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Link between ML and numerics
■ Common objective of ML and numerical analysis.

■ We consider a unknown function

y = f (x), x ∈ V ⊂ Rd , y ∈ W ⊂ Rp

■ Objective: Find fh ∈ H an approximation of f with H a function space.

■ Difficulty: we want to find an infinite dimensional object.

Solution: parametric models
■ We choose a known parametric function fθ(x) with unknown parameters θ:
■ The problem becomes

Find θ, such that ∥fθ − f ∥H ≤ ϵ

■ ML approaches : we find θ constraining the
approximation by the data

■ We assume that we have examples
{(x1, f1), ... , (xN , fN)} such that:

fi = f (xi ) + ϵi , ϵi ∼ N (0, 1)

■ The parameters θ are chosen such that fθ is
a good approximation of the function on
each data point. We solve:

argmin
θ

N∑
i=1

d(ui , uθ(xi ))

■ Numerical methods: we construct θ,
constraining the approximation by the
physical equation

■ Principle of a numerical method:

L(u(x)) = f (x) =⇒ A(θ) = b(θ)

with L a differential or integral operator
and A, b forming a linear or nonlinear
system.
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Deep learning revolution
■ Deep learning revolution in signal and language processing: combination of huge

numbers of data, massive GPU computing and efficient models in large dimensions.

■ Classical parametric model in ML: linear, polynomial or kernel models.

Models
Main change: we have moved massively from linear models with respect to parameters to
nonlinear models with respect to the parameters.

■ Effects:
□ From a finite-dimensional vector space, the approximation space becomes a

finite-dimensional manifold.
□ We move from convex quadratic optimization (mainly) to non-convex optimization
□ Problems in large dimensions are easier to solve.

■ Linear Vs Manifold projection for reduced modeling (K. Willcox et al).
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Nonlinear models
■ Nonlinear version of classical models: f is represented by the DoF αi , µi , ωi or Σi :

f (x ;α,µ, Σ) =
∑
i=1

αie
(x−µi )Σ

−1
i (x−µi ), f (x ;α,ω) =

∑
i=1

αi sin(ωix)

■ Neural networks (NN).

Layer

A layer is a function Ll (xl ) : Rdl → Rdl+1 given by

Ll (xl ) = σ(Alxl + bl ),

Al ∈ Rdl+1,dl , b ∈ Rdl+1 and σ() a nonlinear function applied component by component.

Neural network
A neural network is parametric function obtained by composition of layers:

fθ(x) = Ln ◦ ... . ◦ L1(x)

with θ the trainable parameters composed of all the matrices Al ,l+1 and biases bl .

■ Goal: using these models, we expect to require fewer DoFs, not to require a mesh,
and to deal with larger dimensions.

■ Key point: in the NN framework, derivatives can be exactly computed through
automatic differentiation tools.
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Numerical method and Galerkin projection

General method
The aim is to transform the PDE on the function into a equation on θ (DOF).

■ Let Vθ = Span {fθ such that θ ∈ V ∈ Rn}
■ First approach: Galerkin

□ Rewrite the problem:

−∆T (x) = f (x) ⇐⇒ min
T∈H

∫
Ω

(
|∇T (x)|2 − f (x)T (x)

)
dx

□ Galerkin projection:

min
Tθ∈Vθ

∫
Ω

(
|∇Tθ(x)|2 − f (x)Tθ(x)

)
dx

□ The problem is quadratic in θ. The parameters making the gradient vanish satisfy∫
Ω
(−∆Tθ(x)− f )ϕi (x) = 0, ∀i ∈ {1, ..., n}

□ Computing the derivative (exactly) and the integral (numerically) leads to

Aθ = b

■ Second approach: Least square Galerkin projection

min
Tθ∈Vθ

∫
Ω
| −∆Tθ − f |2dx

Computing the exact solution to this problem again yields linear system to solve.
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Approximation vector spaces

Parametric models used by classical numerical methods

fθ =
n∑

i=1

θiϕi (x)

■ Classical mesh-based methods (local basis functions):
□ Finite elements: Cp continuity between the cells (depending on the finite element)

so is ϕi (x) piecewise polynomial.
□ Finite differences: pointwise values so ϕi (x) = δxi (x) with xi a mesh node.

