
DG schemes for hyperbolic sytems with source
terms, enhanced by neural networks

E. Franck12, Victor Michel-Dansac12, Laurent Navoret12

Shark-FV conference 2023

1Inria Nancy Grand Est, France
2IRMA, Strasbourg university, France

E. Franck 1/42

1/42

Outline

Introduction

DG scheme with prior on the equilibrium

Prior and PINNs

Results

Future works and extension

E. Franck 2/42

2/42

Introduction

E. Franck 3/42

3/42

Nonlinar conservation laws and WB schemes
� We consider the following type of models (like everybody here):

∂tU + ∂xF(U) = S(U)

� We are interested by the simulation of flows such as:

∂xF(U) = S(U) + εP(t, x)

Numerical difficulties
We consider a scheme of order q. For a equilibrium ∂xF(U) = S(U) we have

∂xF(Uh) = S(Uh) + C∆xqQh(t, x).

if ε < C∆xq our scheme will not correctly capture perturbed flows.

WB and A-WB schemes
For a equilibrium ∂xF(U) = S(U), a Well-Balanced scheme is such that ∂xF(Uh) = S(Uh),
and an Approximately Well-Balanced scheme is such that

∂xF(Uh) = S(Uh) + C2∆xq2Qh(t, x)

with q2 > q or C2 � C .

� WB et A-WB make it possible to capture these perturbed flows.

E. Franck 4/42

4/42

Non-exhaustive state of the art

Many people have been working on approximately and exactly well-balanced schemes,
including many in the audience!

For instance, we mention:

� Exactly or approximately well-balanced schemes for the shallow water equations:

� Audusse, Bouchut, . . .
� Bermúdez, Vázquez, . . .
� Berthon, Chalons, Desveaux, Michel-Dansac,. . .
� Clain, Figueiredo, . . .
� the Málaga group: Castro, Parés, . . .
� Noelle, Shu, Xing, . . .

� Exactly or approximately well-balanced schemes for the Euler equations:

� Franck, Mendoza, . . .
� Käppeli, Mishra, . . .
� Thomann, Klingenberg, Puppo, . . .

� Exactly or approximately well-balanced schemes for other systems:

� Busto, Dumbser, Gaburro, . . .
� Chertock, Kurganov, . . .

E. Franck 5/42

5/42

DG schemes

� We recall quickly the Discontinuous Galerkin method.

∂tU + ∂xF(U) = S(U)∫
Ωj

∂tUφdx +

∫
Ωj

∂xF(U)φdx =

∫
Ωj

S(U)φdx

� In each cell we consider a discrete vectorial polynomial space:
Vh = Span(φ1(x), ...φq(x)) and we use

U|Ωj
(t, x) =

q∑
i=1

αi (t)φi (x) ∈ Vh

and
φ = φ1,φ = φq

� We obtain a matrix-vector system of size q × q

M∂tα(t) +K(α(t)) = S(α(t))

with S,K ∈ Rq and M∈ Rq×q

E. Franck 6/42

6/42

DG scheme with prior on the equilibrium

E. Franck 7/42

7/42

Main idea

� We consider a family of equilibria
Ueq(x ;µ)

indexed by some parameters µ.

� We assuming that we are able to produce an approximation of this equilibrium family,
called the prior:

Uθ(x ;µ)

Idea
Incorporate this prior in the local basis to obtain an A-WB scheme with a much higher
accuracy around the equilibrium.

Questions
� What is the potential new basis (next slide)?

� Can we ensure the convergence of the new scheme (this section)?

� How to construct this prior (next section)?

E. Franck 8/42

8/42

Proposed basis

Idea
Introduce the prior on the equilibrium into the DG basis, to generate non-polynomial basis.

Basis with multiplicative prior

V 1
h = Span

(
Uθ(x ;µ),Uθ(x ;µ)(x − xj),,Uθ(x ;µ)

(x − xj)
k

k!

)

Basis with additive prior
� Solution 1:

V 2
h = Span

(
Uθ(x ;µ), 1,,

(x − xj)
k−1

(k − 1)!

)
� Solution 2:

V 3
h = Span

(
Uθ(x ;µ), (x − xj),,

(x − xj)
k

(k)!

)

� Does DG converge with non-polynomial bases?

E. Franck 9/42

9/42

Convergence within the Yuan-Shu framework I

YuanYuanShu06 L. Yuan and C.-W. Shu: Discontinuous Galerkin method based on non-polynomial
approximation spaces, JCP 2006.

Main result I of [YuanShu06]

We consider a basis (v1, ..vK) of the space Vh. If there are constant aik and bi
independant of the size of the cell ∆xj , and if we have

|vi (x)−
K∑

k=1

aik (x − xi)
k | ≤ bi (∆xj)

K+1 (1)

then for any function u ∈ HK+1(Ωj), there exists vh ∈ Vh and

|vh − uh| ≤ C |u|HK+1(Ωj)
(∆xj)

K+ 1
2

Main result II of [YuanShu06]

With the first result, we can prove the convergence (with additional steps) of the DG
scheme using the Vh basis.

E. Franck 10/42

10/42

Convergence with the Yuan-Shu framework II

Result in the scalar case
We assume that uθ(x ;µ) ∈ Cp(Ω) with p ≥ K + 1. Then, the previously proposed bases
satisfy the assumption of [YuanShu06], and the DG scheme converges.

� Example of proof for V 1
h .

� Since the neural network is CK+1(R), we can write a Taylor series, to obtain:

uθ(x) = u(xj) + (x − xj)u
′
θ + ... +

u(K)(xj)

K !
(x − xj)

K +
u(K+1)(c)

(K + 1)!

with c ∈ [xj , x]. We then get:


uθ(x)

uθ(x)(x − xj)
...

uθ(x)(x − xj)
K

 =


uθ(xj) u

′
θ(xj) ...

u
(K)
θ

(xj)

K !

0 uθ(xj) ...
u

(K−1)
θ

(xj)

(K−1)!

...
0 0 ... uθ(xj)


︸ ︷︷ ︸

A


1

(x − xj)
...

(x − xj)
K

+


uK+1
θ

(c)

(K+1)!
uKθ (c)

(K)!

...
1


︸ ︷︷ ︸

b

� It easy to see that the matrix A, its inverse A−1, and the vector b are independent
from ∆xj . Therefore, the assumption is verified.

