
Physics-informed neural networks: principles,
limitations and extensions

E. Franck12, V. Michel Dansac12

Journée IA pour la découverte scientifique

1Inria Nancy Grand Est, France
2IRMA, Strasbourg university, France

E. Franck 1/44

1/44

Outline

Introduction

Physics-informed Neural Networks

Operator learning

Application to numerical methods

Conclusion

E. Franck 2/44

2/44

Introduction to Numerical methods

E. Franck 3/44

3/44

Numerical methods
� We begin with a simple example: Lt,xu = ∂tu −∆u = 0

u(t = 0, x) = u0(x)
u(x) = g on ∂Ω

� Solving a PDE amounts to solving a infinite-dimensional problem.

Numerical methods
Reduce this problem to a finite-dimensional algebraic or optimization problem.

How?
We consider a known parametric function fθ(x) with unknown parameters θ. Plugging
this model into the equation (in some way), we obtain an equation like:

G(θ) = 0, or min
θ

F (θ)

Approaches
� Mesh-based methods
� Spectral methods
� Mesh-free methods
� Deep model-based methods

E. Franck 4/44

4/44

Numerical methods on a mesh
� We begin with a simple example: Lt,xu = ∂tu −∆u = 0

u(t = 0, x) = u0(x)
u(x) = g on ∂Ω

� Solving a PDE amounts to solving a infinite-dimensional problem.

Polynomial Lagrange interpolation
We consider a domain [a, b], ∃P(x) a polynomial of degree k such that, for any
f ∈ C0([a, b]), we have

|f (x)− P(x)| ≤ |b − a|k max
x∈[a,b]

|f k+1(x)|.

� On small domains (|b − a| � 1), this polynomial gives a very good approximation.

First step: choose a parametric function
We take a mesh splitting the geometry in small sub-intervals [xk , xk+1], and propose the
following candidate

u|[xk ,xk+1](t, x) =

q∑
j=1

αj (t)φj (x).

This is a piecewise polynomial representation.

E. Franck 5/44

5/44

Numerical methods on a mesh II

Second step: find the parameter equations
Plugging the representation in the equation, we have:

q∑
j=1

∂tαj (t)φj (x)−
q∑

j=1

αj (t)∂xxφj (x) = 0

There are not enough equations, so we multiply by φi (x) and integrate, to obtain

q∑
j=1

∂tαj (t)

∫
[xk ,xk+1]

φj (x)φi (x)−
q∑

j=1

αj (t)

∫
[xk ,xk+1]

∂xxφj (x)φi (x) = 0.

After integrating by parts, we obtain algebraic relation after some manipulations:

d

dt
α(t) = Kα(t).

with α(t) the coefficients of all the cells.

� No continuous polynomial representation between cells: Discontinuous Galerkin
method, finite volume methods.

� Continuous polynomial representation between cells: Finite element methods.

� Possibility to use non-polynomial bases (Trefftz methods for example).

E. Franck 6/44

6/44

Numerical methods on a mesh III

Space-time approach
We take a mesh splitting the space-time geometry in small subsets
Ωn

k = [xk , xk+1]x[tn, tn+1] and propose the following candidate

u|Ωn
k
(t, x) =

q∑
j=1

αjφj (t, x)

We use a piecewise polynomial representation. Plugging this in the equation, we obtain:

Aα = b

with α the coefficients on all the time-space mesh.

Properties of mesh-based methods
� Use local polynomial/non-polynomial representations.
� Unknown parameters (or degrees of freedom) are associated with localized values on

the mesh (average in the cell, point value at the nodes, etc).
� Convergence results in varying meshes.
� The parameters are determined thanks to an algebraic relation.
� Mesh dependency is complicated for complex geometry and high-dimensional problems.

E. Franck 7/44

7/44

Spectral Numerical methods

Hilbert space basis

Functional Hilbert space, such as L2, admit countable bases. So, for u ∈ L2, there exists

u(t, x) =
+∞∑
i=1

αi (t)φi (x), or u(t, x) =
+∞∑
i=1

αiφi (t, x)

with φi nonlocal functions (Fourier modes, Legendre polynomial, etc) and αi =
∫

Ω uφi .

Spectral methods
We plug these (truncated) representations in the equation, and perform similar
computations as for DG/FE methods to obtain algebraic relation.

Properties of spectral method
� Use a global polynomial/non-polynomial representation.
� Unknown parameters are associated with global values on the domain.
� Convergence results with the number of basis functions.
� The parameters are determined thanks to an algebraic relation.
� In practice, boundary conditions make mesh dependency comes back. It remains

complicated for complex geometries and high-dimensional problems.

E. Franck 8/44

8/44

Mesh-free methods
� We introduce another type of global linear representation:

u(t, x) =
N∑
i=1

αi (t)φi (|x − xi |), u(t, x) =
N∑
i=1

αiφi (|(t, x)− (tn, xi)|)

with φi (r) radial basis functions, such as Gaussian functions.

