Physic informed neural networks for solving direct and inverse prob-
lems

Emmanuel Franck’,

November 18 2024
Journée PEPR DIADEM -IA - Numpex , Jussieu

*MACARON project-team, Université de Strasbourg, CNRS, Inria, IRMA, France

lreia—  IMA

Institut de Recherche
Mathématique Avancée




Outline

Introduction to Neural methods for elliptic equations
General principles
PINNs and Deep Ritz

Neural methods and large dimension

Greedy approaches
Neural based greedy approaches

Hybrid two step greedy approaches

Shape Optimization

Conclusion

Emmanuel Franck | Physic informed neural networks for solving direct and inverse problems | inter PEPR workshop 1/29



Introduction to Neural methods for elliptic equations



Introduction to Neural methods for elliptic equations

Emmanuel Franck | Physic informed neural networks for solving direct and inverse problems | inter PEPR workshop 2/29



Introduction to Neural methods for elliptic equations

General principles



Objectives

Linear elliptic PDEs
Here we consider elliptic and linear PDEs of the form:

Lu(x)) = -V - (AX)Vu(x)) + V- (BX)u(x)) + c(x)u(x) =f(x), ¥xeQ cR?
ux) =0, VvxeoQ

Numerical methods Vs ML regression

Both regression and numerical methods seek to finf function approximations. In both cases, we
use parametric functions. One is constrained by the data, the other by the physical equations.

Idea
Use neural networks as parametric models in numerical methods.

Principle of numerical method
+ Choose an finite-dimensional approximation space to represent your numerical solution.

+ Transform the PDE constrains on the solution into a constrains on the unknowns parameters.

- Solve the problem obtained to find the best parameters.

Emmanuel Franck | Physic informed neural networks for solving direct and inverse problems | inter PEPR workshop

3/29



Approximation space

Linear space Nonlinear space
+ We choose fi,f, € Vy: - We choose fi,f, € Mp:
N
f1(x) + f2(x) ¢ M
AX) + %) =Y 0dbi(x) €V, k ’ ’
i=1 + M, is not a vectorial space but a mani-
- V, is a vectorial space. fold.

« Vectorial space Vs Manifold

ry s(t)
d trajectory
I

- Difficulty: the projection on a manifold is not unique.

Emmanuel Franck | Physic informed neural networks for solving direct and inverse problems | inter PEPR workshop

4/29



Approximation space Il

Examples of linear space

« Fourier spectral functions (global):

n
fX) =D asin(2kmx)
i=k
+ Orthogonal polynomiales spectral functions

(global): J
¢ f0) =) oePr(x)
+ Finite element basis (loc’a:ls(:
fX) =5 apdnr(x)
i—k

with ¢ , piecewise polynomiales functions.
+ Radial basis (local):

Fx) =) ardlelx—x|)

i=k

avec ¢ (r) = e*’z, $(r) =+/(1+r2).

Emmanuel Franck | Physic informed neural networks for solving direct and inverse problems | inter PEPR workshop 5/29



Approximation space Il

Examples of linear space Examples of nonlinear functions
« Fourier spectral functions (global): + Tensor methods:
n
:Zocksin(ZkT[X] Z(Z & p Pk (X )(Z Bi,kbr (% >
i=k =
+ Orthogonal polynomiales spectral functions avec x = (Xq, Xz ).
(global):

= aPe(x)

+ Finite element basis (locia:ls(:

= Z g dp k()

with ¢ , piecewise polynomiales functions.
+ Radial basis (local):

=) opdlelx—x)
i—k

avec ¢ (r) = e*’z, $(r) =+/(1+r2).

Emmanuel Franck | Physic informed neural networks for solving direct and inverse problems | inter PEPR workshop 5/29



Approximation space Il

Examples of linear space

+ Fourier spectral functions (global):

n
(x) = ) osin(2kmx)
i=k
+ Orthogonal polynomiales spectral functions
(global): n
=Y aPr(x)

- Finite element basis (loc"a:lse:

=) opdpk(X)
i—k

with ¢ , piecewise polynomiales functions.

