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Plasma Vlasov equation
� Plasma: hot ionized gas. Plasmas are sensitive to electric and magnetic field.
� Model: Vlasov equation

∂t f + v · ∇xf + E(x)∇vf =
1

ε
(M − f ) (1)

with f (t, x, v) ∈ R+ × R2d , E(x) the electric field and

M =
ρ(x)

2πT (x)
e
− (v−u(x))2

2T (x)

with

ρ =

∫
Ω
fdv, ρu =

∫
Ω
f vdv, ρT =

∫
Ω
f (v − u)2dv

� Very costly models to solve.
� Reduced model: fluid macroscopic model.∫

Ω
(1)dv→ ∂tρ+∇ · (ρu) = 0∫

Ω
(1)vdv→ ∂tρu +∇ · (ρu⊗ u + ρTId + Π) = −ρE∫

Ω
(1)

1

2
v2dv→ ∂tE +∇ · (Eu + pu + Πu + Q) = −ρEu

with the stress tensor and the heat flux:

Π + ρTId =

∫
Ω
f (v − u)⊗ (v − u)dv, Q =

∫
Ω
f (v − u)3dv
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Closure problem

� Euler equations: 
∂tρ+∇ · (ρu) = 0
∂tρu +∇ · (ρu⊗ u + ρTId + Π) = −ρE
∂tE +∇ · (Eu + pu + Πu + Q) = −ρEu

� but we have three equations and five unknowns. How solve the system ?

� In 1D, Π = 0 we need to determine only Q.

Closure

� Principle of closure:

Π(f ) ≈ Π̂(ε, ρ, u,T ), Q(f ) ≈ Q̂(ε, ρ, u,T )

� Strategy 1: local closure obtain by asymptotic analysis for ε� 1.

� Strategy 2: nonlocal closure which capture some specific effects associated with
intermediate values of ε.

� Strategy 3: nonlocal/local closure obtained by supervised learning.
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Learning closure I
� General priciple:

� Production of the data set
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Learning closure II

Neural network
We use a CNN of the form:

qh = CNNθ(ρh, uh,Th, εh)

where we take as input the variables on all the mesh and gives the heat flux on all the
mesh.

� Which neural network: Unet.

� Training time: around 30-40 minutes

� How deal with other grid: interpolation/projection to call the CNN on the training
grid size.
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Results I

� We compare q given by the NN, q = −ε 3
2
p∂xT of the Navier-Stokes closure and the q

compute by a kinetic code.

� We compare a kinetic code, fluid code with NN, with NS and with the q computed by
the kinetic.
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Results II

� Different simulations:
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Neural operator and elliptic equations
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Nonlinear elliptic problems and Newton’s method
� We want to solve the following elliptic problem:

u − α0∇ · (A(x , y)k(u)∇u) = f (x , y).

� It also corresponds to the implicit part of a diffusion equation.

Solver

� Finite difference or Finite element (here on structured meshes)

� Newton-Krylov method (Jacobian-free approximation + GMRES for linear part)

� After discretization, we solve the problem:

GAh ,fh ,α0
(uh) = 0

with uh a discretization of u(x).

Difficulties

� The more the equation is non-linear, the more the Newton convergence is difficult.

� The more A(x , y) is anisotropic and α0 � 1, the more the condition number is large
and the convergence (linear/nonlinear) is hard.
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Initial guess and FNO

Convergence of Newton’s method
The convergence depends on the initial guess. If the initial guess is too far from the
solution, Newton’s method converges slowly, or even does not converge.

Idea
Train a Fourier Neural Operator (FNO) to approximate the solution of the elliptic
equation and use it as an initial guess.

� We keep the convergence properties of the scheme, and we hope to accelerate
Newton’s method.

