
Physic informed neural networks for solving direct and inverse prob-
lems

Emmanuel Franck*,

November 18 2024
Journée PEPR DIADEM -IA - Numpex , Jussieu

*MACARON project-team, Université de Strasbourg, CNRS, Inria, IRMA, France

Institut de Recherche

Mathématique Avancée

Outline

Introduction to Neural methods for elliptic equations

General principles

PINNs and Deep Ritz

Neural methods and large dimension

Greedy approaches

Neural based greedy approaches

Hybrid two step greedy approaches

Shape Optimization

Conclusion

Emmanuel Franck | Physic informed neural networks for solving direct and inverse problems | inter PEPR workshop 1/29

Introduction to Neural methods for elliptic equations

General principles

PINNs and Deep Ritz

Neural methods and large dimension

Greedy approaches

Neural based greedy approaches

Hybrid two step greedy approaches

Shape Optimization

Conclusion

Introduction to Neural methods for elliptic equations

Emmanuel Franck | Physic informed neural networks for solving direct and inverse problems | inter PEPR workshop 2/29

Introduction to Neural methods for elliptic equations

General principles

PINNs and Deep Ritz

Neural methods and large dimension

Greedy approaches

Neural based greedy approaches

Hybrid two step greedy approaches

Shape Optimization

Conclusion

Objectives

Linear elliptic PDEs
Here we consider elliptic and linear PDEs of the form:{

L(u(x)) = −∇ · (A(x)∇u(x)) +∇ · (β(x)u(x)) + c(x)u(x) = f (x), ∀x ∈ Ω ⊂ Rd

u(x) = 0, ∀x ∈ ∂Ω

Numerical methods Vs ML regression
Both regression and numerical methods seek to finf function approximations. In both cases, we
use parametric functions. One is constrained by the data, the other by the physical equations.

Idea
Use neural networks as parametric models in numerical methods.

Principle of numerical method
• Choose an finite-dimensional approximation space to represent your numerical solution.
• Transform the PDE constrains on the solution into a constrains on the unknowns parameters.
• Solve the problem obtained to find the best parameters.

Emmanuel Franck | Physic informed neural networks for solving direct and inverse problems | inter PEPR workshop 3/29

Approximation space

Linear space

• We choose f1, f2 ∈ Vn:

f1(x) + f2(x) =
N∑
i=1

θiφi(x) ∈ Vn

• Vn is a vectorial space.

Nonlinear space

• We choose f1, f2 ∈ Mn:
f1(x) + f2(x) 6⊂ Mn

• Mn is not a vectorial space but a mani-
fold.

• Vectorial space Vs Manifold

• Difficulty: the projection on a manifold is not unique.

Emmanuel Franck | Physic informed neural networks for solving direct and inverse problems | inter PEPR workshop 4/29

Approximation space II

Examples of linear space
• Fourier spectral functions (global):

f(x) =

n∑
i=k

αk sin(2kπx)

• Orthogonal polynomiales spectral functions
(global):

f(x) =

n∑
i=k

αkPk(x)

• Finite element basis (local):

f(x) =

n∑
i=k

αkφh,k(x)

with φh,k piecewise polynomiales functions.
• Radial basis (local):

f(x) =

n∑
i=k

αkφ(ε | x− xi |)

avec φ(r) = e−r2 , φ(r) =
√
(1+ r2).

Emmanuel Franck | Physic informed neural networks for solving direct and inverse problems | inter PEPR workshop 5/29

Approximation space II

Examples of linear space
• Fourier spectral functions (global):

f(x) =

n∑
i=k

αk sin(2kπx)

• Orthogonal polynomiales spectral functions
(global):

f(x) =

n∑
i=k

αkPk(x)

• Finite element basis (local):

f(x) =

n∑
i=k

αkφh,k(x)

with φh,k piecewise polynomiales functions.
• Radial basis (local):

f(x) =

n∑
i=k

αkφ(ε | x− xi |)

avec φ(r) = e−r2 , φ(r) =
√
(1+ r2).

