Neural implicit representation for PDEs and hybrid
numerical methods

Workshop Physic Informed methods, GDR Mascot Num, Toulouse

Inria Nancy Grand Est, France
2JRMA, Strasbourg university, France

3Inria Bordeaux, Pau center, France ’1/ \
30

&’L; E. Franck \ 4

Outline

Introduction

Numerical Methods and Implicit neural representation

Application to numerical methods

Conclusion

(?/30

E. Franck \ 4

Numerical Methods and implicit neural representation

(/3

E. Franck \ y

Numerical methods

B We begin with a simple example:

Lexu=0tu—Au=0
u(t =0,x) = up(x)
u(x) = g on 90

B Solving a PDE amounts to solving a infinite-dimensional problem.
B Numerical method: transform the PDE into a finite-dimensional problem of dimension
N with convergence to the PDE solution when N — oo

B How to summarize most of numerical methods? (drawing from S. Mishra)

G

X——Y

Lo el

B Definitions:
O &, the encoder, transforms the data (initial conditions, RHS) into a finite
dimensional vector. We speak about degree of freedoms (DoF).
O D, the decoder, transforms degrees of freedom into a function.
0 A, the approximator, transforms the DoF of the inputs into the DoF of the
approximate solution.
b £ oD = I, the projector to the final dimension functional space associated to th

e
decoder form. (4 \
/30

E. Franck \ y

Why numerical methods require a mesh?

Polynomial Lagrange interpolation

We consider a domain [a, b]. There exists a polynomial P of degree k such that, for any
f € CO([a, b)),

f(x) — P(x)| < |b— a|¥ LX)
[f(x) = P(x)| < |b—a x?[iff,]' (€3]

B On small domains (|b — a| <« 1) or for large k, this polynomial gives a very good
approximation.

B Very high degrees k can generate oscillations.

B To enfore small domains: we introduce a mesh and a cell-wise polynomial
approximation

First step: choose a parametric function

We define a mesh by splitting the geometry in small sub-intervals [x;, x;+1], and we
propose the following candidate to approximate the PDE solution u

k
u\[vaXerl](t'X) = Zaj(t)¢j(x)-
=

This is a piecewise polynomial representation. /-\

E. Franck

Finite element, finite volume, discontinuous Galerkin

Finite element method

B Encoder: transforms the function f into c(t) the FE DoF (pointwise values,
face/edge integral values, . ..)

B Decoder: D(a)(t,x) = vazl a;(t)pi(x) with ¢;(x) a compactly supported basis
function defined on the whole mesh

B Approximator: we plug the decoder in the weak form of the equations to obtain an
ODE or an algebraic system on «

A\

Finite volume and discontinuous Galerkin method

B Encoder: transforms the function f into a(t) the FE DoF (average values, modal
values, nodal values, ...)

B Decoder: D(a)(t, X)|Qj = Z,N=1 ai(t)ei(x) with ¢;(x) a local cell-wise basis function.

B Approximator: we plug the decoder in the weak form of the equations to obtain an
ODE or an algebraic system on «, in each cell

A\

B For this method, the decoder generates a finite-dimensional vector space.

B The method projects a form of the equation on this finite-dimensional space.
Uniqueness is ensured by the Hilbert projection theorem.

B Convergence is ensured: increasing the number of DoF (mesh, polynomial degree)

makes the error decrease. (6 \
/30)

E. Franck \

Spectral methods

Spectral theorem

The spectral theorem in Hilbert spaces proposes an approximation of any function in H by

N
u(x) = aigi(x),
i=1

with ¢;(x) the orthonormal global Hilbert basis, and a; = (f, ¢;).

Spectral method

B Encoder: Projection of the function f in the spectral basis. DoF: «; = (f, ¢;)

B Decoder: D(a)(t,x) = Z{\’:l a;(t)pi(x) with ¢;(x) the first modes of the Hilbert
basis.

B Approximator: we plug the decoder in the weak/strong form of the equations to
obtain an ODE or an algebraic system on a.

B For this method, the decoder generates a finite-dimensional vector space.

