
Neural representation for PDEs and hybrid
numerical methods

H. Barucq3,E. Franck12, F. Foucher3,
V. Michel-Dansac12, L. Navoret12, N. Victorion3

31 Janvier 2024
Journée fondements de l’IA, Sorbonne université

1Inria Nancy Grand Est, France
2IRMA, Strasbourg university, France
3Inria Bordeaux, Pau center, France

E. Franck 1/34

1/34

Outline

Introduction

”Classical” ML and numerical methods

Neural representation in ML and numerics

Hybrid numerical methods

Conclusion

E. Franck 2/34

2/34

Numerical Methods and implicit neural representation

E. Franck 3/34

3/34

Parametric models

■ We consider a unknown function
y = f (x)

with x ∈ V ⊂ Rd and y ∈ W ⊂ Rp .

Objective

□ find fh ∈ H an approximation of f with H a functional space.

□ Difficulty: it is a infinite dimensional problem.

Solutions parametric models

□ We consider a function fθ composed of known elementary functions and n unknown
parameters θi

□ The problem becomes : find fθ ∈ Hn an approximation of f with Hn a finite
dimensional functional space.

□ It is equivalent to
Find θ, such that ∥ fθ − f ∥H≤ ϵ

■ Main Question: How determinate θ ?
■ Example in the following. We want approximate the temperature in a Room:

T (t, x), x ∈ Ω ∈ R3, t ∈ R+

E. Franck 4/34

4/34

ML and regression

ML regression approach

□ We have data and we use it to construct the parametric model which approach our
function T

■ We assume that we known: {(x1, t1,T1),(xN , tN ,TN)} such that

Ti = T (ti , xi) + ϵi

with ϵi a noise.

■ To approximate the temperature function we propose to approximate correctly our
data examples.

■ It is equivalent to solve:

minθ

N∑
i=1

d(Ti , fθ(ti , xi))

with d a distance like euclidian norm.

Questions in ML

□ Which parametric model ?

□ Generalization for input outside of the data set (overfitting) ?

□ Robustness to the noise ?

□ How collect, process the date ?

E. Franck 5/34

5/34

Models and garanties
■ We consider: y = f (x) with x = (x1,, xd) ∈ Rd

■ Models:

■ Linear model: d∑
i=1

θix
i

■ Polynomial model:

n∑
i=1

θiPi (x)

■ Kernel model:

N∑
i=1

θiK(x, xi)

with xi a data and K a symmetric kernel.

■ Polynomial regression of the
Runge function

■ Garanties: For d =∥ x − y ∥22 the minimization problem is convex and admit a unique
solution if you have sufficient number of data.

■ For nonlinear models compared to the inputs more you have data and parameters
more you will accurate.

Curse of dimensionality
The number of data needed to approximate well the function grows up exponentially with
the dimension d

■ application to other problem than physics/biology like signal processing, translation
etc.

E. Franck 6/34

6/34

Models and garanties
■ We consider: y = f (x) with x = (x1,, xd) ∈ Rd

■ Models:

■ Linear model: d∑
i=1

θix
i

■ Polynomial model:

n∑
i=1

θiPi (x)

■ Kernel model:

N∑
i=1

θiK(x, xi)

with xi a data and K a symmetric kernel.

■ Kernel regression of the Runge
function

■ Garanties: For d =∥ x − y ∥22 the minimization problem is convex and admit a unique
solution if you have sufficient number of data.

■ For nonlinear models compared to the inputs more you have data and parameters
more you will accurate.

Curse of dimensionality
The number of data needed to approximate well the function grows up exponentially with
the dimension d

■ application to other problem than physics/biology like signal processing, translation
etc.

E. Franck 6/34

6/34

Numerical methods

Principe of numerical methods

□ Same objective than ML: construct a parametric model approaching T .
□ no data but a strong constrain on the function: the equation

■ Equation for temperature evolution: Lt,xu = ∂tT −∆T = f (x)
T (t = 0, x) = T0(x)
T (x) = g on ∂Ω

■ Numerical method: choose a parametric model, transform the equation/constrain on
the function on a equation/constrain on the parameters.

Important: convergence
For numerical methods, we want that ∥ fθ − f ∥h→ 0, when , n → ∞ with n the number
of parameters (call degrees of freedom).

