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Nonlinar conservation laws and WB schemes

B We consider the following type of models (like everybody here):
0:U + 0xF(U) = S(U)
B \We are interested by the simulation of flows such as:

OxF(U) = S(U) + eP(t, x)

Numerical difficulties I

We consider a scheme of order gq. For a equilibrium 9xF(U) = S(U) we have
OxF(Up) = S(Up) + CAxIQp(t, x).

if £ < CAx9 our scheme will not correctly capture perturbed flows. )

WB and A-WB schemes

For a equilibrium 9xF(U) = S(U), a Well-Balanced scheme is such that 0xF(Up) = S(Up),
and an Approximately Well-Balanced scheme is such that

8XF(Uh) = S(Uh) + CzAXqZQh(t, X)

with go > g or G < C. y

B WB et A-WB make it possible to capture these perturbed flows. m
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Non-exhaustive state of the art

Many people have been working on approximately and exactly well-balanced schemes,
including many in the audience!

For instance, we mention:

B Exactly or approximately well-balanced schemes for the shallow water equations:

O Audusse, Bouchut, ...

Bermidez, Vazquez, ...

Berthon, Chalons, Desveaux, Michel-Dansac,. . .
Clain, Figueiredo, ...

the Malaga group: Castro, Parés, ...

Noelle, Shu, Xing, ...

ooooo

B Exactly or approximately well-balanced schemes for the Euler equations:

) Franck, Mendoza, ...
U Kappeli, Mishra, ...
U Thomann, Klingenberg, Puppo, ...

B Exactly or approximately well-balanced schemes for other systems:

0 Busto, Dumbser, Gaburro, . ..

0 Chertock, Kurganov, ...
( > /a2
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DG schemes

B We recall quickly the Discontinuous Galerkin method.

8:U + 8,F(U) = S(U)

/Q‘BtUsf)der/Q.axF(UMdX: /Q_S(U)¢>dx

B |n each cell we consider a discrete vectorial polynomial space:
Vi, = Span(¢1(x), ...¢q(x)) and we use

q

U‘Qj(t' X) = Za,—(t)d),-(x) eV

i=1

and

¢ =0¢1,....0 =g

B We obtain a matrix-vector system of size g X g

[ Mrex(t) +K(ex(1) = S(ax(2)) |

with §, K € R9 and M € R9*4

(¢/.
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DG scheme with prior on the equilibrium

E. Franck
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Main idea

B We consider a family of equilibria

Ueq(x; 1)
indexed by some parameters p.

B \We assuming that we are able to produce an approximation of this equilibrium family,
called the prior:

Uo(x; 1)
dea ... |

Incorporate this prior in the local basis to obtain an A-WB scheme with a much higher
accuracy around the equilibrium.

Questions

B What is the potential new basis (next slide)?

B Can we ensure the convergence of the new scheme (this section)?
B How to construct this prior (next section)?

£
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Proposed basis

_

Introduce the prior on the equilibrium into the DG basis, to generate non-polynomial basis.

Basis with multiplicative prior |

x — x;)k
V} = Span (Ue(X§ ), Ug (x; ) (x — x;), ..., Ug (x; ”‘)(k|J)>

4

Basis with additive prior

B Solution 1:
i _ (x =)
Vi = Span (U@(X, n),1, ..., R

B Solution 2:

3 _ . . M
Vi = Span (Ul ), 0 =5). o S

B Does DG converge with non-polynomial bases?

(¢
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Convergence within the Yuan-Shu framework |

anShu06 L. Yuan and C.-W. Shu: Discontinuous Galerkin method based on non-polynomial
approximation spaces, JCP 2006.

Main result | of [YuanShu06] |

We consider a basis (v1, ..vk) of the space V. If there are constant aj and b;
independant of the size of the cell Ax;, and if we have

K
IviCx) = Z aik(x — xi)¥| < bi(Ax;)KH! (1)

k=1

then for any function u € HX*1(Q;), there exists v, € Vj, and

1
Vi — ] < Clul g,y () 2

Main result Il of [YuanShu06]

With the first result, we can prove the convergence (with additional steps) of the DG
scheme using the V}, basis.

‘10/2
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Convergence with the Yuan-Shu framework Il

Result in the scalar case

We assume that ug(x; ) € CP(2) with p > K + 1. Then, the previously proposed bases
satisfy the assumption of [YuanShu06], and the DG scheme converges.

B Example of proof for V,}.

B Since the neural network is CX+1(R), we can write a Taylor series, to obtain:

/ uF)(x; uK+)(¢
() = wg) + (x )y £+ L gy 7O

(K +1)!
with ¢ € [x;, x]. We then get:
o (%) wp(x)  Up(g) - (ﬁi’ 1 o
Ue(X)Ff = Xj) RS o . ue(K_l()x!j) (x —>9) n "{%C!)
up (x)(x — x;)< S 0 4o %) (x =) 1
A

B |t easy to see that the matrix A, its inverse A~1, and the vector b are independent
from Ax;. Therefore, the assumption is verified.

E. Franck
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Specific estimate |

B Problem: the previous approach does not give the expected gain associated with these
bases.

B We propose to compute a specific estimate using these bases.

B Current work: we obtained the projector estimate for the basis Vhl.

B Following: finish the global proof (we do not expect complications) and do the same
for other basis.

First lemma

We consider a basis (v1, ..vk) of the space V! and assume that ug(x; u) € CP(Q)

ug(x; w)? > ag, Yx€Q
For any function u € HK+1(Q;), the L? projector on V!, Py(u) € V}, satisfies

u(x)

o (x, 1) () 3 (x, )|

|lu—Pp(u)| < C
HK+1(0))

4

B Key point: the pointwise interpolation and L? projector associated with this basis can

be rewritten as the classical one applied at —“*)__ and multiplied by ug(x, )
‘ 12
\ /42
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Specific estimate |l

Second lemma

Under the same assumptions than the previous lemma, for the basis V,:"Od’3, we obtain
that for any function u € HK+1(Q)

u(x)

)KL g (x &9
— (824 | ug(x, ) |

lu— Pp(u)l2(q) < C

1
H*3 (@)

B |dea of proof:
U sum the previous result on the cells
O use that the prior is CP(2) to bound |ug(x, pt)]| locally in each cell
L use the assumption CiAx < Ax; < GAx

B Following: use this estimation to prove the convergence
B do the same for the other bases

Key point
B |f the prior is good, then uu((:) ) 1 is small, and so is the error.
(X, HK+§(Q)

B For other bases, we expect an error in |u(x) — ug(x, )

1
H* 2 (@)
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Prior and PINNs
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Supervised machine learning and classical models

B Supervised learning: construct models f : RY — R™ like
y=f(x)+¢e, or P(y|x)

with € some noise, using inputs and outputs examples. We solve the optimization
problem:

m@in Z L(f(xi),¥i),

with L a loss (cost) function.