B The method projects a form of the equation on this finite-dimensional space, using the
Unicity by Hilbert projection theorem.

Convergence is ensured: increasing the number of DoF (number of modes) makes the

error decrease. (7 \
/30

E. Franck \ 4

Mesh-free methods

Represent the solution as a sum of radial basis functions localized at some points:
N
u(x) =D aidillx = xl)
i=1
. . . . 2
with ¢;(r) a radial basis function such as ¢(r) = e~ (1" or ¢(r) = ﬁg Larger values
of £ give more localized functions.

IRZCS) ,(0

Radial basis method

B Encoder: Projection of the function f. DoF: weights of the radial functions

B Decoder: D(a)(t, x) = Z{\’:l ai(t)(]x — xi|) with ¢(x) a radial basis function.
B Approximator: just like before, the decoder is plugged in the equation.

B |ike before, we have a finite-dimensional function space.
B Convergence: increasing the number of points (DoF) makes the error decrease. (8 \

E. Franck \ /30

4

Properties

Space and space-time decoder

B Classical methods (FE/FV/DG/...) involve a decoder where only the space
representation is fixed:

N

u(t,x) = Z a;i(t)pi(x).
i=1
B Plugging this decoder in the equation, we obtain an ODE to solve.

B A more recent approach, space-time methods, proposes to fix both space and time
representations:

N
u(t,x) = Z aidi(t, x).
i=1

B Plugging this decoder in the equation we obtain an algebraic system to solve.

Explicit vs implicit representations

B Representations are called explicit if the degrees of freedom can be explicitly computed
and understood from the function.

B FE/FV/DG/spectral methods use explicit representations (average value, ...).

B The radial basis method, however, uses a partially explicit representation. It is difficult
to understand the DoF from the function, but they can easily be computed by
inverting the mass matrix (projector).

\9/301

E. Franck

Key idea

Every previously mentioned space and space-time methods consists in:
1. choosing a linear representation (linear combination of basis functions), either local
(on a mesh) or global;

2. plugging this representation into the equation to obtain algebraic relations (linear for

linear problems, nonlinear for nonlinear problems) or ODEs.
3. solving this algebraic relation with a linear solver or Newton’s method, using a time
scheme to solve the ODE.

In all these cases, the decoder is linear with respect to the DoFs, and the representation is

either explicit or partially explicit.

| \

Choose a nonlinear representation given by a neural network. We replace a sum of simple

functions with a composition of simple functions.

Important points

| A\

Finite-dimensional spaces associated to a nonlinear decoder are not vector spaces but
manifolds. So:
B the projector is not unique, and the representations will be implicit.

B Existence and uniqueness? algebraic system replaced with non-convex optimization. 7/

E. Franck

[
\

0

~

")

Nonlinear models
B Nonlinear version of classical models: f is represented by the DoF «;, u;, w; or X;:
-1
F(x; v) = Zaie(xfui)):,- (X*Hi)’ flx;o,w) = Zaisin(w,-x)
i=1 i=1
B Neural networks (NN).

A layer is a function L;(x/) : R% — R%+1 given by
Li(x;) = o(Ax; + b)),

A; € Ré+1.41 b € RI+1 and o() a nonlinear function applied component by component.

Neural network

A neural network is parametric function obtained by composition of layers:

fo(x) = Lno.... o Ly(x)

with 6 the trainable parameters composed of all the matrices A; ;1 and biases b;.

B Go to nonlinear models allows to use NN which are: accurate global model (mesh
free), low frequency (better for generalization) and able to deal with large dimension.

B Go to nonlinear models: would allows to use less degrees of freedom. fll \
/30

E. Franck

Space-time approach: PINNs |

Idea of PINNs

B For u in some function space H, we wish to solve the following PDE:
Oru = F(u, Vu, Au) = F(u).
B (Classical representation for space-time approach: u(t, x) = Z{VZI 0idi(x, t)

B Deep representation: u(t, x) = upn(x, t; 0) with us, a NN with trainable parameters 6.

