
Enhanced DG schemes by neural networks

L. Bois1, E. Franck12, Victor Michel-Dansac12,
L. Navoret12, V. Vigon12

Scientific Computing seminar. University of Waterloo

1Inria Nancy Grand Est, France
2IRMA, Strasbourg university, France

E. Franck 1/42

1/42

Outline

Introduction

Numerical methods and PINNs

First enhanced DG schemes

Second enhanced DG schemes

Conclusion and futur works

E. Franck 2/42

2/42

Introduction

E. Franck 3/42

3/42

Machine learning and numerical method
■ Common objectif between ML and numerical methods:
■ We consider a unknown function

y = f (x), x ∈ V ⊂ Rd , y ∈ W ⊂ Rp

■ Objective: Find fh ∈ H an approximation of f with H a functional space.
■ Difficulty: we want construct a infinite dimensional space

Solution: parametric models
■ We consider a known function fθ(x) with θ the unknowns parameters
■ the problem becomes:

find θ, such that ∥ fθ − f ∥H≤ ϵ

■ ML approach: we construct θ by
constraining the approximation by the data

■ We assume that we have data
{(x1, f1), ... , (xN , fN)} such that:

fi = f (xi) + ϵi , ϵi ∼ N (0, 1)

■ The parameters θ are chosen such that fθ
well approximate f on the data which is
equivalent to solve:

argminθ

N∑
i=1

d(ui , uθ(xi))

■ Numerical method approaches: we
construct θ by constraining the
approximation by a physical equation

■ Objective: transform PDE constrains on
the function into a constrain on the
parameters

L(u(x)) = f (x) =⇒ A(θ) = b(θ)

with L a operator and A, b a linear
system.

■ Equation form /parametric model
change with the method.

E. Franck 4/42

4/42

Revolution of deep learning
■ Classical parametric model in ML : uθ(x) =

∑N
i=1⟨θ, Φ(x)⟩ with Φ a vector of simpel

functions (polynomial, kernel, affine function, etc).

Deep ML
One of the major change with neural network (NN): we use parametric models nonlinear
compared to the parameters θ.

Consequences
■ These models needs significantly less parameters for large dimensional problems.
■ The convex optimization associated to linear model becomes nonlinear/ non convex
■ We project the function on finite dimension manifold and not vectorial space. Few

garanties compared to the linear case.
■ Very efficient methods for automatic differentiation of large composition of functions

have been designed.

Aim
Our aim is to use this news tools to provide more efficients numerical methods.

■ We will show how design numerical method using NN (PINNs)
■ We will propose a DG method using the good ability of NN in large dimension.
■ We will propose a DG viscosity using the good property fo networks and autodiff tools.

E. Franck 5/42

5/42

Numerical methods and PINNs

E. Franck 6/42

6/42

Mesh based methods

Polynomial Lagrange interpolation
We consider a domain [a, b]. There exists a polynomial P of degree k such that, for any
f ∈ C0([a, b]),

|f (x)− P(x)| ≤ |b − a|k max
x∈[a,b]

|f k+1(x)|.

■ On small domains (|b − a| ≪ 1) or for large k,
this polynomial gives a very good approximation
of any continuous function.

■ Very high degrees k can generate oscillations
(like in ML).

■ To obtain good approximation: we introduce a
mesh and a cell-wise polynomial approximation

■ Possible since contrary to ML, the domain of inputs is always well-known.

First step: choose a parametric function
We define a mesh by splitting the geometry in small sub-intervals [xk , xk+1], and we
propose the following candidate to approximate the PDE solution T

T|[xk ,xk+1]
(t, x) =

k∑
j=1

θjkϕj (x).