� Algorithm:

1. Fix a mesh, fix α0 and k(·),
2. Randomly generate many data uih, Ai

h (random Fourier coefficients, sum of
random Gaussian functions),

3. Compute the right-hand side associated with f ih ,

4. Train the neural network G+
θ (Ai

h, f ih ), by minimizing

J(θ) = ω
n∑

i=1

‖G+
θ (Ai

h, f ih )− uih‖+ (1− ω)
n∑

i=1

‖GAi
h

,f i
h

,α0
(G+

θ (Ai
h, f ih ))‖.
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Results I
� We consider the equation

u(x)− ∂x (2α(x)u4∂u) = f

� We learn only with the data loss and the residue loss.
� Ratio number of iterations (top) and CPU time (bottom) for classical/NN on 100 cells
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Results I
� We consider the equation

u(x)− ∂x (2α(x)u4∂u) = f

� We learn only with the data loss and the residue loss.
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Results II

� What happens when we increase α0 to get a stronger non-linearity?

� We only compare the average results:

mesh α0 = 2 (40 sim) α0 = 5 (25 sim) α0 = 8 (25 sim)
100 cells +500% +1800% +5000%
200 cells +88% +230% +620%
400 cells +82% +150% +220%
600 cells +92% +220% +250%

Table: Comparison of the mean “gain” for different values of α0.

� Fails: on all the tests, we have 0% of fail (our method being less efficient than the
classical one) for the iteration criterion, and around 2% of fail on the CPU time
criterion.

� On more refined meshes, the gain is smaller (the network acts only at the beginning of
the convergence).

� More the system is nonlinear more the method is efficient.

E. Franck 14/37

14/37



Enhanced numerical methods with PINNs
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Pinns vs Finite element
� Parametric problem:{

−∆u = α sin(2πx) + β sin(4πx) + γ sin(8πx)
u = 0

� Solving that with PINNs we obtain an error comparable to 80 cells finite elements.

� Problems: no guarantees and in a few time some fails. Advantages: after the
training, very fast to have a solution for new (α,β, γ).

Idea
See the PINNs as a prior to the solution and plug in it the numerical method (here FE) to
increase the accuracy.

� Strong form → weak form:

−∆u = f →
∫

Ω
∇u · ∇vdx =

∫
Ω
fvdx , v ∈ H1

0 (Ω)

� We take u = uh =
∑N

j=0 αjφj (x) and v = φi (x) and plug it in the weak form to obtain

Aα = b, Aij =

∫
Ω
∇φj · ∇φi , bi =

∫
Ω
f φi
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Finite element
� Definition of finite element: triplet {K ,P, Σ} where

� K is compact Lipschitz subset of Rd ,
� P ⊂ VK , with VK is a vectorial space of function φ : K → Rd

� Σ is a set of q linear forms acting on P such that the linear mapping:

G : P → (σ1(φ), ...,σq(φ)) ∈ Rq

is bijective. The linear forms {σ1, ....,σq} are called local degrees of freedom

� A finite element is P-unisolvant if each element of P is uniquely determined by the
local degrees of freedom.

� The basis {φ1, ...,φq} of P which satisfy

σi (φj ) = δij , 1 ≤ ij , j ≤ q

is called local shape function.

� The local interpolation operator IK is defined by:

∀f ∈ VK , IK f (x) =

q∑
i=1

σi (f )φi (x)

� Imposing the continuity between the local shape function we obtain the global shape
functions which form a basis of Vh ∈ H1(Ω)
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Enhanced Finite element

Classical P1 element
We choose the value at the node as DoF:

� K = [x1, x2]

� P1([x1, x2])

� Σθ,K = {σ̄1, σ̄2}.
� The local shape functions:

φ1(x) =
x2 − x

x2 − x1
, φ2(x)

x − x1

x2 − x1

Modified P1 element
We consider uθ(x ;µ) ∈ C1(R).

� K = [x1, x2]

� Pθ,K =
{
φ̄ = φuθ, φ ∈ P1([x1, x2])

}
� Σθ,K = {σ̄1, σ̄2} with ∀φ̄ ∈ Pθ,K , σ̄i (f ) = f (xi )

uθ(xi )
, 1 ≤ i ≤ 2

� The local shape functions:

φ̄1(x) = φ1(x)uθ(x), φ̄2 = φ2(x)uθ(x)

with φ1,φ2 the P1 local shape functions.
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Theory
� Discrete problem: {

Seek uh ∈ Vh ∈ H1(Ω), such that
a(uh, vh) = b(vh), ∀vh ∈ Vh

with ah a discrete bilinear form, bh a discrete linear form, Vh ∈ H1(Ω)
� The Cea lemma allow to obtain the following estimation of the error:

‖ u − uh ‖Hm≤
M

α
‖ u − vh ‖Hm≤ C‖ u − Ihu ‖Hm ∀vh ∈ Vh

since the interpolator Ihu ∈ Vh.

