
Scientific machine learning: principle

E. Franck12, Victor Michel-Dansac12

Numerical Analysis and PDE seminar of Rennes

1Inria Nancy Grand Est, France
2IRMA, Strasbourg university, France

E. Franck 1/40

1/40

Outline

Introduction

Physics-informed Neural Networks

Operator learning

Differentiable physics

Conclusion

E. Franck 2/40

2/40

Introduction

E. Franck 3/40

3/40

Maching learning: principle
� Set of methods to build models from data.
� In general, approaches use parametric functions fθ where the parameters are chosen by

optimization

� Three main types of ML problems:
� Supervised learning: construct models like

y = f (x) + ε, or P(y |x)

with ε some noise, using inputs and outputs examples. We solve:

minθ

n∑
i

L(f (xi), yi),

with L a loss function.
� Unsupervised learning: construct models like

P(x), or P(x|z),

which explain data structure/probability data with some examples (z potential
latent variables), where ε is some noise, and using inputs and outputs examples.

� Reinforcement learning which considers time control problems like:

sn+1 = f (sn, an)

with sn a state and an an action, and constructs the model π(an|sn) which decides
the best action to maximize some criterion.

� Which parametric functions?

E. Franck 4/40

4/40

basic approaches: linear regression
� Linear regression for f : Rd → R
� We want to solve:

minθ

n∑
i

‖ fθ(xi)− yi ‖2
2

with fθ〈θ, x〉+ b
� Matricial form for the problem:

minθ ‖ Aθ − Y ‖2
F

with Ai j = x ji and Yi = yi .

Solution
It is a convex problem. The solution is given by the solution of the normal equation

AtAθ = AtY

In general unique solution if n > d

Overfitting
if d > n non uniqueness of
the solution. Overfitting:
good on the training data,
false on test data.

E. Franck 5/40

5/40

basic approaches: nonlinear regression I
� Nonlinear extension: Polynomial regression

minθ

n∑
i

‖ fθ(xi)− yi ‖2
2

with fθ(x) = 〈θ,P(x)〉.
� Example of the Runge function:

Overfitting
In the over-parametrized regime (more parameters than data), we can approximate very
well the data and admit poor generalization property for new data

� The over-parametrized regime is common in large dimensions.
� When the polynomial model have too much freedom we obtain oscillatory behavior.
� Another approach: kernel regression (and Gaussian process). Theory based on

reproducing kernel Hilbert space.

E. Franck 6/40

6/40

basic approaches: nonlinear regression II

Reproducing kernel Hilbert space
V metric space. H Hilbert space of real function defined on V . A function
k : V × V → R is called reproducing kernel is

� H contains on the functions of the form

∀x ∈ H, kx (y)→ k(x , y)

� ∀x ∈ V , f ∈ H we have:
f (x) = 〈f ,Kx 〉H

In this case H is a reproducing kernel Hilbert space (RKHS).

Representation theorem
We have a k the kernel and Hk the associate RKHS. We consider a data set
(x1, ..., xn) ∈ V and (y1, ..., yn) ∈ R. We consider a loss L(x , y) ∈ R2 → R and λ > 0.
The solution of the problem:

min
f∈Hk

(
n∑

i=1

L(f (xi), y) + λ ‖ f ‖Hk

)
is of the form:

f (x) =
n∑

i=1

αik(x , xi)

� The theorem gives a good form of parametric function. We can apply a regression to
obtain a mean square problem.

E. Franck 7/40

7/40

basic approaches: nonlinear regression III

� The theorem gives the optimal form of parametric function in RKHS. We can apply a
regression to obtain a mean square problem.

� It works if H is sufficiently large to approximate many functions.

� Key point: the Matern kernel parametrized by ν gives all the Sobolev space which are
contained in the continuous function space.

� Left to right. H = H1, H2, H3, H6, C∞.

� The choice of the kernel can be viewed as a regularity prior.

� Kernel regression generated functions smoother or lower frequency than polynomial
models. Better for generalization.

� Necessary to store the data. Expensive for large data set.