- Radial basis (local):
n
= adlelx—x)
i=k
avec ¢ (r) = e*’z, b(r)=+/(1+r2).

Examples of nonlinear functions

+ Tensor methods:

avec X = (Xq,Xz).
+ Fourier spectral functions (global):
n
= Z g sin(2wp7x)
i—k
- Radiales basis (global):
n
=Y adler|x—x)
i—k
« Anisotropic radial basis (global):

Zcxm | = (x—x%;) )

MLP Neural network (global):
f(x) = nne (x)

+ KAN neural Network (global):
f(x) = kane (x)

Z(Z o, br (X )(Z Bi,kdr (X )

Emmanuel Franck | Physic informed neural networks for solving direct and inverse problems | inter PEPR workshop

5/29



Approximation space Il

Examples of linear space

+ Fourier spectral functions (global):

n
(x) = ) osin(2kmx)
i=k
+ Orthogonal polynomiales spectral functions

lobal): n
(etobal =3 P

- Finite element basis (loc"a:lse:

=) opdpk(X)
i—k

with ¢ , piecewise polynomiales functions.

- Radial basis (local):

= adlelx—x)

i=k

avec & (r) = e, &(r) = /(1 + ).

- Random networks (global)

= Z (anngk (x)
i=k

with 0, are randomly chosen.

Examples of nonlinear functions

+ Tensor methods:

avec X = (Xq,Xz).

+ Fourier spectral functions (global):

n
= Z g sin(2wp7x)
i—k
- Radiales basis (global):
n
=) opdler|x—x )
i—k
« Anisotropic radial basis (global):

Zam | = (x—x%;) )

MLP Neural network (global):
f(x) = nne (x)

+ KAN neural Network (global):
f(x) = kane (x)

Z(Z o, br (X )(Z Bi,kdr (X )

Emmanuel Franck | Physic informed neural networks for solving direct and inverse problems | inter PEPR workshop

5/29



Introduction to Neural methods for elliptic equations

PINNs and Deep Ritz



Approximation methods

+ We want solve the problem L(u(x)) = f(x) on Q.
« The solution of the this PDE is solution of minimization problem

u(x) = min L LW ~F P, orux) = min (JQ v P —f(x)v)

veH

Linear spaces Nonlinear spaces
+ Ritz-Galerkin: + Deep-Ritz:
5 _ g 2 .
o= e (JQ ] f(x)v> 0* = min <L) | Vv 2 *f(X)V)
+ Least square Galerkin: . PINNs:
0" = mi L(v)—f 2 = mi —fP
i [ 1L0) =1 0" =i | 1L0v) £

+ The idea is the same. We restrict the functions to be minimized to the approximation space.

+ The difference between classical and neural methods is the approximation space.
« The choice of integral approximation and resolution follows from this.

Emmanuel Franck | Physic informed neural networks for solving direct and inverse problems | inter PEPR workshop

6/29



Integration

- To calculate the previous minimization problems, we need to integrate over the domain. In-
tegration depends on the choice of space. In many cases we use quadrature formula.

- We're going to look here at the case of nonlinear spaces, in particular based on neural net-
works whose characteristics are:

» Global models which not use meshes.
» Good approximation properties in large dimension.

Integration
Given the qualities of NNs, the most suitable integration method is Monte Carlo.

L o (%) — u(x)[2dX = Exccon 1o (06) — u(x)|2]

with U(Q) a uniform law on Q. Applying the law of large numbers, we have

N
J 30—t e = 3 ) — w1

Emmanuel Franck | Physic informed neural networks for solving direct and inverse problems | inter PEPR workshop 7129



Integration and complex geometries

Level-set function
Given an Q domain with T boundary, we call a level function a ¢ function such that
<0, xe€Q
d(x) = =0, xeTl
>0, xeRY/Q
+ How to sample ?
» We draw a point randomly in [a, d]? such that Q is included.
» If d(x) < 0 we keep the point otherwise we start again.
+ No level function uniqueness. Example: the disk:

P1(X) = /X +X3—r1, bi(X) =X+ X% — 1

- The first is called The signed distance function because it gives the distance between each

point and T'. Itis a C° function, not a C" one. : - :
+ Domains sum: ¢(x) < 0 ou ¢, (x) <0 i i Q
+ Domains intersection: ¢1(x) < 0 et ¢p,(x) <0 72 72 o
- Domains with holes: ¢4(x) < 0 et ¢y (x) >0 Jh | 33

(©) Iso-contours of the LSF.