Examples of nonlinear functions
• Tensor methods:

f(x) =

r∑
i=1

(n∑
k=1

αi,kφk(x1)
)(n∑

k=1

βi,kφk(x2)
)

avec x = (x1, x2).

Emmanuel Franck | Physic informed neural networks for solving direct and inverse problems | inter PEPR workshop 5/29

Approximation space II
Examples of linear space

• Fourier spectral functions (global):

f(x) =

n∑
i=k

αk sin(2kπx)

• Orthogonal polynomiales spectral functions
(global):

f(x) =

n∑
i=k

αkPk(x)

• Finite element basis (local):

f(x) =

n∑
i=k

αkφh,k(x)

with φh,k piecewise polynomiales functions.
• Radial basis (local):

f(x) =

n∑
i=k

αkφ(ε | x− xi |)

avec φ(r) = e−r2 , φ(r) =
√
(1+ r2).

Examples of nonlinear functions
• Tensor methods:

f(x) =

r∑
i=1

(n∑
k=1

αi,kφk(x1)
)(n∑

k=1

βi,kφk(x2)
)

avec x = (x1, x2).

• Fourier spectral functions (global):

f(x) =

n∑
i=k

αk sin(2ωkπx)

• Radiales basis (global):

f(x) =

n∑
i=k

αkφ(εk | x− xi |)

• Anisotropic radial basis (global):

f(x) =

n∑
i=k

αkφ(| Σ−1
k (x− xi) |)

• MLP Neural network (global):
f(x) = nnθ(x)

• KAN neural Network (global):
f(x) = kanθ(x)

Emmanuel Franck | Physic informed neural networks for solving direct and inverse problems | inter PEPR workshop 5/29

Approximation space II
Examples of linear space

• Fourier spectral functions (global):

f(x) =

n∑
i=k

αk sin(2kπx)

• Orthogonal polynomiales spectral functions
(global):

f(x) =

n∑
i=k

αkPk(x)

• Finite element basis (local):

f(x) =

n∑
i=k

αkφh,k(x)

with φh,k piecewise polynomiales functions.
• Radial basis (local):

f(x) =

n∑
i=k

αkφ(ε | x− xi |)

avec φ(r) = e−r2 , φ(r) =
√
(1+ r2).

• Random networks (global):

f(x) =

n∑
i=k

αknnθk(x)

with θk are randomly chosen.

Examples of nonlinear functions
• Tensor methods:

f(x) =

r∑
i=1

(n∑
k=1

αi,kφk(x1)
)(n∑

k=1

βi,kφk(x2)
)

avec x = (x1, x2).

• Fourier spectral functions (global):

f(x) =

n∑
i=k

αk sin(2ωkπx)

• Radiales basis (global):

f(x) =

n∑
i=k

αkφ(εk | x− xi |)

• Anisotropic radial basis (global):

f(x) =

n∑
i=k

αkφ(| Σ−1
k (x− xi) |)

• MLP Neural network (global):
f(x) = nnθ(x)

• KAN neural Network (global):
f(x) = kanθ(x)

Emmanuel Franck | Physic informed neural networks for solving direct and inverse problems | inter PEPR workshop 5/29

Introduction to Neural methods for elliptic equations

General principles

PINNs and Deep Ritz

Neural methods and large dimension

Greedy approaches

Neural based greedy approaches

Hybrid two step greedy approaches

Shape Optimization

Conclusion

Approximation methods

• We want solve the problem L(u(x)) = f (x) on Ω.
• The solution of the this PDE is solution of minimization problem

u(x) = min
v∈H

∫
Ω

| L(v) − f |2, or u(x) = min
v∈H

(∫
Ω

| ∇v |2 −f (x)v
)

Linear spaces

• Ritz-Galerkin:

θ∗ = min
v∈Vn

(∫
Ω

| ∇v |2 −f (x)v
)

• Least square Galerkin:

θ∗ = min
v∈Vn

∫
Ω

| L(v) − f |2

Nonlinear spaces

• Deep-Ritz:

θ∗ = min
v∈Mn

(∫
Ω

| ∇v |2 −f (x)v
)

• PINNs:
θ∗ = min

v∈Mn

∫
Ω

| L(v) − f |2

• The idea is the same. We restrict the functions to be minimized to the approximation space.
• The difference between classical and neural methods is the approximation space.
• The choice of integral approximation and resolution follows from this.