� Here, we again introduce this representation into the equation at some point xj to
obtain algebraic relations.

Example:

−∆u = f → −
N∑
i=1

αi∂xxφ(|xj−xi |) = f (xj)

Properties of mesh-free based method
� Use a global non-polynomial representation.
� Slow convergence results with the number of points.
� The parameters are determined thanks to an algebraic relation (involving a dense

matrix).
� No mesh dependency, but limited use for high-dimensional problems.

E. Franck 9/44

9/44

Physics-informed Neural Networks

E. Franck 10/44

10/44

Deep learning: neural networks
� Current choice: kernel approximation or neural network.

Layer

A layer is a function Ll (xl) : Rdl → Rdl+1 given by

Ll (xl) = σ(Alxl + bl),

Al ∈ Rdl+1,dl , b ∈ Rdl+1 and σ() a nonlinear function applied component by component.

Neural network
A neural network is parametric function obtained by composition of layers:

fθ(x) = Ln ◦ ◦ L1(x)

with θ the trainable parameters composed of all the matrices Al ,l+1 and biases bl .

� Fully connected neural network (FCNN): the matrices Al ,l+1 are dense.

E. Franck 11/44

11/44

NN vs Polynomial

� We will compare over-parametrized NN and polynomial regression on the Runge
function.

� 120 data and approximately 800 parameters in each model.

E. Franck 12/44

12/44

NN vs Polynomial

� We will compare over-parametrized NN and polynomial regression on the Runge
function.

� 120 data and approximately 800 parameters in each model.

E. Franck 12/44

12/44

NN vs Polynomial
� We will compare over-parametrized NN and polynomial regression on the Runge

function.

� 120 data and approximately 800 parameters in each model.

� The polynomial model tends to oscillate in the over parameterized regime.
Problematic for overfitting.

E. Franck 12/44

12/44

NN vs Polynomial

� We will compare over-parametrized NN and polynomial regression on the Runge
function.

� 120 data and approximately 800 parameters in each model.

E. Franck 12/44

12/44

NN vs Polynomial
� We will compare over-parametrized NN and polynomial regression on the Runge

function.
� 120 data and approximately 800 parameters in each model.

� The ANN generates very smooth/low frequency approximations.
� It is related to the spectral bias. The low frequencies are learned before the high

frequencies. Seems very helpful for the generalization

E. Franck 12/44

12/44

Key idea of the PINNS/Neural Galerkin methods

Summary
Every previously mentioned space and space-time methods consists in:

1. choosing a linear representation (linear combination of basis functions), either local
(on a mesh) or global;

2. pluging this representation into the equation to obtain algebraic relations (linear for
linear problems, nonlinear for nonlinear problems)

3. solving this algebraic relation with a linear solver or Newton’s method.

In general, the algebraic relation has a unique solution.

Idea
Choose a nonlinear representation given by a neural network. We replace a sum of simple
functions with a composition of simple functions.

Important point
When we use linear representation, we restrict our PDE approximation to convex
finite-dimensional vector subspaces, to ensure uniqueness of the solution in this discrete
space. This is no longer the case with neural networks: we do not obtain an algebraic
problem with a unique solution.

E. Franck 13/44

13/44

Spatial approach: Neural Galerkin I
� We solve the following PDE:

∂tu = F(u,∇u, ∆u) = F (u).

� Classical representation: u(t, x) =
∑N

i=1 θi (t)φi (x)
� Deep representation: u(t, x) = unn(x ; θ(t)) with unn a neural network, with

parameters θ(t), taking x as input.
� We want that:

F (unn(x ; θ(t))) = ∂tunn(x ;θ(t)) =

〈
∇θunn(x ;θ),

dθ(t)

dt

〉
� How to find an equation for dθ(t)

dt
?

� We solve the minimization problem:

min
η

J(η) = min
η

∫
Ω
| 〈∇θunn(x ; θ),η〉 − F (unn(x ; θ(t)))|2dx .

� The solution is given by

M(θ(t))
dθ(t)

dt
= F (x , θ(t))

with

M(θ(t)) =

∫
Ω
∇θunn(x ; θ)⊗∇θunn(x ; θ)dx , F (x , θ(t)) =

∫
Ω
∇θunn(x ; θ)F (unn(x ; θ))dx .

E. Franck 14/44

14/44

Spatial approach: Neural Galerkin II

� How to estimate M(θ(t)) and F (x , θ(t))?

� Firstly: we need to differentiate the network with respect to θ and to x (in the
function F). This can easily be done with automatic differentiation.

� Secondly: How to compute the integrals? With a Monte Carlo approach.

� The Monte-Carlo method stems from the Law of large numbers.
� We consider a function g : Rd → R. We define X a random variable with the law
µ.