(a) A cir
embeddes

Emmanuel Franck | Physic informed neural networks for solving direct and inverse problems | inter PEPR workshop



Boundary conditions

- For classical numerical methods we can impose BC weakly (we speak about penalization
method) or strongly in the approximation space. It is the same for the NNs based methods.

Weak BC for neural based methods
The minimization problem becomes

—— (ar(ue) +2oc [ 1B00) B dx)
Q

« Fails:If || Vodr(Ug) ||io>>| Vedbc(Us) ||l the training can learn mainly the PDE, ignore the BC
and compute trivial solution.

Dirichlet BC
To impose g(x) at the bc we use the space
M, = {g(x) + d(x)nne(x), 6€© C R’}

+ Possible to impose strongly other BC.

+ Since the model is plug in the residual we need that ¢ is a regular function. Not always the
case. We can learn smooth level set.

Emmanuel Franck | Physic informed neural networks for solving direct and inverse problems | inter PEPR workshop

9/29



How compute solve the minimization problem

Linear spaces Nonlinear space
- Gradient computation: analytic + Gradient computation: Automatic differ-
- Solving of V) = 0: normal equation. SNHEHCDE
> In the linear case we have: « Solving of V/ = 0: Gradient method
to begin and quasi-Newton method to
V)/]=0+—A0—-b=0 e

» We solve a linear system with LU, CG, GMRES. q q a
Y - Computation of the model derivatives:

- Computation of the model derivatives: Automatic differentiation.
analytic

- The main difference is that in the classical case (linear methods) a large part of the optimisa-
tion problem can be solved analytically

Emmanuel Franck | Physic informed neural networks for solving direct and inverse problems | inter PEPR workshop 10/29



Introduction to Neural methods for elliptic equations

Neural methods and large dimension



Advantages and disadvantages

Disadvantages
The main disadvantage of the Neural approach are the difficulty to obtain a good accuracy, and
the fact that only asymptotic convergence results are available.

- Consider a 2D Laplacian solves with a 5-layer neural network and increase the size (685
weights for the smallest network and 26300 weights for the largest).

+ Two learning rates:

FE | Ngos | Error
1D | 100 | -

2D | 1E* ~ 2E3
3D | 1E® ~ 2E3

Advantage
Mesh-free and ratio accuracy/degree of freedom less sensitive to the dimension.

Emmanuel Franck | Physic informed neural networks for solving direct and inverse problems | inter PEPR workshop

11/29



Advantages and disadvantages

Disadvantages
The main disadvantage of the Neural approach are the difficulty to obtain a good accuracy, and
the fact that only asymptotic convergence results are available.

- Consider a 2D Laplacian solves with a 5-layer neural network and increase the size (685
weights for the smallest network and 26300 weights for the largest).

+ Two learning rates:

PINNs | Ngor Error

1D 5081 | 3E~“-6E~*
2D 5121 | 4E~4-2E3
3D 5161 | 1E3-4E3

Advantage
Mesh-free and ratio accuracy/degree of freedom less sensitive to the dimension.

Emmanuel Franck | Physic informed neural networks for solving direct and inverse problems | inter PEPR workshop

11/29



Parametric problems

+ In optimization, uncertainty propagation etc., we want to solve problems such as
La(u(x)) —f(x,B)
with p = (&, B) parameters that live in a space V,,.

- Alarge part of usual methods are too expensive in high dimension so we don’t solve this
problem in V,, space.

+ In general, we run simulations for different u and build a reduced model.

Parametric neural methods
Since neural network spaces are more efficient in high dimensions, we can try to solve in V,,
space.

