Scientific machine learning: principle

Numerical Analysis and PDE seminar of Rennes

Inria Nancy Grand Est, France

2JRMA, Strasbourg university, France ’1/ \
&’L,Ma’_ E. Franck \ 40‘

Outline

Introduction

Physics-informed Neural Networks

Operator learning

Differentiable physics

Conclusion

(/0

E. Franck \ 4

Introduction

‘3/40

E. Franck \ y

Maching learning: principle

B Set of methods to build models from data.
B |n general, approaches use parametric functions fy where the parameters are chosen by
optimization

B Three main types of ML problems:
O Supervised learning: construct models like

y="f(x)+¢e or P(y|x)

with € some noise, using inputs and outputs examples. We solve:
n
ming > L((xi), yi),
i
with L a loss function.
O Unsupervised learning: construct models like
P(x), or P(x|z),

which explain data structure/probability data with some examples (z potential
latent variables), where € is some noise, and using inputs and outputs examples.
U Reinforcement learning which considers time control problems like:

Sn+l1 = f(snv an)

with s, a state and a, an action, and constructs the model 7(an|s,) which decides
the best action to maximize some criterion.

B Which parametric functions? (4/ \
40

E. Franck \ y

basic approaches: linear regression

B Linear regression for f : R —» R
B We want to solve:

n
ming Y || fa(xi) — yi [13
with (0, %) + b '
B Matricial form for the problem:

ming || A9 — Y ||2
with Ajj = x/ and Y; = y;.

It is a convex problem. The solution is given by the solution of the normal equation
AtAQ = ATY

In general unique solution if n > d

Overfitting
if d > n non uniqueness of L™ 4
the solution. Overfitting:

good on the training data,
false on test data.

Lisva— E. Franck

basic approaches: nonlinear regression |

B Nonlinear extension: Polynomial regression
n
ming Y || fa(xi) — yi [13
i

with fy(x) = (0, P(x)).
B Example of the Runge function:

Degree 1 Degree 4 Degree 9 Degree 25 Degree 50
2 A2 =
o | o
N A 305 IS o > < s >
- — ol — ol — ol = o
Tre functon e functon e function e funcion Tre finction
somples somples o sampies Somples o samples

In the over-parametrized regime (more parameters than data), we can approximate very
well the data and admit poor generalization property for new data

B The over-parametrized regime is common in large dimensions.
B When the polynomial model have too much freedom we obtain oscillatory behavior.

B Another approach: kernel regression (and Gaussian process). Theory based on
(5

reproducing kernel Hilbert space.

\ /40

E. Franck

4

EEEEEEEEEEEEEEEEEERERRlRREEEE——
basic approaches: nonlinear regression Il

Reproducing kernel Hilbert space I

V' metric space. H Hilbert space of real function defined on V. A function
k:V x V — R is called reproducing kernel is

B H contains on the functions of the form

Vx € H, kx(y) = k(x,y)

B Vx e V,f € H we have:
f(x) = (f,Ka)u

In this case H is a reproducing kernel Hilbert space (RKHS).

Representation theorem

We have a k the kernel and H) the associate RKHS. We consider a data set
(x1,...,xn) € V and (y1, ..., yo) € R. We consider a loss L(x,y) € R? = R and A > 0.
The solution of the problem:

frgwk <§ L(f(xi),y) + A f ”Hk>

is of the form:

F(x) =Y aik(x, x)
=il

N\

E. Franck

basic approaches: nonlinear regression Il|

B The theorem gives the optimal form of parametric function in RKHS. We can apply a
regression to obtain a mean square problem.

B |t works if H is sufficiently large to approximate many functions.

B Key point: the Matern kernel parametrized by v gives all the Sobolev space which are
contained in the continuous function space.

—— Model —— Model —— Model — Model —— Model
True function True function True function True function True function
o Samples o Samples o Samples o Samples o Samples

x x x x x

B Left to right. H = H', H?, H3, HS, C>.
The choice of the kernel can be viewed as a regularity prior.

Kernel regression generated functions smoother or lower frequency than polynomial
models. Better for generalization.

B Necessary to store the data. Expensive for large data set.

‘8/40

E. Franck \ 4

R R R R RRRRRERERRERERRREEEE==S=————————
Deep learning: neural networks

B Current choice: kernel approximation or neural network.
Layer I
A layer is a function L;(x;) : R% — R%+1 given by

Li(x)) = o(Aix; + b)),

A; € Ré+1.9/ b € RY+1 and o() a nonlinear function applied component by component.