E. Franck 11/42

11/42

Specific estimate I

� Problem: the previous approach does not give the expected gain associated with these
bases.

� We propose to compute a specific estimate using these bases.

� Current work: we obtained the projector estimate for the basis V 1
h .

� Following: finish the global proof (we do not expect complications) and do the same
for other basis.

First lemma
We consider a basis (v1, ..vK) of the space V 1

h and assume that uθ(x ;µ) ∈ Cp(Ω)

uθ(x ;µ)2 > α0, ∀x ∈ Ω

For any function u ∈ HK+1(Ωj), the L2 projector on V 1
h , Ph(u) ∈ V 1

h , satisfies

|u − Ph(u)| ≤ C

∣∣∣∣ u(x)

uθ(x ,µ)

∣∣∣∣
HK+1(Ωj)

(∆xj)
K+ 1

2 |uθ(x ,µ)|

� Key point: the pointwise interpolation and L2 projector associated with this basis can

be rewritten as the classical one applied at u(x)
uθ(x ,µ)

and multiplied by uθ(x ,µ)

E. Franck 12/42

12/42

Specific estimate II

Second lemma

Under the same assumptions than the previous lemma, for the basis Vmod ,3
h , we obtain

that for any function u ∈ HK+1(Ω)

|u − Ph(u)|L2(Ω) ≤ C

∣∣∣∣ u(x)

uθ(x ,µ)

∣∣∣∣
H
K+ 1

2 (Ω)

(∆x)K+1 ‖ uθ(x ,µ) ‖∞

� Idea of proof:
� sum the previous result on the cells
� use that the prior is Cp(Ω) to bound |uθ(x ,µ)| locally in each cell
� use the assumption C1∆x ≤ ∆xj ≤ C2∆x

� Following: use this estimation to prove the convergence

� do the same for the other bases

Key point

� If the prior is good, then

∣∣∣∣ u(x)
uθ(x ,µ)

∣∣∣∣
H
K+ 1

2 (Ω)

is small, and so is the error.

� For other bases, we expect an error in

∣∣∣∣u(x)− uθ(x ,µ)

∣∣∣∣
H
K+ 1

2 (Ω)

E. Franck 13/42

13/42

Prior and PINNs

E. Franck 14/42

14/42

Supervised machine learning and classical models
� Supervised learning: construct models f : Rd → Rm like

y = f (x) + ε, or P(y|x)

with ε some noise, using inputs and outputs examples. We solve the optimization
problem:

min
θ

n∑
i

L(f (xi), yi),

with L a loss (cost) function.

� Linear regression: We choose
fθ = Ax + b

with θ = (A, b), A ∈ Rm,d and b ∈ Rm.

� polynomial regression: We choose

fθ =

dq∑
i=1

θiPi (x)

with q the order of the polynomial. Huge number of coefficients for large dimensions.

� kernel regression: theory using Hilbert space with reproducing kernel.

� In all the case, we obtain convex optimization.

E. Franck 15/42

15/42

Deep learning: neural networks
� Current choice: kernel approximation or neural network.

Layer

A layer is a function Ll (xl) : Rdl → Rdl+1 given by

Ll (xl) = σ(Alxl + bl),

Al ∈ Rdl+1,dl , b ∈ Rdl+1 and σ(·) a nonlinear function applied component by component.

Neural network
A neural network is a parametric function obtained by composition of layers:

fθ(x) = Ln ◦ ◦ L1(x)

with θ the trainable parameters composed of all the matrices Al ,l+1 and biases bl .

� Fully connected neural network (FCNN): the matrices Al ,l+1 are dense.

E. Franck 16/42

16/42

Activation functions and gradients
� The local nonlinear functions are called activation functions.

� Exemple (site MonCoachdata):

� It is possible to use adaptive activation functions (whose parameters are also learned).

Key point

According to the activation function, the neural network are Cp(Rd) functions

� We train the Neural network with a gradient-type approach. This generates
non-convex optimization problems.

E. Franck 17/42

17/42

Neural network vs Polynomial

� We compare over-parametrized NN and polynomial regression on the Runge function.

� 120 data and approximately 800 parameters in each model.

E. Franck 18/42

18/42

Neural network vs Polynomial

� We compare over-parametrized NN and polynomial regression on the Runge function.

� 120 data and approximately 800 parameters in each model.

E. Franck 18/42

18/42

Neural network vs Polynomial

� We compare over-parametrized NN and polynomial regression on the Runge function.

� 120 data and approximately 800 parameters in each model.

� The polynomial model tends to oscillate in the over parameterized regime.
Problematic for overfitting.

E. Franck 18/42

18/42

Neural network vs Polynomial

� We compare over-parametrized NN and polynomial regression on the Runge function.

� 120 data and approximately 800 parameters in each model.

E. Franck 18/42

18/42

Neural network vs Polynomial
� We compare over-parametrized NN and polynomial regression on the Runge function.

� 120 data and approximately 800 parameters in each model.

� The ANN generates very smooth/low frequency approximations.

� It is related to the spectral bias. The low frequencies are learned before the high
frequencies. This property seems to be very helpful for the generalization.

E. Franck 18/42

18/42

PINN’s I
� We solve PDEs of the form: ∂tU = N (U, ∂xU, ∂xxU,β)

Uh(t, x) = g(x), ∀x ∈ ∂Ω
U(0, x) = U0(x ,α),

with the parameters
µ = (α,β)

� The first idea comes from the remark that neural networks are smooth functions of the
inputs. Since their derivatives are easily computable by automatic differentiation,
ANNs are possible objects to approximate PDE solution.

� A PINNs is a neural network with inputs (t, x), denoted by Uθ(t, x).

Basic approach
If we have data Un

i approximating the solution at the points (xi , tn), we will learn the
weights of the NN by minimizing the loss:

min
θ

Jdata(θ) = min
θ

Ndata∑
n=1

Ndata∑
i=1

|Uθ(tn, xi)−Un
i |

2
2

How can we do that without data or with few data??

E. Franck 19/42

19/42

PINN’s II

PINNs approach
Since we can differentiate the NN, we compute the PDE residual and check to what
extent it is a solution of the PDE. Main idea: Learn using this property.