« In this case the restriction operator is defined by

0" = minj j U, 1) — nno(x, 1) P dx,
o Jv,Ja

« The PINNs method becomes:
6" = minj j | La(u(x, 1)) — f(x, B) P dx,
vp Jo

0

Emmanuel Franck | Physic informed neural networks for solving direct and inverse problems | inter PEPR workshop

12/29



Greedy approaches



Greedy approaches

Emmanuel Franck | Physic informed neural networks for solving direct and inverse problems | inter PEPR workshop 13/29



Greedy approaches

Neural based greedy approaches



Greedy Method

Objectives

Solve, with good accuracy, large-dimensional parametric elliptic problems. We wish to use an
approach with only neural networks. How to increase the accuracy ?

Idea
Correct the first network with a second one, iterate (multistage, multlevel PINNs).

+ We can write that as a greedy algorithm.
> We consider the following submanifold approximation M;, 1<i<d
> We initialize the greedy basis: B = 0, up(x, n) =0
> While k < Kand | R(up) |[> €
+ We solve

argming, ([ [ Rl )+ o wnae A [ [ plant w) + s, ) k)

PJoO

+ We compute (oo, ....ox,) With a Galerkin projection or with a estimation of o.
+ Gives global approximation up (x, 1) = ZLO ol (X, ).

Remarks

Interesting point: each approximation space M; can be different. Examples: NNs, FE etc.
Can we prove the convergence and compute the hyper-parameters ? (work in PEPR PDE-IA).

Emmanuel Franck | Physic informed neural networks for solving direct and inverse problems | inter PEPR workshop

14/29



Full NN greedy method |

Full NN approach
How choose the model at each step:
+ One layer hidden-NN where we double the number of parameters at each step.
- Deep NN at each step with increase ability to capture high frequencies.
Spectral bias
MLPs first learn low frequencies, before learning the high frequencies (with difficulty).

+ We solve —Au = 128 sin(87x) sin(871y) First try (left ﬁgure) classical MLP vs Fourier NNs.

n. parameters = 0.50

N\
ii,.\\\\\ *:i::

« FNN: we add Fourier features. We replace NNg(x) by  NNg(X,sin(27tRX), ..., sin(27tR,x)) with
(R4, ....R,) trainable parameters.

,,,,,

rrrrr
,,,,,

/

sssss

Emmanuel Franck | Physic informed neural networks for solving direct and inverse problems | inter PEPR workshop 15/29



Full NN greedy method I

« Test: 4D problem (2D spatial + 2 parameters).
- Classical network (~ 9k parameters). 4000 epochs. 25k points. 45 min CPU.

prediction residual

ooms1z

oo0n176
0001008
oo008d0
0000672

0000336

oo00168

1 15 -10 -5 00 o5 10 1

« Greedy network (4 sub-networks) (2 MLPs, 2 Fourier MLPs). 1k, 1k, 3k and 4k parameters (total:
9k). Each trained for 1000 epochs. 5k, 5k, 25k and 50k points by epoch (1h05 CPU).

prediction, 1 network

residual, 1 network error, 1 network

0.0162

00144
0.0144

00128
00126

00112
o 0.0108

0.0096
00080 0.0090
0.0064 0.0072
0.0048 ™ 0.0054
0.0036

00032 _; ¢
0.0016 0.0018
0.0000 ™ 0.0000
-1 0 1

Emmanuel Franck | Physic informed neural networks for solving direct and inverse problems | inter PEPR workshop 16/29



Full NN greedy method I

« Test: 4D problem (2D spatial + 2 parameters).

+ Classical network (~

prediction

residual

oxzs
-0s

0250
10 075

s

ouzs

prediction, 2 networks

residual, 2 networks
-

15

9k parameters). 4000 epochs 25k points. 45 min CPU.

