Density at time Tf = 3, k = 1, M0 = 0.1. Explicit Lagrange-Remap scheme with
120× 120 (left) and 360× 360 cells (middle left), SI two-speed relaxation scheme
(λc = 18, λa = 15, φ = 0.98) with 42× 42 (middle right) and 120× 120 cells (right).

E. Franck 21/35

21/35

Results in 2D: Kelvin-Helmholtz instability

Ü Kelvin-Helmholtz instability. Density:

� Density at time Tf = 3, k = 2, M0 = 0.01 with SI two-speed relaxation scheme
(λc = 180, λa = 150, φ = 0.98). Left: 120× 120 cells. Right: 240× 240 cells.

E. Franck 21/35

21/35

Well balanced extension

Idea
For the Ripa Shallow Water model, we coupled preivous semi-implicit with WB method
(Jin-Levermore [98]). We obtain a WB scheme with time step independant from the
”Mach” number.

Ü Test case: equilibrium perturbation:

Ü We use that discrete steady state are exactly consistant with continuous ones.
Ü More general case: Euler equations with gravity, equilibrium: u = 0, ∇p = −ρ∇φ

Result
In Fra [16], we proposed a WB scheme for discrete steady states constructed with a
high-order polynomial reconstruction. The scheme converges with order one and order q
around the steady state.

E. Franck 22/35

22/35

Numerical solvers based on deep learning

E. Franck 23/35

23/35

Principle of PINNs

Deep learning
Deep learning has demonstrated its ability to build efficient high-dimensional models and
functions. But can we use it to approximately solve PDEs ?

Ü First method: Physics-Informed neural networks (PINNs) (Raissi & Karniadakis, 2017).
Ü Consider the following PDE, with α, β some parameters: ∂tU = N (U, ∂xU, ∂xxU,β)

Uh(t, x) = g(x), ∀x ∈ ∂Ω
U(0, x) = U0(x ,α).

Ü Idea I: represent/approximate solutions of PDEs by a Neural Network Uθ(t, x).
Ü Idea II: Since neural networks can be Cp(Rd), we can exactly compute the PDE

residual.

PINNs recast as an optimization problem – exact integration

minθ Jr (θ) + Jb(θ) + Ji (θ)

with
Jr (θ) =

∫ T

0

∫
Ω
‖ ∂tUθ(t, x)− L(Uθ, ∂xUθ, ∂xxUθ,β)(t, x) ‖2

2 dxdt

Jb(θ) =

∫ T

0

∫
∂Ω
‖ Uθ(t, x)− g(x) ‖2

2 dxdt, Ji (θ) =

∫
Ω
‖ Uθ(0, x)− U0(x) ‖2

2

E. Franck 24/35

24/35

Principle of PINNs

Deep learning
Deep learning has demonstrated its ability to build efficient high-dimensional models and
functions. But can we use it to approximately solve PDEs ?

Ü First method: Physics-Informed neural networks (PINNs) (Raissi & Karniadakis, 2017).
Ü Consider the following PDE, with α, β some parameters: ∂tU = N (U, ∂xU, ∂xxU,β)

Uh(t, x) = g(x), ∀x ∈ ∂Ω
U(0, x) = U0(x ,α).

Ü Idea I: represent/approximate solutions of PDEs by a Neural Network Uθ(t, x).
Ü Idea II: Since neural networks can be Cp(Rd), we can exactly compute the PDE

residual.

PINNs recast as an optimization problem – Monte-Carlo integration

minθ Jr (θ) + Jb(θ) + Ji (θ)

with

Jr (θ) =
N∑
i=1

‖ ∂tUθ(ti , xi)− L(Uθ, ∂xUθ, ∂xxUθ,µ)(ti , xi) ‖2
2

Jb(θ) =

Nb∑
i=1

‖ Uθ(ti , xi)− g(xi) ‖2
2, Ji (θ) =

Ni∑
i=1

‖ Uθ(0, xi)− U0(xi ,α) ‖2
2

E. Franck 24/35

24/35

Parametric PINNs

Ü Advantages of PINNs: mesh-less approach, not too sensitive to the dimension.