Neural network

A neural network is parametric function obtained by composition of layers:

fg(x) = Lpo....o L1(x)

with 6 the trainable parameters composed of all the matrices A, ;1 and biases b;.

B Fully connected neural network (FCNN): the matrices A, /41 are dense.

(°/0

Lisva— E. Franck \ 4

Activation functions

B The local nonlinear functions are called activation function.
B Exemple (site MonCoachdata):

Sigmoid ’ Leakgol llzeLu]

ooy = H% max(0.1z, z)

tanh Maxout

tanh(z) d B max(w] @ + by, wl @ + by)

ReLU M ELU

max(0,) {1 #20
X ale®—1) z<0

B Adaptive activation functions (we learn the parameter).

AN

Sigmoid : ———

Hyperbolic tangent =~
ReLU : max(0,ax),

Leaky ReLU : max(0,ax) — v max(0, -ax).

tanh
Leaky ReLU

E. Franck \10/40
. anci

Training and gradient methods

Key point J

According to the activation function, the neural network are a function of CP(R9)

B We train the Neural network with gradients type approach. It is a non-convex problem.
B Full gradient:

n n
Ve <Z | fo(xi) — yi ||§> => Vol folxi) =i I3

B |f n >> 1 the gradient is very costly. To avoid that and add some exploration we use
stochastic gradient

D Vo ll fa(xi) = yi 113 Exm || fo(x) = y 135 D Vo || falxi() — vigey I3
i %

Back-propagation
How compute Vg fy(x) with L layers with fp(x) = for 0 e o f911 (x) using gradient chain
rules we obtain:

n Bf’ i+1
VoL(6) =) vhic(e)a—g, and Vi, L£(0) = V,,, L(0) 699
i=1

0’& ~~~~~~~~~ E. Franck

R R R R RRRRRERERRERERRREEEE==S=————————
Depth, expressivity and stability

Theorem of Cybenko (89)

o() the sigmoid activation.The set of fully connected neural network is dense in
CO([o, 1], R).

e

Theorem of Barron

We consider f(x) : [0,1]9 — R such that the Fourier transform satisfy
W) = [Nl F@) P do < +oo
then there exist an FCN with o the ReLu function such that

BEG)

I —foll2

M

B How the number of layers allows increasing the expressivity ? Example.

Theorem of B. Després (22)

For a class of polynomial H(x) the set of ReLu neural networks fg(x) at / layers
converges with the following estimate

I fo(x) = H(x) llLoo < €' || H(x) l|Lo=

0’;; »»»»»»»» E. Franck

Stability

B Default of stability.
B Four and six layer FCN (30 neuronal by layer) with sigmoid.

Précision : 10.0%, 9.8

B Vanishing gradient: the gradient of some layers falls to zero and blocks learning.
B Replacing sigmoid by Relu:

E. Franck y

Stability

B Default of stability.
B Other test: tanH (6 layers), Relu (6 layers) and Relu (20 layers)

o . -
Précision : 54.0%, 47 J« Précision : 81.4%, 81.4%
Précision : 50.4%, 49.6% i
B Possible solution: normalize the data at each layer.
0505 0851 — entraimement
odr0 — entrainement bl
N T - %
- .

B Comparison of Relu network (20 layers) without and with batch normalization. r-\
13/
40

E. Franck 4

NN vs Polynomial

B We will compare over-parametrized NN and polynomial regression on the Runge

function.
B 120 data and approximately 800 parameters in each model.
o sy = epach =35 reicionarar
loss history i 7k:2 epoch = 999) i prediction error

\l 14 /40

E. Franck 4

NN vs Polynomial

B We will compare over-parametrized NN and polynomial regression on the Runge
function.

B 120 data and approximately 800 parameters in each model.

loss history k=2, epoch = 4999 prediction error
w0 10 — preaon | gs0]
o6 1
o 015
00 000,
loss history k= 2, epoch = 5499 prediction error
100 10 A — predeeon | g0
o terence
o8 025
010+
o 00
loss history k=2, epoch = 5999 prediction error
0 f — prodon
- " 035
06 0as+
w0t 04 0201
01
02
010+
107
b 1000 2000 ;00 400 5000 6000 o s o 95 10 TG0 45 do a5 1o

l 14 /40

E. Franck \ 4

NN vs Polynomial

B We will compare over-parametrized NN and polynomial regression on the Runge

function.