B Linear regression: We choose
fg =Ax+b

with 6 = (A,b), A€ R™? and b € R™.

B polynomial regression: We choose
dq
fo = 0:Pi(x)
i=1

with g the order of the polynomial. Huge number of coefficients for large dimensions.

B kernel regression: theory using Hilbert space with reproducing kernel.

B |n all the case, we obtain convex optimization. r-\
15
- /42
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Deep learning: neural networks

B Current choice: kernel approximation or neural network.
Layer I
A layer is a function L;(x;) : R% — R%+1 given by

Li(x)) = o(Aix; + b)),

A; € Ré+1.9/ b € RY+1 and o(-) a nonlinear function applied component by component.

Neural network

A neural network is a parametric function obtained by composition of layers:

fg(x) = Lpo....o L1(x)

with 6 the trainable parameters composed of all the matrices A, ;1 and biases b;.

B Fully connected neural network (FCNN): the matrices A, /41 are dense.

E. Franck 4



Activation functions and gradients

B The local nonlinear functions are called activation functions.
B Exemple (site MonCoachdata):

Sigmoid Leakg ?eLu i
@) = i max(0.1z,z)
tanh Maxout
tanh(z) - > max(w]@ + by, w]z + by)
ReLU 1 ELU b
max(0, z) {4 @20

- » ale* =1) z<0 »

B |t is possible to use adaptive activation functions (whose parameters are also learned).

Rely

According to the activation function, the neural network are CP(R9) functions

B We train the Neural network with a gradient-type approach. This generates
non-convex optimization problems.

E. Franck \17 /42
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Neural network vs Polynomial

B We compare over-parametrized NN and polynomial regression on the Runge function.

B 120 data and approximately 800 parameters in each model.

loss history k=2, epoch = 499 pregiction error
w0 0
06
02 o
5 w0 w0 w0 a0 s o s oo o5 10 o 95 o0 o5 10
loss history k=2, epoch = 999 prediction error
1w B / 4
o
0 ~
. 1
- o
loss history prediction error
w0 10 »
07 15 o0
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Neural network vs Polynomial

B We compare over-parametrized NN and polynomial regression on the Runge function.

B 120 data and approximately 800 parameters in each model.

loss history k=2, epoch = 4999 prediction error
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Neural network vs Polynomial

B We compare over-parametrized NN and polynomial regression on the Runge function.

B 120 data and approximately 800 parameters in each model.

s istory k=2, cpoch = 10999 preicton ror
10! 100 N — wedcton | 07
N
" .
a2 o4
0 0.00- o3
-0 0z
o
o0
° 5000 10000 15000 -Lo -05 00 05 10 * -Lo -05 00 05 10
s sy 2 cpocn = 10099 ——
10 10 N — peedction | ons
o8 020
o
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o
o %00 10000 15000 20000 1o 65 00 o5 1o io 65 00 o5 10
B The polynomial model tends to oscillate in the over parameterized regime.

Problematic for overfitting.
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Neural network vs Polynomial

B We compare over-parametrized NN and polynomial regression on the Runge function.

B 120 data and approximately 800 parameters in each

loss history.

k=2, epoch = 49

model.

prediction error
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Neural network vs Polynomial

B \We compare over-parametrized NN and polynomial regression on the Runge function.
B 120 data and approximately 800 parameters in each model.

loss istory k=2, epoch = 899 prediction error
o ” 0020
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10
0
- wot
loss istory K= 2, epach = 949 prediction error
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06 0.008
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w / \ 000
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B The ANN generates very smooth/low frequency approximations.

B |t is related to the spectral bias. The low frequencies are learned before the high
frequencies. This property seems to be very helpful for the generalization.
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PINN's |

B We solve PDEs of the form:

8tU:N(U,8vaaXXUvB)
Up(t, x) = g(x), Vx € o
U(0, x) = Up(x, a),

with the parameters

n=(p)

B The first idea comes from the remark that neural networks are smooth functions of the
inputs. Since their derivatives are easily computable by automatic differentiation,
ANNSs are possible objects to approximate PDE solution.

B A PINNs is a neural network with inputs (t, x), denoted by Uy(t, x).

Basic approach

If we have data U] approximating the solution at the points (x;, t,), we will learn the
weights of the NN by minimizing the loss:

Ndata Ndata

min Jaoea (6) = min > > [Up(tn, xi) — U7[3

n=1 j=1

How can we do that without data or with few data??
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PINN's Il

PINNs approach

Since we can differentiate the NN, we compute the PDE residual and check to what
extent it is a solution of the PDE. Main idea: Learn using this property.

B \We define the residual:
R(t,x) =18:Ug — N (Ug, 8xUg, 8:xx Uy, B)|
B To learn Uy(t, x), we minimize:
mein Jdata(0) + Jr(0) + Jp(0) + Ji(0)
with
=
2:(0) = / / |R(t, x)|3dxdt
0 Q

and

)
Jn(0) = /0 /8 1Ug(e. 20— g(Bede, 4(0) = /Q 1Ug (0, x) — Uo(x, o) 3ax

(Qurssiom

How to compute the integrals of the residuals?

20/
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Monte Carlo

How to compute the integrals of the residuals?

B Quadrature rule. Limited for large domains and small dimension
B Quadrature rule + mesh. Requires a grid and limited to small dimensions.
B Monte-Carlo approach. Slow convergence but no mesh and no dimension issues.

B The Monte-Carlo method stems from the Law of large numbers.
B \We consider a function g : R — R. We define X a random variable with the law .
B The method comes from:

V‘"(“ < Zf ]Eu[f(X)]> — N(0,1)

with X; an random example sampled with the law p
B |t allows to computie integrals. Indeed:

/ o e / F()Uadx = E[f(X)]
Q Rd

with Uq the density of the uniform law Q and X random variable following this law.

B So we have M
%; F(x;) — /Q F(x)dx| = O (%)

with x; points sampled uniformly on Q. (21 \
\ / 42
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PINN's Il

B Applying the MC method to the PINNs loss, we obtain the following minimization
problem:

Final PINNs minimization I
mgin Jdata(0) + Jr(0) + Jp(0) + Ji(0),

with

N N
5(0) =" IR(tn, x)13

n=1 j=1
with (tn, x;) sampled uniformly and
Ny Np N;
I(0) =D " Ug(ta, x) — g(xi)3. Ji(6) =D Ug(0, xi) — Uo(xi)I3
n=1 i=1 i=1

B These loss functions can be interpreted as a regularization of classical learning which
uses data.