Ü Main drawback of PINNs: they are not competitive with classical methods.

Ü Training for the 1D viscous Burgers equation with ν = 10−4: 2 hours

Ü Interesting possibilities: use the strengths of PINNs to solve parametric PDEs.

Parametric PINNs
Ü The neural network becomes Uθ(t, x ,α,β).
Ü We also sample the parameter space.

� Training for viscous Burgers 1D equation with ν = [10−2, 10−4]:≈ 2 hours

E. Franck 25/35

25/35

Neural operators
Ü How to go beyond parametric solutions ?

Ü We consider the following toy problem:{
−∇ · (a(x)∇u) = f (x), ∀x ∈ Ω
u = g , ∀x ∈ ∂Ω

Ü Formally, there exists a pseudo inverse operator G+, such that G+(f (x), g , a(x)) = u(x).

Operator learning

Approximate G+ by a neural network on a subspace of the data.

Ü CNNs and neural operators can be used to approximate G+.

Ü The solution is given by

u(x) =

∫
Ω
Ga(x , y)f (y)dy

with Ga a Green kernel. Important: the operator is nonlocal.

Neural operator layer
The layer transforms a function vl (x) into a function vl+1(x), which has the form:

∀x ∈ D, vl+1(x) = σl+1

(
Wlvl (x) + b(x) +

∫
D
k(x , y)vl (y)dν(y),

)
where Wt ∈ Rd ,d is a weight matrix, and k(x , y) ∈ Cp(D × D;Rnt+1 × Rnt).

E. Franck 26/35

26/35

Neural operators: an example

Fourier Neural Network
The neural operator layer of FNOs is an integral kernel (Zi and al [20]):∫

D
k(x , y)v(y)dν(y) ≈ F−1(RθF(v(x)),

with Rθ the learnable filters in the Fourier space.

Principle:

E. Franck 27/35

27/35

Main objective

Remark
For a low variability of parameters, neural operators and parametric PINNs are able to
quickly predict a solution. For a larger variability of the parameters, these approaches
seem to lose accuracy.

Question
How to accelerate a numerical solver using neural networks, while retaining the accuracy
and stability of the numerical methods?

Aim
Incorporate the neural networks into numerical methods to increase the efficiency while
keeping the properties of the method.

E. Franck 28/35

28/35

First idea: Newton’s method with data-driven initialization
We wish to solve the following elliptic problem:

u − α0∇ · (A(x , y)k(u)∇u) = f (x , y)

Solver
Ü Discretization with finite differences or finite elements (on structured meshes for the

moment)
Ü Newton-Krylov method (Jacobian-free approximation + GMRES for linear part)
Ü After discretization, we solve the problem: GAh ,fh ,α0

(uh) = 0

Idea
Train a Fourier Neural Operator (FNO) to approximate the solution of the elliptic
equation and use it as an initial guess.

Algorithm:

Ü Fix a mesh, fix α0 and k(·),

Ü Randomly generate lots of data points uih, Ai
h (sum of random Gaussian functions),

Ü Compute the right-hand side associated with f ih ,

Ü Train the neural network G+
θ (Ai

h, f ih), by minimizing

J(θ) = ω
n∑

i=1

‖G+
θ (Ai

h, f ih)− uih‖+ (1− ω)
n∑

i=1

‖GAi
h

,f i
h

,α0
(G+
θ (Ai

h, f ih))‖.

E. Franck 29/35

29/35

Newton’s method with data-driven initialization: results

� We solve the 1D case with k(u) = u4, a(x) a random function.

� We compare the average results for different α0 (the larger α0 is, the more the
problem is nonlinear):

mesh α0 = 2 (40 sim) α0 = 5 (25 sim) α0 = 8 (25 sim)
100 cells +500% +1800% +5000%
200 cells +88% +230% +620%
400 cells +82% +150% +220%
600 cells +92% +220% +250%

Table: Comparison of the mean “gain” for different values of α0.