B 120 data and approximately 800 parameters in each model.

s sy =2 cpoch = 10990 —
w0t) £ — peediction o7
[\ — rference
.
s sy e et
10t 10 — peeacton | g5
o
loss history - i prediction error
o
.
B The polynomial model tends to oscillate in the over parameterized

Problematic for overfitting.

regime.

E. Franck

\l 14 /40

NN vs Polynomial

B We will compare over-parametrized NN and polynomial regression on the Runge
function.

B 120 data and approximately 800 parameters in each model.

loss history. k=2, epoch = 49 prediction error
10 N — -
0s o
x107 o 00
loss history. k=2, epoch = 99 prediction error
o4
0
06
sx107 04 02
30 o0
02 oo
loss history. k=2, epoch = 149 prediction efror
o n — o10
o8 000
0

l 14 /40

E. Franck \ 4

NN vs Polynomial

B We will compare over-parametrized NN and polynomial regression on the Runge

function.
B 120 data and approximately 800 parameters in each model.

E * A]

. o / \\
o / 0008,
. // \\

DT e U e et

- s / \\ o012
|
- o6 / cocn

B The ANN generates very smooth/low frequency approximations.
B |t is related to the spectral bias. The low frequencies are learned before the high

frequencies. Seems very helpful for the generalization ,14 \
E. Franck \ /40‘

NN vs Polynomial

B Other example of ANN learning.

loss history k= 5, epoch = 399 predgiction error
s06x107 w0) ==
|
5.04x107 o7
08
050
50210
o025 o6
sx10 000
498 %107 —0.25 o4
050
as6x10 02
075
asax10t
100 00
o w0 @ w0 a0 @ oz o4 o6 o8 10 G oz os o6 a8 10
loss history k =5, epoch = 599 prediction error
10t 100
5x10 o
ors
030 o8
025
06
ax107 000
025 04
050
Ty 02
ors L {
— prescton || | |
o0 — reference V 00
o w0 zo o w0 0 o G oz o4 os o8 1o G oz os oe a8 10
loss history prediction error
%10
10
08
ax10%
06
04
ax10
02
00
o a0 w0 o0 o G o2 o4 os 08 1o G o2 os o5 o8 10
loss history k =5, epoch = 999 prediction error
12
100
Il I
wsf] L
|
oot [|]
| 08 A L}

E. Franck

Convolutive neural networks |

(Limites |

Fully connected NN non-sufficient for large-dimensional problems like image processing or
language.

Other neural networks

For structured data like pictures, time signals or functions on structured grids, there exist
more powerful NN: convolutional neural networks.

B Example: classify pictures. We want to construct g(f) : f(x,y) — s € [0, 1] with
f(x, y) a signal (discretized in practice).

B The CNN introduce some priors on the problem in the architecture.

B Priors: Geometric (left), Stability for small deformation (right).

g

Invariance vs equivariance a e)
i e,

I
1-C0B|

1{‘

..... jance. Equivarance

jd"j j};j f) shift
LT O —

[o

dlsmr;lon m
\ / 40

4

E. Franck

Convolutive neural networks I

B Encoding geometric prior:

O Convolutional layers: the matrices A; are Toeplitz matrices (shift-invariant).

coQ o uw
QoW 0
o w0 o
L O oo

U This is equivalent to applying a convolution kernel to the 1D signal.
L We often apply some convolutions to the signal on each layer, to create several
new signals.
B Encoding stability prior: use local filters (equivalent to sparse matrix A;)
B Last prior: Multi-scale separation. We can begin by the local scale and move to the
global one.

B For that we altern convolutional layers with pooling layers.

Max H
Pooled |

Kernel/Fliter - 2x2
Stride 2

‘16/40

E. Franck \ y

Convolutive neural networks Il
B Example of 2D convolutional network for classification:

€3 1. maps 16@10x10
C1: feature maps S4: 1. maps 16@5:5
INPUT
3232 2623

Full connection Gaussian connections
G G Full i

B Example of 2D CNN called Unet for regression:

g 2 (depth)

E B> —_— i e ®
B g Ay 3
4 . e
5 o | ||| —— - s
e A f.[mJ
A
RS [A
[ti Convelution V Down-sampling b Summation RN Sxmd.l:hurlum}
& Softplus A Up-sampling # Weighted mean — Big shorteut
B Study of the CNN: Mallat (Collége de France lecture) (17 X
/0

E. Franck 4

Convolutive neural networks IV

B Comparison between CNN and FC on signal problems.
B (Classify function 48*48 with or without a discontinuity.