10 -05 00 05 10

. Greedy network (4 sub-networks) (2 MLPs 2 Fourler MLPs). 1k, 1k, 3k and 4k parameters (total:
9k). Each trained for 1000 epochs. 5k, 5k, 25k and 50k points by epoch (1h05 CPU).

error, 2 networks

0000324 0.000945
00002881 0 0.000840
0.000252 0000735
0000216 0.000630
0,000180y 5 0.000525
0000144 0.000420
00001683 0.000315
0000072, 0000210
0.000036 0,000105
0.000000"3 0.000000
) o 1

ooms1z

oo0n176
0001008
oo008d0
0000672

Emmanuel Franck

Physic informed neural networks for solving direct and inverse problems

inter PEPR workshop

16/29



Full NN greedy method I

« Test: 4D problem (2D spatial + 2 parameters).
- Classical network (~ 9k parameters). 4000 epochs. 25k points. 45 min CPU.

prediction residual

ooms1z

oo0n176

0001008

oo008d0

0000672

0000336

oo00168

1 15 -10 -5 00 o5 10 1

« Greedy network (4 sub-networks) (2 MLPs, 2 Fourier MLPs). 1k, 1k, 3k and 4k parameters (total:
9k). Each trained for 1000 epochs. 5k, 5k, 25k and 50k points by epoch (1h05 CPU).

prediction, 3 networks residual, 3 networks

1e-6 error, 3 networks
15
0.000243
10 0000216
0.000189
05
0.000162
00 0.000135
0.000108
03 o 0.000081
-10 —10 0.000054
0.000027
-15 =15 0.000000

Emmanuel Franck | Physic informed neural networks for solving direct and inverse problems | inter PEPR workshop 16/29



Full NN greedy method I

« Test: 4D problem (2D spatial + 2 parameters).
- Classical network (~ 9k parameters). 4000 epochs 25k points. 45 min CPU.

prediction

s

ouzs

oxzs
-0s

0250
10 075

residual

residual, 4 networks

__le-6

6.48

5.76

5.04

ooms1z

oo0n176

0001008

oo008d0

0000672

45 -10 -5 00 o5 10

. Greedy network (4 sub-networks) (2 MLPs 2 Fourler MLPs). 1k, 1k, 3k and 4k parameters (total:
9k). Each trained for 1000 epochs. 5k, 5k, 25k and 50k points by epoch (1h05 CPU).

prediction, 4 networks

error, 4 networks 1e-5

Emmanuel Franck | Physic informed neural networks for solving direct and inverse problems | inter PEPR workshop

16/29



Greedy approaches

Hybrid two step greedy approaches



Prediction-correction method

Hybrid methods
In this context, hybrid methods combine classical numerical methods and numerical methods
based on neural representations.

Objectives
Taking the best of both worlds: the accuracy of classical numerical methods, and the mesh-free
large-dimensional capabilities of neural-based numerical methods.

General Idea

- Offline/Online process: train a Neural Network (PINNs, NGs, or NOs) to obtain a large family
of approximate solutions.
+ Online process: correct the solution with a numerical method.

- Can be view as a two step Greedy method. The first with NNs on Q x V,, and the second with
finite element on QO x {w ...y p k.

Emmanuel Franck | Physic informed neural networks for solving direct and inverse problems | inter PEPR workshop 17/29



Predictor-corrector method

+ We consider the following elliptic problem:
Lu(x) ==V - (A(xVu(x)) +Vv-Vu(x) +ru(x) =f(x), ¥xeQ
OnU(X) + Bu(x) = g(x), Vx € 0Q)

- We assume that we have a continuous prior given by a parametric PINN ug(X; )

- We propose the following approximation: un(x) = ue(X; 1) + pp(x) with p,(x) a perturbation

discretized using Py, Lagrange finite element.
« For the first approach, we solve in practice:
Lpn(x) = f(x) — Lug (x; 1), vxeQ
OnPn(X) + Bpn(X) = g(x) — ug(x; 1), Vx€0Q
Error
We note I,() the interpolator operator on the finite element space. The error of the
predictor-corrector method is given by

M —
It — unllim < = Ch*F= (e M fulym
X [ulym

gain

Emmanuel Franck | Physic informed neural networks for solving direct and inverse problems | inter PEPR workshop

18/29



Results |

+ Test1:

in Q,
on T.