B Since ANNs are CP functions, we can compute Otunn(x, t;0), Oxp upn(x, t; 0) and
r(x, t) = Otunn(x, t;0) — F(unn(x, t;0), Vuan(x, t; 0), Aupa(x, t; 0))

B Since the subspace of NN functions is not a vector space, we cannot " project” this
residue.

We move away from solving algebraic equations on the parameters, and go towards
non-convex optimization.

\l 12/30

E. Franck

Space-time approach: PINNs [l
B We define the residual of the PDE:
R(t, x) = Orunn(t, x;0) — F(unn(t, x; 6), Oxtnn(t, x; 0), Oxxtnn(t, x; 0))

B To learn the parameters 6 in unn(t, x; 0), we minimize:
9 = arg min (J,(e) + Jp(0) + J,-(e)),
0

with

J,(e)z/OT/Q|R(t,X)|2dxdt

and

)
— 0 == X 2X H = unn(V, X; — up(x 2X.
J(0) = /0 /anuunn(r,x,e) g()3dxdt, Ji(0) /Q (0, x: 0) — 1o ()| 3d

B |f these residuals are all equal to zero, then upn(t, x; 0) is a solution of the PDE.

B To complete the determination of the method, we need a way to compute the
integrals. In practice we use Monte Carlo.

B Important point: the derivatives are computed exactly using automatic differentiation
tools and back propagation. Valid for any decoder proposed.

13
E. Franck \ /30

4

Space-time approach: PINNs [l
B We define the residual of the PDE:
R(t, x) = Orunn(t, x;0) — F(unn(t, x; 0), Oxunn(t, x; 0), Oxxtnn(t, x; 0))
B To learn the parameters 6 in unn(t, x; 0), we minimize:

9 = arg min (J,(e) + Jp(0) + J,-(0)>,
0

with
N N
Jr(0) =D IR(ta, xi)
n=1 j=1

with (tn, x;) sampled uniformly or through importance sampling, and

N, Np Ni
Ip(0) =D D unn(tn, xi:0) — g(xi), Ji(0) = D |unn(0, xi: 8) — uo(xi)|*.
n=1 i=1 i=1

B |f these residuals are all equal to zero, then upn(t, x; 0) is a solution of the PDE.

B To complete the determination of the method, we need a way to compute the
integrals. In practice we use Monte Carlo.

B |mportant point: the derivatives are computed exactly using automatic differentiation
tools and back propagation. Valid for any decoder proposed.

13
E. Franck \ /30

4

PINNSs for parametric PDEs

B Advantages of PINNs: mesh-less approach, not too sensitive to the dimension.

B Drawbacks of PINNSs: they are often not competitive with classical methods.

B |nteresting possibility: use the strengths of PINNs to solve PDEs parameterized by
some .

B The neural network becomes unn(t, x, w; 6).

New Optimization problem for PINNs

minJ,(G) +...,, with

J:(0) = / / / ||8tu,,,, — u,,n(t X,), Oxtnn(t, x, 1), Oxxtunn(t, x,) ||2dxdt

with V, a subspace of the parameters .

B Application to the Burgers equations with many viscosities [1072, 1074]:

B Training for u = 10~*: 2h. Training for the full viscosity subset: 2h. ,14 \
E. Franck /30‘

Spatial approach: Neural Galerkin |
B We solve the following PDE:
Otu = F(u,Vu, Au) = F(u).

B (Classical representation: u(t, x) = Z,N:1 0;(t)pi(x)

B Deep representation: u(t, x) = upn(x; 0(t)) with un, a neural network, with
parameters 0(t), taking x as input.

B We want that:

F(unn(x;0(t))) = Orunn(x; 0(t)) = <V9un,,(x; 9), %(:)>

B How to find an equation for di(tt)?

B We solve the minimization problem:
do(t)
dt

= argminJ(n) = arg min/ [(Vounn(x;0), m) — F(unn(x; 0(t)))|?dx.
n n Q

B The solution is given by

do(t)
dt

M(0(t)) = F(x6(1))

with
M(G(t)):/QVgun,,(x;9)®Vgu,m(x;9)dx, F(X,O(t)):/QVgunn(x;G)F(u,,n(x;G))dx.