100
10)©

00

10

08

06

04

02

0.0

1©OX%)

00 02 04

B Results for 1 minute training:
O FC 1: 566000 parameters. Error: = 50% of succes
0 FC 2: 236000 parameters. Error: ~ 48% of succes
0 CNN: 41000 parameters. Error: =~ 92% of succes
B Extension of CNN to graph, mesh, manifold (" Geometric Deep Learning” Bronstein
and al 22) encoding other geometric prior.

B Recurrent neural network for time series and transformers for language.

\‘ 18/40

E. Franck 4

Physics-informed Neural Networks

E. Franck

\‘ 9 /40

PINN's |

B We solve PDE of the form:

8tU:N(U,8vaaXXUvB)
Up(t, x) = g(x), Vx € o
U(0, x) = Ug(x, o)

with
p=(pB)
B The first idea comes from the remark that neural networks are smooth functions
compared to the inputs.Since the derivative are easily computable by automatic
derivative, the ANN are natural objects to approximate PDE solution.

B A PINNs is a neural network which as inputs (t, x), and we note Uy (t, x).

Basic approach

If we have data U] which approximate the solution of the points (x;, t;) we will learn the
NN minimizing the loss:

Ndata Ndata

ming Jgata(6) = ming > > || Up(ta, x;) — U7 |I3

n=1 j=1

How do that without data or with few data ??

E. Franck \

PINN's Il

PINNs approach

Since we can derivate the NN, we compute the PDE residual and check to what extent it
is a solution of the PDE. Main idea: Learn using this property.

B We define the residual:
R(t, x) =| 8:Ug — N(Uyg, 0xUg, 0x Uy, B) |
B To learn Uy(t, x) we minimize:
ming Jaaea(0) + Jr (0) + Jp(0) + Ji(6)

with

]
O = [[1R(ex) 13 e

and

.
In(0) = /0 /BQ | Un(t,x) — g(x) |3 dxdt, Ji(0) = /Q 1| Up (0, x) — Up(x,) |3 dx

O

How compute the integrals of the residues ?

&’L. ~~~~~~~~~ E. Franck

Monte Carlo

How compute the integrals of the residues ?

B Quadrature rule. Limited for large domains and small dimension
B Quadrature rule + mesh. Need grid and limited to small dimensions.
B Monte-Carlo approach. Slow convergence but no mesh and no problem of dimension.

B The Monte-Carlo method comes from the Law of large numbers.
B \We consider a function g : R — R. We define X a random variable with the law .
B The method comes from to:

V‘"(“ < Zf]Eu[f(X)]> — N(0,1)

with X; an random example sampled with the law p
B |t allows computing integral. Indeed:

/ o e / F()Uadx = E[f(X)]
Q i
with Uq the density of the uniform law Q and X random variable following this law.
B So we have M
1 Var(Z/lg))
— fx,-—/fxdx 20(7
Iy ; () A ()dx || /N

with x; points sampled uniformly on Q. (22 \
\ / 10

E. Franck

PINNs Il

B Applying the MC method to the PINNs We obtain the following minimization problem:

final PINNs minimization I

ming Jaata(6) + Jr(6) + Jp(0) + Ji(6)

with
N

N
5(0) =357 || Rta) I
n=1i

=1

with (tn, x;) sampled uniformly and

Ny Np Ni
Jp(0) =D I Ua(tn, i) —g(x) 13, Ji(0) = > Ua(0,xi) — Uo(xi) 13
n=1 i=1 i=1)

B These loss functions can be interpreted as a regularization of classical learning using

data.
B To avoid loss for the BC and initial condition we use:

Tig(t, x) = uo(x) + t($(x) * ug(x))
with ¢(x) = g(x) on the boundary and something inside. r-\
&L

&’L; ------- E. Franck

Example: Burgers equation

2

Application: Burgers equation O¢p + Ox (%) = vOxxp-

Solving for different p value:
v = 2110000 pts, medium NN.

beginning of training

iter = 200
loss = 0.0774
L2 error: 4.7142e-01

t=024

iter = 400
loss = 0.0318
L2 error: 4.0850e-01

t=024

0s

t=0.80 t=135

t=0.80 t=135

E. Franck

Example: Burgers equation

Application: Burgers equation 0¢p + Ox (%2) = VOxxp-
Solving for different p value:

v = 2110000 pts, medium NN.