� The method comes from:

Var(µ)
√
N

(
1

N

N∑
i=1

f (Xi)− Eµ[f (X)]

)
→ N (0, 1)

with Xi an random example sampled with the law µ
� It makes it possible to compute integrals. Indeed:∫

Ω
f (x)dx =

∫
Rd

f (x)UΩdx = E[f (X)]

with UΩ the density of the uniform law Ω and X random variable following this law.

� So, we use: M(θ(t)) ≈
∑N

i=1∇θunn(xi ; θ)⊗∇θunn(xi ; θ), and the same for F (x , θ(t)).

� Summary: we obtain an ODE in time (as usual) and mesh-less method in space.

E. Franck 15/44

15/44

Space-time approach: PINN’s I

Idea of PINNs
� For u in some function space H, we wish to solve the following PDE:

∂tu = F(u,∇u, ∆u) = F (u).

� Classical representation for space-time approach: u(t, x) =
∑N

i=1 θiφi (x , t)

� Deep representation: u(t, x) = unn(x , t; θ) with unn a neural network of parameters θ.

� Since ANN are Cp functions, we can compute ∂tunn(x , t; θ), ∂xpunn(x , t; θ) and

r(x , t) = ∂tunn(x , t; θ)−F(unn(x , t; θ),∇unn(x , t; θ), ∆unn(x , t; θ))

� First idea: we solve the nonlinear problem

r(xi , tn) = 0, ∀1 ≤ j ≤ Nx , ∀1 ≤ n ≤ Nt

with Nt ∗ Nx equal to the number of parameters.
� Problem: There is the existence of the PDE solution in H, but the subspace of NN

functions is not a convex vector space. We cannot be ensured of the existence of the
solution to the discrete problem.

Conclusion
We move away from algebraic equations on the parameters, and go towards non-convex
optmization.

E. Franck 16/44

16/44

Space-time approach: PINN’s II

� We define the residual of the PDE:

R(t, x) = ∂tunn(t, x ; θ)−F(unn(t, x ; θ), ∂xunn(t, x ; θ), ∂xxunn(t, x ; θ))

� To learn unn(t, x ; θ), we minimize:

min
θ

(Jr (θ) + Jb(θ) + Ji (θ)) ,

with

Jr (θ) =

∫ T

0

∫
Ω
|R(t, x)|2dxdt

and

Jb(θ) =

∫ T

0

∫
∂Ω
‖unn(t, x ; θ)− g(x)‖2

2dxdt, Ji (θ) =

∫
Ω
‖unn(0, x ; θ)− u0(x)‖2

2dx .

� To avoid an extra loss for the BC and initial conditions, we use:

ūθ(t, x) = u0(x) + t(φ(x) ∗ uθ(x)),

with φ(x) = g(x) on the boundary and something inside.

E. Franck 17/44

17/44

Space-time approach: PINN’s II
� We define the residual of the PDE:

R(t, x) = ∂tunn(t, x ; θ)−F(unn(t, x ; θ), ∂xunn(t, x ; θ), ∂xxunn(t, x ; θ))

To learn unn(t, x ; θ), we minimize:

min
θ

(Jr (θ) + Jb(θ) + Ji (θ)) ,

with

Jr (θ) =
N∑

n=1

N∑
i=1

|R(tn, xi)|2

with (tn, xi) sampled uniformly and

Jb(θ) =

Nb∑
n=1

Nb∑
i=1

|unn(t, xi ;θ)− g(xi)|2, Ji (θ) =

Ni∑
i=1

|unn(0, xi ;θ)− u0(xi)|2.

� To avoid an extra loss for the BC and initial conditions, we use:

ūθ(t, x) = u0(x) + t(φ(x) ∗ uθ(x)),

with φ(x) = g(x) on the boundary and something inside.

E. Franck 17/44

17/44

Example: Burgers equation

� Application: Burgers equation ∂tρ+ ∂x
(
ρ2

2

)
= ν∂xxρ.

� Solving for different values of the µ parameters:

� ν = 0.1
π

. 10000 pts, medium-sized NN.

� beginning of training

E. Franck 18/44

18/44

Example: Burgers equation
� Application: Burgers equation ∂tρ+ ∂x

(
ρ2

2

)
= ν∂xxρ.

� Solving for different values of the µ parameters:

� ν = 0.1
π

. 10000 pts, medium-sized NN.

� middle of training

E. Franck 18/44

18/44

Example: Burgers equation
� Application: Burgers equation ∂tρ+ ∂x

(
ρ2

2

)
= ν∂xxρ.

� Solving for different values of the µ parameters:
� ν = 0.1

π
. 10000 pts, medium-sized NN.

� end of training

E. Franck 18/44

18/44

Example: Burgers equation
� Application: Burgers equation ∂tρ+ ∂x

(
ρ2

2

)
= ν∂xxρ.

� Solving for different values of the µ parameters:
� ν = 0.01

π
. 10000 pts, medium NN.

� beginning of training

E. Franck 18/44

18/44

Example: Burgers equation
� Application: Burgers equation ∂tρ+ ∂x

(
ρ2

2

)
= ν∂xxρ.