■ For the three next slides, i consider only a spatial problem like −∆T = f (x)

Parametric models

□ In all the classical numerical method we choose: fθ =
∑n

i=1 θiϕi (x)
□ How construct ϕi ?

E. Franck 7/34

7/34

Mesh based methods

Polynomial Lagrange interpolation
We consider a domain [a, b]. There exists a polynomial P of degree k such that, for any
f ∈ C0([a, b]),

|f (x)− P(x)| ≤ |b − a|k max
x∈[a,b]

|f k+1(x)|.

■ On small domains (|b − a| ≪ 1) or for large k,
this polynomial gives a very good approximation
of any continuous function.

■ Very high degrees k can generate oscillations
(like in ML).

■ To obtain good approximation: we introduce a
mesh and a cell-wise polynomial approximation

■ Possible since contrary to ML, the domain of inputs is always well-known.

First step: choose a parametric function
We define a mesh by splitting the geometry in small sub-intervals [xk , xk+1], and we
propose the following candidate to approximate the PDE solution T

T|[xk ,xk+1]
(t, x) =

k∑
j=1

θjkϕj (x).

This is a piecewise polynomial representation.
E. Franck 8/34

8/34

Classical numerical methods, encoder and decoder

Parametric model for all numerical methods;

fθ =
n∑

i=1

θiϕi (x)

■ Classical mesh based methods:
□ Finite element: Cp continuity between the cells (depend of the finite element) so

ϕi (x) piecewise polynomial.
□ DG: discontinuity between the cell so ϕi (x) = pj (x)χx∈Ωi

.
□ DG Treffz: same as DG but non-polynomial.
□ Finite difference: punctual value so ϕi (x) = δxi (x) with xi a mesh node.

■ Classical mesh free methods:
□ Spectral: we use Hilbert basis so ϕi (x) = sin(2πkix) for example (same with

Hermite, Laguerre, Legendre polynomiales).
□ Radial basis: we use radial basis so for example ϕi = ϕ(| x − xi) with ϕ a Gaussian

or 1
1+σ2x2

.

E. Franck 9/34

9/34

How determinate the degree of freedom

General method
The aim is to transform the PDE on T into a equation on θ (DOF).

■ We note Vθ = Span {fθ, such that , θ ∈ V ∈ Rn}
■ First approach: Galerkin

□ Rewrite the problem:

−∆T (x) = f (x),⇐⇒ minT∈H

∫
Ω

(
| ∇T (x) |2 −f (x)T (x)

)
dx

□ Galerkin projection:

minTθ∈Vθ

∫
Ω

(
| ∇Tθ(x) |2 −f (x)Tθ(x)

)
dx

■ The problem is quadratic in θ. The parameters which put the gradient at zero satisfy∫
Ω
(−∆Tθ(x)− f)ϕi (x) = 0, ∀i ∈ {1, ..., n}

■ Since we can compute exactly the derivative and numerically the integral we
precompute everything (after in general a integration by part) to obtain

Aθ = b

■ Second approach: Least square Galerkin projection

minθ∈V

∫
Ω
| −∆T − f |2 dx

E. Franck 10/34

10/34

Time case

Space time methods
We use the parametric model:

fθ =
n∑

i=1

θiϕi (t, x)

■ The time equation have no equivalent minimization form so we use the Least square
Galerkin projection.

Space methods
We use the parametric model:

fθ =
n∑

i=1

θi (t)ϕi (x)

■ To obtain the parameters we must find a way to write a ODE on these parameters.
■ If we plug the parametric model in the equation we have

∂tTθ(t, x)−∆Tθ(t, x) = f (x),⇐⇒ (∇θTθ)
dθ(t)

dt
−∆Tθ(t, x) = f (x)

■ Not possible to invert (∇θTθ) = Φ = (ϕ1(x), ...ϕn(x))
t . So we solve

dθ(t)

dt
= minη

∫
Ω
| Φ · η −∆Tθ(t, x)− f (x) |2

■ The problem is quadratic we can compute the ODE on θ(t).

E. Franck 11/34

11/34

Garanties

Essential point
The space Vθ is a a vectorial space. So the projector is on subspace is unique (projection
on convexe subspace of Hilbert theorem). It allows to assure that the problem on
parameters admit also a unique solution.