middle of training

iter = 2000
loss = 0.0000
L2 error: 9.0829%e-03

t=024 t=0.80 t=135
1 1 1
0 0 0 /\/
-1 -1 -1
-10 05 0o 0s 10 -10 05 0o 05 10 -10 05 0o 05 10
x x x
iter = 2200
loss = 0.0000
L2 error: 8.2614e-03
t=024 t=0.80 t=135
1 1 1
0 0 0 /\/
-1 -1 -1
-10 05 00 0s 10 -10 05 00 05 10 -10 05 00 05 10
x x
24/40
E. Franck \

Example: Burgers equation

2
B Application: Burgers equation 9:p + 9« (%) = vOxxp-
B Solving for different p value:
® =21 10000 pts, medium NN.
B end of training

iter = 4800
loss = 0.0000
L2 error: 4.6718e-03

t=024 t=0.80 t=135
1 1 1
0 0 0 /\/
-1 -1 -1
-10 05 0o 05 10 -10 05 oo 0s 10 -10 05 00 05 10
x x x
iter = 5000
loss = 0.0000
L2 error: 4.7307e-03
t=024 t=0.80 t=135
1 1 1
0 0 0 /\/
-1 -1 -1
-10 05 00 05 10 -10 05 0o 0s 10 -10 05 00 05 10
x x
24/40
E. Franck \

R R R R RRRRRERERRERERRREEEE==S=————————
Example: Burgers equation

2

Application: Burgers equation O¢p + Ox (%) = vOxxp-

Solving for different y value:

v =20 10000 pts, medium NN.
s

beginning of training

iter = 600
loss = 0.0885
L2 error: 4.360le-01

t=024

-1

iter = 800
loss = 0.0233
L2 error: 2.090le-01

t=024

-1

-10 05 0o 0s 10

t=0.80

-10 05 () 05 10
x
t=0.80
-10 05 0o 05 10
x

t=135

t=135

-1

m
ny
o
E]
)
=

Example: Burgers equation

2
B Application: Burgers equation 9:p + 9« (%) = vOxxp-

B Solving for different p value:
B =20 10000 pts, medium NN.
B middle of training

iter = 2000
loss = 0.0003
L2 error: 1.8053e-02
t=024 t=0.80 t=135

1 1 1

0 0 0 /l/

-1 -1 -1

-10 05 00 0s 10 -10 05 00 05 10 -10 05 00 05 10
x X x
iter = 2200
loss = 0.0002
L2 error: 1.7773e-02
t=024 t=0.80 t=135

1 1 1

0 0 0 /\/

-1 -1 -1

-10 05 00 05 10 -10 05 00 05 10 10 05 00 05 10
x x x
24/40
E. Franck \

Example: Burgers equation

2
B Application: Burgers equation 0:p + Ox (%) = VOxxp-
B Solving for different p value:
By = 2% 10000 pts, medium NN.
||

end of training

iter = 4800
loss = 0.0001
L2 error: 5.9728e-03

t=024 t=0.80 t=135
1 1 1
0 0 0 /\/
-1 -1 -1
10 05 00 05 10 10 05 00 05 10 -10 05 00 [10
x x x
iter = 5000
loss = 0.0001
L2 error: 5.2593e-03
t=024 t=0.80 t=135
1 1 1
0 0 0 /\/
-1 - -1
10 05 00 05 10 10 05 00 05 10 -10 05 00 05 10
x
124/40
E. Franck \

R R R R RRRRRERERRERERRREEEE==S=————————
Example: Burgers equation

2
Application: Burgers equation O¢p + Ox (%) = vOxxp-

Solving for different p value:
v = 229210000 pts, medium NN.

beginning of training

iter = 200
loss = 0.0774
L2 error: 4.7142e-01

t=024 t=0.80 t=135

iter = 400
loss = 0.0318
L2 error: 4.0850e-01
t=024 t=0.80 t=135

E. Franck

R R R R RRRRRERERRERERRREEEE==S=————————
Example: Burgers equation

B Application: Burgers equation 9:p + 9« (%2) = vOxxp-
B Solving for different p value:

By = 0002 70000 pts, medium NN.