\15/30

s E. Franck 4

Spatial approach: Neural Galerkin Il

How to estimate M(6(t)) and F(x, 6(t))?

Firstly: we need to differentiate the network with respect to 6§ and to x (in the
function F). This can easily be done with automatic differentiation.

Secondly: How to compute the integrals? Monte Carlo approach.

So, we use:
N
M(6(t)) = Z Vo unn(xi; 0) ® Vounn(xi; 0)
i=1
and the same for F(x, 6(t)).
Summary: we obtain an ODE in time (as usual) and a mesh-less method in space.
Like in the case of PINNs, we can apply this framework to parametric PDEs and larger

dimensions.
We solve the following PDE:

Oru = F(u,Vu, Au, a) = F(u; p).

Deep representation: u(t, x,) = upn(x, p; 0(t))
The solution is given by

do(t)

M(O(t))T

= F(x,0(t), 1)

with

M(6(t)) = /Vu /QVeunn(x, 1;0) @ Vgunn(x, 1; 0)dxdp. ﬁ/\
30

E. Franck y

Spatial approach: Neural Galerkin Il

B We solve the advection-diffusion equation 9:p + a- Vp = DAp with a Gaussian
function as initial condition.

B Case 1: with a neural network (2200 DOF)

prediction reference
125
s 125
050 120 120
025
115 115
000
025 110 110
R 105
00 K 1.05
-0.75 o : « w_theta(x, y) 1.00
100
075 050 025 000 025 050 075 075 —050 025 000 025 050 075
dx prediction dy prediction
075 dx v_theta(x, y) 10 075 dy w_theta(x, y) 10
050 050 m
05 - 0s
0.25 025 O
0.00 0.0 0.00 0.0
025 025
“os -0
-050 -0s0
-07s o -075 10
075 050 025 000 025 050 075 075 050 025 000 025 050 075

B 5 minutes on CPU, MSE error around 0.0045.

\l 17/30

E. Franck y

Spatial approach: Neural Galerkin Il

B We solve the advection-diffusion equation d:p + a- Vp = DAp with a Gaussian
function as initial condition.

B Case 2: with a Gaussian mixture (one Gaussian):

prediction reference
125 125
075
050 120 120
025
115 115
000
025 110 110
050 < 105 1.05
-075 w_theta(x, y) w_ref(x, y)
1.00
075 -050 -025 000 025 050 075 075 -050 -025 000 025 050 075
dx prediction dy prediction
0.75 Lo 0.75 10
050 050
025 025 Q
0.00 00 0.00 00
025 025
05 05
050 050
-0.75 dx v_theta(x, y) -10 -075 + dyw_theta(x, y) -10
075 -050 -025 000 025 050 075 075 050 -025 000 025 050 075

B 5 sec on CPU. MSE around 1.07%. Decoder perfect to represent this test case.

\l 17/30

E. Franck y

Summary

New numerical methods

New numerical methods are derived using nonlinear models like neural networks. Same
spirit as classical methods: plug an Ansatz into the equation to obtain equations on DoFs.

B Classical numerics: they use Ansatz f(t, x; 0) plugged into the equations.
L) Space time Ansatz

F(t,x:0) =Y 0:ihi(t, x)
i=1
gives a algebraic system on 6 (linear for linear PDE, nonlinear else).

O Space Ansatz
f(t, x;0) = Ze (t)gi(x

gives a linear/non-linear ODE on 6 + algebralc system on 6 for initial projection.

Drawbacks

B |ess accurate than classical approaches especially in low dimension
B convergence and theoretical study difficult,

Advantages

B mesh free
B more efficient in large dimension and for parametric PDEs, perfect for GPUs
B more freedom on the chosen structure (the decoder)

{15

E. Franck \

/30‘

R R R R R RRERERRERERRREEE——SS———————
Summary

New numerical methods

New numerical methods are derived using nonlinear models like neural networks. Same
spirit as classical methods: plug an Ansatz into the equation to obtain equations on DoFs.

B Neural method: idem.
01 PINNs (Space time Ansatz)

f(t, x;0) = unn(t, x; 0)

replace algebraic system on 6 by non-convex optimization.
O Neural Galerkin (Space Ansatz)

f(t,x;0) = unn(x; 0(t))
gives a nonlinear on 6(t) + non-convex optimization for initial projection.