■ Classical mesh-free methods (local or global basis functions):
□ Spectral: we use Hilbert basis, e.g. ϕi (x) = sin(2πkix) (same with Hermite,

Laguerre, Legendre polynomials). Meshless depend of the BC.
□ Radial basis: we use radial basis, e.g. ϕi = ϕ(|x − xi |) with ϕ a Gaussian or

1
1+σ2x2

.

■ Except spectral methods, these approaches are local in space, and the number of
DOFs increase exponentially with the dimension.
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PINNs (Physics-Informed Neural Networks)
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PINNs and Deep Ritz formulation
■ The Galerkin/LS Galerkin methods rely on an L2 projection of the equation in a finite

vector space Vθ.

■ The neural methods use the same principle, replacing Vθ by the manifold:

Mθ = {uθ(x), θ ∈ Rn}

■ PINNs (ref) use an LS Galerkin projection and Deep Ritz (ref) a Galerkin projection.

■ For the equation Lu = f (x) with non-homogeneous Dirichlet BC, with L a differential
operator, the PINNs approach solve:

min
uθ∈Mθ

(Jr (θ) + Jb(θ)) ,

with

Jr (θ) =

∫
Ω
∥L(uθ)− f (x)∥22dx , Jb(θ) =

∫
∂Ω

∥uθ − g(x)∥22dx ,

■ Since the parametric model are nonlinear, this problem is non-convex.

■ We can remove the BC loss Jb using the manifold

Mg ,θ = {uθ(x)ϕ(x) + g(x), θ ∈ Rn}

with ϕ(x) a level set of the domain. Similar trick for Neumann/Robin BC [PinnsBC].
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Monte-Carlo method

■ Last point: we need to approximate the integrals. First approach: quadrature rules.
To be accurate and valid on general geometries, a mesh is needed; furthermore, these
methods scale poorly with the dimension.

■ Classical choice: Monte Carlo. Scale well with the dimension, flexible, and compatible
with stochastic gradient method classically used for NNs.

■ General case: ∫
Ω
∥L(uθ)− f (x)∥22dx = EU(Ω)[∥L(uθ)− f (x)∥22]

with U(Ω) a uniform law on Ω.

EU(Ω)[∥L(uθ)− f (x)∥22] = EG

[∥L(uθ)− f (x)∥22
g(x)

]
with G a probability law of density g(x). With the law of large numbers, we obtain

∫
Ω
∥L(uθ)− f (x)∥22dx ≈

1

N

N∑
i=1

∥L(uθ(xi ))− f (xi )∥22
g(xi )

■ In general, we take g(x) = 1 or g(x) ∼ ∥L(uθ)− f (x)∥22.
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Examples and complex geometries
How to deal with general geometries?
■ Sample in a simple domain (circle) and apply a mapping to your domain:

■ Use a level set (positive outside the domain, negative inside). For unknown level sets,
we can learn the level set solving the Eikonal equation with PINNs.
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Parametric problems

■ Consider the problem{
Lu(x) = −∇ · (K(x ;α)∇u) = f (x ;β), x ∈ Ω

u(x) = g(x ; γ), x ∈ ∂Ω

with µ = (α,β, γ) ∈ Rp a set of parameters.

■ We wish to solve the problem for many parameters (for applications in uncertainty
propagation, optimal control, etc.).