E. Franck 8/40

8/40

Deep learning: neural networks
� Current choice: kernel approximation or neural network.

Layer

A layer is a function Ll (xl) : Rdl → Rdl+1 given by

Ll (xl) = σ(Alxl + bl),

Al ∈ Rdl+1,dl , b ∈ Rdl+1 and σ() a nonlinear function applied component by component.

Neural network
A neural network is parametric function obtained by composition of layers:

fθ(x) = Ln ◦ ◦ L1(x)

with θ the trainable parameters composed of all the matrices Al ,l+1 and biases bl .

� Fully connected neural network (FCNN): the matrices Al ,l+1 are dense.

E. Franck 9/40

9/40

Activation functions

� The local nonlinear functions are called activation function.

� Exemple (site MonCoachdata):

� Adaptive activation functions (we learn the parameter).

E. Franck 10/40

10/40

Training and gradient methods

Key point

According to the activation function, the neural network are a function of Cp(Rd)

� We train the Neural network with gradients type approach. It is a non-convex problem.
� Full gradient:

∇θ

(
n∑
i

‖ fθ(xi)− yi ‖2
2

)
=

n∑
i

∇θ ‖ fθ(xi)− yi ‖2
2

� If n >> 1 the gradient is very costly. To avoid that and add some exploration we use
stochastic gradient

n∑
i

∇θ ‖ fθ(xi)− yi ‖2
2≈ Ex∼µ ‖ fθ(x)− y ‖2

2≈
m∑
k

∇θ ‖ fθ(xi(k))− yi(k) ‖2
2

Back-propagation

How compute ∇θfθ(x) with L layers with fθ(x) = f nθn ◦ ◦ f 1
θ1

(x) using gradient chain

rules we obtain:

∇θL(θ) =
n∑

i=1

∇hiL(θ)
∂f iθ
∂θ

, and ∇hiL(θ) = ∇hi+1
L(θ)

∂f i+1
θ

∂θ

E. Franck 11/40

11/40

Depth, expressivity and stability

Theorem of Cybenko (89)

σ() the sigmoid activation.The set of fully connected neural network is dense in
C0([0, 1],R).

Theorem of Barron
We consider f (x) : [0, 1]d → R such that the Fourier transform satisfy

γ(f) =

∫
‖ ω ‖2

1| f̂ (ω) |2 dω < +∞

then there exist an FCN with σ the ReLu function such that

‖ f − fθ ‖L2≤
3γ(f)

n

� How the number of layers allows increasing the expressivity ? Example.

Theorem of B. Després (22)

For a class of polynomial H(x) the set of ReLu neural networks f θ(x) at l layers
converges with the following estimate

‖ f θ(x)− H(x) ‖L∞≤ C l ‖ H(x) ‖L∞

E. Franck 12/40

12/40

Stability
� Default of stability.
� Four and six layer FCN (30 neuronal by layer) with sigmoid.

� Vanishing gradient: the gradient of some layers falls to zero and blocks learning.
� Replacing sigmoid by Relu:

E. Franck 13/40

13/40

Stability
� Default of stability.

� Other test: tanH (6 layers), Relu (6 layers) and Relu (20 layers)

� Possible solution: normalize the data at each layer.

� Comparison of Relu network (20 layers) without and with batch normalization.

E. Franck 13/40

13/40

NN vs Polynomial

� We will compare over-parametrized NN and polynomial regression on the Runge
function.

� 120 data and approximately 800 parameters in each model.

E. Franck 14/40

14/40

NN vs Polynomial

� We will compare over-parametrized NN and polynomial regression on the Runge
function.

� 120 data and approximately 800 parameters in each model.

E. Franck 14/40

14/40

NN vs Polynomial
� We will compare over-parametrized NN and polynomial regression on the Runge

function.

� 120 data and approximately 800 parameters in each model.

� The polynomial model tends to oscillate in the over parameterized regime.
Problematic for overfitting.

E. Franck 14/40

14/40

NN vs Polynomial

� We will compare over-parametrized NN and polynomial regression on the Runge
function.