Proposition

Ih(u) = Īh(
u

uθ(x)
)uθ(x)

with Īh the classical P1 interpolation. So

‖u − Ih(u)‖Hm ≤ ‖
u

uθ
− Ī(

u

uθ(x)
)‖Hm‖uθ(x)‖Hm

� We use the results of the classical interpolation to conclude.

Convergence

‖u − Ih(u)‖Hm ≤ Ch2−m

(
|

u

uθ(x)
|H2
‖uθ(x)‖Hm

‖u‖Hm

)
‖u‖Hm .

E. Franck 19/37

19/37



NN-enhanced finite element solver: results

� First test:
−∂xxu = α sin(2πx) + β sin(4πx) + γ sin(8πx)

We train with (a, b, c) ∈ [0, 1]3 and test with (a, b, c) ∈ [0, 1.2]3.

Results with 20 cells:

Data set inside training set outside training set inside/outside
Average gain vs FE 101 28.4 76.8
Average gain vs PINNS 6.7 7 6.8

� Second test:
v∂xu −

v

Pe
∂xxu = r

We train with r ∈ [1.5, 2.0], v ∈ [1.5, 2.0] and Pe ∈ [10, 120],
and we test with r ∈ [1.5, 2.2], v ∈ [1.5, 2.2] and Pe ∈ [10, 150].

Results with 20 cells:

Data set: inside training set outside training set inside/outside
Average gain 110 25 81.6

� The method converges with second-order accuracy.

� Next step, with Inria Pau: 2D extension, extension to time problems.
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Application of differentiable physics
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General problem

� We want to solve general hyperbolic PDEs:

∂tU + ∂xF(U) = 0

� High order method (MUSCL, HO finite volumes or DG) generate oscillations around
areas with strong gradients or shock waves: Gibbs phenomenon.

� Example on the advection equation:

� Solutions: slope limiting, artificial viscosity, filtering, etc.

Goal
Design slope limiting for MUSCL or artificial viscosity for DG using neural networks.
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Artificial viscosity problem for DG
� We have a DG scheme, written under the form

∂rkt Uh + ∂DG
x F(Uh) = 0.

� Artificial viscosity method: add a diffusion operator, which acts on the oscillations.

� Modified scheme:

∂rkt Uh + ∂DG
x F(Uh) = ∂DG

x (D(Uh)∂DG
x Uh).

� How to construct D?
� Derivative-based approach:

D(Uh) = λmaxh|∂DG
x Uh)|

� MDH approach: we reconstruct the modes within the cells, and apply viscosity to
decrease the highest modes.

� Other approaches: MDA, entropy-based, etc.

� How to use neural networks? Approach from J. Hesthaven: compute the best viscosity
on many test cases, and learn this viscosity with a NN.

� The NN interpolates between known viscosities.
� There is no new viscosity model,
� and we cannot use this method to tune a scheme where we do not have a prior

viscosity model.
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Differentiable physics approach I

Tool
We propose to use differentiable physics (control optimal approach) to design new types
of viscosity model.

� Formalism of optimal control and RL.

� We define a NN Dθ(Uh(t)) with Uh(t) the discrete solution.

� We define a value function:

VT
θ (U0) =

∫ T

0
C(Uh(t))dt,

with C a cost function and U0 = Uh(0) an initial condition.

Goal
Our objective to find a solution of the minimization problem:

min
θ

∫
U0

Vθ(U0)dP(U0)dU0 (2)

with P(U0) a probability law of initial data on U0.
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Differentiable physics approach II
� After Monte-Carlo discretization, we obtain the minimization problem:

min
θ

J(θ) = min
θ

ndata∑
i=1

VT
θ (Ui ,0).