This is a piecewise polynomial representation.
E. Franck 7/42

7/42

Classical numerical methods

Parametric model for all numerical methods;

fθ =
n∑

i=1

θiϕi (x)

■ Classical mesh based methods:
□ Finite element: Cp continuity between the cells (depend of the finite element) so

ϕi (x) piecewise polynomial.
□ DG: discontinuity between the cell so ϕi (x) = pj (x)χx∈Ωi

.
□ DG Treffz: same as DG but non-polynomial.
□ Finite difference: punctual value so ϕi (x) = δxi (x) with xi a mesh node.

■ Classical mesh free methods:
□ Spectral: we use Hilbert basis so ϕi (x) = sin(2πkix) for example (same with

Hermite, Laguerre, Legendre polynomiales).
□ Radial basis: we use radial basis so for example ϕi = ϕ(| x − xi) with ϕ a Gaussian

or 1
1+σ2x2

.

E. Franck 8/42

8/42

How determinate the degree of freedom

General method
The aim is to transform the PDE on T into a equation on θ (DOF).

■ We note Vθ = Span {fθ, such that , θ ∈ V ∈ Rn}
■ First approach: Galerkin

□ Rewrite the problem:

−∆T (x) = f (x),⇐⇒ minT∈H

∫
Ω

(
| ∇T (x) |2 −f (x)T (x)

)
dx

□ Galerkin projection:

minTθ∈Vθ

∫
Ω

(
| ∇Tθ(x) |2 −f (x)Tθ(x)

)
dx

■ The problem is quadratic in θ. The parameters which put the gradient at zero satisfy∫
Ω
(−∆Tθ(x)− f)ϕi (x) = 0, ∀i ∈ {1, ..., n}

■ Since we can compute exactly the derivative and numerically the integral we
precompute everything (after in general a integration by part) to obtain

Aθ = b

■ Second approach: Least square Galerkin projection

minθ∈V

∫
Ω
| −∆T − f |2 dx

E. Franck 9/42

9/42

Garanties

Essential point
The space Vθ is a a vectorial space. So the projector is on subspace is unique (projection
on convexe subspace of Hilbert theorem). It allows to assure that the problem on
parameters admit also a unique solution.

Convergence
The previous property coupled the approximation theorem of polynomial or Hilbert basis
allows to assure that

∥ fθ − f ∥h→ 0, when , n → ∞

Curse of dimensionality
For mesh based approaches

∥ fθ − f ∥H≤ Chp

with h characteristic size of the cells and the number of cell N = O(1
hd

). For that we

need p polynomial by cell and direction so O(pd) parameters by cell. There is also similar
problem for mesh less methods.

E. Franck 10/42

10/42

Nonlinear models
■ Nonlinear version of classical models: f is represented by the DoF αi , µi , ωi or Σi :

f (x ;α,µ, Σ) =
∑
i=1

αie
(x−µi)Σ

−1
i (x−µi), f (x ;α,ω) =

∑
i=1

αi sin(ωix)

■ Neural networks (NN).

Layer

A layer is a function Ll (xl) : Rdl → Rdl+1 given by

Ll (xl) = σ(Alxl + bl),

Al ∈ Rdl+1,dl , b ∈ Rdl+1 and σ() a nonlinear function applied component by component.

Neural network
A neural network is parametric function obtained by composition of layers:

fθ(x) = Ln ◦ ◦ L1(x)

with θ the trainable parameters composed of all the matrices Al ,l+1 and biases bl .

■ Go to nonlinear models: would allows to use less parameters and data.
■ Go to nonlinear models allows to use NN which are: accurate global model, low

frequency (better for generalization) and able to deal with large dimension.

E. Franck 11/42

11/42

Space-time approach: PINNs I

Neural methods
The PINNs and Neural Galerkin approaches use exactly the same strategy than classical
numerical methods but project on manifold associated to nonlinear parametric models
compared to the parameters

Idea of PINNs
■ For u in some function space H, we wish to solve the following PDE:

∂tu = F(u,∇u,∆u) = F (u).

■ Classical representation for space-time approach: u(t, x) =
∑N

i=1 θiϕi (x , t)

■ Deep representation: u(t, x) = unn(x , t; θ) with unn a NN with trainable parameters θ.