Convergence
The previous property coupled the approximation theorem of polynomial or Hilbert basis
allows to assure that

∥ fθ − f ∥h→ 0, when , n → ∞

Curse of dimensionality
For mesh based approaches

∥ fθ − f ∥H≤ Chp

with h characteristic size of the cells and the number of cell N = O(1
hd

). For that we

need p polynomial by cell and direction so O(pd) parameters by cell. There is also similar
problem for mesh less methods.

E. Franck 12/34

12/34

Neural representation in ML and numerics

E. Franck 13/34

13/34

Deep ML, nonlinear model and manifold

Key point
All the parametric models introduced for ML or numerical methods are linear compared to
the parameters and gives finite dimension function vectorial space

Deep learning
The rupture associated to the deep learning is to use massively nonlinear compared to the
parameters which gives finite dimension function manifold

Projection on manifold
How project on manifold ? Not uniqueness ? The convex optimisation problem are
replaced by non-convex problem. So there is less guaranties on the results.

E. Franck 14/34

14/34

Nonlinear models
■ Nonlinear version of classical models: f is represented by the DoF αi , µi , ωi or Σi :

f (x ;α,µ, Σ) =
∑
i=1

αie
(x−µi)Σ

−1
i (x−µi), f (x ;α,ω) =

∑
i=1

αi sin(ωix)

■ Neural networks (NN).

Layer

A layer is a function Ll (xl) : Rdl → Rdl+1 given by

Ll (xl) = σ(Alxl + bl),

Al ∈ Rdl+1,dl , b ∈ Rdl+1 and σ() a nonlinear function applied component by component.

Neural network
A neural network is parametric function obtained by composition of layers:

fθ(x) = Ln ◦ ◦ L1(x)

with θ the trainable parameters composed of all the matrices Al ,l+1 and biases bl .

■ Go to nonlinear models: would allows to use less parameters and data.
■ Go to nonlinear models allows to use NN which are: accurate global model, low

frequency (better for generalization) and able to deal with large dimension.

E. Franck 15/34

15/34

NN vs Polynomial

■ We compare over-parametrized NN and polynomial regression on the Runge function.

■ Regression: 120 data and approximately 800 parameters in each model.

E. Franck 16/34

16/34

NN vs Polynomial

■ We compare over-parametrized NN and polynomial regression on the Runge function.

■ Regression: 120 data and approximately 800 parameters in each model.

E. Franck 16/34

16/34

NN vs Polynomial

■ We compare over-parametrized NN and polynomial regression on the Runge function.

■ Regression: 120 data and approximately 800 parameters in each model.

■ The polynomial model tends to oscillate in the over parameterized regime.
Problematic for overfitting.

E. Franck 16/34

16/34

NN vs Polynomial

■ We compare over-parametrized NN and polynomial regression on the Runge function.

■ Regression: 120 data and approximately 800 parameters in each model.

E. Franck 16/34

16/34

NN vs Polynomial
■ We compare over-parametrized NN and polynomial regression on the Runge function.
■ Regression: 120 data and approximately 800 parameters in each model.

■ The ANN generates very smooth/low frequency approximations.
■ It is related to the spectral bias. The low frequencies are learned before the high

frequencies.
■ Seems very helpful to use it for global and high dimensional representation.

E. Franck 16/34

16/34

Space-time approach: PINNs I

Neural methods
The PINNs and Neural Galerkin approaches use exactly the same strategy than classical
numerical methods but project on manifold associated to nonlinear parametric models
compared to the parameters

Idea of PINNs
■ For u in some function space H, we wish to solve the following PDE:

∂tu = F(u,∇u,∆u) = F (u).

■ Classical representation for space-time approach: u(t, x) =
∑N

i=1 θiϕi (x , t)

■ Deep representation: u(t, x) = unn(x , t; θ) with unn a NN with trainable parameters θ.

Which projection
■ Galerkin projection is just valid for elliptic equations with energetic form.

■ More general: Least square Galerkin. We minimize the least square residue of the
restricted to the manifold associated by our chosen neural architecture.

