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Numerical methods

B We begin with a simple example:

Lexu=0tu—Au=0
u(t =0,x) = up(x)
u(x) = g on 90

B Solving a PDE amounts to solving a infinite-dimensional problem.
B Numerical method: transform the PDE into a finite-dimensional problem of dimension
N with convergence to the PDE solution when N — oo

B How to summarize most of numerical methods? (drawing from S. Mishra)

G

X——Y

Lo el

B Definitions:
O &, the encoder, transforms the data (initial conditions, RHS) into a finite
dimensional vector. We speak about degree of freedoms (DoF).
O D, the decoder, transforms degrees of freedom into a function.
0 A, the approximator, transforms the DoF of the inputs into the DoF of the
approximate solution.
b £ oD = I, the projector to the final dimension functional space associated to th

e
decoder form. (4 \
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Why numerical methods require a mesh?

Polynomial Lagrange interpolation

We consider a domain [a, b]. There exists a polynomial P of degree k such that, for any
f € CO([a, b)),

f(x) — P(x)| < |b— a|¥ LX)
[f(x) = P(x)| < |b—a x?[iff,]' (€3]

B On small domains (|b — a| <« 1) or for large k, this polynomial gives a very good
approximation.

B Very high degrees k can generate oscillations.

B To enfore small domains: we introduce a mesh and a cell-wise polynomial
approximation

First step: choose a parametric function

We define a mesh by splitting the geometry in small sub-intervals [x;, x;+1], and we
propose the following candidate to approximate the PDE solution u

k
u\[vaXerl](t'X) = Zaj(t)¢j(x)-
=

This is a piecewise polynomial representation. /-\
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Finite element, finite volume, discontinuous Galerkin

Finite element method

B Encoder: transforms the function f into c(t) the FE DoF (pointwise values,
face/edge integral values, . ..)

B Decoder: D(a)(t,x) = vazl a;(t)pi(x) with ¢;(x) a compactly supported basis
function defined on the whole mesh

B Approximator: we plug the decoder in the weak form of the equations to obtain an
ODE or an algebraic system on «

A\

Finite volume and discontinuous Galerkin method

B Encoder: transforms the function f into a(t) the FE DoF (average values, modal
values, nodal values, ...)

B Decoder: D(a)(t, X)|Qj = Z,N=1 ai(t)ei(x) with ¢;(x) a local cell-wise basis function.

B Approximator: we plug the decoder in the weak form of the equations to obtain an
ODE or an algebraic system on «, in each cell

A\

B For this method, the decoder generates a finite-dimensional vector space.

B The method projects a form of the equation on this finite-dimensional space.
Uniqueness is ensured by the Hilbert projection theorem.

B Convergence is ensured: increasing the number of DoF (mesh, polynomial degree)

makes the error decrease. (6 \
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Spectral methods

Spectral theorem

The spectral theorem in Hilbert spaces proposes an approximation of any function in H by

N
u(x) = aigi(x),
i=1

with ¢;(x) the orthonormal global Hilbert basis, and a; = (f, ¢;).

Spectral method

B Encoder: Projection of the function f in the spectral basis. DoF: «; = (f, ¢;)

B Decoder: D(a)(t,x) = Z{\’:l a;(t)pi(x) with ¢;(x) the first modes of the Hilbert
basis.

B Approximator: we plug the decoder in the weak/strong form of the equations to
obtain an ODE or an algebraic system on a.

B For this method, the decoder generates a finite-dimensional vector space.

B The method projects a form of the equation on this finite-dimensional space, using the
Unicity by Hilbert projection theorem.

Convergence is ensured: increasing the number of DoF (number of modes) makes the

error decrease. (7 \
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Mesh-free methods

Represent the solution as a sum of radial basis functions localized at some points:
N
u(x) =D aidillx = xl)
i=1
. . . . 2
with ¢;(r) a radial basis function such as ¢(r) = e~ (1" or ¢(r) = ﬁg Larger values
of £ give more localized functions.

IRZCS) ,(0

Radial basis method

B Encoder: Projection of the function f. DoF: weights of the radial functions

B Decoder: D(a)(t, x) = Z{\’:l ai(t)(]x — xi|) with ¢(x) a radial basis function.
B Approximator: just like before, the decoder is plugged in the equation.