� We provide an approximation in time of the value function:

VT
θ (U0) = ∆t

T∑
t=1

C(Ut
h)

� The transition between two time steps is given by Un+1
h = Sh(Un

h,Dθ(Un
h)) with our

scheme. As a consequence, we have:

VT
θ (U0) = C(U0)+C(Sh(U0,Dθ(U0)))+C(Sh(Sh(U0,Dθ(U0)),Dθ(Sh(U0,Dθ(U0)))))+... ,

� As previously mentioned in the paradigm of differential physics, we can compute by
automatic differentiation:

∇θV
T
θ (U0)

� We solve the minimization problem on J(θ) using a gradient method, with

∇θJ(θ) =
m∑
i=1

∇θV
T
θ (Ui ,0)
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Differentiable physics approach III
� To complete the algorithm, the NN and loss function still have to be defined.

Neural network
A ResNet convolution neural network (without coarsening operator) with q channels
(polynomial order q); once trained, it can be used on arbitrary uniform grids, by sliding
the convolution window.

Loss function
The cost function C() is composed of three parts:

� L2 error compared to a MUSCL solution on a fine grid:

Cerror(Un
h) = hFV

n∑
i=1

‖ΠFV (Un
h)i − Ui ,ref ‖2

2 ,

� L1 error on the Laplacian compared to the Laplacian of the reference solution

Cosc(Un
h) = hfv

n∑
i=1

∥∥∥D fv
xx (Πfv (Un

h))i − D fv
xxUj ,ref

∥∥∥
1

.

� L2 norm of Dθ:
Cvis(Un

h) = ‖Dθ(Un
h)‖2

2 .
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Results I
� We make a training with the loss ”oscillation” and ”viscosity”.

� How the NN learn:
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Results II

� We compare the training for different ratio loss.

� We fixe the weight of the oscillation loss.

� The final result is mainly related to this ratio.

� The train stability around a error which depends of this ratio
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Results III

� We solve ∂tρ+ ∂xρ = 0 with periodic boundary condition with Tf = 2 (long time).

� Comparison between differents viscosities:
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Results III

� We solve the Euler equation with Neumann BC.

� Comparison between differents viscosities:

� SOD test case 32 cells
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Results III

� We solve the Euler equation with Neumann BC.

� Comparison between differents viscosities:

� Shu Osher test case
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Conclusion
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Conclusion

Modeling
� The neural network can approximate complicate nonlocal function like closure. Use to

construct intermediaries/reduced models. 2D Extension for gas less stable.
� Current work: Indermediary models between Euler and Vlasov with stability proof.

PINNs/NO
� The PINNs or Neural operator allows obtaining good prior to a solution.
� We show two ways to plug it in numerical method to win CPU time or accuracy.

Could be generalized to other numerical (DG, Semi-Lagrangian etc).
� How deal with more complex multi-scale PDE ?

Differentiable physics
� DP allows tuning a scheme or a part of your scheme. Here viscosity but it can be:

closure, fluxes, splitting coefficients, etc.
� How take into account to the long time behavior ? Mix with reinforcement learning ?

INRIA team
The INRIA Team Tonus on plasma modeling would come from MACARON on ML
and PDE. Possible open positions.
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Bonus: Unstructured meshes
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Graph neural networks

CNN and signal processus
Convolutional neural networks are very useful to analyze pictures and detect patterns
(segmentation, . . . ). For PDEs, they can be useful for discontinuity or front tracking.

� How to use them on unstructured meshes?

� CNN have been made for pictures, and for regular grids.

GNN
In the last five years, many Graph convolutional neural network have been proposed and
can be used on general meshes.

Important
Choose the network type such that the performance is not impacted when changing the
mesh but not the topology.
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Discontinuity Tracking I

� A first application: discontinuity/shock detection and mesh refinement.

� Case 1: constant by part function. Localization of discontinuity by GCN and iterative
refinement.
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Discontinuity Tracking II
� Case 2: Discontinuity detection for non piecewise constant function. Unet

architecture with Chebnet and geometric pooling layers.
� Training on a single mesh (for computational reasons)

E. Franck 36/37

36/37



Discontinuity Tracking III
� Case 3: Discontinuity detection in Burgers simulation using previous training

� A first refinement approach

� After refining the mesh, the discontinuity remains detected. This effect dampens after
four refinements, possibly due to training on a single mesh.
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