E. Franck 17/34

17/34

Space-time approach: PINNs II
■ We define the residual of the PDE:

R(t, x) = ∂tunn(t, x ; θ)−F(unn(t, x ; θ), ∂xunn(t, x ; θ), ∂xxunn(t, x ; θ))

■ To learn the parameters θ in unn(t, x ; θ), we minimize:

θ = argmin
θ

(
Jr (θ) + Jb(θ) + Ji (θ)

)
,

with

Jr (θ) =

∫ T

0

∫
Ω
|R(t, x)|2dxdt

and

Jb(θ) =

∫ T

0

∫
∂Ω

∥unn(t, x ; θ)− g(x)∥22dxdt, Ji (θ) =

∫
Ω
∥unn(0, x ; θ)− u0(x)∥22dx .

■ If these residuals are all equal to zero, then unn(t, x ; θ) is a solution of the PDE.

■ To complete the determination of the method, we need a way to compute the
integrals. In practice we use Monte Carlo.

■ Important point: the derivatives are computed exactly using automatic differentiation
tools and back propagation. Valid for any decoder proposed.

E. Franck 18/34

18/34

Space-time approach: PINNs II
■ We define the residual of the PDE:

R(t, x) = ∂tunn(t, x ; θ)−F(unn(t, x ; θ), ∂xunn(t, x ; θ), ∂xxunn(t, x ; θ))

■ To learn the parameters θ in unn(t, x ; θ), we minimize:

θ = argmin
θ

(
Jr (θ) + Jb(θ) + Ji (θ)

)
,

with

Jr (θ) =
N∑

n=1

N∑
i=1

|R(tn, xi)|2

with (tn, xi) sampled uniformly or through importance sampling, and

Jb(θ) =

Nb∑
n=1

Nb∑
i=1

|unn(tn, xi ;θ)− g(xi)|2, Ji (θ) =

Ni∑
i=1

|unn(0, xi ;θ)− u0(xi)|2.

■ If these residuals are all equal to zero, then unn(t, x ; θ) is a solution of the PDE.
■ To complete the determination of the method, we need a way to compute the

integrals. In practice we use Monte Carlo.

■ Important point: the derivatives are computed exactly using automatic differentiation
tools and back propagation. Valid for any decoder proposed.

E. Franck 18/34

18/34

PINNs for parametric PDEs
■ Advantages of PINNs: mesh-less approach, not too sensitive to the dimension.
■ Drawbacks of PINNs: they are often not competitive with classical methods.
■ Interesting possibility: use the strengths of PINNs to solve PDEs parameterized by

some µ.

■ The neural network becomes unn(t, x ,µ; θ).

New Optimization problem for PINNs

min
θ

Jr (θ) + ... , , with

Jr (θ) =

∫
Vµ

∫ T

0

∫
Ω

∥∥∂tunn − L
(
unn(t, x ,µ), ∂xunn(t, x ,µ), ∂xxunn(t, x ,µ)

)∥∥2
2
dxdt

with Vµ a subspace of the parameters µ.

■ Application to the Burgers equations with many viscosities [10−2, 10−4]:

■ Training for µ = 10−4: 2h. Training for the full viscosity subset: 2h.

E. Franck 19/34

19/34

Spatial approach: Neural Galerkin I
■ We solve the following PDE:

∂tu = F(u,∇u,∆u) = F (u).

■ Classical representation: u(t, x) =
∑N

i=1 θi (t)ϕi (x)
■ Deep representation: u(t, x) = unn(x ; θ(t)) with unn a neural network, with

parameters θ(t), taking x as input.
■ We want that:

F (unn(x ; θ(t))) = ∂tunn(x ;θ(t)) =
〈
∇θunn(x ;θ),

dθ(t)

dt

〉
■ How to find an equation for dθ(t)

dt
?

■ We solve the minimization problem:

dθ(t)

dt
= argmin

η
J(η) = argmin

η

∫
Ω
| ⟨∇θunn(x ; θ),η⟩ − F (unn(x ; θ(t)))|2dx .

■ The solution is given by

M(θ(t))
dθ(t)

dt
= F (x , θ(t))

with

M(θ(t)) =

∫
Ω
∇θunn(x ; θ)⊗∇θunn(x ; θ)dx , F (x , θ(t)) =

∫
Ω
∇θunn(x ; θ)F (unn(x ; θ))dx .

E. Franck 20/34

20/34

Spatial approach: Neural Galerkin II
■ How to estimate M(θ(t)) and F (x , θ(t))?
■ Firstly: we need to differentiate the network with respect to θ and to x (in the

function F). This can easily be done with automatic differentiation.
■ Secondly: How to compute the integrals? Monte Carlo approach.