Which projection
■ Galerkin projection is just valid for elliptic equations with energetic form.

■ More general: Least square Galerkin. We minimize the least square residue of the
restricted to the manifold associated by our chosen neural architecture.

E. Franck 12/42

12/42

Space-time approach: PINNs II
■ We define the residual of the PDE:

R(t, x) = ∂tunn(t, x ; θ)−F(unn(t, x ; θ), ∂xunn(t, x ; θ), ∂xxunn(t, x ; θ))

■ To learn the parameters θ in unn(t, x ; θ), we minimize:

θ = argmin
θ

(
Jr (θ) + Jb(θ) + Ji (θ)

)
,

with

Jr (θ) =

∫ T

0

∫
Ω
|R(t, x)|2dxdt

and

Jb(θ) =

∫ T

0

∫
∂Ω

∥unn(t, x ; θ)− g(x)∥22dxdt, Ji (θ) =

∫
Ω
∥unn(0, x ; θ)− u0(x)∥22dx .

■ If these residuals are all equal to zero, then unn(t, x ; θ) is a solution of the PDE.

■ To complete the determination of the method, we need a way to compute the
integrals. In practice we use Monte Carlo.

■ Important point: the derivatives are computed exactly using automatic differentiation
tools and back propagation. Valid for any decoder proposed.

E. Franck 13/42

13/42

Space-time approach: PINNs II
■ We define the residual of the PDE:

R(t, x) = ∂tunn(t, x ; θ)−F(unn(t, x ; θ), ∂xunn(t, x ; θ), ∂xxunn(t, x ; θ))

■ To learn the parameters θ in unn(t, x ; θ), we minimize:

θ = argmin
θ

(
Jr (θ) + Jb(θ) + Ji (θ)

)
,

with

Jr (θ) =
N∑

n=1

N∑
i=1

|R(tn, xi)|2

with (tn, xi) sampled uniformly or through importance sampling, and

Jb(θ) =

Nb∑
n=1

Nb∑
i=1

|unn(tn, xi ;θ)− g(xi)|2, Ji (θ) =

Ni∑
i=1

|unn(0, xi ;θ)− u0(xi)|2.

■ If these residuals are all equal to zero, then unn(t, x ; θ) is a solution of the PDE.
■ To complete the determination of the method, we need a way to compute the

integrals. In practice we use Monte Carlo.

■ Important point: the derivatives are computed exactly using automatic differentiation
tools and back propagation. Valid for any decoder proposed.

E. Franck 13/42

13/42

PINNs for parametric PDEs
■ Advantages of PINNs: mesh-less approach, not too sensitive to the dimension.
■ Drawbacks of PINNs: they are often not competitive with classical methods.
■ Interesting possibility: use the strengths of PINNs to solve PDEs parameterized by

some µ.

■ The neural network becomes unn(t, x ,µ; θ).

New Optimization problem for PINNs

min
θ

Jr (θ) + ... , , with

Jr (θ) =

∫
Vµ

∫ T

0

∫
Ω

∥∥∂tunn − L
(
unn(t, x ,µ), ∂xunn(t, x ,µ), ∂xxunn(t, x ,µ)

)∥∥2
2
dxdt

with Vµ a subspace of the parameters µ.

■ Application to the Burgers equations with many viscosities [10−2, 10−4]:

■ Training for µ = 10−4: 2h. Training for the full viscosity subset: 2h.

E. Franck 14/42

14/42

First enhanced DG scheme

E. Franck 15/42

15/42

Nonlinar conservation laws and WB schemes
■ We consider the following type of models (like everybody here):

∂tU+ ∂xF(U) = S(U)

■ We are interested by the simulation of flows such as:

∂xF(U) = S(U) + εP(t, x)

Numerical difficulties
We consider a scheme of order q. For a equilibrium ∂xF(U) = S(U) we have

∂xF(Uh) = S(Uh) + C∆xqQh(t, x).

if ε < C∆xq our scheme will not correctly capture perturbed flows.