� Solving for different values of the µ parameters:
� ν = 0.01

π
. 10000 pts, medium NN.

� middle of training

E. Franck 18/44

18/44

Example: Burgers equation
� Application: Burgers equation ∂tρ+ ∂x

(
ρ2

2

)
= ν∂xxρ.

� Solving for different values of the µ parameters:
� ν = 0.01

π
. 10000 pts, medium NN.

� end of training

E. Franck 18/44

18/44

Example: Burgers equation

� Application: Burgers equation ∂tρ+ ∂x
(
ρ2

2

)
= ν∂xxρ.

� Solving for different values of the µ parameters:

� ν = 0.002
π

. 10000 pts, medium NN.

� beginning of training

E. Franck 18/44

18/44

Example: Burgers equation
� Application: Burgers equation ∂tρ+ ∂x

(
ρ2

2

)
= ν∂xxρ.

� Solving for different values of the µ parameters:
� ν = 0.002

π
. 10000 pts, medium NN.

� middle of training

E. Franck 18/44

18/44

Example: Burgers equation
� Application: Burgers equation ∂tρ+ ∂x

(
ρ2

2

)
= ν∂xxρ.

� Solving for different values of the µ parameters:

� ν = 0.002
π

. 10000 pts, medium NN.

� end of training

E. Franck 18/44

18/44

Example: Burgers equation
� Application: Burgers equation ∂tρ+ ∂x

(
ρ2

2

)
= ν∂xxρ.

� Solving for different values of the µ parameters:
� ν = 0.002

π
. 20000 pts, medium NN.

� beginning of training

E. Franck 18/44

18/44

Example: Burgers equation
� Application: Burgers equation ∂tρ+ ∂x

(
ρ2

2

)
= ν∂xxρ.

� Solving for different values of the µ parameters:
� ν = 0.002

π
. 20000 pts, medium NN.

� middle of training

E. Franck 18/44

18/44

Example: Burgers equation
� Application: Burgers equation ∂tρ+ ∂x

(
ρ2

2

)
= ν∂xxρ.

� Solving for different values of the µ parameters:

� ν = 0.002
π

. 20000 pts, medium NN.

� end of training

E. Franck 18/44

18/44

Example: Burgers equation
� Application: Burgers equation ∂tρ+ ∂x

(
ρ2

2

)
= ν∂xxρ.

� Solving for different values of the µ parameters:
� ν = 0.002

π
. 40000 pts, larger NN.

� end of training

E. Franck 18/44

18/44

Adaptive Activation function

� To increase the ability of the PINNs to represent data, we can use learnable activation

functions.

� Adaptive relu: σa(x) = max(0, ax)
� Adaptive leaky Relu: σa(x) = max(0, ax)− ν max(0,−ax)

� Adaptive hyperbolic tangent: σa(x) = eax−e−ax

eax+e−ax

� Adaptive sigmoid: σa(x) = 1
1+e−ax where we learn a.

� So we can write the loss as L(θ, a), and compute the gradient with respect to a.

� In general, we use smooth activation functions.

E. Franck 19/44

19/44

Biases of PINNs and other training methods
� PINNs can suffer from biases, which complexifies the training.
� Large coefficient β � 1 in:

∂tρ+ β∂xρ = 0

� when β is too large, the residual loss dominates compared to the initial condition
loss, and the network learns a constant.

� Solution: progressively increase β. Hard constraints for the initial data?

� Time bias: the last time steps are learned before the first. There are different ways to
introduce causality in the training. Example:

E. Franck 20/44

20/44

Example: Reduced MagnetoHydroDynamics (MHD)
� Application: reduced MHD equations

dω
dt

+ [φ,ω] = [ψ, j] + ν∆ω,
dψ
dt

+ [φ,ψ] = η∆η,
ω = −∆φ,
j = −∆ψ

� Test case: Tilt instability.
� prediction of ω (left), evolution of the energy (right)

� Since the problem is multi-scale, training is very complicated, and we requires 10 data
points in time to get an accurate description of the instability. It took a long time to
find the good parameters.

E. Franck 21/44

21/44

Sampling

� Importance sampling: classical approach to reduced Monte Carlo errors. We sample
with another law, and we expect a small variance.

� We define

R(x , t) = ∂tunn(t, x ; θ)−F(unn(t, x ; θ), ∂xunn(t, x ; θ), ∂xxunn(t, x ; θ)).

We want to minimize:

J (θ) =

∫ T

0

∫
Ω
|R(x , t)|2dxdt

We can modify the sampling law

J (θ) =

∫ T

0

∫
Ω
R(x , t)dxdt =

∫ T

0

∫
Ω

R(x , t)

p(t, x)
p(t, x)dxdt ≈

N∑
i=1

R(xi , ti)

p(ti , xi)
,

with p(x , t) a probability law and (xi , tn) sampled with p.