■ So, we use:

M(θ(t)) ≈
N∑
i=1

∇θunn(xi ; θ)⊗∇θunn(xi ; θ)

and the same for F (x , θ(t)).

■ Summary: we obtain an ODE in time (as usual) and a mesh-less method in space.

■ Like in the case of PINNs, we can apply this framework to parametric PDEs and larger
dimensions.

■ We solve the following PDE:

∂tu = F(u,∇u,∆u,α) = F (u;µ).

■ Deep representation: u(t, x ,µ) = unn(x ,µ; θ(t))
■ The solution is given by

M(θ(t))
dθ(t)

dt
= F (x , θ(t),µ)

with

M(θ(t)) =

∫
Vµ

∫
Ω
∇θunn(x ,µ; θ)⊗∇θunn(x ,µ; θ)dxdµ.

E. Franck 21/34

21/34

Spatial approach: Neural Galerkin III

■ We solve the advection-diffusion equation ∂tρ+ a · ∇ρ = D∆ρ with a Gaussian
function as initial condition.

■ Case 1: with a neural network (2200 DOF)

■ 5 minutes on CPU, MSE error around 0.0045.

E. Franck 22/34

22/34

Spatial approach: Neural Galerkin III

■ We solve the advection-diffusion equation ∂tρ+ a · ∇ρ = D∆ρ with a Gaussian
function as initial condition.

■ Case 2: with a Gaussian mixture (one Gaussian):

■ 5 sec on CPU. MSE around 1.0−6. Decoder perfect to represent this test case.

E. Franck 22/34

22/34

Hybrid numerical methods

E. Franck 23/34

23/34

Hybrid predictor-corrector methods

Hybrid methods
In this context, hybrid methods combine classical numerical methods and numerical
methods based on Implicit Neural representation (IRM).

Objectives
Taking the best of both worlds: the accuracy of classical numerical methods, and the
mesh-free large-dimensional capabilities of IRM-based numerical methods.

General Idea
■ Offline process: train a Neural Network (PINNs, NGs, or NOs) to obtain a large

family of approximate solutions.

■ Online process: predict the solution associated to our test case using the NN.

■ Online process: correct the solution with a numerical method.

E. Franck 24/34

24/34

Predictor-Corrector: using PINNs in a FE method
■ We consider the following elliptic problem:{

Lu = −∂xxu(x) + v∂xu(x) + ru(x) = f , ∀x ∈ Ω

u(x) = g(x), ∀x ∈ ∂Ω

■ We assume that we have a continuous prior of the solution given by a parametric
PINN uθ(x)

■ We propose the following corrections of the finite element basis functions:

u(x) = uθ(x) + ph(x), u(x) = uθ(x)ph(x),

with ph(x) a perturbation discretized using Pk Lagrange finite element.

■ For the first approach (additive prior), we solve in practice:{
Lph(x) = f − Luθ(x), ∀x ∈ Ω

ph(x) = g − uθ(x), ∀x ∈ ∂Ω

■ For the second approach (multiplicative prior), we need uθ(x) ̸= 0, so we take M > 0
and we solve: {

L(uθ(x)ph(x)) = f , ∀x ∈ Ω

ph(x) =
g

uθ(x)
+ Cm, ∀x ∈ ∂Ω

E. Franck 25/34

25/34

Theory for hybrid EF
■ Approach one: we rewrite the Cea lemma for uh(x) = uθ(x) + ph(x). We obtain

∥u − uh∥ ≤
M

α
∥u − uθ − Ih(u − uθ)∥

with Ih the interpolator. Using the classical result of Pk Lagrange interpolator we
obtain

∥u − uh∥Hm ≤
M

α
Chk+1−m

(
|u − uθ|Hm

|u|Hm

)
︸ ︷︷ ︸

gain

|u|Hm

■ Approach two: uh(x) = uθ(x)ph(x). We use a modified interpolator:

Imod ,h(f) =
N∑
i=1

f (xi)

uθ(xi)
ϕi (x)uθ(x)

using Imod ,f (f) = Ih(
f
uθ

)uθ(x) , the Cea lemma and interpolation estimate we have:

∥u − uh∥Hm ≤
M

α
Chk+1−m

(
| u
uθ

|Hm∥uθ(x)∥L∞

|u|Hm

)
︸ ︷︷ ︸

gain

|u|Hm

Key point

The prior must give a good approximation of the mth derivative.