� 120 data and approximately 800 parameters in each model.

E. Franck 14/40

14/40

NN vs Polynomial
� We will compare over-parametrized NN and polynomial regression on the Runge

function.
� 120 data and approximately 800 parameters in each model.

� The ANN generates very smooth/low frequency approximations.
� It is related to the spectral bias. The low frequencies are learned before the high

frequencies. Seems very helpful for the generalization

E. Franck 14/40

14/40

NN vs Polynomial
� Other example of ANN learning.

E. Franck 14/40

14/40

Convolutive neural networks I

Limites
Fully connected NN non-sufficient for large-dimensional problems like image processing or
language.

Other neural networks
For structured data like pictures, time signals or functions on structured grids, there exist
more powerful NN: convolutional neural networks.

� Example: classify pictures. We want to construct g(f) : f (x , y)→ s ∈ [0, 1] with
f (x , y) a signal (discretized in practice).

� The CNN introduce some priors on the problem in the architecture.
� Priors: Geometric (left), Stability for small deformation (right).

E. Franck 15/40

15/40

Convolutive neural networks II
� Encoding geometric prior:

� Convolutional layers: the matrices Ai are Toeplitz matrices (shift-invariant).

A =


a c e 0
b a c e
d b a c
0 d b a


� This is equivalent to applying a convolution kernel to the 1D signal.
� We often apply some convolutions to the signal on each layer, to create several

new signals.

� Encoding stability prior: use local filters (equivalent to sparse matrix Ai)

� Last prior: Multi-scale separation. We can begin by the local scale and move to the
global one.

� For that we altern convolutional layers with pooling layers.

E. Franck 16/40

16/40

Convolutive neural networks III
� Example of 2D convolutional network for classification:

� Example of 2D CNN called Unet for regression:

� Study of the CNN: Mallat (Collège de France lecture)

E. Franck 17/40

17/40

Convolutive neural networks IV

� Comparison between CNN and FC on signal problems.

� Classify function 48*48 with or without a discontinuity.

� Results for 1 minute training:

� FC 1: 566000 parameters. Error: ≈ 50% of succes
� FC 2: 236000 parameters. Error: ≈ 48% of succes
� CNN: 41000 parameters. Error: ≈ 92% of succes

� Extension of CNN to graph, mesh, manifold (”Geometric Deep Learning” Bronstein
and al 22) encoding other geometric prior.

� Recurrent neural network for time series and transformers for language.

E. Franck 18/40

18/40

Physics-informed Neural Networks

E. Franck 19/40

19/40

PINN’s I
� We solve PDE of the form: ∂tU = N (U, ∂xU, ∂xxU,β)

Uh(t, x) = g(x), ∀x ∈ ∂Ω
U(0, x) = U0(x ,α)

with
µ = (α,β)

� The first idea comes from the remark that neural networks are smooth functions
compared to the inputs.Since the derivative are easily computable by automatic
derivative, the ANN are natural objects to approximate PDE solution.

� A PINNs is a neural network which as inputs (t, x), and we note Uθ(t, x).

Basic approach
If we have data Un

i which approximate the solution of the points (xi , tn) we will learn the
NN minimizing the loss:

minθ Jdata(θ) = minθ

Ndata∑
n=1

Ndata∑
i=1

‖ Uθ(tn, xi)−Un
i ‖

2
2

How do that without data or with few data ??

E. Franck 20/40

20/40

PINN’s II

PINNs approach
Since we can derivate the NN, we compute the PDE residual and check to what extent it
is a solution of the PDE. Main idea: Learn using this property.

� We define the residual:

R(t, x) =| ∂tUθ −N (Uθ, ∂xUθ, ∂xxUθ,β) |

� To learn Uθ(t, x) we minimize:

minθ Jdata(θ) + Jr (θ) + Jb(θ) + Ji (θ)

with

Jr (θ) =

∫ T

0

∫
Ω
‖ R(t, x) ‖2

2 dxdt

and

Jb(θ) =

∫ T

0

∫
∂Ω
‖ Uθ(t, x)− g(x) ‖2

2 dxdt, Ji (θ) =

∫
Ω
‖ Uθ(0, x)− U0(x ,α) ‖2

2 dx

Question
How compute the integrals of the residues ?