� We define the residual:

R(t, x) = |∂tUθ −N (Uθ, ∂xUθ, ∂xxUθ,β)|

� To learn Uθ(t, x), we minimize:

min
θ

Jdata(θ) + Jr (θ) + Jb(θ) + Ji (θ)

with

Jr (θ) =

∫ T

0

∫
Ω
|R(t, x)|22dxdt

and

Jb(θ) =

∫ T

0

∫
∂Ω
|Uθ(t, x)− g(x)|22dxdt, Ji (θ) =

∫
Ω
|Uθ(0, x)− U0(x ,α)|22dx

Question
How to compute the integrals of the residuals?

E. Franck 20/42

20/42

Monte Carlo

How to compute the integrals of the residuals?
� Quadrature rule. Limited for large domains and small dimension
� Quadrature rule + mesh. Requires a grid and limited to small dimensions.
� Monte-Carlo approach. Slow convergence but no mesh and no dimension issues.

� The Monte-Carlo method stems from the Law of large numbers.
� We consider a function g : Rd → R. We define X a random variable with the law µ.
� The method comes from:

Var(µ)
√
N

(
1

N

N∑
i=1

f (Xi)− Eµ[f (X)]

)
→ N (0, 1)

with Xi an random example sampled with the law µ
� It allows to computie integrals. Indeed:∫

Ω
f (x)dx =

∫
Rd

f (x)UΩdx = E[f (X)]

with UΩ the density of the uniform law Ω and X random variable following this law.
� So we have ∣∣∣∣∣ 1

N

N∑
i=1

f (xi)−
∫

Ω
f (x)dx

∣∣∣∣∣ = O

(
Var(UΩ)
√
N

)
with xi points sampled uniformly on Ω.

E. Franck 21/42

21/42

PINN’s III
� Applying the MC method to the PINNs loss, we obtain the following minimization

problem:

Final PINNs minimization

min
θ

Jdata(θ) + Jr (θ) + Jb(θ) + Ji (θ),

with

Jr (θ) =
N∑

n=1

N∑
i=1

|R(tn, xi)|22

with (tn, xi) sampled uniformly and

Jb(θ) =

Nb∑
n=1

Nb∑
i=1

|Uθ(tn, xi)− g(xi)|22, Ji (θ) =

Ni∑
i=1

Uθ(0, xi)− U0(xi)|22

� These loss functions can be interpreted as a regularization of classical learning which
uses data.

� To avoid loss for the BC and initial condition, we use:

ūθ(t, x) = u0(x) + t(φ(x) ∗ uθ(x))

with φ(x) = g(x) on the boundary and some value within the domain.

E. Franck 22/42

22/42

Example: Burgers equation

� Application: Burgers equation ∂tρ+ ∂x
(
ρ2

2

)
= ν∂xxρ.

� Solving for different values of the µ parameters:

� ν = 0.1
π

. 10000 pts, medium-sized NN.

� beginning of training

E. Franck 23/42

23/42

Example: Burgers equation
� Application: Burgers equation ∂tρ+ ∂x

(
ρ2

2

)
= ν∂xxρ.

� Solving for different values of the µ parameters:

� ν = 0.1
π

. 10000 pts, medium-sized NN.

� middle of training

E. Franck 23/42

23/42

Example: Burgers equation
� Application: Burgers equation ∂tρ+ ∂x

(
ρ2

2

)
= ν∂xxρ.

� Solving for different values of the µ parameters:
� ν = 0.1

π
. 10000 pts, medium-sized NN.

� end of training

E. Franck 23/42

23/42

Example: Burgers equation
� Application: Burgers equation ∂tρ+ ∂x

(
ρ2

2

)
= ν∂xxρ.

� Solving for different values of the µ parameters:
� ν = 0.01

π
. 10000 pts, medium NN.

� beginning of training

E. Franck 23/42

23/42

Example: Burgers equation
� Application: Burgers equation ∂tρ+ ∂x

(
ρ2

2

)
= ν∂xxρ.

� Solving for different values of the µ parameters:
� ν = 0.01

π
. 10000 pts, medium NN.

� middle of training

E. Franck 23/42

23/42

Example: Burgers equation
� Application: Burgers equation ∂tρ+ ∂x

(
ρ2

2

)
= ν∂xxρ.

� Solving for different values of the µ parameters:
� ν = 0.01

π
. 10000 pts, medium NN.

� end of training

E. Franck 23/42

23/42

Example: Burgers equation

� Application: Burgers equation ∂tρ+ ∂x
(
ρ2

2

)
= ν∂xxρ.

� Solving for different values of the µ parameters:

� ν = 0.002
π

. 10000 pts, medium NN.

� beginning of training

E. Franck 23/42

23/42

Example: Burgers equation
� Application: Burgers equation ∂tρ+ ∂x

(
ρ2

2

)
= ν∂xxρ.

� Solving for different values of the µ parameters:
� ν = 0.002

π
. 10000 pts, medium NN.

� middle of training

E. Franck 23/42

23/42

Example: Burgers equation
� Application: Burgers equation ∂tρ+ ∂x

(
ρ2

2

)
= ν∂xxρ.

� Solving for different values of the µ parameters:

� ν = 0.002
π

. 10000 pts, medium NN.

� end of training

E. Franck 23/42

23/42

Example: Burgers equation
� Application: Burgers equation ∂tρ+ ∂x

(
ρ2

2

)
= ν∂xxρ.

� Solving for different values of the µ parameters:
� ν = 0.002

π
. 20000 pts, medium NN.

� beginning of training

E. Franck 23/42

23/42

Example: Burgers equation
� Application: Burgers equation ∂tρ+ ∂x

(
ρ2

2

)
= ν∂xxρ.

� Solving for different values of the µ parameters:
� ν = 0.002

π
. 20000 pts, medium NN.

� middle of training

E. Franck 23/42

23/42

Example: Burgers equation
� Application: Burgers equation ∂tρ+ ∂x

(
ρ2

2

)
= ν∂xxρ.

� Solving for different values of the µ parameters:

� ν = 0.002
π

. 20000 pts, medium NN.

� end of training

E. Franck 23/42

23/42

Example: Burgers equation
� Application: Burgers equation ∂tρ+ ∂x

(
ρ2

2

)
= ν∂xxρ.

� Solving for different values of the µ parameters:
� ν = 0.002

π
. 40000 pts, larger NN.

� end of training

E. Franck 23/42

23/42

PINN’s and parametric PDEs
� Advantages of PINNs: mesh-less approach, not too sensitive to the dimension.
� Drawbacks of PINNs: they are not competitive with classical methods.
� Interesting possibility: use the strengths of PINNs to solve parametric PDEs.