Emmanuel Franck | Physic informed neural networks for solving direct and inverse problems | inter PEPR workshop 6/29

Integration

• To calculate the previous minimization problems, we need to integrate over the domain. In-
tegration depends on the choice of space. In many cases we use quadrature formula.

• We’re going to look here at the case of nonlinear spaces, in particular based on neural net-
works whose characteristics are:

I Global models which not use meshes.
I Good approximation properties in large dimension.

Integration
Given the qualities of NNs, the most suitable integration method is Monte Carlo.∫

Ω

‖uθ(x) − u(x)‖22dx = EU(Ω)[‖uθ(x) − u(x)‖22]

with U(Ω) a uniform law on Ω. Applying the law of large numbers, we have∫
Ω

‖uθ(x) − u(x)‖22dx ≈
1
N

N∑
i=1

‖uθ(xi)) − u(xi)‖22

Emmanuel Franck | Physic informed neural networks for solving direct and inverse problems | inter PEPR workshop 7/29

Integration and complex geometries
Level-set function
Given an Ω domain with Γ boundary, we call a level function a φ function such that

φ(x) =

< 0, x ∈ Ω

= 0, x ∈ Γ

> 0, x ∈ Rd/Ω

• How to sample ?
I We draw a point randomly in [a,d]d such that Ω is included.
I If φ(x) < 0 we keep the point otherwise we start again.

• No level function uniqueness. Example: the disk:

φ1(x) =
√
x21 + x22 − r, φ1(x) = x21 + x22 − r2

• The first is called The signed distance function because it gives the distance between each
point and Γ . It is a C0 function, not a C1 one.

• Domains sum: φ1(x) < 0 ou φ2(x) < 0
• Domains intersection: φ1(x) < 0 et φ2(x) < 0
• Domains with holes: φd(x) < 0 et φh(x) > 0

Emmanuel Franck | Physic informed neural networks for solving direct and inverse problems | inter PEPR workshop 8/29

Boundary conditions
• For classical numerical methods we can impose BC weakly (we speak about penalization
method) or strongly in the approximation space. It is the same for the NNs based methods.

Weak BC for neural based methods
The minimization problem becomes

minuθ∈Wn

(
Jr(uθ) + λbc

∫
Ω

‖ B(uθ) ‖22 dx
)

• Fails:If ‖ ∇θJr(uθ) ‖L∞>>‖ ∇θJbc(uθ) ‖L∞ the training can learn mainly the PDE, ignore the BC
and compute trivial solution.

Dirichlet BC
To impose g(x) at the bc we use the space

Mn =
{
g(x) + φ(x)nnθ(x), θ ∈ Θ ⊂ Rd}

• Possible to impose strongly other BC.
• Since the model is plug in the residual we need that φ is a regular function. Not always the
case. We can learn smooth level set.

Emmanuel Franck | Physic informed neural networks for solving direct and inverse problems | inter PEPR workshop 9/29

How compute solve the minimization problem

Linear spaces

• Gradient computation: analytic

• Solving of∇J = 0: normal equation.
I In the linear case we have:

∇J = 0←→ Aθ− b = 0

I We solve a linear system with LU, CG, GMRES.

• Computation of the model derivatives:
analytic

Nonlinear space

• Gradient computation: Automatic differ-
entiation.