� Fails: on all the tests, we have 0% of fail (our method being less efficient than the
classical one) for the iteration criterion, and around 2% of fail on the CPU time
criterion.

� On more refined meshes, the gain is smaller (the network acts only at the beginning of
the convergence).

� The method is more efficient for highly nonlinear systems.

E. Franck 30/35

30/35

Second idea: NN-enhanced finite element solver

Question
With parametric PINNs or neural operators, we accelerated a solver (Newton’s method).
Can we also increase the accuracy of the method ?

� Classical method for elliptic problem: Finite elements (FE).
� Strong form → weak form:

−∆u = f →
∫

Ω
∇u · ∇vdx =

∫
Ω
fvdx , v ∈ H1

0 (Ω)

� To discretize on a mesh with N cells, we use:

uh =
N∑
j=0

αjφj (x), v = φi

with φi (x) the hat function.

Idea
If we have an approximation of the solution given by a neural network (here parametric
PINNs) uθ(x ,µ) we can use to increase the representation of the solution

In the modified FE scheme, we use:

uh =
N∑
j=0

αjφj (x)uθ(x ,µ), v = φi (x)uθ(x ,µ).

E. Franck 31/35

31/35

NN-enhanced finite element solver: results

� First test:
−∂xxu = α sin(2πx) + β sin(4πx) + γ sin(8πx)

We train with (a, b, c) ∈ [0, 1]3 and test with (a, b, c) ∈ [0, 1.2]3.

Results with 20 cells:

Data set inside training set outside training set inside/outside
Average gain vs FE 101 28.4 76.8
Average gain vs PINNS 6.7 7 6.8

� Second test:
v∂xu −

v

Pe
∂xxu = r

We train with r ∈ [1.5, 2.0], v ∈ [1.5, 2.0] and Pe ∈ [10, 120],
and we test with r ∈ [1.5, 2.2], v ∈ [1.5, 2.2] and Pe ∈ [10, 150].

Results with 20 cells:

Data set: inside training set outside training set inside/outside
Average gain 110 25 81.6

� The method converges with second-order accuracy.

� Next step, with Inria Pau: 2D extension, theory of convergence, extension to time
problems.

E. Franck 32/35

32/35

Research program

E. Franck 33/35

33/35

Research program I

My research program
My research program, around four axes, is fully in line with that of the new Inria team

First Axis: data-driven solver
Ü design hybrid solvers with ML and classical methods using supervised learning and

optimal control approaches (differentiable physics or reinforcement learning).

� Applications: viscosity and LBM scheme (ongoing work with L. Bois PhD), slope
limiting, flux correction, filter the numerical dispersion (PhD N. Victorion) etc.

Ü Enhanced Finite element and DG scheme in time (with Inria Makutu, Mimesis).
Training using PINNs (as is done now), neural operators or differentiable physics
approaches.

Ü Acceleration of implicit codes / Newton /inverse problems using neural operators
(with Inria Atlantis and Makutu in the PEPR NumpEx) or super-resolution (with Inria
Mimesis). Specific focus on unstructured meshes, multi-scale and nonlinear PDEs.

Second Axis: Reduced models
Ü Design structure-preserving reduced models with ML for collisional and oscillatory

Vlasov equations. Type of models: Hamiltonian nonlinear model order reduction and
hyperbolic moment approximations (ANR MILK with Munich, PhD of G. Steimer,
postdoc of Y. Nasseri and L. Tremant).

E. Franck 34/35

34/35

Research program II

Second Axis: Reduced models
Ü Reduced basis based on PINNs (future work with Inria Atlantis and Makutu in the

PEPR NumpEx).

Ü reduced-order modeling and hyper-reduction for hyperbolic systems using control
optimal approaches like differential physics, RL, PINNs (PhD of M. Bestard).

Third Axis: Optimal control
Ü Acceleration of optimal control using reduced models (work of K. Lutz).