� The neural network becomes Uθ(t, x ,α,β).

New Optimization problem for parametric PINN’s

min
θ

Jr (θ) + ...

with
Jr (θ) =

∫
V

∫ T

0

∫
Ω
|∂tUθ(t, x)− L(Uθ, ∂xUθ, ∂xxUθ,µ)(t, x)|22dxdt

with V a subspace of the parameters (α,β).

� Application to the Burgers equations with many viscosities [10−2, 10−4] (training:
2h). Same time for the smaller viscosity.

E. Franck 24/42

24/42

Numerical results

E. Franck 25/42

25/42

Linear advection equation
In all the numerical experiments, we use the V 3

h basis. Results are similar with the other
bases.

We first consider the first-order advection equation{
∂tu + ∂xu = s(u;µ),

u(t = 0, x) = u0(x),

with the following parameterized source term and initial condition
� s(u;α,β) = αu + βu2;
� u0(x) = ε+ ueq(x ;α,β, υ), with the steady solution ueq depending on α, β and an

additional parameter υ.

Hence, we have three parameters: 0.5 ≤ α ≤ 1, 0.5 ≤ β ≤ 1, 0.1 ≤ υ ≤ 0.2

We propose three experiments: approximate
� a steady solution,
� a perturbed steady solution,
� an unsteady solution.

Training the PINN takes about 10 minutes on an old GPU, with no data, only the PINN
loss.

Last minute remark: the errors are not well computed. Perhaps constant change (for all
methods) and a little bit the order.

E. Franck 26/42

26/42

Linear advection equation: steady solution

In this case, ε = 0 in the initial condition, so we approximate the steady solution itself.

We compute the error between the exact and approximate solutions, for polynomial bases
with nG ∈ {1, 2, 3, 4} elements, and with or without PINN prior.

We take a quadrature of degree nQ = max(3, nG + 1).

pts errorφ order errorφ̄ order gain

10 7.42e-02 — 3.89e-04 — 190.66
20 2.64e-02 1.49 1.45e-04 1.42 181.76
40 9.29e-03 1.51 5.23e-05 1.47 177.55
80 3.27e-03 1.50 1.89e-05 1.46 172.63

160 1.18e-03 1.47 6.95e-06 1.45 170.09

(a) errors with a one-element basis, nG = 1

E. Franck 27/42

27/42

Linear advection equation: steady solution

In this case, ε = 0 in the initial condition, so we approximate the steady solution itself.

We compute the error between the exact and approximate solutions, for polynomial bases
with nG ∈ {1, 2, 3, 4} elements, and with or without PINN prior.

We take a quadrature of degree nQ = max(3, nG + 1).

pts errorφ order errorφ̄ order gain

10 1.80e-03 — 1.09e-05 — 164.69
20 3.20e-04 2.50 1.93e-06 2.51 165.75
40 5.51e-05 2.54 3.33e-07 2.53 165.27
80 9.41e-06 2.55 5.64e-08 2.56 166.77

160 1.80e-06 2.38 1.08e-08 2.38 166.83

(b) errors with a two-element basis, nG = 2

E. Franck 27/42

27/42

Linear advection equation: steady solution

In this case, ε = 0 in the initial condition, so we approximate the steady solution itself.

We compute the error between the exact and approximate solutions, for polynomial bases
with nG ∈ {1, 2, 3, 4} elements, and with or without PINN prior.

We take a quadrature of degree nQ = max(3, nG + 1).

pts errorφ order errorφ̄ order gain

10 2.23e-05 — 9.34e-07 — 23.94
20 2.02e-06 3.46 8.80e-08 3.41 23.01
40 1.75e-07 3.53 7.41e-09 3.57 23.60
80 1.45e-08 3.59 6.29e-10 3.56 23.14

160 1.46e-09 3.32 6.35e-11 3.31 22.99

(c) errors with a three-element basis, nG = 3

E. Franck 27/42

27/42

Linear advection equation: steady solution

In this case, ε = 0 in the initial condition, so we approximate the steady solution itself.

We compute the error between the exact and approximate solutions, for polynomial bases
with nG ∈ {1, 2, 3, 4} elements, and with or without PINN prior.

We take a quadrature of degree nQ = max(3, nG + 1).

pts errorφ order errorφ̄ order gain

10 2.81e-07 — 6.49e-08 — 4.33
20 1.26e-08 4.48 3.02e-09 4.42 4.17
40 5.72e-10 4.46 1.32e-10 4.52 4.34
80 2.31e-11 4.63 5.40e-12 4.61 4.29

160 1.21e-12 4.25 2.77e-13 4.29 4.40

(d) errors with a four-element basis, nG = 4

E. Franck 27/42

27/42

Linear advection equation: perturbed steady solution

We now study the effect of nonzero values of ε in the initial condition: we take
ε ∈ {10−4, 10−2, 10−1, 1} and 20 discretization cells.

We represent the error, over time, between the approximate and exact solutions.

(a) errors with a one-element basis, nG = 1

E. Franck 28/42

28/42

Linear advection equation: perturbed steady solution

We now study the effect of nonzero values of ε in the initial condition: we take
ε ∈ {10−4, 10−2, 10−1, 1} and 20 discretization cells.

We represent the error, over time, between the approximate and exact solutions.

(b) errors with a two-element basis, nG = 2

E. Franck 28/42

28/42

Linear advection equation: perturbed steady solution

We now study the effect of nonzero values of ε in the initial condition: we take
ε ∈ {10−4, 10−2, 10−1, 1} and 20 discretization cells.

We represent the error, over time, between the approximate and exact solutions.

(c) errors with a three-element basis, nG = 3

E. Franck 28/42

28/42

Linear advection equation: unsteady solution

Lastly, we perform the approximation of an unsteady solution with the two bases (with
and without prior), to show that using the enhanced basis does not decrease
approximation performance on unsteady solutions. The source term is zero in this case.

In this case, we take nG = 3 and 20 discretization cells.

(a) without prior; error is 8.874× 10−3

E. Franck 29/42

29/42

Linear advection equation: unsteady solution

Lastly, we perform the approximation of an unsteady solution with the two bases (with
and without prior), to show that using the enhanced basis does not decrease
approximation performance on unsteady solutions. The source term is zero in this case.

