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Reduced order modeling I

� We are interested in the following type of parametric problems:{
∂tu +N (u, ∂xu, ∂xxu,α) = 0, in Ωβ

u(t = 0, x) = u0(x ,γ)

with all the parameters µ = (α,β,γ).

� Solving this PDE for many parameters is important for control optimal, inverse
problems, uncertain propagation.

� After a spatial discretization we have:

dx(t)

dt
= F (x(t),µ)

with x(t) ∈ Rd and d >> 1.

� Solve many times this problem is very costly.

Idea of ROM
Construct a reduced model valid for a subset of µ and use it for optimal control or other
applications.
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Reduced order modeling II

Principle
� Manifold assumption: The solutions live in a manifold of small dimensions (dimension

of µ)

� Idea: determinate the manifold and project the equation on this manifold.

� The classical approach uses the assumption than the manifold is closed to a
hyperplane.
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POD approach + Galerkin Projection

Hyperplan Assumption

x(t) ≈ x̃(t) = x ref + Φx̂(t)

with the decoder Φ ∈ Rd ,m and m << d

� How determinate Φ ? We construct a snapshot matrix:

X =
{
x(t1,µ1)− xref , ...., x(tnt ,µnµ

)− xref

}
∈ Rd ,nt×nµ

� POD method solve the following problem:

min
Φ,ΦtΦ=Id

‖ X − ΦΦtX ‖F

� The solution is given by the m eigenvectors associated with the m maximal
eigenvalues of XX t .

Reduced model
� We make a Galerkin projection: represent the solution of the space Vect(Φ) + xref and

project the derivative of time on the test space: Vect(Φ)

� Result:
d x̂(t)

dt
= ΦtF (x ref + Φx̂)
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Applications to equation

� Damped wave equation
∂ttu − c2∆u = 0

� First order version: v = ∂tu {
∂tu = v
∂tv = c2∂xxu

� Energy balance:
d

dt

∫
Ω

(
v2

2c2
+

(∂xu)2

2

)
= 0

� We apply the POD + Galerkin method:

d

dt

(
û
v̂

)
= Â

(
û
v̂

)
+ Φt

(
uref

v ref

)

with Â = Φt

((
0 Id

−c2Dhh 0

))
Φ precomputed and Dhh the discrete Laplacian.
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Results
� We compress the wave equation using POD.

� In the data set we take 20 values of c ∈ [0.2, 0.6]

� Less efficient than for diffusion problems. Gibbs phenomena.
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Structure preserving linear reduction
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Hamiltonian structure of general wave equation

� The POD does not work well for wave equation. How improve that ?

� Energy balanced:
d

dt

∫
Ω

(
v2

2c2
+

(∂xu)2

2

)
= 0

� Discretization with staggered grids (or other structures preserving method) we obtain:

d

dt

(
uh

vh

)
= J∇H(uh, vh)

with

J =

((
d Id
−Id 0

))
, H(uh, vh) = ∆x

N∑
i=1

(
v2
i +

(ui+1 − ui )
2

2∆x2
+

(ui − ui−1)2

2∆x2

)

Hamiltonian systems
We speak about Hamiltonian system. By construction the Hamiltonian is conserved in
time. It allows assuring the stability of the system.
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Symplectic flot and Symplectic scheme
� The Hamiltonian systems are a key object in symplectic geometric.
� Symplectic map: maps which preserves the symplectic form.
� The map: (u, v) = φ((q, p)) ∈ Rno , with (q, p) ∈ Rni with ni < no is a symplectic

map if
(∇(q,p)φ)tJno (∇(q,p)φ) = Jni

� Galerkin projection with symplectic map preserve the Hamiltonian structure:

d

dt

(
u
v

)
= Jno∇H(u, v)→

d

dt

(
p
q

)
= Jni∇H(φ(p, q))

� Example: Pendulum.

Remark
The symplectic map are important tools.
Example we use a time scheme:(

un+1

vn+1

)
= φ∆t

(
un

vn

)
The scheme where φ∆t is a symplectic map
admits better stability results.

Euler explicite
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Symplectic reduction

PSD
The idea of structure preserving reduction: propose a POD-type method which is a
symplectic map. We speak about PSD.