Drawbacks

B |ess accurate than classical approaches especially in low dimension
B convergence and theoretical study difficult,

B mesh free
B more efficient in large dimension and for parametric PDEs, perfect for GPUs
B more freedom on the chosen structure (the decoder)

")

E. Franck

Application to numerical methods

E. Franck

\‘ 19/30

Hybrid predictor-corrector methods

Hybrid methods

In this context, hybrid methods combine classical numerical methods and numerical
methods based on Implicit Neural representation (IRM).

Objectives

Taking the best of both worlds: the accuracy of classical numerical methods, and the
mesh-free large-dimensional capabilities of IRM-based numerical methods.

General Idea

B Offline process: train a Neural Network (PINNs, NGs, NOs or CROM) to obtain a
large family of approximate solutions.

B Online process: predict the solution associated to our test case using the NN.
B Online process: correct the solution with a numerical method.

_ \‘ 20/30

Lisva— E. Franck

Predictor-Corrector: using PINNs in a FE method

B \We consider the following elliptic problem:

Lu=—0wu-+voxu+ru=fFf, Vxe
u=g, Vx € 00

B We assume that we have a continuous prior of the solution given by a parametric
PINN wg(x)

B \We propose the following corrections of the finite element basis functions:
u(x) = ug(x) + pa(x), u(x) = ug(x)pn(x),
with pp(x) a perturbation discretized using Py Lagrange finite element.

B For the first approach (additive prior), we solve in practice:

Lpp(x) = f — Lup(x), Vx €Q
pr(x) =g —up(x), Vx € R

B For the second approach (multiplicative prior), we need uy(x) # 0, so we take M > 0

and we solve:
{ L(ug(x)ph(x)) = f, V¥x€Q

ph(x) = ugg(x) + M, Vxeon

121/30

E. Franck \ y

Theory for hybrid EF

B Approach one: we rewrite the Cea lemma for up(x) = ug(x) + pa(x). We obtain
M
llu = unll < —lju = ug — In(u — up)|
with I, the interpolator. Using the classical result of P, Lagrange interpolator we

obtain v
lu = upllgm < = CHFHE (7'“_ ”"‘”m> |ulm
a] pym

gain

B Approach two: up(x) = up(x)ps(x). We use a modified interpolator:

N
lmod,h(f) = Z f(Xi) (ZS,'(X)UQ(X)

i1 ue(xi)

using Imod.r(f) = Ih(é)ue(x) , the Cea lemma and interpolation estimate we have:

M [z Hm (| ug (x) || oo
lu— upllpm < ;Chk“_’" <u"] pym

[ulpm

gain
B The prior must give a good approximation of the mt" derivative. (22 \
/30

E. Franck \ y

EF for elliptic problems

B First test:
— 0wt = asin(27x) + Bsin(4wx) + v sin(8mx)

We train with (a, b, ¢) € [0, 1]® and test with (a, b, c) € [0, 1.2]3.

method: average gain variance gain
additive prior with PINNs 273 13000
Multiplicative prior M = 3 with PINNs 92 4000
Multiplicative prior M = 100 with PINNs 272 13000
additive prior with NN 15 18
Multiplicative prior M = 3 with NN 11 175
Multiplicative prior M = 100 with NN 15 18

B The PINN is trained with the physical loss, the NN with only data, no physics.

B The NN is able to better learn the solution itself, but the approximation of derivatives
is less accurate than with the PINN.