B |ike before, we have a finite-dimensional function space.
B Convergence: increasing the number of points (DoF) makes the error decrease. (8 \

E. Franck \ /30

4



Properties

Space and space-time decoder

B Classical methods (FE/FV/DG/...) involve a decoder where only the space
representation is fixed:

N

u(t,x) = Z a;i(t)pi(x).
i=1
B Plugging this decoder in the equation, we obtain an ODE to solve.

B A more recent approach, space-time methods, proposes to fix both space and time
representations:

N
u(t,x) = Z aidi(t, x).
i=1

B Plugging this decoder in the equation we obtain an algebraic system to solve.

Explicit vs implicit representations

B Representations are called explicit if the degrees of freedom can be explicitly computed
and understood from the function.

B FE/FV/DG/spectral methods use explicit representations (average value, ...).

B The radial basis method, however, uses a partially explicit representation. It is difficult
to understand the DoF from the function, but they can easily be computed by
inverting the mass matrix (projector).

\9/301
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Key idea

Every previously mentioned space and space-time methods consists in:
1. choosing a linear representation (linear combination of basis functions), either local
(on a mesh) or global;

2. plugging this representation into the equation to obtain algebraic relations (linear for

linear problems, nonlinear for nonlinear problems) or ODEs.
3. solving this algebraic relation with a linear solver or Newton’s method, using a time
scheme to solve the ODE.

In all these cases, the decoder is linear with respect to the DoFs, and the representation is

either explicit or partially explicit.

| \

Choose a nonlinear representation given by a neural network. We replace a sum of simple

functions with a composition of simple functions.

Important points

| A\

Finite-dimensional spaces associated to a nonlinear decoder are not vector spaces but
manifolds. So:
B the projector is not unique, and the representations will be implicit.

B Existence and uniqueness? algebraic system replaced with non-convex optimization. 7/
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Nonlinear models
B Nonlinear version of classical models: f is represented by the DoF «;, u;, w; or X;:
-1
F(x; v ) = Zaie(xfui)):,- (X*Hi)’ flx;o,w) = Zaisin(w,-x)
i=1 i=1
B Neural networks (NN).

A layer is a function L;(x/) : R% — R%+1 given by
Li(x;) = o(Ax; + b)),

A; € Ré+1.41 b € RI+1 and o() a nonlinear function applied component by component.

Neural network

A neural network is parametric function obtained by composition of layers:

fo(x) = Lno.... o Ly(x)

with 6 the trainable parameters composed of all the matrices A; ;1 and biases b;.

B Go to nonlinear models allows to use NN which are: accurate global model (mesh
free), low frequency (better for generalization) and able to deal with large dimension.

B Go to nonlinear models: would allows to use less degrees of freedom. fll \
/30
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Space-time approach: PINNs |

Idea of PINNs

B For u in some function space H, we wish to solve the following PDE:
Oru = F(u, Vu, Au) = F(u).
B (Classical representation for space-time approach: u(t, x) = Z{VZI 0idi(x, t)

B Deep representation: u(t, x) = upn(x, t; 0) with us, a NN with trainable parameters 6.

B Since ANNs are CP functions, we can compute Otunn(x, t;0), Oxp upn(x, t; 0) and
r(x, t) = Otunn(x, t;0) — F(unn(x, t;0), Vuan(x, t; 0), Aupa(x, t; 0))

B Since the subspace of NN functions is not a vector space, we cannot " project” this
residue.

We move away from solving algebraic equations on the parameters, and go towards
non-convex optimization.

\l 12/30
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Space-time approach: PINNs [l
B We define the residual of the PDE:
R(t, x) = Orunn(t, x;0) — F(unn(t, x; 6), Oxtnn(t, x; 0), Oxxtnn(t, x; 0))

B To learn the parameters 6 in unn(t, x; 0), we minimize:
9 = arg min (J,(e) + Jp(0) + J,-(e)),
0

with

J,(e)z/OT/Q|R(t,X)|2dxdt

and

)
— 0 == X 2X H = unn(V, X; — up(x 2X.
J(0) = /0 /anuunn(r,x,e) g()3dxdt,  Ji(0) /Q (0, x: 0) — 1o ()| 3d

B |f these residuals are all equal to zero, then upn(t, x; 0) is a solution of the PDE.