In this case, we take nG = 3 and 20 discretization cells.

(b) with prior; error is 8.874× 10−3, the same as without prior

E. Franck 29/42

29/42

Shallow water equations

We consider the shallow water system with topography
∂th + ∂xq = 0,

∂tq + ∂x

(
q2

h
+

1

2
gh2

)
= −gh∂xZ .

The smooth moving steady solutions are given by

q = cst = q0;
q2

2h2
+ g(h + Z) = cst = B0.

The space domain is (0, 1).

We consider two topography functions, which depend on two parameters α and β:

� Zg (x ;α,β) = βω(αx), with ω a Gaussian bump function;

� Zc (x ;α,β) = βω0(αx), with ωc a compactly supported Gaussian bump function.

Then, the steady solution h(x ;α,β, h0,B0) depends on the two topography parameters α
and β, as well as on the two steady flow parameters B0 and q0.

E. Franck 30/42

30/42

Shallow water equations: steady solution

Training takes about 10 minutes on an old GPU, with no data, only the PINN loss.

Results for the non-compactly-supported topography Zg .

We use a quadrature of degree nQ = nG + 2.

pts errorhφ order errorqφ order errorh
φ̄

order gain errorq
φ̄

order gain

10 1.88e-01 — 4.34e-01 — 3.76e-04 — 499.42 1.74e-03 — 248.54
20 7.64e-02 1.30 2.35e-01 0.89 1.52e-04 1.31 501.88 4.52e-04 1.95 519.64
40 3.11e-02 1.30 1.04e-01 1.17 6.86e-05 1.15 453.42 2.18e-04 1.05 478.66
80 1.20e-02 1.37 4.18e-02 1.32 2.64e-05 1.38 456.98 9.33e-05 1.23 448.72

160 4.54e-03 1.41 1.58e-02 1.40 9.80e-06 1.43 463.99 3.59e-05 1.38 439.97

(a) errors with a one-element basis, nG = 1

E. Franck 31/42

31/42

Shallow water equations: steady solution

Training takes about 10 minutes on an old GPU, with no data, only the PINN loss.

Results for the non-compactly-supported topography Zg .

We use a quadrature of degree nQ = nG + 2.

pts errorhφ order errorqφ order errorh
φ̄

order gain errorq
φ̄

order gain

10 1.78e-02 — 5.43e-02 — 9.56e-05 — 186.55 1.14e-04 — 475.78
20 2.96e-03 2.59 8.13e-03 2.74 2.24e-05 2.09 131.94 6.82e-05 0.74 119.17
40 5.18e-04 2.52 1.36e-03 2.58 3.75e-06 2.58 137.95 1.01e-05 2.76 134.75
80 9.20e-05 2.49 2.40e-04 2.50 6.61e-07 2.51 139.19 1.72e-06 2.55 139.46

160 1.62e-05 2.50 4.24e-05 2.50 1.15e-07 2.51 140.32 2.99e-07 2.53 141.88

(b) errors with a two-element basis, nG = 2

E. Franck 31/42

31/42

Shallow water equations: steady solution

Training takes about 10 minutes on an old GPU, with no data, only the PINN loss.

Results for the non-compactly-supported topography Zg .

We use a quadrature of degree nQ = nG + 2.

pts errorhφ order errorqφ order errorh
φ̄

order gain errorq
φ̄

order gain

10 2.52e-03 — 6.21e-03 — 3.84e-05 — 65.83 9.04e-05 — 68.79
20 2.55e-04 3.31 7.78e-04 3.00 3.35e-06 3.52 76.16 8.40e-06 3.43 92.62
40 2.69e-05 3.25 8.23e-05 3.24 3.71e-07 3.18 72.52 1.04e-06 3.01 79.06
80 2.30e-06 3.55 7.67e-06 3.42 3.34e-08 3.47 68.84 1.09e-07 3.25 70.08

160 1.92e-07 3.58 6.91e-07 3.47 2.90e-09 3.53 66.39 1.03e-08 3.41 66.94

(c) errors with a three-element basis, nG = 3

E. Franck 31/42

31/42

Shallow water equations: steady solution

Training takes about 10 minutes on an old GPU, with no data, only the PINN loss.

Results for the compactly-supported topography Zc .

We use a quadrature of degree nQ = nG + 7. This is needed because of the large values of
the derivatives of the topography (and therefore of the steady solution).

pts errorhφ order errorqφ order errorh
φ̄

order gain errorq
φ̄

order gain

10 1.792e-01 — 8.177e-01 — 5.504e-03 — 32.56 2.985e-02 — 27.39
20 1.133e-01 0.66 2.713e-01 1.59 9.514e-05 5.85 1190.37 6.583e-04 5.50 412.15
40 4.009e-02 1.50 1.516e-01 0.84 5.018e-05 0.92 798.84 1.714e-04 1.94 884.49
80 1.709e-02 1.23 5.929e-02 1.35 2.068e-05 1.28 826.30 6.971e-05 1.30 850.44

160 6.612e-03 1.37 2.290e-02 1.37 8.079e-06 1.36 818.45 2.708e-05 1.36 845.65

(a) errors with a one-element basis, nG = 1

E. Franck 32/42

32/42

Shallow water equations: steady solution

Training takes about 10 minutes on an old GPU, with no data, only the PINN loss.

Results for the compactly-supported topography Zc .

We use a quadrature of degree nQ = nG + 7. This is needed because of the large values of
the derivatives of the topography (and therefore of the steady solution).

pts errorhφ order errorqφ order errorh
φ̄

order gain errorq
φ̄

order gain

10 1.391e-01 — 3.094e-01 — 5.614e-03 — 24.78 1.626e-02 — 19.03
20 3.101e-02 2.17 7.001e-02 2.14 2.836e-05 7.63 1093.61 7.243e-05 7.81 966.54
40 4.043e-03 2.94 9.297e-03 2.91 2.502e-06 3.50 1615.52 5.953e-06 3.60 1561.70
80 3.919e-04 3.37 1.222e-03 2.93 6.434e-07 1.96 609.06 2.171e-06 1.46 562.93

160 6.011e-05 2.70 1.883e-04 2.70 9.796e-08 2.72 613.60 3.177e-07 2.77 592.73

(b) errors with a two-element basis, nG = 2

E. Franck 32/42

32/42

Shallow water equations: steady solution

Training takes about 10 minutes on an old GPU, with no data, only the PINN loss.