• Solving of∇J = 0: Gradient method
to begin and quasi-Newton method to
finish.

• Computation of the model derivatives:
Automatic differentiation.

• The main difference is that in the classical case (linear methods) a large part of the optimisa-
tion problem can be solved analytically

Emmanuel Franck | Physic informed neural networks for solving direct and inverse problems | inter PEPR workshop 10/29

Introduction to Neural methods for elliptic equations

General principles

PINNs and Deep Ritz

Neural methods and large dimension

Greedy approaches

Neural based greedy approaches

Hybrid two step greedy approaches

Shape Optimization

Conclusion

Advantages and disadvantages

Disadvantages
The main disadvantage of the Neural approach are the difficulty to obtain a good accuracy, and
the fact that only asymptotic convergence results are available.

• Consider a 2D Laplacian solves with a 5-layer neural network and increase the size (685
weights for the smallest network and 26300 weights for the largest).

• Two learning rates:
FE Ndof Error
1D 100 -
2D 1E4 ≈ 2E−3

3D 1E6 ≈ 2E−3

Advantage
Mesh-free and ratio accuracy/degree of freedom less sensitive to the dimension.

Emmanuel Franck | Physic informed neural networks for solving direct and inverse problems | inter PEPR workshop 11/29

Advantages and disadvantages

Disadvantages
The main disadvantage of the Neural approach are the difficulty to obtain a good accuracy, and
the fact that only asymptotic convergence results are available.

• Consider a 2D Laplacian solves with a 5-layer neural network and increase the size (685
weights for the smallest network and 26300 weights for the largest).

• Two learning rates:
PINNs Ndof Error
1D 5081 3E−4-6E−4

2D 5121 4E−4-2E−3

3D 5161 1E−3-4E−3

Advantage
Mesh-free and ratio accuracy/degree of freedom less sensitive to the dimension.

Emmanuel Franck | Physic informed neural networks for solving direct and inverse problems | inter PEPR workshop 11/29

Parametric problems

• In optimization, uncertainty propagation etc., we want to solve problems such as

Lα(u(x)) − f (x,β)
with µ = (α,β) parameters that live in a space Vµ.

• A large part of usual methods are too expensive in high dimension so we don’t solve this
problem in Vµ space.

• In general, we run simulations for different µ and build a reduced model.

Parametric neural methods
Since neural network spaces are more efficient in high dimensions, we can try to solve in Vµ
space.

• In this case the restriction operator is defined by

θ∗ = min
θ

∫
Vµ

∫
Ω

| u(x,µ) − nnθ(x,µ) |2 dx,

• The PINNs method becomes:
θ∗ = min

θ

∫
Vµ

∫
Ω

| Lα(u(x,µ)) − f (x,β) |2 dx,

Emmanuel Franck | Physic informed neural networks for solving direct and inverse problems | inter PEPR workshop 12/29

Introduction to Neural methods for elliptic equations

General principles

PINNs and Deep Ritz

Neural methods and large dimension

Greedy approaches

Neural based greedy approaches

Hybrid two step greedy approaches

Shape Optimization

Conclusion

Greedy approaches

Emmanuel Franck | Physic informed neural networks for solving direct and inverse problems | inter PEPR workshop 13/29

Introduction to Neural methods for elliptic equations

General principles

PINNs and Deep Ritz

Neural methods and large dimension

Greedy approaches

Neural based greedy approaches

Hybrid two step greedy approaches

Shape Optimization

Conclusion

Greedy Method

Objectives
Solve, with good accuracy, large-dimensional parametric elliptic problems. We wish to use an
approach with only neural networks. How to increase the accuracy ?

Idea
Correct the first network with a second one, iterate (multistage, multlevel PINNs).