� Idea: fit a network p(x , t; θp) to mimic r(t, x): thus, points are sampled where the
residue is large, which reduces the error.

� We use specific neural networks for probability laws.

E. Franck 22/44

22/44

PINNs variant I
� Many ideas coming from classical numerical methods can be combined with PINNs.

� First example: VPINNs - hp-VPINNs

� In finite differences, we solve, for example:

−∆u(x) = f (x).

� In finite elements, we solve the weak/ultra weak form:∫
Ω
∇u · ∇vdx =

∫
Ω
fvdx , −

∫
Ω
u∆vdx +

∫
∂Ω

u∇v · ndx =

∫
Ω
fvdx

with v(x) a compactly supported smooth function.

� Idea of VPINNs: minimizing a residue using the weak or ultra weak form.

� The new optimization problem becomes, for example

min
θ

K∑
k=1

∫
Ω

(∇unn(x ; θ) · ∇vk (x)− f (x)vk (x))dx

with vk (x) usual smooth functions, such as polynomials or trigonometric functions.

� Why it is interesting: the computation of the first and second derivatives of the
network is a time-consuming process, which slows the training down.

E. Franck 23/44

23/44

PINNs variant II

� hp-VPINNs enable domain decomposition. We use one network by subdomain, and
the functions vk (x) are local to the subdomains.

� Example (from the original hp-VPINNs paper):

� Many other variants for more specific problems.

E. Franck 24/44

24/44

PINNs variant II

� hp-VPINNs enable domain decomposition. We use one network by subdomain, and
the functions vk (x) are local to the subdomains.

� Example (from the original hp-VPINNs paper):

� Many other variants for more specific problems.

E. Franck 24/44

24/44

PINN’s and parametric PDEs
� Advantages of PINNs: mesh-less approach, not too sensitive to the dimension.
� Drawbacks of PINNs: they are not competitive with classical methods.
� Interesting possibility: use the strengths of PINNs to solve PDEs parameterized by

some µ.

� The neural network becomes unn(t, x ,µ; θ).

New Optimization problem for PINN’s

min
θ

Jr (θ) + ... , , with

Jr (θ) =

∫
Vµ

∫ T

0

∫
Ω

∥∥∂tunn − L(unn(t, x ,µ), ∂xunn(t, x ,µ), ∂xxunn(t, x ,µ)
)∥∥2

2
dxdt

with Vµ a subspace of the parameters µ.

� Application to the Burgers equations with many viscosities [10−2, 10−4]:

� Training for µ = 10−4: 2h. Training for the full viscosity subset: 2h.

E. Franck 25/44

25/44

Full algorithm for PINNs

Drawbacks and Advantages
� PINNs are less accurate and slower than classical solvers, and it is difficult to choose

their hyper-parameters.
� PINNs are mesh-less and largely independent of the dimension. Thus, they are mostly

interesting for parametric PDEs or PDEs in large dimension.

E. Franck 26/44

26/44

PINNs for optima control/inverse problem

� Example of invert problem:

mind(x) J(d) = mind(x)

∫
Ω
| P(u(x))− zdata |2 +λ

∫
Ω
| d(x) |2

with
−∇ · (d(x)∇u) = f (x)

� Aim: find the media of propagation knowing a part of the solution u.

� Classical approach: we write a dual PDE, we solve the PDE and the dual to obtain
∇dJd and we make gradient descent.

� We need to solve many direct and dual problems.

Inverse problem with PINNs
It is easy: we take two networks uθ(x) and dθ(x) and we solve

minθ

(
N∑
i=1

J(d(xi)) + α
N∑
i=1

| ∇ · (d(xi)∇u(xi)) + f (xi) |2
)

� Key point: choose α.

E. Franck 27/44

27/44

Operator Learning

E. Franck 28/44

28/44

Operator learning
� We consider the following problem:

Gα(x ,t)(u(t, x)) = ∂tu(t, x) + Lα(x)(u(t, x)) = 0 on Ω,
u(t, x) = g(x) on ∂Ω,
u(t = 0, x) = u0(x).

� We denote by µ(t, x) = (α(x , t), g(x), u0(x)) the parameters.
� Formally, there exists a pseudo-inverse operator G+, such that G+(µ) = u(t, x).

Objective

Approximate G+ by a neural network on a subspace of the data where the results do not
depend of the mesh resolution of the inputs/output functions.

Problem
We construct a neural network G+

θ (µ(t, x)), which minimizes J (θ) = J1(θ) +J2(θ), with

J1(θ) =

∫
Vµ

∫
Ω

∫ T

0
‖G+

θ (t, x ,µh(x , t))− u(x , t)‖2
2dµdxdt

and
J2(θ) =

∫
Vµ

∫
Ω

∫ T

0
‖Gµ(G+

θ (t, x ,µh(x , t)))‖2
2dµdxdt,

where the integrals are approximated by MC.