WB and A-WB schemes
For a equilibrium ∂xF(U) = S(U), a Well-Balanced scheme is such that ∂xF(Uh) = S(Uh),
and an Approximately Well-Balanced scheme is such that

∂xF(Uh) = S(Uh) + C2∆xq2Qh(t, x)

with q2 > q or C2 ≪ C .

■ WB et A-WB make it possible to capture these perturbed flows.

E. Franck 16/42

16/42

DG schemes

■ We recall quickly the Discontinuous Galerkin method.

∂tU+ ∂xF(U) = S(U)∫
Ωj

∂tUϕdx +

∫
Ωj

∂xF(U)ϕdx =

∫
Ωj

S(U)ϕdx

■ In each cell we consider a discrete vectorial polynomial space:
Vh = Span(ϕ1(x), ...ϕq(x)) and we use

U|Ωj
(t, x) =

q∑
i=1

αi (t)ϕi (x) ∈ Vh

and
ϕ = ϕ1,ϕ = ϕq

■ We obtain a matrix-vector system of size q × q

M∂tα(t) +K(α(t)) = S(α(t))

with S,K ∈ Rq and M ∈ Rq×q

E. Franck 17/42

17/42

Main idea

Idea
■ We consider a family of equilibria Ueq(x ;µ) indexed by some parameters µ.
■ We assuming that we are able to produce an approximation of this equilibrium family,

called the prior: Uθ(x ;µ)

■ We propose to Introduce the prior on the equilibrium into the DG basis, to obtain
more efficient approximation.

Basis with multiplicative prior

V 1
h = Span

(
Uθ(x ;µ),Uθ(x ;µ)(x − xj),,Uθ(x ;µ)

(x − xj)
k

k!

)

Basis with additive prior
■ Solution 1:

V 2
h = Span

(
Uθ(x ;µ), 1,,

(x − xj)
k−1

(k − 1)!

)

■ Does DG converge with non-polynomial bases?

E. Franck 18/42

18/42

Convergence within the Yuan-Shu framework I

YuanYuanShu06 L. Yuan and C.-W. Shu: Discontinuous Galerkin method based on non-polynomial
approximation spaces, JCP 2006.

Main result I of [YuanShu06]

We consider a basis (v1, ..vK) of the space Vh. If there are constant aik and bi
independant of the size of the cell ∆xj , and if we have

|vi (x)−
K∑

k=1

aik (x − xi)
k | ≤ bi (∆xj)

K+1 (1)

then for any function u ∈ HK+1(Ωj), there exists vh ∈ Vh and

|vh − uh| ≤ C |u|HK+1(Ωj)
(∆xj)

K+ 1
2

Main result II of [YuanShu06]

With the first result, we can prove the convergence (with additional steps) of the DG
scheme using the Vh basis.

E. Franck 19/42

19/42

Convergence with the Yuan-Shu framework II

Result in the scalar case
We assume that uθ(x ;µ) ∈ Cp(Ω) with p ≥ K + 1. Then, the previously proposed bases
satisfy the assumption of [YuanShu06], and the DG scheme converges.

■ Example of proof for V 1
h .

■ Since the neural network is CK+1(R), we can write a Taylor series, to obtain:

uθ(x) = u(xj) + (x − xj)u
′
θ + ... +

u(K)(xj)

K !
(x − xj)

K +
u(K+1)(c)

(K + 1)!

with c ∈ [xj , x]. We then get:


uθ(x)

uθ(x)(x − xj)
...

uθ(x)(x − xj)
K

 =


uθ(xj) u

′
θ(xj) ...

u
(K)
θ

(xj)

K !

0 uθ(xj) ...
u
(K−1)
θ

(xj)

(K−1)!

...
0 0 ... uθ(xj)


︸ ︷︷ ︸

A


1

(x − xj)
...