7AU:f,
u=g,

We define Q by the square Q = [—0.57t, 0.57t]2. For the test case the solution uey is given by

.
Uex (X, ¥) = sin(8X) sin(8y) x 102 (G m)2Hl—mz)®)

with homogeneous BC on Q (i.e. g = 0) and w1, up ~ U(—0.5,0.5).

+ Example of solution

prediction, parameters = 0.00, 0.00

- e .

fe@@@e
tede@ed
I T O
@B e o
. ®© -
-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

0.8

0.6

0.4

0.2

0.0

Emmanuel Franck | Physic informed neural networks for solving direct and inverse problems

inter PEPR workshop

19/29



Results |

+ Test 1
—Au=f, in Q,
u=g, onT.
We define Q by the square QO = [—0.57t, 0.571]2. For the test case the solution uey is given by

1 2 2
Uex (X, YY) = sin(8x) sin(8y) x 102 (x—H)7Hy—r2)9) |

with homogeneous BC on Q (i.e. g = 0) and 1, pup ~ U(—0.5,0.5).
+ Gain at fixed size

Gains on PINNs

Gains on FEM

mean  std

min max mean std min max
20 917 3613  19.79 6.63 1122 45443 34941 82.75
40 26.14 111.44 5886 19.8 106.01 388.96 30849 71.81
Gains on PINNs Gains on FEM
N  min max mean std min  max mean std
20 3547 166.68 87.44 29.18 65.7  206.07 157.83 37.13
40 207.56 1,102.21 524.38 181.75 52.97 141.53 111.17 22.44
Gains on PINNs Gains on FEM
N  min max mean std min max mean std
20 75.86 499.24 215.89 79.51 2891 649 52.36 8
40 999.27 6,317.61 2,665.31 1,003.72 20.09 422 343 5.19

Emmanuel Franck

Physic informed neural networks for solving direct and inverse problems

inter PEPR workshop

19/29



Results |

+ Test1:

7AU:f,

u=g,

in Q,

on T.

We define Q by the square Q = [—0.57t, 0.57t]2. For the test case the solution uey is given by

.
Uex (X, ¥) = sin(8X) sin(8y) x 102 (w2 l—mg)?)

with homogeneous BC on Q (i.e. g = 0) and 1, pup ~ U(—0.5,0.5).

+ Gain at fixed error (Finite element P;)

Nde CPU Error
Pinns 28045 13min 2.4 x 102
Correction 20° | 400 2sec 1.1x 103
FE 1602 25600 1min54 7.8 x 103
FE 3202 102400 7m29 1.95 x 103

+ The error is the average error on a set of 10 parameters.

+ CPU time for 100 simulations varying parameters: 980sec for our method, 44900 sec for FE. CPU divided by 45.8.
+ CPU time for 1000 simulations varying parameters: 2780sec for our method, 449000 sec for FE. CPU divided by 161.
- Using a more FEM library this ratio will be less good.

Emmanuel Franck | Physic informed neural networks for solving direct and inverse problems

| inter PEPR workshop

19/29



Results Il

+ Test 2 (6D problem):
{7v- (KVu)=f, in Q,

u=0, onT.
We define Q by the square QO = [—0.57t, 0.57t]2. The source is given by
f(x,y) =10exp(—((x1—c1)? + (x2 — c2)?)/(0.0250?))

and the anisotropy matrix is given by
ex’ +y2 (e —Txy
K= 2 2
(e —1)xy x°+ ey
with ¢, ¢; ~ U(—0.4,0.6), o ~ 1((0.1,0.8) and € ~ 1((0.01,0.9).
+ Example of solution (no analytic solution: we will compare with a fine solution)

prediction, parameters = 0.50, 0.45, 0.20, 0.01

10
01728

01536

01344

ons2

0.0960

00768

00876

00384

o092

0.0000

EmmaResla seek ts| fopisyRal lireatriaetery£laiediibrks for solving direct and inverse problems | inter PEPR workshop 20/29



Results Il

+ Test 2 (6D problem):

—V - (KVu) =f, in Q,
u=0, onT.
We define Q by the square QO = [—0.57t, 0.57t]2. The source is given by

f(x,y) =10exp(—((x1—c1)? + (x2 — c2)?)/(0.0250?))