B To complete the determination of the method, we need a way to compute the
integrals. In practice we use Monte Carlo.

B Important point: the derivatives are computed exactly using automatic differentiation
tools and back propagation. Valid for any decoder proposed.

13
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Space-time approach: PINNs [l
B We define the residual of the PDE:
R(t, x) = Orunn(t, x;0) — F(unn(t, x; 0), Oxunn(t, x; 0), Oxxtnn(t, x; 0))
B To learn the parameters 6 in unn(t, x; 0), we minimize:

9 = arg min (J,(e) + Jp(0) + J,-(0)>,
0

with
N N
Jr(0) =D IR(ta, xi)
n=1 j=1

with (tn, x;) sampled uniformly or through importance sampling, and

N, Np Ni
Ip(0) =D D unn(tn, xi:0) — g(xi), Ji(0) = D |unn(0, xi: 8) — uo(xi)|*.
n=1 i=1 i=1

B |f these residuals are all equal to zero, then upn(t, x; 0) is a solution of the PDE.

B To complete the determination of the method, we need a way to compute the
integrals. In practice we use Monte Carlo.

B |mportant point: the derivatives are computed exactly using automatic differentiation
tools and back propagation. Valid for any decoder proposed.
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PINNSs for parametric PDEs

B Advantages of PINNs: mesh-less approach, not too sensitive to the dimension.

B Drawbacks of PINNSs: they are often not competitive with classical methods.

B |nteresting possibility: use the strengths of PINNs to solve PDEs parameterized by
some .

B The neural network becomes unn(t, x, w; 6).

New Optimization problem for PINNs

minJ,(G) +...,, with

J:(0) = / / / ||8tu,,,, — u,,n(t X, ), Oxtnn(t, x, 1), Oxxtunn(t, x, ) ||2dxdt

with V, a subspace of the parameters .

B Application to the Burgers equations with many viscosities [1072, 1074]:

B Training for u = 10~*: 2h. Training for the full viscosity subset: 2h. ,14 \
E. Franck /30‘




Spatial approach: Neural Galerkin |
B We solve the following PDE:
Otu = F(u,Vu, Au) = F(u).

B (Classical representation: u(t, x) = Z,N:1 0;(t)pi(x)

B Deep representation: u(t, x) = upn(x; 0(t)) with un, a neural network, with
parameters 0(t), taking x as input.

B We want that:

F(unn(x;0(t))) = Orunn(x; 0(t)) = <V9un,,(x; 9), %(:)>

B How to find an equation for di(tt)?

B We solve the minimization problem:
do(t)
dt

= argminJ(n) = arg min/ [ (Vounn(x;0), m) — F(unn(x; 0(t)))|?dx.
n n Q

B The solution is given by

do(t)
dt

M(0(t)) = F(x6(1))

with
M(G(t)):/QVgun,,(x;9)®Vgu,m(x;9)dx, F(X,O(t)):/QVgunn(x;G)F(u,,n(x;G))dx.

\15/30
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Spatial approach: Neural Galerkin Il

How to estimate M(6(t)) and F(x, 6(t))?

Firstly: we need to differentiate the network with respect to 6§ and to x (in the
function F). This can easily be done with automatic differentiation.

Secondly: How to compute the integrals? Monte Carlo approach.

So, we use:
N
M(6(t)) = Z Vo unn(xi; 0) ® Vounn(xi; 0)
i=1
and the same for F(x, 6(t)).
Summary: we obtain an ODE in time (as usual) and a mesh-less method in space.
Like in the case of PINNs, we can apply this framework to parametric PDEs and larger

dimensions.
We solve the following PDE:

Oru = F(u,Vu, Au, a) = F(u; p).