B To avoid loss for the BC and initial condition, we use:
g (t, x) = uo(x) + t((x) * ug(x))

with ¢(x) = g(x) on the boundary and some value within the domain. p
/42
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Example: Burgers equation

2
Application: Burgers equation O¢p + Ox (%) = vOxxp-

Solving for different values of the y parameters:
v = 2110000 pts, medium-sized NN.

beginning of training

iter = 200
loss = 0.0774
L2 error: 4.7142e-01

t=024

iter = 400
loss = 0.0318
L2 error: 4.0850e-01

t=024

0s

t=0.80 t=135

t=0.80 t=135
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Example: Burgers equation

2
Application: Burgers equation 0¢p + Ox (%) = VOxxp-

Solving for different values of the p parameters:

| |
|
"y = %. 10000 pts, medium-sized NN.
B middle of training

iter = 2000

loss = 0.0000

L2 error: 9.0829e-03

t=024

-1

-10 05 0o 0s 10
x

iter = 2200

loss = 0.0000

L2 error: 8.2614e-03
t=024

t=0.80
-10 05 0o 05 10
x
t=0.80
-10 05 00 05 10

t=135

-10 05 0o 05 10
x

t=135
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Example: Burgers equation

2
B Application: Burgers equation 9:p + 9« (%) = vOxxp-

B Solving for different values of the p parameters:
® =21 10000 pts, medium-sized NN.
B end of training

iter =
loss =

L2 error:

iter =
loss =

L2 error:

4800
0.0000
4.6718e-03

t=024

5000
0.0000
4.7307e-03

t=024

05 00 05 10

t=0.80

t=0.80

t=135
1
0 /\/
-1
-10 05 00 [ 10
X
t=135
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Example: Burgers equation

2
Application: Burgers equation O¢p + Ox (%) = vOxxp-

Solving for different values of the p parameters:

v = 2910000 pts, medium NN.
beginning of training

iter = 600
loss = 0.0885
L2 error: 4.360le-01

t=024

-1

t=0.80

t=135

-10 05 0o 0s 10 -10 05 () 05 10 -10 05 0o 05 10
x x x
iter = 800
loss = 0.0233
L2 error: 2.090le-01
t=024 t=0.80 t=135
1 1 1
0 0 0
-1 -1 -1
-10 05 0o 0s 10 -10 05 0o 05 10 -10 05 0o 05 10
x x x
212
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Example: Burgers equation

2
B Application: Burgers equation 9:p + 9« (%) = vOxxp-

B Solving for different values of the p parameters:
B =20 10000 pts, medium NN.
B middle of training

iter = 2000
loss = 0.0003
L2 error: 1.8053e-02
t=024 t=0.80 t=135

1 1 1

0 0 0 /l/

-1 -1 -1

-10 05 00 0s 10 -10 05 00 05 10 -10 05 00 05 10
x X x
iter = 2200
loss = 0.0002
L2 error: 1.7773e-02
t=024 t=0.80 t=135

1 1 1

0 0 0 /\/

-1 -1 -1

-10 05 00 05 10 -10 05 00 05 10 10 05 00 05 10
x x x
212
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Example: Burgers equation

2
B Application: Burgers equation 0:p + Ox (%) = VOxxp-
B Solving for different values of the p parameters:
By = 2% 10000 pts, medium NN.
B end of training
iter = 4800
loss = 0.0001
L2 error: 5.9728e-03
t=0.24 t=0.80 t=135
1 1 1
0 0 0 /\/
-1 -1 -1
-10 05 0o 05 10 -10 05 0o 05 10 -10 05 0o [ 10
x x x
iter = 5000
loss = 0.0001
L2 error: 5.2593e-03
t=0.24 t=0.80 t=135
1 1 1
0 0 0 /\/
-1 -1 -1
-10 05 00 05 10 -10 05 0o 05 10 -10 05 00 05 10 h
x X
23
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Example: Burgers equation

2
Application: Burgers equation O¢p + Ox (%) = vOxxp-

Solving for different values of the y parameters:
v = 229210000 pts, medium NN.

beginning of training

iter = 200
loss = 0.0774
L2 error: 4.7142e-01

t=024 t=0.80 t=135

iter = 400
loss = 0.0318
L2 error: 4.0850e-01
t=024 t=0.80 t=135

E. Franck



R R R R RRRRRERERRERERRREEEE==S=————————
Example: Burgers equation

2
Application: Burgers equation O¢p + Ox (%) = vOxxp-

Solving for different values of the p parameters:
= 0002 10000 pts, medium NN.
middle of training

iter = 2000
loss = 0.2076
L2 error: 6.2666e-01

t=024 t=0.80 t=135

iter = 2200
loss = 0.1361
L2 error: 6.0138e-01

t=024 t=0.80 t=135




Example: Burgers equation

2
Application: Burgers equation 0¢p + Ox (%) = vOxxp-

Solving for different values of the p parameters:
= %7:)2. 10000 pts, medium NN.
end of training

iter = 4800
loss = 0.0272
L2 error: 4.0909e-01
t=024 t=0.80 t=135

05 00 0s 10 05 00 05 10 -10 05 00 05 10
x x x
iter = 5000
loss = 0.0212
L2 error: 4.0300e-01
t=024 t=0.80 t=135
1 1 1

o
o

05 00 05

E. Franck
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Example: Burgers equation

2
Application: Burgers equation 0¢p + Ox (%) = VOxxp-

Solving for different values of the p parameters:
v = 299220000 pts, medium NN.
beginning of training

iter = 200
loss = 0.1495
L2 error: 6.1471e-01
t=024 t=0.80 t=135

iter = 400
loss = 0.1170
L2 error: 5.2688e-01
t=024 t=0.80 t=135

-10 05 00 0s 10
x
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Example: Burgers equation

2
B Application: Burgers equation drp + Ox (%) = vOxxp-

B Solving for different values of the p parameters:
® = 2092 20000 pts, medium NN.
B middle of training
iter = 2000
loss = 0.0040
L2 error: 1.7457e-01
t=0.24 t=0.80 t=135
1 1 1
0 0 0
-1 — -1 -1
-10 05 0o 05 10 -10 05 0o 05 10 -10 05 00 05 10
x X x
iter = 2200
loss = 0.0024
L2 error: 1.6838e-01
t=0.24 t=0.80 t=135
1 1 1
0 0 0
-1 -1 -1
-10 05 0o 0s 10 -10 05 0o 05 10 -10 05 00 05 10
x x x
54,
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Example: Burgers equation