■ With PINNs it is possible in one training. For example, we solve:

min
uθ∈Mθ

Jr (θ)

with

Jr (θ) =

∫
Rp

∫
Ω
∥L(uθ)− f (x)∥22p(µ)dxdµ

with p(µ) the distribution of parameters and

Mg ,θ = {uθ(x ,µ)ϕ(x) + g(x ; γ), θ ∈ Rn}

■ The good behavior of NNs and Monte Carlo in large dimensions is essential.
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Spectral biais and high frequencies

Spectral bias
Using the NTK theory makes it possible to study Spectral bias of MLP. MLPs first learn
low frequencies, before learning the high frequencies (with difficulty).

■ We solve −∆u = 128 sin(8πx) sin(8πy). First try (left figure): classical MLP with sine
activation functions (to help).

■ To solve this problem for PINNs, we add Fourier features (right figure). We replace

NNθ(x) by NNθ(x , sin(2πk1x), ..., sin(2πknx))

with (k1, ....kn) trainable parameters.
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Advantages and disadvantages

Disadvantages
The main disadvantage of the Neural approach are the difficulty to obtain a good
accuracy, and the fact that only asymptotic convergence results are available.

■ Consider a 2D Laplacian solves with a 5-layer neural network and increase the size
(685 weights for the smallest network and 26300 weights for the largest).

■ Two learning rates:

Advantage
Mesh-free and ratio accuracy/degree of freedom less sensitive to the dimension.

FE Ndof CPU Error
1D 100 - -
2D 1E4 ≈ 10/20sec ≈ 2E−3

3D 1E6 ≈ 2h ≈ 2E−3
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Advantages and disadvantages

Disadvantages
The main disadvantage of the Neural approach are the difficulty to obtain a good
accuracy, and the fact that only asymptotic convergence results are available.

■ Consider a 2D Laplacian solves with a 5-layer neural network and increase the size
(685 weights for the smallest network and 26300 weights for the largest).

■ Two learning rates:

Advantage
Mesh-free and ratio accuracy/degree of freedom less sensitive to the dimension.

PINNs Ndof CPU Error
1D 5081 30-55sec 3E−4-6E−4

2D 5121 80-100sec 4E−4-2E−3

3D 5161 110-140sec 1E−3-4E−3
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Hybrid PINNs-FE approach
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Prediction-correction method

Hybrid methods
In this context, hybrid methods combine classical numerical methods and numerical
methods based on neural representations.

Objectives
Taking the best of both worlds: the accuracy of classical numerical methods, and the
mesh-free large-dimensional capabilities of neural-based numerical methods [FEhybrid].

General Idea
■ Offline/Online process: train a Neural Network (PINNs, NGs, or NOs) to obtain a

large family of approximate solutions.

■ Online process: predict the solution associated to our test case using the NN.

■ Online process: correct the solution with a numerical method.
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Additive and multiplicative formulation
■ We consider the following elliptic problem:{

Lu = −∂xxu(x) + v∂xu(x) + ru(x) = f , ∀x ∈ Ω

u(x) = g(x), ∀x ∈ ∂Ω

■ We assume that we have a continuous prior given by a parametric PINN uθ(x ;µ)
■ We propose the following corrections of the finite element basis functions:

u(x) = uθ(x ;µ) + ph(x), u(x) = uθ(x ;µ)ph(x),

with ph(x) a perturbation discretized using Pk Lagrange finite element.

■ For the first approach (additive prior), we solve in practice:{
Lph(x) = f − Luθ(x ;µ), ∀x ∈ Ω

ph(x) = g − uθ(x ;µ), ∀x ∈ ∂Ω

■ For the second approach (multiplicative prior), we need uθ(x) ̸= 0, so we take
Cm > 0 and we solve: {

L(uθ(x ;µ)ph(x)) = f , ∀x ∈ Ω

ph(x) =
g

uθ(x ;µ)
+ Cm, ∀x ∈ ∂Ω

■ Additional cost: increase the quadrature rule degree where the network is integrated.
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Error estimates

Additive approach
■ We rewrite the Cea lemma for uh(x) = uθ(x) + ph(x). We obtain

∥u − uh∥ ≤
M

α
∥u − uθ − Ih(u − uθ)∥

with Ih the interpolator. Using the classical result of Pk Lagrange interpolator we
obtain

∥u − uh∥Hm ≤
M

α
Chk+1−m

(
|u − uθ|Hm

|u|Hm

)
︸ ︷︷ ︸

gain

|u|Hm

■ It is equivalent to a Petrov-Galerkin method with affine trial space and Pk test space.