E. Franck 29/44

29/44

Latent space Neural Operator I

� We use a simple example to avoid complex notation:

−∂xxu(x) = f (x).

� Goal: fit G+ : f (x)→ u(x).

Latent space NO

We define an encoder Eθ(x) : X → Rdx with X a Hilbert function space, a decoder
Dθ(x) : Rdy → Y and Aθ : Rdx → Rdy . A Latent space NO is given by:

G+ = Dθ ◦ Aθ ◦ Eθ

� Goal: The decoder Dθ should be resolution-invariant; if possible, so should the
encoder Eθ. Another goal is to obtain mesh invariance.

E. Franck 30/44

30/44

Latent space Neural Operator II

Example 1: DeepONet
� the encoder is Eθ : (f (x1), ... , f (xn)) 7→ (α1, ... ,αdx) with classical NN

� Aθ : (α1, ... ,αdx) 7→ β1, ... ,βdy with classical NN

� the decoder is Dθ : β1, ... ,βdy 7→ Y with

Dθ(x) =

dy∑
i=1

βiφi (x),

with a basis φi given by a network

bθ(x) = (φ1, ... ,φdy).

The outputs mesh and resolution invariant. Inputs on a given point cloud.

Example 2: Nomad
Same as DeepONet, except for the decoder, which becomes Dθ : β1, ... ,βdy 7→ Y, with

Dθ(x ,β1, ... ,βdy)

a Neural Network. It is a parametric PINNs where the parameters are found by another
network (Encoder and Approximator).

E. Franck 31/44

31/44

Spectral Neural operator I

� Neural networks mapping functions leads to so-called neural operators (N. Kovachki,
Z. Li et al 2021).

� How to construct neural operators?

� Example: {
−∇ · (a(x)∇u) = f (x), ∀x ∈ Ω,

u = 0, ∀x ∈ ∂Ω.

� The solution is given by

u(x) =

∫
Ω
Ga(x , y)f (y)dy

with Ga a Green kernel. Important: the operator in non-local.

Interesting framework
In the formalism proposed by N. Kovachki, Z. Li et al, the key point is to add some
non-locality in the layers.

� Methods using non-locality: FNO (Z. Li et al 20), WNO (Tripura et al 22), Laplacian
NO (Chen et al), Graph kernel Operator, Multipole GNO (N. Kovachki et al 20),
Laplace NO (G. Chen et al 23), Non Local NO (Z. Li et al 23), etc.

E. Franck 32/44

32/44

Spectral Neural operator II

Integral kernel

We call integral kernel applied to a function v(y) ∈ C0(Dt ;Rnt) the quantity

K(v)(x) =

∫
Dt

k(x , y)v(y)dν(y),

with k(x , y) ∈ Cp(Dt+1 × Dt ;Rnt+1 × Rnt) and ν a measure.

Neural operator layer
We call an integral kernel layer an operator which transforms vl (x) into a function
vl+1(x), and which has the form:

∀x ∈ Dl+1, vl+1(x) = Fl (vl (x)) = σl+1

(
Wlvl (πl (x)) + b(x) +Kt(v)(x)

)
where Wt ∈ Rdl+1,dl is a weight matrix and where Πl is a mapping between Dl+1 and Dl .

� Key point: we will learn the linear part, as well as the kernel k.

� How to perform this learning in practice?

E. Franck 33/44

33/44

Spectral Neural operator III

Lifting and projection layers
1. An extrapolation layer P to increase the size of the feature space:

[(v1(x),vd0
(x))] = Pθ(µ(x))

with Pθ a FNC.

2. A projector layer Q to decrease the size of the feature space:

[u(x)] = Qθ((v1(x),vdL (x)))

with Qθ a FNC.

Full neural operator
A neural operator is given by the following composition of layers:

u(x) = Q ◦ FL ◦F1 ◦ F0 ◦ P(µ(x))

� Many different neural operators correspond to different discretizations of the kernel
layer.

E. Franck 34/44

34/44

Neural operator: Fourier NO

Fourier Neural Network (FNO)
The FNOs use neural operator layers with an integral kernel:

K(v)(x) ≈ F−1(RθF(v(x)),

where F is the Fourier transform, and with Rθ learnable filters in the Fourier space. In
practice, it is computed with an FFT.

� Principle:

� Contrary to the discrete CNN case, we can change the mesh resolution (it is also
possible with CNNs, provided interpolation is used), and we could adapt the approach
to unstructured grids.

E. Franck 35/44

35/44

Neural operator: other spectral approaches

General spectral layer
We approximate

K(v)(x) =

∫
Dt

k(x , y)v(y)dν(y)

by

K(v)(x) =
N∑
i=1

〈θiv ,φi (x)〉L2φi (x),

with θi ∈ Rnv ,nv and φi (x) a basis function.

� It is equivalent to transforming to a spectral domain, mixing the components of the
function and changing the coefficients in the spectral domain.