KZ((

and the anisotropy matrix is given by

ex? +y?
e —1)xy

(ef1)xy>

X+ ey?

with ¢1, ¢, ~ U(—0.4,0.6), o ~ U(0.1,0.8) and e ~ U(0.01,0.9)

+ Gain at fixed error:

Nof CPU Error
Pinns 30min | 2.86 x 102
Correction 20° | 400 1sec 1.40 x 103
Correction 40% | 400 3sec 3.3x10*%
FE 802 6400 6sec 213 x 1073
FE 2402 57600 55sec 2.38 x 10~ *

+ CPU time for 100 simulations varying parameters (precision =~ 2 x 10—*): 2100sec for our method, 5500 sec for FE. CPU

divided by 2.62.

+ CPU time for 1000 simulations varying parameters (precision = 2 x 10—*): 4800sec for our method, 55000 sec for FE.

CPU divided by 11.5.
+ Better results for smaller parameters domain.

Emmanuel Franck | Physic informed neural networks for solving direct and inverse problems

inter PEPR workshop

20/29



Shape Optimization



Shape Optimization

Emmanuel Franck | Physic informed neural networks for solving direct and inverse problems | inter PEPR workshop 21/29



Problem solved

PINNSs and inverse problem

One of the advantages often mentioned is their ability to easily handle inverse problems and
optimal control problems, since we're already solving a nonlinear optimization problem.

+ Here we consider Shape optimization problems (work done in PEPR Numpex):
« Energy Dirichlet:
E(Q):= inf 1J (IVul — fu)dx
2o

ueH)(Q)

+ Problem solved:
inf{€(Q), Q bounded open set of R”, such that |Q] = V,}
- itis equivalent to solve:

—Au=f inQ,

inf(1 J (IVup —fu)dx), with the constrains
@ ol u=0 on 0Q.

2

Emmanuel Franck | Physic informed neural networks for solving direct and inverse problems | inter PEPR workshop

22/29



Classical method

+ Here we details the classical methods to solve this problem.

One step of the algorithm

- We solve the PDE problem a Finite element or orher method on the mesh Q,

+ We solve the adjoint PDE problem a Finite element or other method on the mesh Qy,
- We compute the shape derivative using the primal and adjoint state.

+ We use this shape derivative to move the boundary of the shape

+ If the mesh becomes too degenerate we remesh.

+ Picture of parameter-Free Shape Optimization: Various Shape Updates for Engineering Applications.

- Immersed boundary finite element method avoid the remeshing but need to compute the
shape derivative computing level set moving.

Emmanuel Franck | Physic informed neural networks for solving direct and inverse problems | inter PEPR workshop 23/29



PINNs method

+ Our approach:
» We use two networks: ug(x, u) for the parametric solution of the PDE and $o,(Qo) @
diffeomorphism which deform the original space.

» We solve:
. 1
min J <*|VU9(X; )P —F(x; w)ue (x; u))dx dp
9,65 o, (Q)xM 2

with M the parameter space.

» By a change of variable we find a equivalent problem to solve on Q,. We sample on Q.

« Difficulties:
» How obtain a invertible neural network ?
» How treat the volume constrains ?
Advantages
One single loss function to consider.

+ A penalization loss for the volume does not work.
- So we propose to impose in hard in the network: invertibility and volume preservation. For
that we use neural network which mimic Hamiltonian mechanics called Symplectic NNs.

Emmanuel Franck | Physic informed neural networks for solving direct and inverse problems | inter PEPR workshop

24/29



Results |

+ Left: We solve a parametric problem —Au = f(xq,X; i) = exp <1 — (

analytic symplectic map:
+ Right: We learn a parametric symplectic map:

X
83

14 x 10

1310
11x10°
9.6 %102

 (Xay %) > (x1 — AR+ O.3sin(%2) - O.25in(8x2),x2),

m

2 (X1,X2) = (X1, X2 + 0.2A%1 + 0.12cos(X1)).

50 %1072
6.4 %1077
48 X107
32 %1077

16x 102

-5 -0

L0
075
050
025
000
025
050

075}

~100!