E. Franck 26/34

26/34

EF for elliptic problems

■ First test:
−∂xxu = α sin(2πx) + β sin(4πx) + γ sin(8πx)

We train with (a, b, c) ∈ [0, 1]3 and test with (a, b, c) ∈ [0, 1.2]3.

method: average gain variance gain
additive prior with PINNs 273 13000
Multiplicative prior M = 3 with PINNs 92 4000
Multiplicative prior M = 100 with PINNs 272 13000

additive prior with NN 15 18
Multiplicative prior M = 3 with NN 11 17.5
Multiplicative prior M = 100 with NN 15 18

■ The PINN is trained with the physical loss, the NN with only data, no physics.

■ The NN is able to better learn the solution itself, but the approximation of derivatives
is less accurate than with the PINN.

E. Franck 27/34

27/34

EF for elliptic problems
■ Second test:

v∂xu −
1

Pe
∂xxu = r

We train with r ∈ [1, 2], Pe ∈ [10, 100]. We test with (r ,Pe) = (1.2, 40) and
(r ,Pe) = (1.5, 90)

Case 1 Classical FE Additive prior Multiplicative prior
error order error order gain error order gain

10 1.07e−1 – 2.70e−3 – 40 2.29e−4 – 467
20 3.36e−2 1.97 8.00e−4 1.76 42 9.06e−5 1.93 371
40 9.09e−3 1.89 2.01e−4 2.00 45 2.63e−5 1.97 345
80 2.32e−3 1.97 5.01e−5 1.99 46 6.37e−6 1.99 365
160 5.82e−4 1.99 1.30e−6 1.97 45 1.77e−6 2.0 289

Case 2 Classic additive prior Multiplicative prior
error order error order gain error order gain

10 2.65e−1 – 1.51e−1 – 1.7 9.33e−4 – 284
20 1.06e−1 1.32 6.04e−2 1.33 1.7 3.84e−4 1.28 276
40 3.46e−2 1.62 1.96e−2 1.62 1.8 1.13e−4 1.76 305
80 9.50e−3 1.86 5.32e−3 1.87 1.8 3.26e−5 1.80 291
160 2.43e−3 1.86 2.43e−3 1.86 1.8 8.67e−6 1.91 280

E. Franck 27/34

27/34

Hyperbolic systems with source terms
■ In the team, most of us are interested in hyperbolic systems:

∂tU +∇ · F (U) = S(U)

■ It is important to have a good preservation of the steady state ∇ · F (U) = S(U).
■ Example: Lake at rest for shallow water:
■ Exactly Well-Balanced schemes: exact preservation of the steady state.

Approximately Well-Balanced schemes: preserve with a high-accuracy than the
scheme the steady state.

■ Building exact WB schemes is difficult for some equilibria, or for 2D flows.

Idea
Compute offline a family of equilibria with parametric PINNs (or NOs) and plug the
equilibrium in the DG basis to obtain a more accurate scheme around steady states.

E. Franck 28/34

28/34

Theory for hybrid DG
■ Theory for the scalar case.

■ The classical modal DG scheme uses the local representation:

u|Ωk
(x) =

q∑
l=0

αlϕl (x)
k , with [ϕk

1 , ...ϕ
k
q] = [1, (x − xk), ...(x − xk)

q]

■ If uθ(x) is an approximation of the equilibrium, we propose to take as basis:

V1 = [uθ(x), (x − xk), ...(x − xk)
q], or V2 = uθ(x)[1, (x − xk), ...(x − xk)

q]

Estimate on the projector for V2
Assume that the prior uθ satisfies

uθ(x ;µ)
2 > m2 > 0, ∀x ∈ Ω, ∀µ ∈ P.

and still consider the vector space V2. For any function u ∈ Hq+1(Ω),

∥u − Ph(u)∥L2(Ω) ≲

∣∣∣∣ uuθ
∣∣∣∣
Hq+1(Ω)

(∆xk)
q+1 ∥uθ∥L∞(Ω).

■ Adding a stability estimate, we can also prove the convergence. Important: The prior
must give a good approximation of the mth derivative.