� Choice of basis: Fourier (FNO), Wavelet (WNO), Tchebychev (Spectral NO), Prony
Series (Laplace NO).

General idea
This type of NO combines local spatial transformation (component mixing) and local
transformations in the spectral domain.

E. Franck 36/44

36/44

Application to numerical methods

E. Franck 37/44

37/44

FE/DG methods

Remark
The accuracy of PINNs or NO is insufficient for many applications. How to combine them
with classical approaches?

Idea
Use parametric PINNs/NO to capture large families of solutions, and use the network as a
prior of the solution in the numerical methods.

� We assume that we can quickly produce a prior unn(x ,µ; θ), which is a parametric
family of (approximate) solutions associated to the elliptic equation:

G(U, ∂xU, ∂xxU,µ) = f (x).

� This prior is given by a PINN or by a NO.

E. Franck 38/44

38/44

Enhanced basis with PINNs
� The discontinuous Galerkin/finite element method relies on a local representation:

u|Ωk
=

q∑
i=1

αiφi (x),

with φi (x) a polynomial. The convergence rate is in ∆xq .
� FE assumes the continuity between the local representations at the interface between

cells.

Idea
Enhance the basis using the prior. For example:

1. Additive modal version

(φ1(x), ... ,φq(x)) = [unn(x ,µ; θ), 1, ...
(x − xk)q−1

(q − 1)!
]

2. Multiplicative modal version

(φ1(x), ... ,φq(x)) = [unn(x ,µ; θ), (x − xk)unn(x ,µ; θ), ...
(x − xk)q

q!
unn(x ,µ; θ)]

3. Multiplicative nodal version

(φ1(x), ... ,φq(x)) = [unn(x ,µ; θ)L(x , x1), ... , unn(x ,µ; θ)L(x , xq)],

with L(x , xi) the Lagrange Polynomial which satisfies L(xj , xi) = δij .

We can prove the convergence of such modified bases.
E. Franck 39/44

39/44

Application to elliptic problems

� First test:
−∂xxu = α sin(2πx) + β sin(4πx) + γ sin(8πx)

We train with (a, b, c) ∈ [0, 1]3 and test with (a, b, c) ∈ [0, 1.2]3.

Results with 20 cells:

Data set inside training set outside training set inside/outside
Average gain vs FE 101 28.4 76.8
Average gain vs PINNS 6.7 7 6.8

� Second test:
v∂xu −

v

Pe
∂xxu = r .

We train with r ∈ [1.5, 2.0], v ∈ [1.5, 2.0] and Pe ∈ [10, 120],
and we test with r ∈ [1.5, 2.2], v ∈ [1.5, 2.2] and Pe ∈ [10, 150].

Results with 20 cells:

Data set: inside training set outside training set inside/outside
Average gain 110 25 81.6

� Current work with Inria Pau: 2D extension, convergence theory, extension to time
problems.

E. Franck 40/44

40/44

Euler-Poisson system in spherical geometry

� We consider the Euler-Poisson system in spherical geometry
∂tρ+ ∂rq = − 2

r
q,

∂tq + ∂r
(

q2

ρ
+ p
)

= − 2
r
q2

ρ
− ρ∂rφ,

∂tE + ∂r
(

q
ρ

(E + p)
)

= − 2
r
q
ρ

(E + p)− q∂rφ,
1
r2 ∂rr (r2φ) = 4πGρ,

� The steady solutions at rest are given by

q = 0; ∂rp + ρ∂rφ = 0; ∂rr (r2φ) = 4πr2Gρ.

� We consider a polytropic pressure law p(ρ;κ, γ) = κργ such that the steady solutions
satisfy

d

dr

(
r2κγργ−2 dρ

dr

)
= 4πr2Gρ,

� To simulate flow around a steady solution, we need a scheme that is very accurate
when approximating the steady solution.

E. Franck 41/44

41/44

Euler-Poisson in spherical geometry: steady solution

Training takes about 10 minutes on an old GPU, with no data, only the PINN loss. This
time, we have two parameters, κ and γ.

We take a quadrature of degree nQ = nG + 1.

Results for the polytropic pressure law

pts errorhφ order error
q
φ

order errorEφ order errorh
φ̄

order gain error
q

φ̄
order gain errorE

φ̄
order gain

10 1.90e-01 — 1.84e-02 — 4.88e-01 — 5.84e-04 — 326.34 6.32e-03 — 2.92 1.46e-03 — 333.51
20 6.78e-02 1.49 7.60e-03 1.28 1.71e-01 1.51 2.73e-04 1.10 248.20 1.67e-03 1.92 4.55 6.84e-04 1.10 250.74
40 2.41e-02 1.49 2.93e-03 1.37 6.07e-02 1.50 1.01e-04 1.43 237.53 3.75e-04 2.15 7.80 2.54e-04 1.43 238.71
80 8.55e-03 1.50 1.16e-03 1.34 2.15e-02 1.50 3.64e-05 1.48 234.68 8.15e-05 2.20 14.23 9.12e-05 1.48 236.10

160 3.03e-03 1.50 4.64e-04 1.32 7.58e-03 1.51 1.17e-05 1.63 257.14 1.60e-05 2.35 28.97 2.94e-05 1.63 257.38

(a) errors with a one-element basis, nG = 1

E. Franck 42/44

42/44

Euler-Poisson in spherical geometry: steady solution

Training takes about 10 minutes on an old GPU, with no data, only the PINN loss. This
time, we have two parameters, κ and γ.