Key point

The prior must give a good approximation of the mth derivative.

■ We can also make the proof for multiplicative approach (rewriting the modified
interpolation operator using the usual one). In practice the additive approach is more
efficient in a large majority of cases.
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Results I
■ Test 1: {

−∆u = f , in Ω,

u = g , on Γ.

We define Ω by the square Ω = [−0.5π, 0.5π]2. For the test case the solution uex is
given by

uex (x , y) = sin(2x) sin(2y) e−
1
2
((x−µ1)

2+(y−µ2)
2),

with homogeneous BC on Ω (i.e. g = 0) and µ1,µ2 ∼ U(−0.5, 0.5).

■ Gain at fixed size.

■ First we use a classical PINNs (called L2 PINNs)

E. Franck 20/33

20/33



Results I
■ Test 1: {

−∆u = f , in Ω,

u = g , on Γ.

We define Ω by the square Ω = [−0.5π, 0.5π]2. For the test case the solution uex is
given by

uex (x , y) = sin(2x) sin(2y) e−
1
2
((x−µ1)

2+(y−µ2)
2),

with homogeneous BC on Ω (i.e. g = 0) and µ1,µ2 ∼ U(−0.5, 0.5).

■ Gain at fixed size.

■ First we use a H1 PINNs
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Results I
■ Test 1: {

−∆u = f , in Ω,

u = g , on Γ.

We define Ω by the square Ω = [−0.5π, 0.5π]2. For the test case the solution uex is
given by

uex (x , y) = sin(2x) sin(2y) e−
1
2
((x−µ1)

2+(y−µ2)
2),

with homogeneous BC on Ω (i.e. g = 0) and µ1,µ2 ∼ U(−0.5, 0.5).

■ Gain at fixed error (Finite element P1)

Ndof CPU Error
Pinns L2 x 4min15 5.21× 10−3

Pinns H1 x x 2.0× 10−3

Correction 202 (L2) 400 1.1sec 1.42× 10−4

Correction 202 (H1) 400 1.1sec 5.8× 10−5

FE 1602 25600 1min20sec 5.46× 10−4

FE 3202 102400 5min22sec 1.36× 10−4

■ The error is the average error on a set of 10 parameters.

■ CPU time for 100 simulations varying parameters: 355sec for our method (L2 version),
32200 sec for FE. CPU divided by 90.7.

■ CPU time for 100 simulations varying parameters: 1450sec for our method (L2

version), 322000 sec for FE. CPU divided by 2220.
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Results II
■ Test 2: {

−∆u = f , in Ω,

u = g , on Γ.

We define Ω by the square Ω = [−0.5π, 0.5π]2. For the test case the solution uex is
given by

uex (x , y) = sin(8x) sin(8y) × 10−
1
2
((x−µ1)

2+(y−µ2)
2),

with homogeneous BC on Ω (i.e. g = 0) and µ1,µ2 ∼ U(−0.5, 0.5).
■ Example of solution
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Results II
■ Test 2: {

−∆u = f , in Ω,

u = g , on Γ.

We define Ω by the square Ω = [−0.5π, 0.5π]2. For the test case the solution uex is
given by

uex (x , y) = sin(8x) sin(8y) × 10−
1
2
((x−µ1)

2+(y−µ2)
2),

with homogeneous BC on Ω (i.e. g = 0) and µ1,µ2 ∼ U(−0.5, 0.5).