Results for the compactly-supported topography Zc .

We use a quadrature of degree nQ = nG + 7. This is needed because of the large values of
the derivatives of the topography (and therefore of the steady solution).

pts errorhφ order errorqφ order errorh
φ̄

order gain errorq
φ̄

order gain

10 7.003e-02 — 1.518e-01 — 3.523e-03 — 19.87 1.017e-02 — 14.92
20 9.161e-03 2.93 1.771e-02 3.10 2.876e-05 6.94 318.56 7.913e-05 7.01 223.80
40 6.838e-04 3.74 1.371e-03 3.69 1.080e-06 4.73 633.16 3.014e-06 4.71 454.79
80 4.575e-05 3.90 1.309e-04 3.39 8.268e-08 3.71 553.32 2.236e-07 3.75 585.59

160 4.385e-06 3.38 1.474e-05 3.15 9.817e-09 3.07 446.71 3.035e-08 2.88 485.69

(c) errors with a three-element basis, nG = 3

E. Franck 32/42

32/42

Euler-Poisson system in spherical geometry
We consider the Euler-Poisson system in spherical geometry

∂tρ+ ∂rq = −
2

r
q,

∂tq + ∂r

(
q2

ρ
+ p

)
= −

2

r

q2

ρ
− ρ∂rφ,

∂tE + ∂r

(
q

ρ
(E + p)

)
= −

2

r

q

ρ
(E + p)− q∂rφ,

1

r2
∂rr (r2φ) = 4πGρ,

The steady solutions at rest are given by

q = 0; ∂rp + ρ∂rφ = 0; ∂rr (r2φ) = 4πr2Gρ.

We consider two cases:
� a polytropic pressure law p(ρ;κ, γ) = κργ such that the steady solutions satisfy

d

dr

(
r2κγργ−2 dρ

dr

)
= 4πr2Gρ,

� a temperature-based pressure law p(ρ;κ,α) = κρTα such that the steady solutions
satisfy

d

dr

(
r2κ

Tα

ρ

dρ

dr

)
+

d

dr

(
r2κ

dTα

dr

)
= 4πr2Gρ;

in practice, we take Tα(r) = e−αr .

E. Franck 33/42

33/42

Euler-Poisson in spherical geometry: steady solution

Training takes about 10 minutes on an old GPU, with no data, only the PINN loss. This
time, we have two parameters, κ and γ.

We take a quadrature of degree nQ = nG + 1.

Results for the polytropic pressure law

pts errorhφ order error
q
φ

order errorEφ order errorh
φ̄

order gain error
q

φ̄
order gain errorE

φ̄
order gain

10 1.90e-01 — 1.84e-02 — 4.88e-01 — 5.84e-04 — 326.34 6.32e-03 — 2.92 1.46e-03 — 333.51
20 6.78e-02 1.49 7.60e-03 1.28 1.71e-01 1.51 2.73e-04 1.10 248.20 1.67e-03 1.92 4.55 6.84e-04 1.10 250.74
40 2.41e-02 1.49 2.93e-03 1.37 6.07e-02 1.50 1.01e-04 1.43 237.53 3.75e-04 2.15 7.80 2.54e-04 1.43 238.71
80 8.55e-03 1.50 1.16e-03 1.34 2.15e-02 1.50 3.64e-05 1.48 234.68 8.15e-05 2.20 14.23 9.12e-05 1.48 236.10

160 3.03e-03 1.50 4.64e-04 1.32 7.58e-03 1.51 1.17e-05 1.63 257.14 1.60e-05 2.35 28.97 2.94e-05 1.63 257.38

(a) errors with a one-element basis, nG = 1

E. Franck 34/42

34/42

Euler-Poisson in spherical geometry: steady solution

Training takes about 10 minutes on an old GPU, with no data, only the PINN loss. This
time, we have two parameters, κ and γ.

We take a quadrature of degree nQ = nG + 1.

Results for the polytropic pressure law

pts errorhφ order error
q
φ

order errorEφ order errorh
φ̄

order gain error
q

φ̄
order gain errorE

φ̄
order gain

10 3.72e-03 — 5.34e-03 — 6.49e-03 — 3.74e-05 — 99.38 4.70e-05 — 113.63 9.19e-05 — 70.67
20 6.59e-04 2.50 1.21e-03 2.14 1.21e-03 2.42 7.00e-06 2.42 94.19 1.28e-05 1.87 94.14 1.68e-05 2.45 72.07
40 1.17e-04 2.49 2.27e-04 2.41 2.21e-04 2.45 1.27e-06 2.45 91.93 2.56e-06 2.33 88.59 3.07e-06 2.45 71.84
80 2.06e-05 2.51 4.05e-05 2.49 3.86e-05 2.52 2.24e-07 2.51 92.05 4.70e-07 2.45 86.03 5.45e-07 2.50 70.86

160 3.64e-06 2.51 7.15e-06 2.50 6.56e-06 2.56 3.90e-08 2.52 93.17 8.27e-08 2.51 86.41 9.50e-08 2.52 69.08

(b) errors with a two-element basis, nG = 2

E. Franck 34/42

34/42

Euler-Poisson in spherical geometry: steady solution

Training takes about 10 minutes on an old GPU, with no data, only the PINN loss. This
time, we have two parameters, κ and γ.

We take a quadrature of degree nQ = nG + 1.

Results for the polytropic pressure law

pts errorhφ order error
q
φ

order errorEφ order errorh
φ̄

order gain error
q

φ̄
order gain errorE

φ̄
order gain

10 7.92e-06 — 5.39e-06 — 3.25e-04 — 3.68e-06 — 2.15 3.16e-06 — 1.71 8.16e-06 — 39.81
20 6.96e-07 3.51 9.10e-07 2.57 3.39e-05 3.26 3.60e-07 3.36 1.93 6.02e-07 2.39 1.51 7.41e-07 3.46 45.79
40 6.03e-08 3.53 9.46e-08 3.27 3.21e-06 3.40 3.26e-08 3.47 1.85 5.64e-08 3.42 1.68 7.74e-08 3.26 41.47
80 5.31e-09 3.51 7.97e-09 3.57 2.84e-07 3.50 2.98e-09 3.45 1.78 5.07e-09 3.47 1.57 7.09e-09 3.45 40.15

160 4.81e-10 3.46 7.26e-10 3.46 2.51e-08 3.50 2.74e-10 3.45 1.76 4.61e-10 3.46 1.57 6.46e-10 3.46 39.00

(c) errors with a three-element basis, nG = 3

E. Franck 34/42

34/42

Euler-Poisson in spherical geometry: steady solution
Training takes about 10 minutes on an old GPU, with no data, only the PINN loss. This
time, we have two parameters, κ and γ.