Deep representation: u(t, x, ) = upn(x, p; 0(t))
The solution is given by

do(t)

M(O(t))T

= F(x,0(t), 1)

with

M(6(t)) = /Vu /QVeunn(x, 1;0) @ Vgunn(x, 1; 0)dxdp. ﬁ/\
30
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Spatial approach: Neural Galerkin Il

B We solve the advection-diffusion equation 9:p + a- Vp = DAp with a Gaussian
function as initial condition.

B Case 1: with a neural network (2200 DOF)

prediction reference
125
s 125
050 120 120
025
115 115
000
025 110 110
R 105
00 K 1.05
-0.75 o : «  w_theta(x, y) 1.00
100
075 050 025 000 025 050 075 075 —050 025 000 025 050 075
dx prediction dy prediction
075 dx v_theta(x, y) 10 075 dy w_theta(x, y) 10
050 050 m
05 - 0s
0.25 025 O
0.00 0.0 0.00 0.0
025 025
“os -0
-050 -0s0
-07s o -075 10
075 050 025 000 025 050 075 075 050 025 000 025 050 075

B 5 minutes on CPU, MSE error around 0.0045.

\l 17/30
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Spatial approach: Neural Galerkin Il

B We solve the advection-diffusion equation d:p + a- Vp = DAp with a Gaussian
function as initial condition.

B Case 2: with a Gaussian mixture (one Gaussian):

prediction reference
125 125
075
050 120 120
025
115 115
000
025 110 110
050 < 105 1.05
-075 w_theta(x, y) w_ref(x, y)
1.00
075 -050 -025 000 025 050 075 075 -050 -025 000 025 050 075
dx prediction dy prediction
0.75 Lo 0.75 10
050 050
025 025 Q
0.00 00 0.00 00
025 025
05 05
050 050
-0.75 dx v_theta(x, y) -10 -075 +  dyw_theta(x, y) -10
075 -050 -025 000 025 050 075 075 050 -025 000 025 050 075

B 5 sec on CPU. MSE around 1.07%. Decoder perfect to represent this test case.

\l 17/30
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Summary

New numerical methods

New numerical methods are derived using nonlinear models like neural networks. Same
spirit as classical methods: plug an Ansatz into the equation to obtain equations on DoFs.

B Classical numerics: they use Ansatz f(t, x; 0) plugged into the equations.
L) Space time Ansatz

F(t,x:0) =Y 0:ihi(t, x)
i=1
gives a algebraic system on 6 (linear for linear PDE, nonlinear else).

O Space Ansatz
f(t, x;0) = Ze (t)gi(x

gives a linear/non-linear ODE on 6 + algebralc system on 6 for initial projection.

Drawbacks

B |ess accurate than classical approaches especially in low dimension
B convergence and theoretical study difficult,

Advantages

B mesh free
B more efficient in large dimension and for parametric PDEs, perfect for GPUs
B more freedom on the chosen structure (the decoder)

{15
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Summary

New numerical methods

New numerical methods are derived using nonlinear models like neural networks. Same
spirit as classical methods: plug an Ansatz into the equation to obtain equations on DoFs.

B Neural method: idem.
01 PINNs (Space time Ansatz)

f(t, x;0) = unn(t, x; 0)

replace algebraic system on 6 by non-convex optimization.
O Neural Galerkin (Space Ansatz)

f(t,x;0) = unn(x; 0(t))
gives a nonlinear on 6(t) + non-convex optimization for initial projection.

Drawbacks

B |ess accurate than classical approaches especially in low dimension
B convergence and theoretical study difficult,

B mesh free
B more efficient in large dimension and for parametric PDEs, perfect for GPUs
B more freedom on the chosen structure (the decoder)
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Application to numerical methods

E. Franck
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Hybrid predictor-corrector methods

Hybrid methods

In this context, hybrid methods combine classical numerical methods and numerical
methods based on Implicit Neural representation (IRM).

Objectives

Taking the best of both worlds: the accuracy of classical numerical methods, and the
mesh-free large-dimensional capabilities of IRM-based numerical methods.

General Idea

B Offline process: train a Neural Network (PINNs, NGs, NOs or CROM) to obtain a
large family of approximate solutions.

B Online process: predict the solution associated to our test case using the NN.
B Online process: correct the solution with a numerical method.