• We can write that as a greedy algorithm.
I We consider the following submanifold approximationMi, 1 6 i 6 d
I We initialize the greedy basis: B = ∅, uh(x,µ) = 0
I While k < K and | R(uh) |> ε

• We solve

argminθk

(∫
P

∫
Ω

R(uh(x,µ) + uk(x,µ))dx+ λ

∫
P

∫
∂Ω

B(uh(x,µ) + uk(x,µ))dx
)

• We compute (α0,αk) with a Galerkin projection or with a estimation of αk .
• Gives global approximation uh(x,µ) =

∑k
i=0αiui(x,µ).

Remarks
Interesting point: each approximation spaceMi can be different. Examples: NNs, FE etc.
Can we prove the convergence and compute the hyper-parameters ? (work in PEPR PDE-IA).
Emmanuel Franck | Physic informed neural networks for solving direct and inverse problems | inter PEPR workshop 14/29

Full NN greedy method I
Full NN approach
How choose the model at each step:
• One layer hidden-NN where we double the number of parameters at each step.
• Deep NN at each step with increase ability to capture high frequencies.

Spectral bias
MLPs first learn low frequencies, before learning the high frequencies (with difficulty).

• We solve −∆u = 128 sin(8πx) sin(8πy). First try (left figure): classical MLP vs Fourier NNs.

• FNN: we add Fourier features. We replace NNθ(x) by NNθ(x, sin(2πk1x), ..., sin(2πknx)) with
(k1,kn) trainable parameters.

Emmanuel Franck | Physic informed neural networks for solving direct and inverse problems | inter PEPR workshop 15/29

Full NN greedy method II

• Test: 4D problem (2D spatial + 2 parameters).
• Classical network (≈ 9k parameters). 4000 epochs. 25k points. 45 min CPU.

• Greedy network (4 sub-networks) (2 MLPs, 2 Fourier MLPs). 1k, 1k, 3k and 4k parameters (total:
9k). Each trained for 1000 epochs. 5k, 5k, 25k and 50k points by epoch (1h05 CPU).

Emmanuel Franck | Physic informed neural networks for solving direct and inverse problems | inter PEPR workshop 16/29

Full NN greedy method II

• Test: 4D problem (2D spatial + 2 parameters).
• Classical network (≈ 9k parameters). 4000 epochs. 25k points. 45 min CPU.

• Greedy network (4 sub-networks) (2 MLPs, 2 Fourier MLPs). 1k, 1k, 3k and 4k parameters (total:
9k). Each trained for 1000 epochs. 5k, 5k, 25k and 50k points by epoch (1h05 CPU).

Emmanuel Franck | Physic informed neural networks for solving direct and inverse problems | inter PEPR workshop 16/29

Full NN greedy method II

• Test: 4D problem (2D spatial + 2 parameters).
• Classical network (≈ 9k parameters). 4000 epochs. 25k points. 45 min CPU.

• Greedy network (4 sub-networks) (2 MLPs, 2 Fourier MLPs). 1k, 1k, 3k and 4k parameters (total:
9k). Each trained for 1000 epochs. 5k, 5k, 25k and 50k points by epoch (1h05 CPU).

Emmanuel Franck | Physic informed neural networks for solving direct and inverse problems | inter PEPR workshop 16/29

Full NN greedy method II

• Test: 4D problem (2D spatial + 2 parameters).
• Classical network (≈ 9k parameters). 4000 epochs. 25k points. 45 min CPU.

• Greedy network (4 sub-networks) (2 MLPs, 2 Fourier MLPs). 1k, 1k, 3k and 4k parameters (total:
9k). Each trained for 1000 epochs. 5k, 5k, 25k and 50k points by epoch (1h05 CPU).

Emmanuel Franck | Physic informed neural networks for solving direct and inverse problems | inter PEPR workshop 16/29

Introduction to Neural methods for elliptic equations

General principles

PINNs and Deep Ritz

Neural methods and large dimension

Greedy approaches

Neural based greedy approaches

Hybrid two step greedy approaches

Shape Optimization

Conclusion

Prediction-correction method

Hybrid methods
In this context, hybrid methods combine classical numerical methods and numerical methods
based on neural representations.