E. Franck 21/40

21/40

Monte Carlo

How compute the integrals of the residues ?
� Quadrature rule. Limited for large domains and small dimension
� Quadrature rule + mesh. Need grid and limited to small dimensions.
� Monte-Carlo approach. Slow convergence but no mesh and no problem of dimension.

� The Monte-Carlo method comes from the Law of large numbers.
� We consider a function g : Rd → R. We define X a random variable with the law µ.
� The method comes from to:

Var(µ)
√
N

(
1

N

N∑
i=1

f (Xi)− Eµ[f (X)]

)
→ N (0, 1)

with Xi an random example sampled with the law µ
� It allows computing integral. Indeed:∫

Ω
f (x)dx =

∫
Rd

f (x)UΩdx = E[f (X)]

with UΩ the density of the uniform law Ω and X random variable following this law.
� So we have

‖
1

N

N∑
i=1

f (xi)−
∫

Ω
f (x)dx ‖= O

(
Var(UΩ)
√
N

)
with xi points sampled uniformly on Ω.

E. Franck 22/40

22/40

PINNs III

� Applying the MC method to the PINNs We obtain the following minimization problem:

final PINNs minimization

minθ Jdata(θ) + Jr (θ) + Jb(θ) + Ji (θ)

with

Jr (θ) =
N∑

n=1

N∑
i=1

‖ R(tn, xi) ‖2
2

with (tn, xi) sampled uniformly and

Jb(θ) =

Nb∑
n=1

Nb∑
i=1

‖ Uθ(tn, xi)− g(xi) ‖2
2, Ji (θ) =

Ni∑
i=1

Uθ(0, xi)− U0(xi) ‖2
2

� These loss functions can be interpreted as a regularization of classical learning using
data.

� To avoid loss for the BC and initial condition we use:

ūθ(t, x) = u0(x) + t(φ(x) ∗ uθ(x))

with φ(x) = g(x) on the boundary and something inside.

E. Franck 23/40

23/40

Example: Burgers equation

� Application: Burgers equation ∂tρ+ ∂x
(
ρ2

2

)
= ν∂xxρ.

� Solving for different µ value:

� ν = 0.1
π

. 10000 pts, medium NN.

� beginning of training

E. Franck 24/40

24/40

Example: Burgers equation
� Application: Burgers equation ∂tρ+ ∂x

(
ρ2

2

)
= ν∂xxρ.

� Solving for different µ value:

� ν = 0.1
π

. 10000 pts, medium NN.

� middle of training

E. Franck 24/40

24/40

Example: Burgers equation
� Application: Burgers equation ∂tρ+ ∂x

(
ρ2

2

)
= ν∂xxρ.

� Solving for different µ value:
� ν = 0.1

π
. 10000 pts, medium NN.

� end of training

E. Franck 24/40

24/40

Example: Burgers equation
� Application: Burgers equation ∂tρ+ ∂x

(
ρ2

2

)
= ν∂xxρ.

� Solving for different µ value:
� ν = 0.01

π
. 10000 pts, medium NN.

� beginning of training

E. Franck 24/40

24/40

Example: Burgers equation
� Application: Burgers equation ∂tρ+ ∂x

(
ρ2

2

)
= ν∂xxρ.

� Solving for different µ value:
� ν = 0.01

π
. 10000 pts, medium NN.

� middle of training

E. Franck 24/40

24/40

Example: Burgers equation
� Application: Burgers equation ∂tρ+ ∂x

(
ρ2

2

)
= ν∂xxρ.

� Solving for different µ value:
� ν = 0.01

π
. 10000 pts, medium NN.

� end of training

E. Franck 24/40

24/40

Example: Burgers equation

� Application: Burgers equation ∂tρ+ ∂x
(
ρ2

2

)
= ν∂xxρ.