\‘ 23/30

4

E. Franck

EF for elliptic problems

B Second test:

1
vOxu — P—ﬁxxu =r

e

We train with r € [1, 2], Pe € [10,100]. We test with (r, Pe) = (1.2,40) and
(r, Pe) = (1.5,90)

Case 1 | Classical FE Additive prior Multiplicative prior
error order | error order | gain | error order | gain
10 1.07e T | - 2703 | - 40 229¢ % | - 467
20 336e=2 | 1.97 | 8.00e~% | 1.76 | 42 9.06e—° | 1.93 | 371
40 9.09¢—3 | 1.89 | 2.01e % | 2.00 | 45 2.63e—° | 1.97 | 345
80 23273 [1.97 [5.01e ® | 1.99 | 46 6.37¢ % | 1.99 | 365
160 582e—% [1.99 | 1.30e=® [1.97 | 45 1.77e7% | 2.0 289
Case 2 | Classic additive prior Multiplicative prior
error order | error order | gain | error order | gain
10 2.65e~ T | — 1.51e 1 | - 1.7 933e~ % | - 284
20 1.06e—T | 1.32 | 6.04e 2 | 1.33 | 1.7 384 % | 1.28 | 276
40 3.46e=2 | 1.62 1.96e=2 | 1.62 1.8 1.13e=% | 1.76 | 305
80 950e=3 [1.86 | 5323 | 1.87 | 1.8 3.26e° | 1.80 | 201
160 2.43e=3 [1.86 | 2.43e3 | 1.86 1.8 8.67¢ % | 1.91 | 280
E. Franck

\‘ 23/30

EEEEEEEEEEEEEEEEEERERRlRREEEE——
Hyperbolic systems with source terms

B |n the team, most of us are interested in hyperbolic systems:
U+ V- -F(U)=S(U)

B |t is important to have a good preservation of the steady state V - F(U) = S(U).

Example: Lake at rest for shallow water:

B Exactly Well-Balanced schemes: exact preservation of the steady state.
Approximately Well-Balanced schemes: preserve with a high-accuracy than the
scheme the steady state.

B Building exact WB schemes is difficult for some equilibria, or for 2D flows.

v

Compute offline a family of equilibria with parametric PINNs (or NOs) and plug the
equilibrium in the DG basis to obtain a more accurate scheme around steady states.

'\24/30‘

E. Franck

Theory for hybrid DG

B Theory for the scalar case.
B The classical modal DG scheme uses the local representation:

q
ug, (x) = Z arpi(x)k, with ¢k, ¢Z] =1, (x = xk), - (x — xx)9]
1=0

B |f up(x) is an approximation of the equilibrium, we propose to take as basis:

Vi = [ug(x), (x = xk), -..(x = xk)9], or Vo = ug(x)[1, (x — xk), ...(x — xx)9]

Estimate on the projector for V2

Assume that the prior vy satisfies

ug(x; u)2 >m?>0, Vxe€Q, VueP.

and still consider the vector space V5. For any function u € HIt1(Q),

llu = Pa(u)ll 1200y < (83507 [|ug] oo 0.

Ug |Ha+1(Q)
V.
B Adding a stability estimate, we can also prove the convergence. /\
25/
30
| U

E. Franck

R R R R RRRRRERERRERERRREEEE==S=————————
Euler-Poisson system in spherical geometry

B We consider the Euler-Poisson system in spherical geometry
dep+ 0rq = —2q,
orq + 90 ("—2+)—Jﬁ— A
tq r\p P == P pPOr®,
OE +0, (£(E+p)) = —22(E +p) — adro,
r%a,,(r%) =47 Gp,

B First application: we consider the barotropic pressure law p(p; k,v) = kp? such that
the steady solutions satisfy

B The PINN yields an approximation of py(x, k,)

B Second application: we consider the ideal gas pressure law p(p; k,v) = kpT(r), with
T(r) = e~ such that the steady solutions satisfy

T T
i <r2n—@) + i (r2md—) = 47r%Gp,
dr p dr dr dr

B The PINN yields an approximation of pg(x, k,)

B To simulate a flow around a steady solution, we need a scheme that is very accurate
on the steady solution.
26/
\ 30

E. Franck y

==
Results

B Training takes about 10 minutes on an old GPU,with no data, only the PINN loss.

B We take a quadrature of degree ng = ng + 1 (sometimes, more accurate quadrature
formulas are needed).