Objectives
Taking the best of both worlds: the accuracy of classical numerical methods, and the mesh-free
large-dimensional capabilities of neural-based numerical methods.

General Idea

• Offline/Online process: train a Neural Network (PINNs, NGs, or NOs) to obtain a large family
of approximate solutions.

• Online process: correct the solution with a numerical method.

• Can be view as a two step Greedy method. The first with NNs on Ω × Vµ and the second with
finite element on Ω× {µ1,,µn}.

Emmanuel Franck | Physic informed neural networks for solving direct and inverse problems | inter PEPR workshop 17/29

Predictor-corrector method

• We consider the following elliptic problem: Lu(x) = −∇ · (A(x∇u(x)) + v · ∇u(x) + ru(x) = f (x), ∀x ∈ Ω

∂nu(x) + βu(x) = g(x), ∀x ∈ ∂Ω

• We assume that we have a continuous prior given by a parametric PINN uθ(x;µ)
• We propose the following approximation: uh(x) = uθ(x;µ) + ph(x) with ph(x) a perturbation
discretized using Pk Lagrange finite element.

• For the first approach, we solve in practice: Lph(x) = f (x) − Luθ(x;µ), ∀x ∈ Ω

∂nph(x) + βph(x) = g(x) − uθ(x;µ), ∀x ∈ ∂Ω

Error
We note Ih() the interpolator operator on the finite element space. The error of the
predictor-corrector method is given by

‖u− uh‖Hm 6
M
α
Chk+1−m

(
|u−uθ|Hm

|u|Hm

)
gain

|u|Hm

Emmanuel Franck | Physic informed neural networks for solving direct and inverse problems | inter PEPR workshop 18/29

Results I

• Test 1: {
−∆u = f , in Ω,

u = g, on Γ.

We defineΩ by the squareΩ = [−0.5π,0.5π]2 . For the test case the solution uex is given by

uex(x, y) = sin(8x) sin(8y) × 10−
1
2 ((x−µ1)2+(y−µ2)

2),

with homogeneous BC onΩ (i.e. g = 0) and µ1,µ2 ∼ U(−0.5, 0.5).
• Example of solution

Emmanuel Franck | Physic informed neural networks for solving direct and inverse problems | inter PEPR workshop 19/29

Results I

• Test 1: {
−∆u = f , in Ω,

u = g, on Γ.

We defineΩ by the squareΩ = [−0.5π,0.5π]2 . For the test case the solution uex is given by

uex(x, y) = sin(8x) sin(8y) × 10−
1
2 ((x−µ1)2+(y−µ2)

2),

with homogeneous BC onΩ (i.e. g = 0) and µ1,µ2 ∼ U(−0.5, 0.5).
• Gain at fixed size

Emmanuel Franck | Physic informed neural networks for solving direct and inverse problems | inter PEPR workshop 19/29

Results I

• Test 1: {
−∆u = f , in Ω,

u = g, on Γ.

We defineΩ by the squareΩ = [−0.5π,0.5π]2 . For the test case the solution uex is given by

uex(x, y) = sin(8x) sin(8y) × 10−
1
2 ((x−µ1)2+(y−µ2)

2),

with homogeneous BC onΩ (i.e. g = 0) and µ1,µ2 ∼ U(−0.5, 0.5).
• Gain at fixed error (Finite element P1)

Ndof CPU Error
Pinns 28045 13min 2.4× 10−2

Correction 202 400 2sec 1.1× 10−3

FE 1602 25600 1min54 7.8× 10−3

FE 3202 102400 7m29 1.95× 10−3

• The error is the average error on a set of 10 parameters.
• CPU time for 100 simulations varying parameters: 980sec for our method, 44900 sec for FE. CPU divided by 45.8.
• CPU time for 1000 simulations varying parameters: 2780sec for our method, 449000 sec for FE. CPU divided by 161.
• Using a more FEM library this ratio will be less good.