_ \‘ 20/30
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Predictor-Corrector: using PINNs in a FE method

B \We consider the following elliptic problem:

Lu=—0wu-+voxu+ru=fFf, Vxe
u=g, Vx € 00

B We assume that we have a continuous prior of the solution given by a parametric
PINN wg(x)

B \We propose the following corrections of the finite element basis functions:
u(x) = ug(x) + pa(x),  u(x) = ug(x)pn(x),
with pp(x) a perturbation discretized using Py Lagrange finite element.

B For the first approach (additive prior), we solve in practice:

Lpp(x) = f — Lup(x), Vx €Q
pr(x) =g —up(x),  Vx € R

B For the second approach (multiplicative prior), we need uy(x) # 0, so we take M > 0

and we solve:
{ L(ug(x)ph(x)) = f, V¥x€Q

ph(x) = ugg(x) + M, Vxeon

121/30
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Theory for hybrid EF

B Approach one: we rewrite the Cea lemma for up(x) = ug(x) + pa(x). We obtain
M
llu = unll < —lju = ug — In(u — up)|
with I, the interpolator. Using the classical result of P, Lagrange interpolator we

obtain v
lu = upllgm < = CHFHE (7'“_ ”"‘”m> |ulm
a ] pym

gain

B Approach two: up(x) = up(x)ps(x). We use a modified interpolator:

N
lmod,h(f) = Z f(Xi) (ZS,'(X)UQ(X)

i1 ue(xi)

using Imod.r(f) = Ih(é)ue(x) , the Cea lemma and interpolation estimate we have:

M [z Hm (| ug (x) || oo
lu— upllpm < ;Chk“_’" <u" ] pym

[ulpm

gain
B The prior must give a good approximation of the mt" derivative. (22 \
/30
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EF for elliptic problems

B First test:
— 0wt = asin(27x) + Bsin(4wx) + v sin(8mx)

We train with (a, b, ¢) € [0, 1]® and test with (a, b, c) € [0, 1.2]3.

method: average gain  variance gain
additive prior with PINNs 273 13000
Multiplicative prior M = 3 with PINNs 92 4000
Multiplicative prior M = 100 with PINNs 272 13000
additive prior with NN 15 18
Multiplicative prior M = 3 with NN 11 175
Multiplicative prior M = 100 with NN 15 18

B The PINN is trained with the physical loss, the NN with only data, no physics.

B The NN is able to better learn the solution itself, but the approximation of derivatives
is less accurate than with the PINN.

\‘ 23/30
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EF for elliptic problems

B Second test:

1
vOxu — P—ﬁxxu =r

e

We train with r € [1, 2], Pe € [10,100]. We test with (r, Pe) = (1.2,40) and
(r, Pe) = (1.5,90)

Case 1 | Classical FE Additive prior Multiplicative prior
error order | error order | gain | error order | gain
10 1.07e T | - 2703 | - 40 229¢ % | - 467
20 336e=2 | 1.97 | 8.00e~% | 1.76 | 42 9.06e—° | 1.93 | 371
40 9.09¢—3 | 1.89 | 2.01e % | 2.00 | 45 2.63e—° | 1.97 | 345
80 23273 [ 1.97 [ 5.01e ® | 1.99 | 46 6.37¢ % | 1.99 | 365
160 582e—% [ 1.99 | 1.30e=® [ 1.97 | 45 1.77e7% | 2.0 289
Case 2 | Classic additive prior Multiplicative prior
error order | error order | gain | error order | gain
10 2.65e~ T | — 1.51e 1 | - 1.7 933e~ % | - 284
20 1.06e—T | 1.32 | 6.04e 2 | 1.33 | 1.7 384 % | 1.28 | 276
40 3.46e=2 | 1.62 1.96e=2 | 1.62 1.8 1.13e=% | 1.76 | 305
80 950e=3 [ 1.86 | 5323 | 1.87 | 1.8 3.26e° | 1.80 | 201
160 2.43e=3 [ 1.86 | 2.43e3 | 1.86 1.8 8.67¢ % | 1.91 | 280
E. Franck
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Hyperbolic systems with source terms

B |n the team, most of us are interested in hyperbolic systems:
U+ V- -F(U)=S(U)

B |t is important to have a good preservation of the steady state V - F(U) = S(U).