B middle of training

iter = 2000
loss = 0.2076
L2 error: 6.2666e-01

t=024 t=0.80 t=135

iter = 2200
loss = 0.1361
L2 error: 6.0138e-01

t=024 t=0.80 t=135

Example: Burgers equation

2
Application: Burgers equation 0¢p + Ox (%) = vOxxp-

Solving for different u value:

= %7:)2. 10000 pts, medium NN.
end of training

iter = 4800
loss = 0.0272
L2 error: 4.0909e-01
t=024 t=0.80 t=135

05 00 0s 10 05 00 05 10 -10 05 00 05 10
x x x
iter = 5000
loss = 0.0212
L2 error: 4.0300e-01
t=024 t=0.80 t=135
1 1 1

o
o

05 00 05

E. Franck

\l 24 /40

R R R R RRRRRERERRERERRREEEE==S=————————
Example: Burgers equation

2
Application: Burgers equation 0¢p + Ox (%) = VOxxp-

Solving for different p value:
v = 209220000 pts, medium NN.
beginning of training

iter = 200
loss = 0.1495
L2 error: 6.1471e-01
t=024 t=0.80 t=135

iter = 400
loss = 0.1170
L2 error: 5.2688e-01
t=024 t=0.80 t=135

-10 05 00 0s 10
x

E. Franck

R R R R RRRRRERERRERERRREEEE==S=————————
Example: Burgers equation

2

B Application: Burgers equation drp + Ox (%) = vOxxp-

| |
LI
|

iter =
loss =

L2 error:

iter =
loss =

L2 error:

-1

Solving for different p value:
= 20920000 pts, medium NN.
middle of training

2000
0.0040
1.7457e-01

t=024

2200
0.0024
1.6838e-01

t=024

t=0.80

-10 05 0o 05 10

t=0.80

-10 05 0o 0s 10

t=135

t=135

-1

E. Franck

Example: Burgers equation

2

B Application: Burgers equation 0:p + Ox (%) = VOxxp-
B Solving for different p value:
B, = 2092 20000 pts, medium NN.
B end of training
iter = 4800
loss = 0.0395
L2 error: 3.9314e-01
t=0.24 t=0.80 t=135
1 1 1
~
|
0 0 | > 0
1
|
-1 -1 -1
-10 05 00 05 10 -10 05 0o 05 10 -10 05 00 05 10
x x
iter = 5000
loss = 0.0133
L2 error: 3.676le-01
t=0.24 t=0.80 t=135
1 = 1 1
J W
' i
0 0 - 0 H
d 1
- [
-1 -1 -1
-10 05 00 05 10 -10 05 00 0s 10 -10 05 00 05 10 h
x
24
E. Franck \ /40

Example: Burgers equation
Application: Burgers equation 0¢p + Ox (%2) = VOxxp-
Solving for different p value:
= 000240000 pts, larger NN.
end of training

iter = 4800
loss = 0.0006
L2 error: 2.301lle-01

t=024 t=0.80 t=135
1 1 1
0 0 0
-1 -1 -1
-10 05 00 05 10 -10 05 00 05 10 -10 05 00 05 10
x x x
iter = 5000
loss = 0.0004
L2 error: 2.2456e-01
t=024 t=0.80 t=135
1 1 1
0 0 0
-1 -1 -1
-10 05 00 05 10 -10 05 00 05 10 -10 05 00 05 10
x x
24/40
E. Franck \ y

Full algorithm for PINNs

Neural Network AD

Loss

)
)0,

L

Lops = f(2 3,1, 8,8, ..,)
Lpata =g — ulpata
Lic = flag, — gl i

Lgg = (Oal]gn—rGlan) + (Rlag — glan) |

7R

N
L =wLppg +waLgata*
Y wiLic+ walpe
End

Note: @i = [u,v,p,], x = [x,y], 6: weights/biases, 4: unknown PDE parameters, w;,i = 1, ..., 4: weights

<
fe
7T
<
]

/2

e
O]
A
®E®E

B There exists many variants of PINNs. Variational PINNS, hp-VPINNs which use weak
form of the equation. C-PINNs, XPINNs acting like domain decomposition.

B Specific PINNs for hyperbolic problems, nonlocal PDE, stochastic equations, etc.

Defaults and Advantages

B | ess accurate and fast than classical solvers. Difficult to choose hyper-parameters.
B mesh-less and mainly independent of the dimension.

¥ 25
E. Franck \ /40‘

Analysis of PINNs, Biais and NTK

B We consider a FCN fy with L layers. The gradient descent can be viewed as a
discretization to:
do(t)

N

1

= > Vo (foey (%), vi)
i=1

M which is equivalent to

do 1 ¢
d(tt) =-y ; (Voo fow) (1) (Vel(f, i)

we obtain

dfpiy(x) 1 N

0t N ST (Vo faey()) T (Vage facey (1)) (VeI(F, 1))
i=1

k() (x.y) called NTK kernel

NTK theorem

If we initialize 6(0) ~ A/(0, /) and the number of neurons (ny, ..., n;) — 400 we have:
ko) (x, y) is deterministic and kgy(;)(x, y) is constant is time.