Emmanuel Franck | Physic informed neural networks for solving direct and inverse problems | inter PEPR workshop 19/29

Results II
• Test 2 (6D problem): {

−∇ · (K∇u) = f , in Ω,

u = 0, on Γ.

We defineΩ by the squareΩ = [−0.5π,0.5π]2 . The source is given by

f(x, y) = 10 exp(−((x1− c1)2 + (x2− c2)2)/(0.025σ2))

and the anisotropy matrix is given by

K =

(
εx2 + y2 (ε− 1)xy
(ε− 1)xy x2 + εy2

)
with c1, c2 ∼ U(−0.4, 0.6), σ ∼ U(0.1, 0.8) and ε ∼ U(0.01, 0.9).

• Example of solution (no analytic solution: we will compare with a fine solution)

• Better results for smaller parameters domain.Emmanuel Franck | Physic informed neural networks for solving direct and inverse problems | inter PEPR workshop 20/29

Results II
• Test 2 (6D problem): {

−∇ · (K∇u) = f , in Ω,

u = 0, on Γ.

We defineΩ by the squareΩ = [−0.5π,0.5π]2 . The source is given by

f(x, y) = 10 exp(−((x1− c1)2 + (x2− c2)2)/(0.025σ2))

and the anisotropy matrix is given by

K =

(
εx2 + y2 (ε− 1)xy
(ε− 1)xy x2 + εy2

)
with c1, c2 ∼ U(−0.4, 0.6), σ ∼ U(0.1, 0.8) and ε ∼ U(0.01, 0.9).

• Gain at fixed error:
Ndof CPU Error

Pinns 30min 2.86× 10−2

Correction 202 400 1sec 1.40× 10−3

Correction 402 400 3sec 3.3× 10−4

FE 802 6400 6sec 2.13× 10−3

FE 2402 57600 55sec 2.38× 10−4

• CPU time for 100 simulations varying parameters (precision ≈ 2× 10−4): 2100sec for our method, 5500 sec for FE. CPU
divided by 2.62.

• CPU time for 1000 simulations varying parameters (precision ≈ 2 × 10−4): 4800sec for our method, 55000 sec for FE.
CPU divided by 11.5.

• Better results for smaller parameters domain.

Emmanuel Franck | Physic informed neural networks for solving direct and inverse problems | inter PEPR workshop 20/29

Introduction to Neural methods for elliptic equations

General principles

PINNs and Deep Ritz

Neural methods and large dimension

Greedy approaches

Neural based greedy approaches

Hybrid two step greedy approaches

Shape Optimization

Conclusion

Shape Optimization

Emmanuel Franck | Physic informed neural networks for solving direct and inverse problems | inter PEPR workshop 21/29

Problem solved

PINNs and inverse problem
One of the advantages often mentioned is their ability to easily handle inverse problems and
optimal control problems, since we’re already solving a nonlinear optimization problem.

• Here we consider Shape optimization problems (work done in PEPR Numpex):

• Energy Dirichlet:
E(Ω) := inf

u∈H10(Ω)

1
2

∫
Ω

(
|∇u|2 − fu

)
dx

• Problem solved:

inf{E(Ω),Ω bounded open set of Rn, such that |Ω| = V0}

• it is equivalent to solve:

inf
Ω

(
1
2

∫
Ω

(
|∇u|2 − fu

)
dx
)
, with the constrains

−∆u = f in Ω,

u = 0 on ∂Ω.

Emmanuel Franck | Physic informed neural networks for solving direct and inverse problems | inter PEPR workshop 22/29

Classical method

• Here we details the classical methods to solve this problem.

One step of the algorithm

• We solve the PDE problem a Finite element or orher method on the mesh Ωh
• We solve the adjoint PDE problem a Finite element or other method on the mesh Ωh
• We compute the shape derivative using the primal and adjoint state.
• We use this shape derivative to move the boundary of the shape
• If the mesh becomes too degenerate we remesh.