Ü Reinforcement learning in large dimensional control space. How to explore the control
space? Application: quantum control, inverse problems and scheme optimization.

Last axis: self-specializing code
Ü It is difficult to pre-train neural networks used in numerical methods on large set of

parameters (initial data, coefficients, etc).

Ü Assumption: An instance of code is often used in small parameter areas.

Ü Train the networks as the simulations progress and move towards codes that specialize
and improve over time.

E. Franck 35/35

35/35

Thanks

Thanks for your attention!
Thanks to my colleagues and co-workers

Thanks to my friends and family
Thanks to my wife

E. Franck 36/35

36/35

Differentiable physics

E. Franck 37/35

37/35

Principle

Differentiable physicss
Write the scheme such that we can apply automatic differentiation and back-propagation
to compute the gradient of each function of the scheme in the code, and each
composition of these functions.

� Using that, we can compute the gradient with respect to all inputs of the solver, or of
sub-parts of the solver.

� Consequences: We can put a NN anywhere in the solver and optimize it with respect
to a criterion on the simulation result.

Link with optimal control
In optimal control we compute the gradient of the loss with respect to the input with an
adjoint method. It is another use of automatic differentiation methods.

Drawback
With back-propagation, stability problems (vanishing or exploding gradient) can arise
when composing too many functions.

E. Franck 38/35

38/35

General problem
� We want to solve general hyperbolic PDEs:

∂tU + ∂xF(U) = 0

� High order method (MUSCL, HO finite volumes or DG) generate oscillations around
areas with strong gradients or shock waves: Gibbs phenomenon.

� Example on the Burgers equation:

� Solutions: slope limiting, artificial viscosity, filtering, etc.

Goal
Design slope limiting for MUSCL or artificial viscosity for DG using neural networks.

� We have a DG scheme, written under the form

∂rkt Uh + ∂DG
x F(Uh) = 0.

� Artificial viscosity method: add a diffusion operator, which acts on the oscillations.
� Modified scheme:

∂rkt Uh + ∂DG
x F(Uh) = ∂DG

x (D(Uh)∂DG
x Uh).

E. Franck 39/35

39/35

Differentiable physicss approach I

Tool
We propose to use differentiable physicss (control optimal approach) to design new types
of viscosity model.

� We define a NN Dθ(Uh(t)) with Uh(t) the discrete solution.

Goal
Our objective to find a solution of the minimization problem:

min
θ

∫
U0

Vθ(U0)dp(U0)dU0, VT
θ (U0) =

∫ T

0
C(Uh(t))dt,

with p(U0) a probability law of initial data on U0, with C a cost function and U0 = Uh(0)
an initial condition.

� The transition between two time steps is given by Un+1
h = Sh(Un

h,Dθ(Un
h)) with our

scheme. As a consequence, after time discretization we have:

VT
θ (U0) = C(U0)+C(Sh(U0,Dθ(U0)))+C(Sh(Sh(U0,Dθ(U0)),Dθ(Sh(U0,Dθ(U0)))))+... ,

� As previously mentioned in we can compute by automatic differentiation:

∇θVT
θ (U0)

which allows to solve the minimization problem on J(θ) using a gradient method.

E. Franck 40/35

40/35

Results I

� We consider two loss: Cerror and Cosc. We consider the grids: 32 cells, 64 cells and
128 cells.

� 32 cells

E. Franck 41/35

41/35

Results I

� We consider two loss: Cerror and Cosc. We consider the grids: 32 cells, 64 cells and
128 cells.

� 64 cells

E. Franck 41/35

41/35

Results I

� We consider two loss: Cerror and Cosc. We consider the grids: 32 cells, 64 cells and
128 cells.

� 128 cells

E. Franck 41/35

41/35

Results II

� Euler equations, viscosity model: Dθ(ρ,U,E) on the three equations.

� Shu-Osher problem:

� 200 cells

E. Franck 35/35

35/35

	Introduction
	Implicit relaxation schemes for PDEs
	Numerical solvers based on deep learning
	Research program