We take a quadrature of degree nQ = nG + 1.

Results for the polytropic pressure law

Statistics: gain with respect to the parameter space (from top to bottom:
nG = 1, nG = 2, nG = 3)

min. gain avg. gain max. gain
ρ 22.21 412.57 6080.00
q 40.90 411.13 5384.43
E 22.25 411.40 6014.11

min. gain avg. gain max. gain
ρ 6.57 154.29 1249.70
q 7.47 180.19 1317.09
E 6.14 110.27 627.65

min. gain avg. gain max. gain
ρ 0.17 12.80 102.00
q 0.20 14.12 109.50
E 3.69 48.66 433.81

E. Franck 34/42

34/42

Euler-Poisson in spherical geometry: steady solution

Training takes about 10 minutes on an old GPU, with no data, only the PINN loss. This
time, we have two parameters, κ and α.

We take a quadrature of degree nQ = nG + 1.

Results for the temperature-dependent pressure law

pts errorhφ order error
q
φ

order errorEφ order errorh
φ̄

order gain error
q

φ̄
order gain errorE

φ̄
order gain

10 1.86e-01 — 1.99e-02 — 2.93e-01 — 1.12e-03 — 166.83 8.37e-03 — 2.38 1.26e-03 — 232.61
20 6.61e-02 1.50 8.36e-03 1.25 1.03e-01 1.50 4.22e-04 1.40 156.30 2.09e-03 2.00 4.00 5.62e-04 1.17 184.25
40 2.34e-02 1.50 3.19e-03 1.39 3.66e-02 1.50 1.55e-04 1.44 150.66 4.33e-04 2.27 7.36 2.12e-04 1.40 172.22
80 8.30e-03 1.50 1.34e-03 1.25 1.30e-02 1.49 5.89e-05 1.40 140.87 9.69e-05 2.16 13.85 8.65e-05 1.30 150.39

160 2.94e-03 1.50 5.33e-04 1.33 4.61e-03 1.50 2.04e-05 1.53 144.08 1.91e-05 2.34 27.81 2.92e-05 1.56 157.46

(a) errors with a oe-element basis, nG = 1

E. Franck 35/42

35/42

Euler-Poisson in spherical geometry: steady solution

Training takes about 10 minutes on an old GPU, with no data, only the PINN loss. This
time, we have two parameters, κ and α.

We take a quadrature of degree nQ = nG + 1.

Results for the temperature-dependent pressure law

pts errorhφ order error
q
φ

order errorEφ order errorh
φ̄

order gain error
q

φ̄
order gain errorE

φ̄
order gain

10 5.43e-03 — 8.96e-03 — 4.55e-03 — 8.89e-05 — 61.04 1.12e-04 — 79.89 9.09e-05 — 50.12
20 9.60e-04 2.50 2.29e-03 1.96 8.14e-04 2.48 1.70e-05 2.39 56.43 3.40e-05 1.72 67.55 1.83e-05 2.31 44.42
40 1.71e-04 2.48 4.70e-04 2.29 1.47e-04 2.47 3.19e-06 2.41 53.81 7.52e-06 2.18 62.55 3.73e-06 2.30 39.42
80 3.03e-05 2.50 8.73e-05 2.43 2.56e-05 2.52 5.72e-07 2.48 52.99 1.45e-06 2.37 59.85 7.11e-07 2.39 36.00

160 5.32e-06 2.51 1.54e-05 2.50 4.42e-06 2.53 9.90e-08 2.53 53.76 2.59e-07 2.49 59.55 1.18e-07 2.58 37.32

(b) errors with a two-element basis, nG = 2

E. Franck 35/42

35/42

Euler-Poisson in spherical geometry: steady solution

Training takes about 10 minutes on an old GPU, with no data, only the PINN loss. This
time, we have two parameters, κ and α.

We take a quadrature of degree nQ = nG + 1.

Results for the temperature-dependent pressure law

pts errorhφ order error
q
φ

order errorEφ order errorh
φ̄

order gain error
q

φ̄
order gain errorE

φ̄
order gain

10 1.37e-04 — 1.41e-04 — 1.54e-04 — 1.06e-05 — 12.95 1.15e-05 — 12.28 1.02e-05 — 15.07
20 1.09e-05 3.65 1.84e-05 2.94 2.06e-05 2.90 1.20e-06 3.14 9.13 1.71e-06 2.75 10.76 1.73e-06 2.56 11.91
40 9.94e-07 3.47 1.39e-06 3.73 2.09e-06 3.31 1.17e-07 3.35 8.45 1.52e-07 3.50 9.17 2.22e-07 2.96 9.39
80 8.71e-08 3.51 1.22e-07 3.51 1.79e-07 3.55 1.09e-08 3.43 7.97 1.29e-08 3.56 9.49 2.05e-08 3.44 8.71

160 7.69e-09 3.50 1.07e-08 3.51 1.56e-08 3.52 1.10e-09 3.31 6.99 1.21e-09 3.41 8.83 1.89e-09 3.44 8.23

(c) errors with a three-element basis, nG = 3

E. Franck 35/42

35/42

2D shallow water system

We consider the 2D shallow water equations
∂th +∇ · q = 0

∂tq +∇ ·
(
q ⊗ q

h
+

1

2
gh2

)
= −gh∇Z(x , y ;α, r0)

We define the following compactly supported bump function:

Ω(x , y ;α, r0) =


α exp

 −1(
1−

r2

r2
0

)3

 if r < r0,

0 otherwise,

and we take Z(x , y ;α, r0) = Ω(x , y ;α, r0).

The steady solution is a vortex, whose amplitude and radius depend on α, r0 and an
additional parameter Γ: this time, we have three parameters, in addition to x and y .

E. Franck 36/42

36/42

2D shallow water system: steady solution

Training takes about 20 minutes on an old GPU, with the PINN loss supplemented with
data.