� Solving for different µ value:

� ν = 0.002
π

. 10000 pts, medium NN.

� beginning of training

E. Franck 24/40

24/40

Example: Burgers equation
� Application: Burgers equation ∂tρ+ ∂x

(
ρ2

2

)
= ν∂xxρ.

� Solving for different µ value:
� ν = 0.002

π
. 10000 pts, medium NN.

� middle of training

E. Franck 24/40

24/40

Example: Burgers equation
� Application: Burgers equation ∂tρ+ ∂x

(
ρ2

2

)
= ν∂xxρ.

� Solving for different µ value:

� ν = 0.002
π

. 10000 pts, medium NN.

� end of training

E. Franck 24/40

24/40

Example: Burgers equation
� Application: Burgers equation ∂tρ+ ∂x

(
ρ2

2

)
= ν∂xxρ.

� Solving for different µ value:
� ν = 0.002

π
. 20000 pts, medium NN.

� beginning of training

E. Franck 24/40

24/40

Example: Burgers equation
� Application: Burgers equation ∂tρ+ ∂x

(
ρ2

2

)
= ν∂xxρ.

� Solving for different µ value:
� ν = 0.002

π
. 20000 pts, medium NN.

� middle of training

E. Franck 24/40

24/40

Example: Burgers equation
� Application: Burgers equation ∂tρ+ ∂x

(
ρ2

2

)
= ν∂xxρ.

� Solving for different µ value:

� ν = 0.002
π

. 20000 pts, medium NN.

� end of training

E. Franck 24/40

24/40

Example: Burgers equation
� Application: Burgers equation ∂tρ+ ∂x

(
ρ2

2

)
= ν∂xxρ.

� Solving for different µ value:
� ν = 0.002

π
. 40000 pts, larger NN.

� end of training

E. Franck 24/40

24/40

Full algorithm for PINNs

� There exists many variants of PINNs. Variational PINNS, hp-VPINNs which use weak
form of the equation. C-PINNs, XPINNs acting like domain decomposition.

� Specific PINNs for hyperbolic problems, nonlocal PDE, stochastic equations, etc.

Defaults and Advantages
� Less accurate and fast than classical solvers. Difficult to choose hyper-parameters.
� mesh-less and mainly independent of the dimension.

E. Franck 25/40

25/40

Analysis of PINNs, Biais and NTK
� We consider a FCN fθ with L layers. The gradient descent can be viewed as a

discretization to:

dθ(t)

dt
= −

1

N

N∑
i=1

∇θ(t)l(fθ(t)(xi), yi)

m� which is equivalent to

dθ(t)

dt
= −

1

N

N∑
i=1

(
∇θ(t)fθ(t)(xi)

)
(∇f l(f , yi))

we obtain

dfθ(t)(x)

dt
= −

1

N

N∑
i=1

(
∇θ(t)fθ(t)(x)

)T (∇θ(t)fθ(t)(xi)
)︸ ︷︷ ︸

kθ(t)(x ,y) called NTK kernel

(∇f l(f , yi))

NTK theorem
If we initialize θ(0) ∼ N (0, I) and the number of neurons (n1, ..., nL)→ +∞ we have:
kθ(0)(x , y) is deterministic and kθ(t)(x , y) is constant is time.

� So in this limit (called over-parametrized):

Yθ(t) = Y + (Yθ(t) − Y)e−tK∞(X ,X)

with Yθ(t) the output of the network and K∞(X ,X) the NTK, on the data set.
� Study K∞(X ,X) allows the study the learning speed compared to some parameters.

E. Franck 26/40

26/40

PINN’s and parametric PDEs
� Advantages of PINNs: mesh-less approach, not too sensitive to the dimension.
� Drawbacks of PINNs: they are not competitive with classical methods.
� Interesting possibility: use the strengths of PINNs to solve parametric PDEs.

� The neural network becomes Uθ(t, x ,α,β).