We take a quadrature of degree nQ = nG + 1.

Results for the polytropic pressure law

pts errorhφ order error
q
φ

order errorEφ order errorh
φ̄

order gain error
q

φ̄
order gain errorE

φ̄
order gain

10 3.72e-03 — 5.34e-03 — 6.49e-03 — 3.74e-05 — 99.38 4.70e-05 — 113.63 9.19e-05 — 70.67
20 6.59e-04 2.50 1.21e-03 2.14 1.21e-03 2.42 7.00e-06 2.42 94.19 1.28e-05 1.87 94.14 1.68e-05 2.45 72.07
40 1.17e-04 2.49 2.27e-04 2.41 2.21e-04 2.45 1.27e-06 2.45 91.93 2.56e-06 2.33 88.59 3.07e-06 2.45 71.84
80 2.06e-05 2.51 4.05e-05 2.49 3.86e-05 2.52 2.24e-07 2.51 92.05 4.70e-07 2.45 86.03 5.45e-07 2.50 70.86

160 3.64e-06 2.51 7.15e-06 2.50 6.56e-06 2.56 3.90e-08 2.52 93.17 8.27e-08 2.51 86.41 9.50e-08 2.52 69.08

(b) errors with a two-element basis, nG = 2

E. Franck 42/44

42/44

Euler-Poisson in spherical geometry: steady solution

Training takes about 10 minutes on an old GPU, with no data, only the PINN loss. This
time, we have two parameters, κ and γ.

We take a quadrature of degree nQ = nG + 1.

Results for the polytropic pressure law

pts errorhφ order error
q
φ

order errorEφ order errorh
φ̄

order gain error
q

φ̄
order gain errorE

φ̄
order gain

10 7.92e-06 — 5.39e-06 — 3.25e-04 — 3.68e-06 — 2.15 3.16e-06 — 1.71 8.16e-06 — 39.81
20 6.96e-07 3.51 9.10e-07 2.57 3.39e-05 3.26 3.60e-07 3.36 1.93 6.02e-07 2.39 1.51 7.41e-07 3.46 45.79
40 6.03e-08 3.53 9.46e-08 3.27 3.21e-06 3.40 3.26e-08 3.47 1.85 5.64e-08 3.42 1.68 7.74e-08 3.26 41.47
80 5.31e-09 3.51 7.97e-09 3.57 2.84e-07 3.50 2.98e-09 3.45 1.78 5.07e-09 3.47 1.57 7.09e-09 3.45 40.15

160 4.81e-10 3.46 7.26e-10 3.46 2.51e-08 3.50 2.74e-10 3.45 1.76 4.61e-10 3.46 1.57 6.46e-10 3.46 39.00

(c) errors with a three-element basis, nG = 3

E. Franck 42/44

42/44

Euler-Poisson in spherical geometry: steady solution
Training takes about 10 minutes on an old GPU, with no data, only the PINN loss. This
time, we have two parameters, κ and γ.

We take a quadrature of degree nQ = nG + 1.

Results for the polytropic pressure law

Statistics: gain with respect to the parameter space (from top to bottom:
nG = 1, nG = 2, nG = 3)

min. gain avg. gain max. gain
ρ 22.21 412.57 6080.00
q 40.90 411.13 5384.43
E 22.25 411.40 6014.11

min. gain avg. gain max. gain
ρ 6.57 154.29 1249.70
q 7.47 180.19 1317.09
E 6.14 110.27 627.65

min. gain avg. gain max. gain
ρ 0.17 12.80 102.00
q 0.20 14.12 109.50
E 3.69 48.66 433.81

E. Franck 42/44

42/44

Conclusion

E. Franck 43/44

43/44

Conclusion

Classical Numerical methods
We use a parametric function that is linear with respect to the parameters, plug it in the
equation, and solve for the parameters.

PINNs
We use a parametric function that is nonlinear with respect to the parameters, plug it in
the equation, and replace algebraic equations with optimization problems. NO generalize
PINNs.

Hybridation
These PINNs/NO are not very accurate, but become interesting for large-dimensional
problems. We showed a promising approach obtained by hybridizing the ML and the
classical methods.

Advert :)
in our Inria team, we have regularly PhD and Post-doc position on these thematics.

E. Franck 44/44

44/44

	Introduction
	Physics-informed Neural Networks
	Operator learning
	Application to numerical methods
	Conclusion