2
Application: Burgers equation 0¢p + Ox (%) = VOxxp-

Solving for different values of the p parameters:
v = 2992 20000 pts, medium NN.

end of training

iter = 4800
loss = 0.0395
L2 error: 3.9314e-01

t=024 t=0.80

t=135

iter = 5000
loss = 0.0133
L2 error: 3.676le-01

t=024 t=0.80 t=135
1 1 1
I 1
| 1
| 1
0 0 | 0 H
i 1
[
1 -1 1
10 05 00 [ 10 10 05 00 05 10 10 405 00

m
ny
o
E]
)
=
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Example: Burgers equation

2
B Application: Burgers equation 0:p + Ox (%) = VOxxp-
B Solving for different values of the p parameters:
B = 2902 40000 pts, larger NN.
B end of training
iter = 4800
loss = 0.0006
L2 error: 2.301lle-01
t=0.24 t=0.80 t=135
1 1 1
0 0 0
-1 -1 -1
-10 05 0o 05 10 -10 05 0o 05 10 -10 05 00 05 10
x x x
iter = 5000
loss = 0.0004
L2 error: 2.2456e-01
t=0.24 t=0.80 t=135
1 1 1
0 0 0
-1 -1 -1
-10 05 00 05 10 -10 05 0o [ 10 -10 05 00 0s 10 h
x X
23
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PINN's and parametric PDEs

B Advantages of PINNs: mesh-less approach, not too sensitive to the dimension.
B Drawbacks of PINNs: they are not competitive with classical methods.
B |nteresting possibility: use the strengths of PINNs to solve parametric PDEs.

B The neural network becomes Ugy(t, x, o, B).

New Optimization problem for parametric PINN's

mein J-(0) + ...

with T
J,(e):// /|3tUg(t,X)—E(U.g.8XU9,8XXU9,;1,)(t,X)|%dth
vV Jo Q

with V' a subspace of the parameters (o, 3).

B Application to the Burgers equations with many viscosities [10~2, 10~4] (training:
2h). Same time for the smaller viscosity.

e

\(24 /42\
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Numerical results
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Linear advection equation

In all the numerical experiments, we use the Vh3 basis. Results are similar with the other

bases.
We first consider the first-order advection equation

{ Oru + Oxu = s(u; p),
u(t =0, x) = up(x),

with the following parameterized source term and initial condition

B s(u;o, B) = au + Bu?;
B yg(x) = € + ueq(x; v, B, v), with the steady solution ueq depending on ¢, 8 and an

additional parameter v.
Hence, we have three parameters: 0.5 <o <1,05<3<1,01<v<0.2

We propose three experiments: approximate
B 3 steady solution,

B 3 perturbed steady solution,

B an unsteady solution.

Training the PINN takes about 10 minutes on an old GPU, with no data, only the PINN
loss.

Last minute remark: the errors are not well computed. Perhaps constant change (for all
methods) and a little bit the order. (26 \
E. Franck /42
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Linear advection equation: steady solution

In this case, € = 0 in the initial condition, so we approximate the steady solution itself.

We compute the error between the exact and approximate solutions, for polynomial bases
with ng € {1, 2, 3,4} elements, and with or without PINN prior.

We take a quadrature of degree ng = max(3, ng + 1).

pts errory, order errorg order gain

10 7.42e-02 — 3.89e-04 — 190.66
20 2.64e-02 1.49 1.45e-04 1.42 181.76
40 9.29e-03  1.51 | 5.23e-05 1.47 177.55
80 3.27e-03  1.50 1.89e-05 1.46 172.63
160 | 1.18e-03 1.47 | 6.95¢e-06 1.45 170.09

(a) errors with a one-element basis, ng =1
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Linear advection equation: steady solution

In this case, € = 0 in the initial condition, so we approximate the steady solution itself.

We compute the error between the exact and approximate solutions, for polynomial bases

with ng € {1, 2, 3,4} elements, and with or without PINN prior.

We take a quadrature of degree ng = max(3, ng + 1).

pts errory, order errorg order gain

10 1.80e-03 — 1.09e-05 — 164.69
20 3.20e-04 2.50 1.93e-06 2.51 165.75
40 5.51e-05 2.54 | 3.33e-07 253  165.27
80 9.41e-06 2.55 | 5.64e-08 256 166.77
160 | 1.80e-06 2.38 1.08e-08 2.38 166.83

(b) errors with a two-element basis, ng = 2

E. Franck
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Linear advection equation: steady solution

In this case, € = 0 in the initial condition, so we approximate the steady solution itself.

We compute the error between the exact and approximate solutions, for polynomial bases

with ng € {1, 2, 3,4} elements, and with or without PINN prior.

We take a quadrature of degree ng = max(3, ng + 1).

pts errory, order errorg order gain
10 | 2.23e-05 o 9.34e-07 o 23.94
20 | 2.02e-06 3.46 | 8.80e-08 3.41 23.01
40 1.75e-07 3.53 | 7.41e-09 3.57 23.60
80 1.45e-08 3.59 | 6.29¢-10 3.56 23.14
160 | 1.46e-09 3.32 | 6.35e-11 3.31  22.99

(c) errors with a three-element basis, ng = 3

E. Franck
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Linear advection equation: steady solution

In this case, € = 0 in the initial condition, so we approximate the steady solution itself.

We compute the error between the exact and approximate solutions, for polynomial bases

with ng € {1, 2, 3,4} elements, and with or without PINN prior.

We take a quadrature of degree ng = max(3, ng + 1).

pts errorg order error z order  gain
10 | 2.81e-07 o 6.49e-08 o 4.33
20 1.26e-08 4.48 | 3.02e-09 4.42 4.17
40 | 5.72e-10 4.46 | 1.32¢e-10 452 4.34
80 | 2.31e-11  4.63 | 5.40e-12 461 4.29
160 | 1.21e-12 425 | 2.77e-13 429 4.40

(d) errors with a four-element basis, ng = 4

E. Franck
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Linear advection equation: perturbed steady solution

We now study the effect of nonzero values of € in the initial condition: we take
e € {1074,1072,1071, 1} and 20 discretization cells.

We represent the error, over time, between the approximate and exact solutions.

initial perturbation = 1.0

initial perturbation = 0.1 initial perturbation = 0.01 initial perturbation = 0.0001
no_a_priori o 107
o -2, .
- \
10 \ \ . 102
\ \ w0
\ 102 \ —— no_a_priori —— no_a_priori
‘\ | —— with_a_priori_PINN \ —— with_a_priori_PINN
102 \ \ ‘\
\ \ \ 107
\ \ \
103 \ o | o \ /
\ \ \ — no_a_priori
| — — (= 4 —— with_a_priori_PINN
0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1

2 3 4 5

(a) errors with a one-element basis, ng = 1

E. Franck \28/42
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Linear advection equation: perturbed steady solution

We now study the effect of nonzero values of € in the initial condition: we take
e € {1074,1072,1071, 1} and 20 discretization cells.