(a)

o5 00 05 10

) solution, i = 0.5

0.0 10

17 %10
15 x 10
13 x 10
12 %10
o6 x 102

77 %1072

58 %1072
38 107
19%107

2 2
Xi) = (%) ) on a domain obtain applying a

Loo|

o7

050

025

0.0

0251

030}

—0.75]

5 -0 05 o0 05 10

(b) error, 1 = 05

-5 -0

0.0 x 107

o5 00 05 1o

(c) solution, = 15

s -0 05 o0 05 10

(d) exror, pu =15

22x 10
19102
1720
Lax 102
12x10°2
06510
72x10°
1455107
2.4 %105

0.0 100

[Teaxo2
22x 1072
19102
16107
Lax 107
11x 102
5.1x 10
5.4%10°
2.7 %105

0.0 10°

(©A=2

() A=125

(d) X € {0.5,0.875,1.25, 1.625,2}

Emmanuel Franck

Physic informed neural networks for solving direct and inverse problems

inter PEPR workshop

25/29



Result Il

+ Optimization problem with f = 1and Qg an ellipse.

method FEM (R =100) FEM (R =250) FEM (R=500) GeSONN
Computational time (s) 53.3 509 3020 22.5
£2 error 7.20 % 10~2 2.83 x 10~2 2.21 x 10~2 1.99 x 10—3

Emmanuel Franck | Physic informed neural networks for solving direct and inverse problems | inter PEPR workshop 26/29



Result Il

+ Optimization problem with f (x,y; A) = exp(1 —|TA (X, y) HZ) with 7 is a the previous symplectic map and Qg is an

- 17w 4707
07 -
L2x107! 425107
050 00
37x 10 o7 1071
035 .
a2k B 20 1071
010 26x10° 00 26 107!
0.5 207 g 21 10
o 1ox 107! Lox 10!
~040) ~0.50]
Lox 10! Lox 107!
0.8 075
52 x10 52 102

i 1
o o0 1P
—0.5 00 05 10 o0
(a) solution, A = 0.69 b) :uluhun, A=108
B T
710 " — s 20 x 107
0.751 12 x 1070 N / \\
; IR N\
o0 s 7x10 1% 10t
0.25] 3.2 % 107" 035
0.001 260107 o 0.0 % 10"
T
o )
B Loxn —050 —10x 0
o toxut
0T st =" .
™ 20
—05. 00 05 10 000 iry i wn e 0
(c) solution, A=1.82 (d) deviation from the average of the optimality condition

Emmanuel Franck | Physic informed neural networks for solving direct and inverse problems | inter PEPR workshop 27/29



Introduction to Neural methods for elliptic equations
General principles
PINNs and Deep Ritz

Neural methods and large dimension

Greedy approaches
Neural based greedy approaches

Hybrid two step greedy approaches
Shape Optimization

Conclusion



Conclusion

Emmanuel Franck | Physic informed neural networks for solving direct and inverse problems | inter PEPR workshop 28/29



Conclusion

PINNs

PINNs look like a Least-Square Galerkin method on finite dimension submanifold. It is global
model (no need mesh) able to tackle large dimensional smooth problems.

Time problems

Two approaches (PINNSs): u(t,x) = nn(t,x; 8) or ODE based methods (Discrete PINNs, Neural
Galerkin): u(t,x) = nn(x; 0(t)).

Greedy approaches

allow to increase the accuracy of the PINNs. Using a two step greedy method coupling PINNs and
FE we can obtain a convergent method more accurate for parametric problems.

Optimization

Since we use nonlinear optimization it is a natural framework for inverse problem and control.
NNs are also very useful to parametrize geometries (mapping, signed distance function) and
avoid mesh in shape optimization.

Emmanuel Franck | Physic informed neural networks for solving direct and inverse problems | inter PEPR workshop

29/29



	Introduction to Neural methods for elliptic equations
	General principles
	PINNs and Deep Ritz
	Neural methods and large dimension

	Greedy approaches
	Neural based greedy approaches
	Hybrid two step greedy approaches

	Shape Optimization
	Conclusion