� PSD method (Hestaven and al ) solve the following problem:

min
A,AtA=Id ,AtJA=J

‖ X − AAtX ‖F

� We construct snapshots matrix:

X =
{
u(t1,µ1), ...., u(tnt ,µnµ

), v(t1,µ1), ...., v(tnt ,µnµ
)
}

� We compute a POD on X to obtain Φ
� We obtain the decoder:

A =

((
Φ 0
0 Φ

))
� We obtain a Hamiltonian reduced model:

d

dt

(
û
v̂

)
= Jm∇H

(
Φ

(
û
v̂

))
� Hyper-reduction: method to construct Ĥ

((
û
v̂

))
.
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Results for linear wave equation I
� General wave equations: ∂ttu− ∂x [∇UV (∂xu)] = 0. First order form:{

∂tu = v
∂tv = ∂x [∇uV (∂xu)]

with

H(u, v) =

∫
Ω

(
1

2
| v |2 +∇uV (∂xu)

)
dx

� We compress the linear wave equation using POD and PSD.
� In the data set we take 20 values of c ∈ [0.2, 0.6]
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Results for linear wave equation II
� We solve linear wave equation for Piano string (Chabassier 10){

∂ttu1 = ∂x ((1− α)∂xu1)
∂ttu2 = ∂xxu2

with α ≈ 0.5
� Solution in high dimension:

� Solution in low dimension with 5 mods:
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Results for nonlinear wave equations
� We solve nonlinear wave equation for Piano string (Chabassier 12) with fixed

parameters. {
∂ttu1 = ∂x

[
(1− α)∂xu1 + α∂xu∂xv + 1

2
(∂xu)3

]
∂ttu2 = ∂x (∂xu2 + α

2
(∂xu)2) = 0

with α ≈ 0.8
� Solution in high dimension (200 cells):

� Solution in low dimension with 5 mods without hyper-reduction:
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Nonlinear reduction
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Principle of nonlinear-reduction

� We make the assumption that the manifold solution can be approximate by a
hyperplane. Not realistic for strongly nonlinear PDE.

Nonlinear assumption

x(t) ≈ x̃(t) = G(x̂(t))

with G(.) : Rm → Rd and m << d

� How construct the decoder G :

� neural networks like auto-encoder,
� manifold learning approach (extension to POD for manifold) + regression.

aim
Combine nonlinear reduction method and structure preserving one.

� Solution:

� Weakly symplectic decoder (Buchfink an al 2021).
� Non Symplectic decoder but Hamiltonian reduced models (our work).
� Symplectic decoder (open question).
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Maching learning: principle
� Supervised learning: we want approximate

y = f (x) + ε

with ε some noise and f unknown.
� We know a set ((x1, y1), ...., (xn, yn)). We use a parametric function and find the

parameters solving:

min
θ

N∑
i=1

‖ yi − fθ(xi ) ‖2
2

� Which parametric functions? Neural network.

Layer

A layer is a function Ll (xl ) : Rdl → Rdl+1 given by

Ll (xl ) = σ(Alxl + bl ),

Al ∈ Rdl+1,dl , b ∈ Rdl+1 and σ() a nonlinear function applied component by component.

Neural network
A neural network is parametric function obtained by composition of layers:

fθ(x) = Ln ◦ .... ◦ L1(x)

with θ the trainable parameters composed of all the matrices Al ,l+1 and biases bl .
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Auto-encoder

Auto-encoder
We propose two networks Eθe (x) : Rd → Rm and Dθd (x) : Rm → Rd with m << d such
that

min
θe ,θd

n∑
i=1

‖ xi − Dθd (Eθe (xi )) ‖2
2

� For high-dimensional data living on grids we use Convolutional neural networks.

� Example of CAE:
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Full nonNonlinear-reduction with Hnn I

Strategy
Coupling nonlinear reduction with learning reduced Hamiltonian ODE (HNN) in the
reduced space.

� How learn a Hamiltonian system.

� We estimate the derivative of data
{

( dy
dt

)1, ...( dy
dt

)n
}

with finite difference and we

solve

min
θ

n∑
i=1

‖ (
dy

dt
)i − J∇Hθ(yi ) ‖2

2

� If we define the scheme Sθ(yi ) = yi + ∆tJ∇Hθ(yi ) we minimize:

min
θ

n∑
i=1

‖ yi+L − Sθ ◦ ... ◦ Sθ(yi )︸ ︷︷ ︸
L times

‖2
2

� The gradient of Sθ ◦ ... ◦ Sθ can be computed using automatic differentiation tools.
We speak about differentiable physics.
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Full nonNonlinear-reduction with Hnn model II