We represent the error, over time, between the approximate and exact solutions.

initial perturbation = 1.0

initial perturbation = 0.1

initial perturbation = 0.01 initial perturbation = 0.0001
100 —— no_a_priori 10 — no_a_priori ~, —— no_a_priori —
——— with_a_priori_PINN —— with_a_priori_pinN | 10 —— with_a_priori_PINN
107 s
1072 \
-2 |
10 |
\ “ — no_a_priori
100 o \ —— with_a_priori_PINN
|
|
| 10°°
‘ \ \ ‘
| | |
\ -5
| 10 | 10 \ |
1078 | | \
| \ e |
| — | ~_
10°
0 1 2 3 4 5 o 1 2 3 4 H 0 1 2 3 4 5 0

(b) errors with a two-element basis, ng = 2

E. Franck
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Linear advection equation: perturbed steady solution

We now study the effect of nonzero values of € in the initial condition: we take
e € {1074,1072,1071, 1} and 20 discretization cells.

We represent the error, over time, between the approximate and exact solutions.

initial perturbation = 1.0

initial perturbation = 0.1

initial perturbation = 0.01

initial perturbation = 0.0001

—— no_a_priori
—— with_a_priori_PINN

— no_a_priori
—— viith_a_priori_PINN

—— no_a_priori
—— wiith_a_priori_PINN

1076

—— no_a_priori
—— with_a_priori_PINN

(c) errors with a three-element basis, ng = 3
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Linear advection equation: unsteady solution

Lastly, we perform the approximation of an unsteady solution with the two bases (with
and without prior), to show that using the enhanced basis does not decrease
approximation performance on unsteady solutions. The source term is zero in this case.

In this case, we take ng = 3 and 20 discretization cells.

no_a_priori

0.20 1

0.18 4

0.16

0.14 4

0.12

0.10

0.0 0.2 0.4 0.6 0.8 1.0

(a) without prior; error is 8.874 x 103
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EEEEEEEEEEEEEEEEEERERRlRREEEE——
Linear advection equation: unsteady solution

Lastly, we perform the approximation of an unsteady solution with the two bases (with
and without prior), to show that using the enhanced basis does not decrease
approximation performance on unsteady solutions. The source term is zero in this case.

In this case, we take ng = 3 and 20 discretization cells.

with_a_priori_PINN

0.20 1

0.18 4

0.16

0.14 4

0.12

0.10

0.0 0.2 0.4 0.6 0.8 1.0

(b) with prior; error is 8.874 x 1073, the same as without prior

E. Franck 4
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Shallow water equations

We consider the shallow water system with topography

ath + (9xq =0,

¢ 1
Orq + Ox (T + Egh2) = —ghoxZ.

The smooth moving steady solutions are given by

K

op + g(h+ Z) = cst = By.

q = cst = qo;
The space domain is (0, 1).

We consider two topography functions, which depend on two parameters o and f3:
B Z.(x; e, B) = Bw(ax), with w a Gaussian bump function;

B Z.(x;a,B) = Bwo(ax), with we a compactly supported Gaussian bump function.

Then, the steady solution h(x; «, 8, hg, Bo) depends on the two topography parameters «
and S, as well as on the two steady flow parameters By and qo.
(/.
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Shallow water equations: steady solution

Training takes about 10 minutes on an old GPU, with no data, only the PINN loss.

Results for the non-compactly-supported topography Zg.

We use a quadrature of degree ng = ng + 2.

pts

h
error¢

order

q

error order

error'l

order gain

errorl

order

gain

10
20
40
80
160

1.88e-01
7.64e-02
3.11e-02
1.20e-02
4.54e-03

1.30
1.30
1.37
1.41

4.34e-01
2.35e-01 0.89
1.04e-01 1.17
4.18e-02 1.32
1.58e-02 1.40

3.76e-04
1.52e-04
6.86e-05
2.64e-05
9.80e-06

499.42
1.31 501.88
1.15 453.42
1.38 456.98
1.43 463.99

1.74e-03

248.54

4.52e-04 1.95 519.64
2.18e-04 1.05 478.66
9.33e-05 1.23 448.72
3.59e-05 1.38 439.97

(a) errors with a one-element basis, ng =1

E. Franck
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Shallow water equations: steady solution

Training takes about 10 minutes on an old GPU, with no data, only the PINN loss.

Results for the non-compactly-supported topography Zg.

We use a quadrature of degree ng = ng + 2.

pts

h
error¢

order

q

error order

h
error’;
¢

order gain

errorl

order gain

10
20
40
80
160

1.78e-02
2.96e-03
5.18e-04
9.20e-05
1.62e-05

2.59
2.52
2.49
2.50

5.43e-02
8.13e-03 2.74
1.36e-03 2.58
2.40e-04 2.50
4.24e-05 2.50

9.56e-05
2.24e-05
3.75e-06
6.61e-07
1.15e-07

186.55
2.09 131.94
2.58 137.95
2.51 139.19
2.51 140.32

1.14e-04
6.82e-05
1.01e-05
1.72e-06
2.99e-07

475.78
0.74 119.17
2.76 134.75
2.55 139.46
2.53 141.88

(b) errors with a two-element basis, ng = 2

E. Franck
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Shallow water equations: steady solution

Training takes about 10 minutes on an old GPU, with no data, only the PINN loss.

Results for the non-compactly-supported topography Zg.

We use a quadrature of degree ng = ng + 2.

pts errorg5 order errorj) order errorg’-) order gain error% order gain

10 |2.52e-03 — |6.21e-03 — [3.84e-05 — 65.83|9.04e-05 — 68.79
20 |2.55e-04 3.31 |7.78e-04 3.00 |3.35e-06 3.52 76.16|8.40e-06 3.43 92.62
40 [2.69e-05 3.25|8.23e-05 3.24 |3.71e-07 3.18 72.52|1.04e-06 3.01 79.06
80 |2.30e-06 3.55 |7.67e-06 3.42 |3.34e-08 3.47 68.84|1.09e-07 3.25 70.08
160|1.92e-07 3.58 |6.91e-07 3.47 |2.90e-09 3.53 66.39|1.03e-08 3.41 66.94

(c) errors with a three-element basis, ng = 3

(/-
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Shallow water equations: steady solution

Training takes about 10 minutes on an old GPU, with no data, only the PINN loss.

Results for the compactly-supported topography Z..