New Optimization problem of PINN’s

minθ Jr (θ) + ...

with
Jr (θ) =

∫
V

∫ T

0

∫
Ω
‖ ∂tUθ(t, x)− L(Uθ, ∂xUθ, ∂xxUθ,µ)(t, x) ‖2

2 dxdt

with V a subspace of the parameters (α,β).

� Application for the Burgers equations with many viscosities [10−2, 10−4]:

� Training for the viscosity subset: 2h.E. Franck 27/40

27/40

Operator Learning

E. Franck 28/40

28/40

Operator learning
� We consider the following problem:

Gα(x ,t)(u(t, x)) = ∂tu(t, x) + Lα(x)(u(t, x)) = 0 on Ω,
u(t, x) = g(x) on ∂Ω,
u(t = 0, x) = u0(x)

� We note µ(t, x) = (α(x , t), g(x), u0(x)) the parameters.
� Formally, there exists a pseudo-inverse operator G+, such that G+(µ) = u(t, x).

Objective

Approximate G+ by a neural network on a subspace of the data.

First approach: discrete approach

We discretize the data on a mesh µh, and we construct a neural network G+
θ (µh) (in

general, a CNN) which minimizes J (θ) = J1(θ) + J2(θ), with

J1(θ) =

∫
µ

nT∑
n=1

‖ G+
θ (un

h,µh)− un+1
h ‖2

2 dµ

and
J2(θ) =

∫
µ

nT∑
n=1

‖ Gµ,∆t(G
+
θ (un

h,µn
h), un

h) ‖2
2 dµ

with Gµ,∆t(un+1
h , un

h) a scheme, and where integrals are approximated by MC.

E. Franck 29/40

29/40

Operator learning II

Operator learning
We speak about operator learning if your neural network map data living in a Hilbert
functional space.

Second approach: continuous approach

We construct a neural network G+
θ (µ(t, x)), which minimizes J (θ) = J1(θ) +J2(θ), with

J1(θ) =

∫
µ

∫
Ω

∫ T

0
‖ G+

θ (t, x ,µh(x , t))− u(x , t) ‖2
2 dµdxdt

and
J2(θ) =

∫
µ

∫
Ω

∫ T

0
‖ Gµ(G+

θ (t, x ,µh(x , t))) ‖2
2 dµdxdt,

where the integrals are approximated by MC.

My understanding
When we speak about construct a map between functions, we want a neural network
where the results do not depend of the discretization of the inputs/output functions.

E. Franck 30/40

30/40

Neural operator

� Neural networks mapping functions leads to so-called neural operators (N. Kovachki,
Z. Li et al 2021).

� How construct neural operator ?

� Example: {
−∇ · (a(x)∇u) = f (x), ∀x ∈ Ω
u = 0, ∀x ∈ ∂Ω

� The solution is given by

u(x) =

∫
Ω
Ga(x , y)f (y)dy

with Ga a Green kernel. Important: the operator in non-local.

Interesting framework
In the formalism proposed by N. Kovachki, Z. Li, the key point is to add some non-locally
in the layers.

� Methods using non-locality: FNO (Z. Li and al 20), WNO (Tripura and al 22),
Laplacian NO (Chen and al), Graph kernel Operator, Multipole GNO (N. Kovachki
and al 20), DeepONet (Karniadakis and al 19)

� Methods using dimension reduction: PCANet (N. Kovachki and al 19), NOMAD
(Perdirakis and al),Meta-AE (Ye and al).

E. Franck 31/40

31/40

Neural operator I

Integral kernel

We call integral kernel applied to a function v(y) ∈ C0(Dt ;Rnt) the quantity

K(v)(x) =

∫
Dt

k(x , y)v(y)dν(y),

with k(x , y) ∈ Cp(Dt+1 × Dt ;Rnt+1 × Rnt) and ν a measure.

Neural operator layer
We call an integral kernel layer an operator which transforms vl (x) into a function
vl+1(x), and which has the form:

∀x ∈ Dl+1, vl+1(x) = Fl (vl (x)) = σl+1

(
Wlvl (πl (x)) + b(x) +Kt(v)(x)

)
where Wt ∈ Rdl+1,dl is a weight matrix and where Πl is a mapping between Dl+1 and Dl .