■ Gain at fixed size
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Results II

■ Test 2: {
−∆u = f , in Ω,

u = g , on Γ.

We define Ω by the square Ω = [−0.5π, 0.5π]2. For the test case the solution uex is
given by

uex (x , y) = sin(8x) sin(8y) × 10−
1
2
((x−µ1)

2+(y−µ2)
2),

with homogeneous BC on Ω (i.e. g = 0) and µ1,µ2 ∼ U(−0.5, 0.5).

■ Gain at fixed error (Finite element P1)

Ndof CPU Error
Pinns 28045 13min 2.4× 10−2

Correction 202 400 2sec 1.1× 10−3

FE 1602 25600 1min54 7.8× 10−3

FE 3202 102400 7m29 1.95× 10−3

■ The error is the average error on a set of 10 parameters.

■ CPU time for 100 simulations varying parameters: 980sec for our method, 44900 sec
for FE. CPU divided by 45.8.

■ CPU time for 1000 simulations varying parameters: 2780sec for our method, 449000
sec for FE. CPU divided by 161.
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Results III
■ Test 3: {

−∇ · (K∇u) = f , in Ω,

u = 0, on Γ.

We define Ω by the square Ω = [−0.5π, 0.5π]2. The source is given by

f (x , y) = 10 exp(−((x1− c1)2 + (x2− c2)2)/(0.025σ2))

and the anisotropy matrix is given by

K =

(
ϵx2 + y2 (ϵ− 1)xy
(ϵ− 1)xy x2 + ϵy2

)
with c1, c2 ∼ U(−0.5, 0.5), σ ∼ U(0.1, 0.8) and ϵ ∼ U(0.01, 0.9).

■ Example of solution (no analytic solution: we will compare with a fine solution)

■ Results less good for small ϵ.
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Results III
■ Test 3: {

−∇ · (K∇u) = f , in Ω,

u = 0, on Γ.

We define Ω by the square Ω = [−0.5π, 0.5π]2. The source is given by

f (x , y) = 10 exp(−((x1− c1)2 + (x2− c2)2)/(0.025σ2))

and the anisotropy matrix is given by

K =

(
ϵx2 + y2 (ϵ− 1)xy
(ϵ− 1)xy x2 + ϵy2

)
with c1, c2 ∼ U(−0.5, 0.5), σ ∼ U(0.1, 0.8) and ϵ ∼ U(0.01, 0.9).

■ Gain at fixed error:
Ndof CPU Error

Pinns 30min 2.86× 10−2

Correction 202 400 1sec 1.40× 10−3

Correction 402 400 3sec 3.3× 10−4

FE 802 6400 6sec 2.13× 10−3

FE 2402 57600 55sec 2.38× 10−4

■ CPU time for 100 simulations varying parameters (precision ≈ 2× 10−3): 1900sec for
our method, 600 sec for FE. CPU multiplied by 3.1.

■ CPU time for 100 simulations varying parameters (precision ≈ 2× 10−3): 2800sec for
our method, 3000 sec for FE. CPU divided by 1.1.

■ Results less good for small ϵ.
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Results III
■ Test 3: {

−∇ · (K∇u) = f , in Ω,

u = 0, on Γ.

We define Ω by the square Ω = [−0.5π, 0.5π]2. The source is given by

f (x , y) = 10 exp(−((x1− c1)2 + (x2− c2)2)/(0.025σ2))

and the anisotropy matrix is given by

K =

(
ϵx2 + y2 (ϵ− 1)xy
(ϵ− 1)xy x2 + ϵy2

)
with c1, c2 ∼ U(−0.5, 0.5), σ ∼ U(0.1, 0.8) and ϵ ∼ U(0.01, 0.9).