• Picture of Parameter-Free Shape Optimization: Various Shape Updates for Engineering Applications.

• Immersed boundary finite element method avoid the remeshing but need to compute the
shape derivative computing level set moving.

Emmanuel Franck | Physic informed neural networks for solving direct and inverse problems | inter PEPR workshop 23/29

PINNs method

• Our approach:
I We use two networks: uθ(x,µ) for the parametric solution of the PDE and φθf (Ω0) a
diffeomorphism which deform the original space.

I We solve:

min
θ,θf

(∫
φθf (Ω)×M

(
1
2
|∇uθ(x;µ)|2 − f (x;µ)uθ(x;µ)

)
dx dµ

)
with M the parameter space.

I By a change of variable we find a equivalent problem to solve on Ω0. We sample on Ω0.
• Difficulties:

I How obtain a invertible neural network ?
I How treat the volume constrains ?

Advantages
One single loss function to consider.
• A penalization loss for the volume does not work.
• So we propose to impose in hard in the network: invertibility and volume preservation. For
that we use neural network which mimic Hamiltonian mechanics called Symplectic NNs.

Emmanuel Franck | Physic informed neural networks for solving direct and inverse problems | inter PEPR workshop 24/29

Results I
• Left: We solve a parametric problem −∆u = f(x1, x2;µ) = exp

(
1−

(
x1
µ

)2
−
(
x2
µ2

)2)
on a domain obtain applying a

analytic symplectic map:
• Right: We learn a parametric symplectic map:{

S1λ : (x1, x2) 7→
(
x1 − λx22 + 0.3 sin

(
x2
λ

)
− 0.2 sin(8x2), x2

)
,

S2λ : (x1, x2) 7→ (x1, x2 + 0.2λx1 + 0.12 cos(x1)).

Emmanuel Franck | Physic informed neural networks for solving direct and inverse problems | inter PEPR workshop 25/29

Result II

• Optimization problem with f = 1 andΩ0 an ellipse.

Emmanuel Franck | Physic informed neural networks for solving direct and inverse problems | inter PEPR workshop 26/29

Result III

• Optimization problem with f(x, y;λ) = exp
(
1− ‖Tλ(x, y)‖2

)
with T is a the previous symplectic map andΩ0 is an

ellipse.

Emmanuel Franck | Physic informed neural networks for solving direct and inverse problems | inter PEPR workshop 27/29

Introduction to Neural methods for elliptic equations

General principles

PINNs and Deep Ritz

Neural methods and large dimension

Greedy approaches

Neural based greedy approaches

Hybrid two step greedy approaches

Shape Optimization

Conclusion

Conclusion

Emmanuel Franck | Physic informed neural networks for solving direct and inverse problems | inter PEPR workshop 28/29

Conclusion

PINNs
PINNs look like a Least-Square Galerkin method on finite dimension submanifold. It is global
model (no need mesh) able to tackle large dimensional smooth problems.

Time problems
Two approaches (PINNs): u(t, x) = nn(t, x; θ) or ODE based methods (Discrete PINNs, Neural
Galerkin): u(t, x) = nn(x; θ(t)).

Greedy approaches
allow to increase the accuracy of the PINNs. Using a two step greedy method coupling PINNs and
FE we can obtain a convergent method more accurate for parametric problems.

Optimization
Since we use nonlinear optimization it is a natural framework for inverse problem and control.
NNs are also very useful to parametrize geometries (mapping, signed distance function) and
avoid mesh in shape optimization.

Emmanuel Franck | Physic informed neural networks for solving direct and inverse problems | inter PEPR workshop 29/29

	Introduction to Neural methods for elliptic equations
	General principles
	PINNs and Deep Ritz
	Neural methods and large dimension

	Greedy approaches
	Neural based greedy approaches
	Hybrid two step greedy approaches

	Shape Optimization
	Conclusion