We use a quadrature of degree ng = ng + 7. This is needed because of the large values of

the derivatives of the topography (and therefore of the steady solution).

pts

h
errord)

order

q
error
¢

order

error’;—) order

gain

errorg’ order gain

10
20
40
80
160

1.792e-01
1.133e-01
4.009e-02
1.709e-02
6.612e-03

0.66
1.50
1.23
1.37

8.177e-01
2.713e-01
1.516e-01
5.929e-02
2.290e-02

1.59
0.84
1.35
1.37

5.504e-03 —
9.514e-05 5.85
5.018e-05 0.92
2.068e-05 1.28
8.079e-06 1.36

32.56
1190.37
798.84
826.30
818.45

2.985e-02 — 27.39
6.583e-04 5.50 412.15
1.714e-04 1.94 884.49
6.971e-05 1.30 850.44
2.708e-05 1.36 845.65

(a) errors with a one-element basis, ng =1

E. Franck
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R R R R R RRERERRERERRREEE——SS———————
Shallow water equations: steady solution

Training takes about 10 minutes on an old GPU, with no data, only the PINN loss.

Results for the compactly-supported topography Z..

We use a quadrature of degree ng = ng + 7. This is needed because of the large values of
the derivatives of the topography (and therefore of the steady solution).

pts

h
errord)

order

q
error
¢

order

h

errorz order gain

q

error order gain

10
20
40
80
160

1.391e-01
3.101e-02
4.043e-03
3.919e-04
6.011e-05

2.17
2.94
3.37
2.70

3.094e-01
7.001e-02
9.297e-03
1.222e-03
1.883e-04

2.14
291
2.93
2.70

5.614e-03 24.78
2.836e-05 7.63 1093.61
2.502e-06 3.50 1615.52
6.434e-07 1.96 609.06
9.796e-08 2.72 613.60

1.626e-02 19.03
7.243e-05 7.81 966.54
5.953e-06 3.60 1561.70
2.171e-06 1.46 562.93
3.177e-07 2.77 592.73

(b) errors with a two-element basis, ng = 2

E. Franck
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R R R R R RRERERRERERRREEE——SS———————
Shallow water equations: steady solution

Training takes about 10 minutes on an old GPU, with no data, only the PINN loss.

Results for the compactly-supported topography Z..

We use a quadrature of degree ng = ng + 7. This is needed because of the large values of

the derivatives of the topography (and therefore of the steady solution).

pts

h
error¢

q

order error order

h

errorg order gain

q

error order gain

10
20
40
80
160

7.003e-02
9.161e-03
6.838e-04
4.575e-05
4.385e-06

1.518e-01
1.771e-02
1.371e-03
1.309e-04
1.474e-05

2.93
3.74
3.90
3.38

3.10
3.69
3.39
3.15

3.523e-03 19.87
2.876e-05 6.94 318.56
1.080e-06 4.73 633.16
8.268e-08 3.71 553.32
9.817e-09 3.07 446.71

1.017e-02 14.92
7.913e-05 7.01 223.80
3.014e-06 4.71 454.79
2.236e-07 3.75 585.59
3.035e-08 2.88 485.69

(c) errors with a three-element basis, ng = 3

E. Franck
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Euler-Poisson system in spherical geometry

We consider the Euler-Poisson system in spherical geometry
2
Otp+ 0rq = -9
2 2 2
0tq + Or (i + P) = S A pOr,
P rop

2
O + 0, (3(E+ p>) = 29E 1 p)— qv0,
P rp

1
—28,,(r2q5) =47 Gp,
-
The steady solutions at rest are given by
q=0; orp + pOrp = 0; 8,,(r2¢>) = 47r? Gp.

We consider two cases:
B 3 polytropic pressure law p(p; k,¥) = kp7 such that the steady solutions satisfy

d (- -2 dP) 2
— | rreypY == | = 4nr<Gp,
dr ( o dr .

B 3 temperature-based pressure law p(p; k, @) = kpTq such that the steady solutions

satisfy
T T
i (r2n—a@) + i (rznd a) = 47r?Gp;
dr p dr dr dr

in practice, we take To(r) = e~ . (33 \
/42
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Euler-Poisson in spherical geometry: steady solution

Training takes about 10 minutes on an old GPU, with no data, only the PINN loss. This
time, we have two parameters, x and ~.

We take a quadrature of degree ng = ng + 1.

Results for the polytropic pressure law

pts

h
error )

order

q
error order
¢

errorg order

h
error’;
¢

order

gain

q
error®
1}

order

gain

E
error=
4

order gain

10
20
40
80
160

1.90e-01
6.78e-02
2.41e-02
8.55e-03
3.03e-03

1.49
1.49
1.50
1.50

1.84e-02 —

7.60e-03 1.28
2.93e-03 1.37
1.16e-03 1.34
4.64e-04 1.32

4.88e-01
1.71e-01
6.07e-02
2.15e-02
7.58e-03

1.51
1.50
1.50
1.51

5.84e-04
2.73e-04
1.01e-04
3.64e-05
1.17e-05

1.10
1.43
1.48
1.63

326.34
248.20
237.53
234.68
257.14

6.32e-03
1.67e-03
3.75e-04
8.15e-05
1.60e-05

1.92
2.15
2.20
2.35

2.92
4.55
7.80
14.23
28.97

1.46e-03
6.84e-04
2.54e-04
9.12e-05
2.94e-05

— 33351
1.10 250.74
1.43 238.71
1.48 236.10
1.63 257.38

(a) errors with a one-element basis, ng =1

E. Franck
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Euler-Poisson in spherical geometry: steady solution

Training takes about 10 minutes on an old GPU, with no data, only the PINN loss. This
time, we have two parameters, x and ~.

We take a quadrature of degree ng = ng + 1.

Results for the polytropic pressure law

pts error:’b order errorj) order errori order errorg; order gain errorz3 order gain errorg order gain

10 [3.72e-03 — |5.34e-03 — |6.49e-03 — [3.74e-05 — 99.38|4.70e-05 — 113.63|9.19e-05 — 70.67
20 | 6.59e-04 2.50 |1.21e-03 2.14 | 1.21e-03 2.42 |7.00e-06 2.42 94.19|1.28e-05 1.87 94.14 |1.68e-05 2.45 72.07
40 | 1.17e-04 2.49 | 2.27e-04 2.41 |2.21e-04 2.45 |1.27e-06 2.45 91.93|2.56e-06 2.33 88.59 |3.07e-06 2.45 71.84
80 |2.06e-05 2.51 |4.05e-05 2.49 |3.86e-05 2.52 |2.24e-07 2.51 92.05|4.70e-07 2.45 86.03 |5.45e-07 2.50 70.86
160|3.64e-06 2.51 [7.15e-06 2.50 | 6.56e-06 2.56 | 3.90e-08 2.52 93.17 |8.27e-08 2.51 86.41 | 9.50e-08 2.52 69.08

(b) errors with a two-element basis, ng = 2
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Euler-Poisson in spherical geometry: steady solution

Training takes about 10 minutes on an old GPU, with no data, only the PINN loss. This
time, we have two parameters, x and ~.