■ Gain at fixed error:
Ndof CPU Error

Pinns 30min 2.86× 10−2

Correction 202 400 1sec 1.40× 10−3

Correction 402 400 3sec 3.3× 10−4

FE 802 6400 6sec 2.13× 10−3

FE 2402 57600 55sec 2.38× 10−4

■ CPU time for 100 simulations varying parameters (precision ≈ 2× 10−4): 2100sec for
our method, 5500 sec for FE. CPU divided by 2.62.

■ CPU time for 100 simulations varying parameters (precision ≈ 2× 10−4): 4800sec for
our method, 55000 sec for FE. CPU divided by 11.5.

■ Results less good for small ϵ.
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Results IV

■ Test 4: {
−∆u = f , in Ω,

u = g , on Γ.

We define Ω by the cube Ω = [−0.5π, 0.5π]3. The analytic solution uex is given by

uex (x , y) = sin(2x) sin(2y) sin(2z) × 10−
1
2
((x−µ1)

2+(y−µ2)
2+(z−µ3)

2),

with homogeneous BC on Ω (i.e. g = 0) and µ1,µ2,µ3 ∼ U(−0.5, 0.5).

■ Gain at fixed error (Finite element P1)

Ndof CPU Error
Pinns 2min30sec 1.4× 10−2

Correction 202 400 1min30sec 6.6× 10−4

FE 803 5.12× 104 1h1min 3.6× 10−3

FE 1003 1× 106 2h21sec 2.3× 10−3

■ The error is the error on 1 parameter set.

■ Pinns + correction: 4min vs 2h for FE 1002 with better error.

■ The FE uses Skyline/diagonal storage (made for the LU decomposition), which is not
efficient here, as well as an iterative solver.

E. Franck 23/33

23/33



Coupling with hyperbolic systems
■ In the team, most of us are interested in hyperbolic systems:

∂tU +∇ · F (U) = S(U)

■ It is important to have a good preservation of the steady state ∇ · F (U) = S(U).
■ Example: Lake at rest for shallow water:

■ Exactly Well-Balanced schemes: exact preservation of the steady state.
Approximately Well-Balanced schemes: preserve the steady state with a higher
accuracy than the scheme’s.

■ Building exact WB schemes is difficult for some equilibria, or for 2D flows.

Steady solutions
General steady solutions are solutions of:

−∇(D(U)∇U) +∇ · A(U) + C(U) = 0
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Coupling with hyperbolic systems

Idea
We want to compute a family of solutions with NN-based methods and plug it in the DG
scheme to increase the accuracy close to the equilibrium [DGHybrid].

■ The classical modal DG scheme uses the local representation:

u|Ωk
(x) =

q∑
l=0

αlϕl (x)
k , with [ϕk

1 , ...ϕ
k
q ] = [1, (x − xk ), ...(x − xk )

q ]

■ If uθ(x) is an approximation of the equilibrium, we propose the basis

V1 = [uθ(x), (x − xk ), ...(x − xk )
q ], or V2 = uθ(x)[1, (x − xk ), ...(x − xk )

q ]

Estimate on the projection error
Assume that the prior uθ satisfies

uθ(x ;µ)
2 > m2 > 0, ∀x ∈ Ω, ∀µ ∈ P

and consider the vector space V2. For any function u ∈ Hq+1(Ω),

∥u − Ph(u)∥L2(Ω) ≲

∣∣∣∣ uuθ
∣∣∣∣
Hq+1(Ω)

(∆xk )
q+1 ∥uθ∥L∞(Ω).

■ Proofs made for the scalar case.
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Euler-Poisson system in spherical geometry
■ We consider the Euler-Poisson system in spherical geometry

∂tρ+ ∂rq = − 2
r
q,

∂tq + ∂r
(

q2

ρ
+ p

)
= − 2

r
q2

ρ
− ρ∂rϕ,

∂tE + ∂r
(

q
ρ
(E + p)

)
= − 2

r
q
ρ
(E + p)− q∂rϕ,

1
r2
∂rr (r2ϕ) = 4πGρ,

■ First application: we consider the barotropic pressure law p(ρ;κ, γ) = κργ such that
the steady solutions satisfy

d

dr

(
r2κγργ−2 dρ

dr

)
= 4πr2Gρ.