� Key point: we will learn the linear part and the kernel k.

� How make that in practice ?

E. Franck 32/40

32/40

Neural operator II

Lifting and projection layers
� Extrapolation layer P : increase the size of feature space:

[(v1(x),vd0
(x))] = Pθ(µ(x))

with Pθ a FNC.

� Projector layer Q : decrease the size of feature space:

[u(x)] = Qθ((v1(x),vdL (x)))

with Qθ a FNC.

Full neural operator
A neural operator is given by the following composition of layers:

u(x) = Q ◦ FL ◦F1 ◦ F0 ◦ P(µ(x))

� Many different neural operators correspond to different discretization of the kernel
layer.

E. Franck 33/40

33/40

Neural operator: Fourier NO

Fourier Neural Network
The FNOs use neural operator layers with an integral kernel:

K(v)(x) ≈ F−1(RθF(v(x)),

with Rθ learnable filters in the Fourier space. In practice it is computed with an FFT.

� Principle:

� Contrary to the discrete CNN case, we can change the mesh resolution (it is also
possible with CNNs, provided interpolation is used), and we could adapt the approach
to unstructured grids.

E. Franck 34/40

34/40

FNO like neural Operator
� Wavelet Neural Operator: we replace the Fourier transform by a wavelet transform

(closer to CNN).

� GFNO (Li and al): learn mapping between your geometry and a square and use FNO
� Laplace NO (Cheng and al 23): extension to FNO on Manifold

� Replace the Fourier basis by the eigenvectors of the Laplace Beltrami.
� The Laplace Beltrami on a mesh/graph associated with the manifold is approximated

by the Graph Laplacian (nice theory very used in ML).

E. Franck 35/40

35/40

Differentiable physics

E. Franck 36/40

36/40

Principle I
� At the beginning, PINNs/neural operators are used to solve PDEs.

� Other approach: supervised learning, Hesthaven et al 2017, 2018, 2020, 2022, B.
Desprès and H. Joudren 2020, R. Loubère et al 2020, etc.

� Differentiable physics, Michael P. Brenner et al 2018, 2020, “Physics-based deep
learning”, Nils Thuerey et al, 2021.

Coming back to neural networks
� The neural networks are trained with stochastic gradient descent.

� How is the gradient computed? Back-propagation.

Back-propagation and automatic differentiation

� Function: fθ(x) = f1 ◦ ◦ fn
� Automatic differentiation methods are able to deal with deep function composition.

E. Franck 37/40

37/40

Principle II

Differentiable physics
Write the scheme such that we can apply automatic differentiation and back-propagation
to compute the gradient of each function of the scheme in the code, and each
composition of these functions.

� Using that, we can compute the gradient with respect to all inputs of the solver, or of
sub-parts of the solver.

� Consequences: We can put a NN anywhere in the solver and optimize it with respect
to a criterion on the simulation result.

Link with optimal control
In optimal control we compute the gradient of the loss with respect to the input with an
adjoint method. It is another use of automatic differentiation methods.

Drawback
With back-propagation, stability problems (vanishing or exploding gradient) can arise
when composing too many functions.

E. Franck 38/40

38/40

Conclusion

E. Franck 39/40

39/40

Conclusion

Neural networks
The deep neural networks are good candidates to gives smooth approximations using data
in large dimensions.

PINNS
PINNS gives a new way to solve PDE. Less efficient and accurate but interesting in large
dimensions.

Neural operator
NO can gives good approximation of PDe solutions on semi-large parameters datasets.

Differential physics
Use the huge progress of automatic differentiability to optimize a part of code/scheme.

Next Talk
How to couple these approaches with standard one to obtain guarantees and better
efficiency.

E. Franck 40/40

40/40

	Introduction
	Physics-informed Neural Networks
	Operator learning
	Differentiable physics
	Conclusion