B So in this limit (called over-parametrized):
Yoy = Y + (Yo(— Y)e (6%
with Yy the output of the network and Koo (X, X) the NTK, on the data set.

B Study Koo (X, X) allows the study the learning speed compared to some parameters., \

&’L’; -------- E. Franck

26/

40
y

PINN's and parametric PDEs

B Advantages of PINNs: mesh-less approach, not too sensitive to the dimension.
B Drawbacks of PINNs: they are not competitive with classical methods.
B |nteresting possibility: use the strengths of PINNs to solve parametric PDEs.

B The neural network becomes Ugy(t, x, o, B).

New Optimization problem of PINN's

ming Jy(0) + ...

with T
J,(a):// /|| BeUo (£ x) — £(Ug, xUp, DUy, 1) (£ x) |2 dxdt
v Jo Q

with V a subspace of the parameters (o, 3).

_4]:

E. Franck 4

Operator Learning

‘28/40

E. Franck \ y

R R R R R RS
Operator learning

B \We consider the following problem:
Ga(x,t) (u(t, x)) = Oeu(t, x) + Lo (u(t,x)) =0 on Q,
u(t,x) = g(x) on 89Q,
u(t =0, x) = up(x)

B We note p(t, x) = (a(x, t), g(x), up(x)) the parameters.
B Formally, there exists a pseudo-inverse operator G, such that G*(u) = u(t, x).

Objective
Approximate G* by a neural network on a subspace of the data. J

First approach: discrete approach

We discretize the data on a mesh p1,, and we construct a neural network G (p) (in
general, a CNN) which minimizes J(0) = J1(0) + J2(90), with

nr
FO) = [32165 (uh) — a3
MK op=1

and ny
0) = [1) Guacl 6 (u i), uf) 1B s
®

n=1

with G‘,ﬁm(uzﬂ, u}) a scheme, and where integrals are approximated by MC.

2\
)

E. Franck

R R R R R RS
Operator learning |l

Operator learning |

We speak about operator learning if your neural network map data living in a Hilbert
functional space.

Second approach: continuous approach

We construct a neural network G, (p4(t, x)), which minimizes J(0) = J1(0) + J2(0), with

'
70 = [[165 o palo) — o) 1 dpciae

and

i
7(0) = /M L1 GG eyt) 13 e,

where the integrals are approximated by MC.

My understanding

When we speak about construct a map between functions, we want a neural network
where the results do not depend of the discretization of the inputs/output functions.

‘30/
| U

E. Franck

EEEEEEEEEEEEEEEEEERERRlRREEEE——
Neural operator

B Neural networks mapping functions leads to so-called neural operators (N. Kovachki,
Z. Li et al 2021).

B How construct neural operator ?

Example:
-V - (a(x)Vu) = f(x), VxeQ
u=0, Vxe€oQ

The solution is given by

u(x) = /Q Ga(x, y)f(y)dy

with G, a Green kernel. Important: the operator in non-local.

Interesting framework

In the formalism proposed by N. Kovachki, Z. Li, the key point is to add some non-locally
in the layers.

B Methods using non-locality: FNO (Z. Li and al 20), WNO (Tripura and al 22),
Laplacian NO (Chen and al), Graph kernel Operator, Multipole GNO (N. Kovachki
and al 20), DeepONet (Karniadakis and al 19)

B Methods using dimension reduction: PCANet (N. Kovachki and al 19), NOMAD
(Perdirakis and al),Meta-AE (Ye and al).

\31/40

E. Franck 4

Neural operator |

K(v)(x) = /D K(x, y)v(y)du(y),

with k(x, y) € CP(D¢t1 X Di; RM+1 x R™) and v a measure.

Integral kernel j

We call integral kernel applied to a function v(y) € CO(Dy; R") the quantity

E. Franck \32 /40
. 4

Neural operator layer

We call an integral kernel layer an operator which transforms v;(x) into a function
vi+1(x), and which has the form:

Vx € Diy1, vig1(x) = Fi(vi(x)) = o1 (Wivi(mi(x)) + b(x) + Kf(v)(x))

where W; € R¥+1:9 is a weight matrix and where I, is a mapping between D41 and D;.