We take a quadrature of degree ng = ng + 1.

Results for the polytropic pressure

law

pts

h
error’ order
P

q
error order
]

E
error &

order

h
error’;
3

order

gain

q
error®
1}

order

gain

E
error =
3

order

gain

10
20
40
80
160

7.92e-06
6.96e-07
6.03e-08
5.31e-09
4.81e-10

3.51
3.53
3.51
3.46

5.39%-06 —

9.10e-07 2.57
9.46e-08 3.27
7.97e-09 3.57
7.26e-10 3.46

3.25e-04
3.39e-05
3.21e-06
2.84e-07
2.51e-08

3.26
3.40
3.50
3.50

3.68e-06
3.60e-07
3.26e-08
2.98e-09
2.74e-10

3.36
3.47
3.45
3.45

215
1.93
1.85
1.78
1.76

3.16e-06
6.02e-07
5.64e-08
5.07e-09
4.61e-10

2.39
3.42
3.47
3.46

1.71
1.51
1.68
1.57
1.57

8.16e-06
7.41e-07
7.74e-08
7.09e-09
6.46e-10

3.46
3.26
3.45
3.46

39.81
45.79
41.47
40.15
39.00

(c) errors with a three-element basis, ng = 3

E. Franck
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Euler-Poisson in spherical geometry: steady solution

Training takes about 10 minutes on an old GPU, with no data, only the PINN loss. This
time, we have two parameters, x and 7.

We take a quadrature of degree ng = ng + 1.
Results for the polytropic pressure law

Statistics: gain with respect to the parameter space (from top to bottom:
ng =1,n =2,n =3)

min. gain  avg. gain  max. gain
o 22.21 412.57 6080.00
q 40.90 411.13 5384.43
E 22.25 411.40 6014.11
min. gain  avg. gain  max. gain
p 6.57 154.29 1249.70
q 7.47 180.19 1317.09
E 6.14 110.27 627.65
min. gain  avg. gain  max. gain
p 0.17 12.80 102.00
q 0.20 14.12 109.50
E 3.69 48.66 433.81 h
E. Franck 34/42
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Euler-Poisson in spherical geometry: steady solution

Training takes about 10 minutes on an old GPU, with no data, only the PINN loss. This
time, we have two parameters, k and a.

We take a quadrature of degree ng = ng + 1.

Results for the temperature-dependent pressure law

pts

h
error )

order

q
error order
¢

errorg order

h
error’;
¢

order

gain

q
error®
1}

order

gain

E
error=
4

order gain

10
20
40
80
160

1.86e-01
6.61e-02
2.34e-02
8.30e-03
2.94e-03

1.50
1.50
1.50
1.50

1.99e-02 —

8.36e-03 1.25
3.19e-03 1.39
1.34e-03 1.25
5.33e-04 1.33

2.93e-01
1.03e-01
3.66e-02
1.30e-02
4.61e-03

1.50
1.50
1.49
1.50

1.12e-03
4.22e-04
1.55e-04
5.89e-05
2.04e-05

1.40
1.44
1.40
1.53

166.83
156.30
150.66
140.87
144.08

8.37e-03
2.09e-03
4.33e-04
9.69e-05
1.91e-05

2.00
227
2.16
2.34

2.38
4.00
7.36
13.85
27.81

1.26e-03
5.62e-04
2.12e-04
8.65e-05
2.92e-05

— 23261
1.17 184.25
1.40 172.22
1.30 150.39
1.56 157.46

(a) errors with a oe-element basis, ng =1

E. Franck
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Euler-Poisson in spherical geometry: steady solution

Training takes about 10 minutes on an old GPU, with no data, only the PINN loss. This
time, we have two parameters, k and a.

We take a quadrature of degree ng = ng + 1.

Results for the temperature-dependent pressure law

pts errorg order errorg5 order errorg order errorlé> order gain error% order gain errorg order gain

10 [5.43e-03 — [8.96e-03 — |4.55e-03 — [8.89e-05 — 61.04|1.12e-04 — 79.89|9.09e-05 — 50.12
20 |9.60e-04 2.50 |2.29e-03 1.96 |8.14e-04 2.48 |1.70e-05 2.39 56.43|3.40e-05 1.72 67.55|1.83e-05 2.31 44.42
40 |1.71e-04 2.48 |4.70e-04 2.29 | 1.47e-04 2.47 |3.19e-06 2.41 53.81|7.52e-06 2.18 62.55|3.73e-06 2.30 39.42
80 |3.03e-05 2.50 [8.73e-05 2.43 |2.56e-05 2.52 |5.72e-07 2.48 52.99 |1.45e-06 2.37 59.85|7.11e-07 2.39 36.00
160]5.32e-06 2.51 | 1.54e-05 2.50 | 4.42e-06 2.53 |9.90e-08 2.53 53.76|2.59e-07 2.49 59.55|1.18e-07 2.58 37.32

(b) errors with a two-element basis, ng = 2
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Euler-Poisson in spherical geometry: steady solution

Training takes about 10 minutes on an old GPU, with no data, only the PINN loss. This
time, we have two parameters, k and a.

We take a quadrature of degree ng = ng + 1.

Results for the temperature-dependent pressure law

gain
10 |{1.37e-04 — |[1.41e-04 — |1.54e-04 — |1.06e-05 — 12.95|1.15e-05 — 12.28|1.02e-05 — 15.07
20 [1.09e-05 3.65 |1.84e-05 2.94 [2.06e-05 2.90 |1.20e-06 3.14 9.13 [1.71e-06 2.75 10.76|1.73e-06 2.56 11.91
40 |9.94e-07 3.47 | 1.39e-06 3.73 |2.09e-06 3.31 |1.17e-07 3.35 8.45 |1.52e-07 3.50 9.17 |2.22e-07 2.96 9.39
80 |8.71e-08 3.51 |1.22e-07 3.51 |1.79e-07 3.55 |1.09e-08 3.43 7.97 |1.29e-08 3.56 9.49 |2.05e-08 3.44 8.71
160]7.69e-09 3.50 | 1.07e-08 3.51 |1.56e-08 3.52 |1.10e-09 3.31 6.99 |1.21e-09 3.41 8.83 |1.89e-09 3.44 8.23

pts errorg order errorg5 order errorg order errorlé> order gain | errorl order gain errorg order

(c) errors with a three-element basis, ng = 3

E. Franck
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2D shallow water system
We consider the 2D shallow water equations
Oth+V-q=0

9eq+V - <q®q + ghz) = —ghVZ(x,y;a ro)

We define the following compactly supported bump function:

aexp if r<n,

Qx,yio r) = r
0 otherwise,
and we take Z(x,y; a, ) = Q(x, y;a, n).