Final loss
� AE loss:

min
θe ,θd

n∑
i=1

‖ xi − Dθd (Eθe (xi )) ‖2
2

� HNN loss:

min
θ

n∑
i=1

‖ Eθe (xi+L)− Sθ ◦ ... ◦ Sθ(Eθe (xi ))︸ ︷︷ ︸
L times

‖2
2

� Coupling loss (to enforce the encoded trajectory to be conservative):

min
θ

n∑
i=1

‖ Hθ(Eθe (xi+L))− Hθ(Eθe (xi )) ‖2
2

� Full loss:

min
θ

n∑
i=1

‖ xi+L − Dθd (Sθ ◦ ... ◦ Sθ(Eθe (xi ))︸ ︷︷ ︸
L times

) ‖2
2

� We use CNN network for Eθe and Dθd .

� We use fully-connected network for Hθ.
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Results linear wave
� We solve {

∂tu = v
∂tv = c2∂xxu

with varying 20 values of c ∈ [0.2, 0.6] in the data set.
� Result:

Models c = 0.2385 c = 0.3798 c = 0.5428
dim/error error u error v error u error v error u error v

AE+HNN
k = 2 2.4e−4 4.2e−3 5.3e−4 9.5e−3 3.4e−4 6.6e−3

k = 1 2.1e−4 9.2e−3 2.2e−4 7.6e−3 3.6e−4 9.0e−3

PSD
k = 4 5e−2 1.38e−1 5.05e−2 1.9e−1 5e−2 2.4e−1

k = 5 5.5e−3 3.4e−2 5.9e−3 4.9e−2 6.3e−3 6.4e−2

k = 6 3.5e−4 9e−3 3.3e−4 1.1e−2 3.2e−4 1.3e−2

POD
k = 10 1.9e−3 1.2e−2 9.7e−4 1.5e−2 3.7e−3 6.4e−2

k = 15 8.5e−4 1.2e−2 3.2e−4 8.5e−3 1.6e−3 3.5e−2

k = 20 3.9e−4 6.2e−3 1.3e−4 3.1e−3 4.8e−4 1.4e−2

� We use a HNN: [24, 12, 12, 12, 6]+ tanh. CNN: convolutional block with 2 convolution
by block + 4 dense layers [256, 128, 64, 32] + elu activation.

Remark
Our approach made similar result than PSD with the reduced dimension k = 6 or k = 7
and the POD with k = 20
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Results nonlinear wave
� We solve {

∂tu = v

∂tv = µ1∂x (W
′
(u,µ2) + g

′
(u,µ3)

with

W (x ,µ) =
1

2
x2 + sin(µx), g(x ,µ) = 10µx3

and have 20 triplets (µ1,µ2,µ3) in the dataset.

� Three tests (more and more nonlinear):

Model Test 1 Test 2 Test 3
dim/error error u error v error u error v error u error v

AE+HNN k = 3 4.8e−4 3.1e−3 9.7e−4 1.2e−2 3.5e−4 4.6e−3

PSD
k = 16 9.3e−4 1.7e−2 8.3e−4 1.8e−2 1.8e−3 3.0e−2

k = 18 5.2e−4 1.2e−2 5.1e−4 1.2e−2 9.4e−4 2.6e−2

k = 24 3.2e−4 7.2e−3 3.1e−4 7.4e−3 4.0e−4 1.5e−2

POD
k = 24 1.4e−2 1.2e−1 1.7e−2 1.8e−1 1.8e−2 2.6e−1

k = 40 7.6e−3 1.17e−1 1.1e−2 1.1e−1 1.1e−2 2.5e−1

Remark
Our approach made similar results than PSD with the reduced dimension k = 18 or
k = 20 and better than POD with k = 60
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Results nonlinear wave II
� Tests 1/2/3

E. Franck 24/26

24/26



Conclusion
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Conclusion

Conclusion
The nonlinear reduction allows compressing more the parametric PDE. We can enforce
the Hamiltonian structure at the reduced level and ensure more stability.

Future works
Adapt the method to treat nonlinear Vlasov equations for plasma physics ( PhD of G.
Steimer)

Future works II
Master and PhD Thesis of C. Schnoebelen:

� Space-time structure preserving methods for complex wave equations like
Galbrun/linear MHD (DeRham Sequance + Symplectic scheme).

� Enhanced structure preserving methods by neural networks.

� Symplectic nonlinear decoder for Hamiltonian reduction.

� Reduced order modeling for varying medium wave equations.

� Extension to sphere case.
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