E. Franck 29/34

29/34

Euler-Poisson system in spherical geometry
■ We consider the Euler-Poisson system in spherical geometry

∂tρ+ ∂rq = − 2
r
q,

∂tq + ∂r
(

q2

ρ
+ p
)
= − 2

r
q2

ρ
− ρ∂rϕ,

∂tE + ∂r
(

q
ρ
(E + p)

)
= − 2

r
q
ρ
(E + p)− q∂rϕ,

1
r2
∂rr (r2ϕ) = 4πGρ,

■ First application: we consider the barotropic pressure law p(ρ;κ, γ) = κργ such that
the steady solutions satisfy

d

dr

(
r2κγργ−2 dρ

dr

)
= 4πr2Gρ.

■ The PINN yields an approximation of ρθ(x ,κ, γ)
■ Second application: we consider the ideal gas pressure law p(ρ;κ, γ) = κρT (r), with

T (r) = e−αr , such that the steady solutions satisfy

d

dr

(
r2κ

T

ρ

dρ

dr

)
+

d

dr

(
r2κ

dT

dr

)
= 4πr2Gρ,

■ The PINN yields an approximation of ρθ(x ,κ,α)

■ To simulate a flow around a steady solution, we need a scheme that is very accurate
on the steady solution.

E. Franck 30/34

30/34

Results
■ Training takes about 10 minutes on an old GPU,with no data, only the PINN loss.
■ We take a quadrature of degree nQ = nG + 1 (sometimes, more accurate quadrature

formulas are needed).
■ Barotropic case:

■ ideal gas case:

■ 2D shallow water equations: equilibrium with u ̸= 0 + small perturbation. Plot the
deviation to equilibrium:

E. Franck 31/34

31/34

Conclusion

E. Franck 32/34

32/34

Conclusion

Short conclusion
Using nonlinear implicit representations, we proposed new numerical/reduced modeling
methods whose advantages/drawbacks are very different to those of classical approaches.
We will continue to investigate hybrid approaches.

Macaron
■ Our Inria team MACARON becomes specialize in the hybridation between ML and

numerical methods for PDEs.

■ We regularly have PhD, post-doc and even permanent positions open on these
subjects. If you are interested, contact us :)

E. Franck 33/34

33/34

Main references

■ PINNs:
□ Physics-informed neural networks: A deep learning framework for solving forward and inverse problems

involving nonlinear partial differential equations, M. Raissi, P. Perdikaris, G.E. Karniadakis
□ An Expert’s Guide to Training Physics-informed Neural Networks, S. Wang, S. Sankaran, H. Wang, P.

Perdikaris
□ Estimates on the generalization error of Physics Informed Neural Networks (PINNs) for approximating PDEs,

S. Mishra, R. Molinaro

■ Neural Galerkin:
□ Neural Galerkin Scheme with Active Learning for High-Dimensional Evolution Equations, J. Bruna, B.

Peherstorfer, E. Vanden-Eijnden
□ A Stable and Scalable Method for Solving Initial Value PDEs with Neural Networks, M. Finzi, A.

Potapczynski, M. Choptuik, A. Gordon Wilson

■ Neural Operator:
□ Fourier Neural Operator for Parametric Partial Differential Equations, Z.i Li, N. Kovachki, K. Azizzadenesheli,

B. Liu, K. Bhattacharya, A. Stuart, A. Anandkumar
□ Neural Operator: Learning Maps Between Function Spaces, N. Kovachki, Z. Li, B. Liu, K. Azizzadenesheli, K.

Bhattacharya, A. Stuart, A. Anandkumar
□ MOD-Net: A Machine Learning Approach via Model-Operator-Data Network for Solving PDE, L. Zhang, T.

Luo, Y. Zhang, Weinan E, Z. Xu, Z. Ma

■ Hybrid methods:
□ Enhanced Finite element by neural networks for elliptic problems, H. Barucq, E Franck, F. Faucher, N.

Victorion. En cours de rédaction
□ Approximately well-balanced Discontinuous Galerkin methods using bases enriched with Physics-Informed

Neural Networks, E. Franck, V. Michel-Dansac, L. Navoret. Arxiv preprint.

E. Franck 34/34

34/34

	Introduction
	"Classical" ML and numerical methods
	Neural representation in ML and numerics
	Hybrid numerical methods
	Conclusion