The steady solution is a vortex, whose amplitude and radius depend on «, rp and an
additional parameter I': this time, we have three parameters, in addition to x and y.

(/-
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2D shallow water system: steady solution

Training takes about 20 minutes on an old GPU, with the PINN loss supplemented with

data.

We need a high-quadrature, of degree ng = 14, because of the large derivatives of the
compactly supported smooth bump function.

pts

h
errory,

order

Ix

® order

error

Ay
]

error

order

h
error'’x
P

order

gain

error X

order  gain

error”

order

gain

20
40
80
160

1.91e-01
4.72e-02
1.16e-02
2.90e-03

2.02
2.02
2.00

1.13e+00 —

2.76e-01 2.04
6.71e-02 2.04
1.68e-02 1.99

1.13e+00
2.76e-01
6.71e-02
1.68e-02

2.04
2.04
1.99

2.31e-03
5.85e-04
1.46e-04
3.66e-05

1.98
2.00
2.00

82.79
80.64
79.77
79.45

1.02e-03
2.30e-04
5.72e-05
1.43e-05

— 1116.93
2.15 1199.70
2.01 1173.39
2.00 1178.29

1.01e-03
2.22e-04
5.52e-05
1.38e-05

2.19
2.01
2.00

1119.33
1242.66
1216.72
1222.59

(a) errors with a one-element basis, ng =1

E. Franck
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2D shallow water system: steady solution

Training takes about 20 minutes on an old GPU, with the PINN loss supplemented with
data.

We need a high-quadrature, of degree ng = 14, because of the large derivatives of the
compactly supported smooth bump function.

h
errory,

order

Ix

p order

error

Ay
P

error

order

h
error’>
[

order gain

error ™

order gain

error”

order gain

20
40
80
160

2.32e-02
3.60e-03
5.28e-04
7.02e-05

2.69
2.77
2.91

2.10e-01 —

2.86e-02 2.88
3.56e-03 3.01
4.63e-04 2.94

2.10e-01
2.86e-02
3.57e-03
4.63e-04

2.88
3.01
2.94

2.5%-04
3.15e-05
3.95e-06
4.96e-07

— 89.71
3.04 114.33
2.99 133.61
2.99 141.49

5.49e-04
4.24e-05
6.07e-06
7.90e-07

— 382.67
3.70 675.67
2.80 587.71
2.94 586.16

5.73e-04
4.30e-05
6.16e-06
8.02e-07

— 367.32
3.73 665.36
2.80 578.89
2.94 577.49

(b) errors with a two-element basis, ng = 2

E. Franck
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2D shallow water system: steady solution

Training takes about 20 minutes on an old GPU, with the PINN loss supplemented with

data.

We need a high-quadrature, of degree ng = 14, because of the large derivatives of the
compactly supported smooth bump function.

pts

h
errory,

order

Ix

® order

error

dy

® order

error

h
error’s  order
¢

gain

error?x

order  gain

error”

order  gain

20
40
80
160

5.17e-03
4.32e-04
2.87e-05
1.72e-06

3.58
3.91
4.06

6.05e-02 —
4.35e-03 3.80
2.73e-04 3.99
1.81e-05 3.91

6.05e-02 —
4.34e-03 3.80
2.73e-04 3.99
1.81e-05 3.91

3.05e-04 —

2.07e-06 7.20
1.30e-07 3.99
8.17e-09 3.99

16.97
208.24
220.41
210.88

1.63e-03
4.35e-06
2.84e-07
1.59e-08

— 3711
8.55 999.02
3.94 961.63
4.15 1136.57

1.60e-03
4.47e-06
2.89e-07
1.62e-08

—  37.72
8.49 969.66
3.95 942.16
4.16 1117.87

(c) errors with a three-element basis, ng = 3

E. Franck
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Future work and extension
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Operator learning

B Parametric PINNs make it possible to approximate a family of PDE solutions, but we

need a parametrisation (e.g. of the topography).
More general: Operator learning

Principle: we consider

—Ox(a(x)0xu(x)) = f(x)

Formaly there exist a operator Gt : H? — H, with #H an Hilbert space, defined by

G (a(x), f(x)) = u(x)

Neural operator I

Construct a neural network Gg', approximation of G, where the result and, if possible,
the input, do not depend on the mesh resolution.

4

B this week: construct Neural operator which takes the topography a input, and gives
the equilibrium for the 2D Shallow Water equations.

B 2-year post-doc position in Strabourg to improve neural operators for time-dependent

hyperbolic systems. y \
39
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MHD equilibrium

B For Tokamaks and stellarators, we solve flows around equilbrium.
B General equilibrium:

VP=]xB
with pol =V x B.

B Tokamak equilibrum

_AF _ P ) 1dF(, ) N
A"Y(R, Z) = —mwoR a0 3 dv

with pq, 1, some parameters.

Solve the equilibrium family with PINNs/Neural operator, and couple with a DG scheme,
or another efficient scheme.

‘40/
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Time-dependent and asymptotic problems

B Coming back to time-dependant problems:
Oru + adyu = u?

B |f the prior is perfect in time and space and the quadrature also the spatial part is
exact but it change nothing for the time part.

B The modification only acts on the spatial error.

B Using DG in time or other approaches, we wish to obtain a very accurate
approximation in time around a family of space-time solution.

B Example: a compressible scheme which would be more accurate around a family of
incompressible flows.

B Direct optimization of the basis functions to minimize the error on some solutions

141/42‘
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Conclusion

PINNs

Physics-Informed neural networks and neural operators are a good way to compute and
store large families of solutions.

Enhanced DG

Using this prior in the basis, we significantly increase the accuracy around these families of
steady states (including steady solution with no analytical expression).

Can we obtain entropy stability ?

General

Neural networks are interesting for PDEs but we do not have the same guarantees of
classical numerical methods. Using the NN as a " predictor/preconditioner” for the
numerical method, we hope to gain in CPU time, accuracy, and retain good convergence
properties.

[+
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Thank you for your attention!

Finite Volumes for Complex Applications 10 (FVCA10),
in Strasbourg, 30/10/2023 — 03/11/2023
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