We need a high-quadrature, of degree nQ = 14, because of the large derivatives of the
compactly supported smooth bump function.

pts errorhφ order error
qx
φ

order error
qy
φ

order errorh
φ̄

order gain error
qx
φ̄

order gain error
qy

φ̄
order gain

20 1.91e-01 — 1.13e+00 — 1.13e+00 — 2.31e-03 — 82.79 1.02e-03 — 1116.93 1.01e-03 — 1119.33
40 4.72e-02 2.02 2.76e-01 2.04 2.76e-01 2.04 5.85e-04 1.98 80.64 2.30e-04 2.15 1199.70 2.22e-04 2.19 1242.66
80 1.16e-02 2.02 6.71e-02 2.04 6.71e-02 2.04 1.46e-04 2.00 79.77 5.72e-05 2.01 1173.39 5.52e-05 2.01 1216.72

160 2.90e-03 2.00 1.68e-02 1.99 1.68e-02 1.99 3.66e-05 2.00 79.45 1.43e-05 2.00 1178.29 1.38e-05 2.00 1222.59

(a) errors with a one-element basis, nG = 1

E. Franck 37/42

37/42

2D shallow water system: steady solution

Training takes about 20 minutes on an old GPU, with the PINN loss supplemented with
data.

We need a high-quadrature, of degree nQ = 14, because of the large derivatives of the
compactly supported smooth bump function.

pts errorhφ order error
qx
φ

order error
qy
φ

order errorh
φ̄

order gain error
qx
φ̄

order gain error
qy

φ̄
order gain

20 2.32e-02 — 2.10e-01 — 2.10e-01 — 2.59e-04 — 89.71 5.49e-04 — 382.67 5.73e-04 — 367.32
40 3.60e-03 2.69 2.86e-02 2.88 2.86e-02 2.88 3.15e-05 3.04 114.33 4.24e-05 3.70 675.67 4.30e-05 3.73 665.36
80 5.28e-04 2.77 3.56e-03 3.01 3.57e-03 3.01 3.95e-06 2.99 133.61 6.07e-06 2.80 587.71 6.16e-06 2.80 578.89

160 7.02e-05 2.91 4.63e-04 2.94 4.63e-04 2.94 4.96e-07 2.99 141.49 7.90e-07 2.94 586.16 8.02e-07 2.94 577.49

(b) errors with a two-element basis, nG = 2

E. Franck 37/42

37/42

2D shallow water system: steady solution

Training takes about 20 minutes on an old GPU, with the PINN loss supplemented with
data.

We need a high-quadrature, of degree nQ = 14, because of the large derivatives of the
compactly supported smooth bump function.

pts errorhφ order error
qx
φ

order error
qy
φ

order errorh
φ̄

order gain error
qx
φ̄

order gain error
qy

φ̄
order gain

20 5.17e-03 — 6.05e-02 — 6.05e-02 — 3.05e-04 — 16.97 1.63e-03 — 37.11 1.60e-03 — 37.72
40 4.32e-04 3.58 4.35e-03 3.80 4.34e-03 3.80 2.07e-06 7.20 208.24 4.35e-06 8.55 999.02 4.47e-06 8.49 969.66
80 2.87e-05 3.91 2.73e-04 3.99 2.73e-04 3.99 1.30e-07 3.99 220.41 2.84e-07 3.94 961.63 2.89e-07 3.95 942.16

160 1.72e-06 4.06 1.81e-05 3.91 1.81e-05 3.91 8.17e-09 3.99 210.88 1.59e-08 4.15 1136.57 1.62e-08 4.16 1117.87

(c) errors with a three-element basis, nG = 3

E. Franck 37/42

37/42

Future work and extension

E. Franck 38/42

38/42

Operator learning
� Parametric PINNs make it possible to approximate a family of PDE solutions, but we

need a parametrisation (e.g. of the topography).

� More general: Operator learning

� Principle: we consider
−∂x (α(x)∂xu(x)) = f (x)

� Formaly there exist a operator G+ : H2 →H, with H an Hilbert space, defined by

G+(α(x), f (x))→ u(x)

Neural operator

Construct a neural network G+
θ , approximation of G+, where the result and, if possible,

the input, do not depend on the mesh resolution.

Next
� this week: construct Neural operator which takes the topography a input, and gives

the equilibrium for the 2D Shallow Water equations.

� 2-year post-doc position in Strabourg to improve neural operators for time-dependent
hyperbolic systems.

E. Franck 39/42

39/42

MHD equilibrium

� For Tokamaks and stellarators, we solve flows around equilbrium.

� General equilibrium:
∇P = J× B

with µ0J = ∇× B.

� Tokamak equilibrum

−∆∗ψ(R,Z) = −µ0R
2 dP(ψ,µ1)

dψ
−

1

2

dF (ψ,µ2)

dψ

with µ1, µ2 some parameters.

Aim
Solve the equilibrium family with PINNs/Neural operator, and couple with a DG scheme,
or another efficient scheme.

E. Franck 40/42

40/42

Time-dependent and asymptotic problems

� Coming back to time-dependant problems:

∂tu + a∂xu = u2

� If the prior is perfect in time and space and the quadrature also the spatial part is
exact but it change nothing for the time part.

� The modification only acts on the spatial error.

Next
� Using DG in time or other approaches, we wish to obtain a very accurate

approximation in time around a family of space-time solution.

� Example: a compressible scheme which would be more accurate around a family of
incompressible flows.

Next
� Direct optimization of the basis functions to minimize the error on some solutions

E. Franck 41/42

41/42

Conclusion

PINNs
Physics-Informed neural networks and neural operators are a good way to compute and
store large families of solutions.

Enhanced DG
Using this prior in the basis, we significantly increase the accuracy around these families of
steady states (including steady solution with no analytical expression).

Questions
Can we obtain entropy stability ?

General
Neural networks are interesting for PDEs but we do not have the same guarantees of
classical numerical methods. Using the NN as a ”predictor/preconditioner” for the
numerical method, we hope to gain in CPU time, accuracy, and retain good convergence
properties.

E. Franck 42/42

42/42

Thank you for your attention!

Finite Volumes for Complex Applications 10 (FVCA10),
in Strasbourg, 30/10/2023 – 03/11/2023

E. Franck 42/42

42/42

	Introduction
	DG scheme with prior on the equilibrium
	Prior and PINNs
	Results
	Future works and extension