Example: Lake at rest for shallow water:

B Exactly Well-Balanced schemes: exact preservation of the steady state.
Approximately Well-Balanced schemes: preserve with a high-accuracy than the
scheme the steady state.

B Building exact WB schemes is difficult for some equilibria, or for 2D flows.

v

Compute offline a family of equilibria with parametric PINNs (or NOs) and plug the
equilibrium in the DG basis to obtain a more accurate scheme around steady states.

'\24/30‘
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Theory for hybrid DG

B Theory for the scalar case.
B The classical modal DG scheme uses the local representation:

q
ug, (x) = Z arpi(x)k, with ¢k, ¢Z] =1, (x = xk), - (x — xx)9]
1=0

B |f up(x) is an approximation of the equilibrium, we propose to take as basis:

Vi = [ug(x), (x = xk), -..(x = xk)9], or Vo = ug(x)[1, (x — xk), ...(x — xx)9]

Estimate on the projector for V2

Assume that the prior vy satisfies

ug(x; u)2 >m?>0, Vxe€Q, VueP.

and still consider the vector space V5. For any function u € HIt1(Q),

llu = Pa(u)ll 1200y < (83507 [|ug ] oo 0.

Ug |Ha+1(Q)
V.
B Adding a stability estimate, we can also prove the convergence. /\
25/
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Euler-Poisson system in spherical geometry

B We consider the Euler-Poisson system in spherical geometry
dep+ 0rq = —2q,
orq + 90 ("—2+ )—Jﬁ— A
tq r\p P == P pPOr®,
OE +0, (£(E+p)) = —22(E +p) — adro,
r%a,,(r%) =47 Gp,

B First application: we consider the barotropic pressure law p(p; k,v) = kp? such that
the steady solutions satisfy

B The PINN yields an approximation of py(x, k, )

B Second application: we consider the ideal gas pressure law p(p; k,v) = kpT(r), with
T(r) = e~ such that the steady solutions satisfy

T T
i <r2n—@) + i (r2md—) = 47r%Gp,
dr p dr dr dr

B The PINN yields an approximation of pg(x, k, )

B To simulate a flow around a steady solution, we need a scheme that is very accurate
on the steady solution.
26/
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Results

B Training takes about 10 minutes on an old GPU,with no data, only the PINN loss.

B We take a quadrature of degree ng = ng + 1 (sometimes, more accurate quadrature
formulas are needed).

B Barotropic case:

minimum gain average gain maximum gain
q p Q B p Q B P Q E
0 19.14 233 17.04 233.48 3.73 197.28 510.42 4.48  371.87
1 761 828 6.98 158.25 188.92 130.57 1095.68 1291.90 1024.59
2 014 022 299 12.11  16.55  23.73 89.47  109.93  169.28

B jdeal gas case:

minimum gain average gain maximum gain
q 4 Q E o Q E I Q E
0 13.30  1.05 16.24 151.96  1.88 150.63 600.13 2.91 473.83
1 6.30 7.53 5.40 72.63 77.20 51.09 321.20 302.58 257.19
2 335 345 220 18.96 22.58 13.56 55.47  63.45  47.83

B 2D shallow water equations: equilibrium with u 7% 0 4 small perturbation. Plot the
deviation to equilibrium:

5-107%
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0
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“1.107
5107
10

1510721107
15107




Conclusion
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Conclusion and Adverts!

Short conclusion

Using nonlinear implicit representations, we proposed new numerical/reduced modeling
methods whose advantages/drawbacks are very different to those of classical approaches.
We will continue to investigate hybrid approaches.

B For the PEPR Numpex, we are currently writing the Scimba code. It contains for
PINNSs, Neural Galerkin, Neural operator methods, ...; the goal is for this code to be
shared by different teams.

B |f you are interested to try these methods, play with Scimba, or participate contact us!
V.

B Qur Inria team TONUS/MACARON will specialize in the hybridation between ML and
numerical methods for PDEs.

B We regularly have PhD, post-doc and even permanent positions open on these
subjects. If you are interested, contact us :)

\‘ 29/30
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