■ The PINN yields an approximation of ρθ(x ,κ, γ)
■ Second application: we consider the ideal gas pressure law p(ρ;κ, γ) = κρT (r), with

T (r) = e−αr , such that the steady solutions satisfy

d

dr

(
r2κ

T

ρ

dρ

dr

)
+

d

dr

(
r2κ

dT

dr

)
= 4πr2Gρ,

■ The PINN yields an approximation of ρθ(x ,κ,α)

■ To simulate a flow around a steady solution, we need a scheme that is very accurate
on the steady solution.
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Results
■ Training takes about 10 minutes on an old GPU,with no data, only the PINN loss.
■ We take a quadrature of degree nQ = nG + 1 (sometimes, more accurate quadrature

formulas are needed).
■ Barotropic case:

■ ideal gas case:

■ 2D shallow water equations: equilibrium with u ̸= 0 + small perturbation. Plot the
deviation to equilibrium:
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Greedy PINNs
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Principle

Objectives
Solve, with good accuracy, large-dimensional parametric elliptic problems. We wish to use
an approach with only neural networks. How to increase the accuracy ?

Idea
Correct the first network with a second one, iterate. Refs: [mlevel] [mStage] -[GalNeu].

■ We can write that as a greedy algorithm [Greedy11].
□ We consider the following submanifold approximation Mi , 1 ≤ i ≤ d
□ We initialize the greedy basis: B = Ø, uh(x ,µ) = 0

□ While k < K and | R(uh) |> ϵ

■ We solve

argminθk

(∫
P

∫
Ω
R(uh(x ,µ), uk (x ,µ))dx + λ

∫
P

∫
∂Ω

B(uh(x ,µ), uk (x ,µ))dx

)
■ We compute (α0, ....αk ) with a Galerkin projection. Gives global approximation

uh(x ,µ) =
∑k

i=0 αi ui (x ,µ).

■ The frequencies increase at each step so we need to use Fournier neural networks.
■ Key points: normalize each problem to have a solution in O(1) (better for training),

estimate the maximal frequency if the solution to calibrate the Fourier Networks.
■ Prove the Convergence of the method. Current work with Ehrlacher :).
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Results on test 1
■ Test1: 4D problem (2D spatial + 2 parameters).

■ Classical network (≈ 9k parameters). 4000 epochs. 25k points. 45 min CPU.
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parameters (total: 9k). Each trained for 1000 epochs. 5k, 5k, 25k and 50k points by
epoch (1h05 CPU).
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Conclusion
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Conclusion

Conclusion
■ NN-based methods (global models) are not accurate but scale well with the

dimension.
■ Classical methods (local models) are very accurate and provably convergent but scale

very poorly with the dimension.
■ We propose a convergent, simple and weakly intrusive approach where the neural

network computes a coarse approximation corrected by classical methods (here, FE or
DG).

■ For physical/parametric dimension> 3, our approach becomes very interesting in
terms of CPU time and memory.
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Future work

Future work
■ Adapt the mesh of the correction using the residual of the solution obtained by the

neural methods.

■ Extend this to time-dependent problems with two approaches:
□ A PINN predicts a space/time solution later corrected by the numerical scheme.
□ A Neural Galerkin method (discrete in time, neural in space) predicts a time step,

corrected by a classical method.

■ Applications: hyperbolic-kinetic PDE (prove CV, respect physical properties), 3D
reduced MHD for Tokamak and Grad-Shafranov (PhD with CulHam Fusion center
next year).

■ Greedy PINNs: extend the approach to time, transport, Hamiltonian and nonlinear
problems. Prove the convergence. (Post doc for 2025 with V. Ehrlacher).
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