B Key point: we will learn the linear part and the kernel k.
B How make that in practice ?

EEEEEEEEEEEEEEEEEERERRlRREEEE——
Neural operator |l

Lifting and projection layers I

B Extrapolation layer P : increase the size of feature space:
[(vi(x), - vay ()] = Po(p(x))

with Py a FNC.
B Projector layer Q : decrease the size of feature space:

()] = Qo((vi(x), ----va, (x)))

with Qg a FNC.)

Full neural operator

A neural operator is given by the following composition of layers:

u(x) = Qo Fpo...FoFyoP(u(x)))

B Many different neural operators correspond to different discretization of the kernel

layer. p—
\33 /40

E. Franck 4

Neural operator: Fourier NO

Fourier Neural Network

The FNOs use neural operator layers with an integral kernel:

K(v)(x) = F~H(RoF(v(x)),

with Ry learnable filters in the Fourier space. In practice it is computed with an FFT.

B Principle:

@—»@44 Fourier layer 1 H Fourier layer 2 }—b (X] Fourier layer T| o @

(b)

B Contrary to the discrete CNN case, we can change the mesh resolution (it is also
possible with CNNs, provided interpolation is used), and we could adapt the approach

to unstructured grids.
‘ 34
/0

E. Franck \ 4

FNO like neural Operator

B Wavelet Neural Operator: we replace the Fourier transform by a wavelet transform
(closer to CNN).

B GFNO (Li and al): learn mapping between your geometry and a square and use FNO
B | aplace NO (Cheng and al 23): extension to FNO on Manifold

Ba s -«]

Encoder € Parameterising Ry Decoder D

i Laplacian eigenfunction Ve ()

[2(x) = Ap(x),x € D i7) ’-7
— l - e 2 O v ()
Laplacian spectrum of the domain A - @ AL A

P I3

é1

bz ¢ 3

[

B Replace the Fourier basis by the eigenvectors of the Laplace Beltrami.
B The Laplace Beltrami on a mesh/graph associated with the manifold is approximated
by the Graph Laplacian (nice theory very used in ML).

E. Franck \35/40
. anci

4

Differentiable physics

E. Franck

\‘ 3 /40

Principle |

B At the beginning, PINNs/neural operators are used to solve PDEs.

B QOther approach: supervised learning, Hesthaven et al 2017, 2018, 2020, 2022, B.
Despres and H. Joudren 2020, R. Loubeére et al 2020, etc.

B Differentiable physics, Michael P. Brenner et al 2018, 2020, “Physics-based deep
learning”, Nils Thuerey et al, 2021.

Coming back to neural networks

0 The neural networks are trained with stochastic gradient descent.

' How is the gradient computed? Back-propagation.

Back-propagation and automatic differentiation

O Function: fg(x) =fio....of,

0 Automatic differentiation methods are able to deal with deep function composition.

A\ \ A
Lx o0 r.m».»> @ Pl) @
</ i L Y

Supervised or
residual loss L

4 4 4
) y — 4 w
0w GEndmn A o

o el . LN

il \|

‘37/40

Lisva— E. Franck \ 4

Principle Il

Differentiable physics

Write the scheme such that we can apply automatic differentiation and back-propagation
to compute the gradient of each function of the scheme in the code, and each
composition of these functions.

B Using that, we can compute the gradient with respect to all inputs of the solver, or of

sub-parts of the solver.
B Consequences: We can put a NN anywhere in the solver and optimize it with respect
to a criterion on the simulation result.

Link with optimal control
In optimal control we compute the gradient of the loss with respect to the input with an
adjoint method. It is another use of automatic differentiation methods.

Drawback
With back-propagation, stability problems (vanishing or exploding gradient) can arise
when composing too many functions.)

‘38/
| A

E. Franck

Conclusion

‘39/40

E. Franck \ y

==
Conclusion

Neural networks

The deep neural networks are good candidates to gives smooth approximations using data
in large dimensions.

PINNS

PINNS gives a new way to solve PDE. Less efficient and accurate but interesting in large
dimensions.

Neural operator J

NO can gives good approximation of PDe solutions on semi-large parameters datasets.

Differential physics

Use the huge progress of automatic differentiability to optimize a part of code/scheme.

Next Talk

How to couple these approaches with standard one to obtain guarantees and better
efficiency.

¥ 40
\ /401

Lisva— E. Franck

	Introduction
	Physics-informed Neural Networks
	Operator learning
	Differentiable physics
	Conclusion