B Barotropic case:

minimum gain average gain maximum gain
q p Q B p Q B P Q E
0 19.14 233 17.04 233.48 3.73 197.28 510.42 4.48 371.87
1 761 828 6.98 158.25 188.92 130.57 1095.68 1291.90 1024.59
2 014 022 299 12.11 16.55 23.73 89.47 109.93 169.28

B jdeal gas case:

minimum gain average gain maximum gain
q 4 Q E o Q E I Q E
0 13.30 1.05 16.24 151.96 1.88 150.63 600.13 2.91 473.83
1 6.30 7.53 5.40 72.63 77.20 51.09 321.20 302.58 257.19
2 335 345 220 18.96 22.58 13.56 55.47 63.45 47.83

B 2D shallow water equations: equilibrium with u 7% 0 4 small perturbation. Plot the
deviation to equilibrium:

5-107%
5.107
0
5107
“1.107
5107
10

1510721107
15107

Conclusion

‘ 28/30

E. Franck \ y

Conclusion and Adverts!

Short conclusion

Using nonlinear implicit representations, we proposed new numerical/reduced modeling
methods whose advantages/drawbacks are very different to those of classical approaches.
We will continue to investigate hybrid approaches.

B For the PEPR Numpex, we are currently writing the Scimba code. It contains for
PINNSs, Neural Galerkin, Neural operator methods, ...; the goal is for this code to be
shared by different teams.

B |f you are interested to try these methods, play with Scimba, or participate contact us!
V.

B Qur Inria team TONUS/MACARON will specialize in the hybridation between ML and
numerical methods for PDEs.

B We regularly have PhD, post-doc and even permanent positions open on these
subjects. If you are interested, contact us :)

\‘ 29/30

E. Franck 4

Main references

B PINNs:
Ll Physics-informed neural networks: A deep learning framework for solving forward and inverse problems
involving nonlinear partial differential equations, M. Raissi, P. Perdikaris, G.E. Karniadakis
U An Expert’s Guide to Training Physics-informed Neural Networks, S. Wang, S. Sankaran, H. Wang, P.
Perdikaris
Ll Estimates on the generalization error of Physics Informed Neural Networks (PINNs) for approximating PDEs,
S. Mishra, R. Molinaro

B Neural Galerkin:
U Neural Galerkin Scheme with Active Learning for High-Dimensional Evolution Equations, J. Bruna, B.
Peherstorfer, E. Vanden-Eijnden
L1 A Stable and Scalable Method for Solving Initial Value PDEs with Neural Networks, M. Finzi, A.
Potapczynski, M. Choptuik, A. Gordon Wilson

B Neural Operator:
) Fourier Neural Operator for Parametric Partial Differential Equations, Z.i Li, N. Kovachki, K. Azizzadenesheli,
B. Liu, K. Bhattacharya, A. Stuart, A. Anandkumar
O Neural Operator: Learning Maps Between Function Spaces, N. Kovachki, Z. Li, B. Liu, K. Azizzadenesheli, K.
Bhattacharya, A. Stuart, A. Anandkumar
L) MOD-Net: A Machine Learning Approach via Model-Operator-Data Network for Solving PDE, L. Zhang, T.
Luo, Y. Zhang, Weinan E, Z. Xu, Z. Ma

B Deep Predictor for Newton:
Ll Accelerating hypersonic reentry simulations using deep learning-based hybridization (with guarantees), P.
Novello, G. Poétte, D. Lugato, S. Peluchon, P. Marco Congedo
Ll DeepPhysics: a physics aware deep learning framework for real-time simulation, A. Odot , R. Haferssas, S.
Cotin
L1 Accelerating Newton convergence for nonlinear elliptic PDE using neural operator approach, E. Franck, R.
Hild, V. Vigon, V. Michel-Dansac, J. Aghili. En cours de rédaction.

L Hybrld methods:

Enhanced Finite element by neural networks for elliptic problems, H. Barucq, E Franck, F. Faucher, N.
Victorion. En cours de rédaction
O Approximately well-balanced Discontinuous Galerkin methods using bases enriched with Physics-Informed h
Neural Networks, E. Franck, V. Michel-Dansac, L. Navoret. Arxiv preprint. 30/
E. Franck \ 30 y

	Introduction
	Numerical Methods and Implicit neural representation
	Application to numerical methods
	Conclusion