(x − xj)
K

+


uK+1
θ

(c)

(K+1)!
uKθ (c)

(K)!

...
1


︸ ︷︷ ︸

b

■ It easy to see that the matrix A, its inverse A−1, and the vector b are independent
from ∆xj . Therefore, the assumption is verified.

E. Franck 20/42

20/42

Specific estimate

■ Problem: the previous approach does not give the expected gain associated with these
bases.

First lemma
We consider a basis (v1, ..vK) of the space V 1

h and assume that uθ(x ;µ) ∈ Cp(Ω)

uθ(x ;µ)2 > α0, ∀x ∈ Ω. For any function u ∈ HK+1(Ωj), the L2 projector on V 1
h ,

Ph(u) ∈ V 1
h , satisfies

|u − Ph(u)| ≤ C

∣∣∣∣ u(x)

uθ(x ,µ)

∣∣∣∣
HK+1(Ωj)

(∆xj)
K+ 1

2 |uθ(x ,µ)|

Second lemma
Under the same assumptions than the previous lemma, for the basis V 1

h , we obtain that

for any function u ∈ HK+1(Ω)

|u − Ph(u)|L2(Ω) ≤ C

∣∣∣∣ u(x)

uθ(x ,µ)

∣∣∣∣
H
K+ 1

2 (Ω)

(∆x)K+1 ∥ uθ(x ,µ) ∥∞

■ For the additive case, we expect an error in

∣∣∣∣u(x)− uθ(x ,µ)

∣∣∣∣
H
K+ 1

2 (Ω)

E. Franck 21/42

21/42

Linear advection equation
In all the numerical experiments, we use the V 3

h basis. Results are similar with the other
bases.

We first consider the first-order advection equation{
∂tu + ∂xu = s(u;µ),

u(t = 0, x) = u0(x),

with the following parameterized source term and initial condition

■ s(u;α,β) = αu + βu2;

■ u0(x) = ε+ ueq(x ;α,β, υ), with the steady solution ueq depending on α, β and an
additional parameter υ.

Hence, we have three parameters: 0.5 ≤ α ≤ 1, 0.5 ≤ β ≤ 1, 0.1 ≤ υ ≤ 0.2

We propose three experiments: approximate

■ a steady solution,

■ a perturbed steady solution,

■ an unsteady solution.

Training the PINN takes about 10 minutes on an old GPU, with no data, only the PINN
loss.

E. Franck 22/42

22/42

Linear advection equation: steady solution

In this case, ε = 0 in the initial condition, so we approximate the steady solution itself.

We compute the error between the exact and approximate solutions, for polynomial bases
with nG ∈ {1, 2, 3, 4} elements, and with or without PINN prior.

We take a quadrature of degree nQ = max(3, nG + 1).

pts errorϕ order errorϕ̄ order gain

10 7.42e-02 — 3.89e-04 — 190.66
20 2.64e-02 1.49 1.45e-04 1.42 181.76
40 9.29e-03 1.51 5.23e-05 1.47 177.55
80 3.27e-03 1.50 1.89e-05 1.46 172.63
160 1.18e-03 1.47 6.95e-06 1.45 170.09

(a) errors with a one-element basis, nG = 1

E. Franck 23/42

23/42

Linear advection equation: steady solution

In this case, ε = 0 in the initial condition, so we approximate the steady solution itself.

We compute the error between the exact and approximate solutions, for polynomial bases
with nG ∈ {1, 2, 3, 4} elements, and with or without PINN prior.

We take a quadrature of degree nQ = max(3, nG + 1).

pts errorϕ order errorϕ̄ order gain

10 1.80e-03 — 1.09e-05 — 164.69
20 3.20e-04 2.50 1.93e-06 2.51 165.75
40 5.51e-05 2.54 3.33e-07 2.53 165.27
80 9.41e-06 2.55 5.64e-08 2.56 166.77
160 1.80e-06 2.38 1.08e-08 2.38 166.83

(b) errors with a two-element basis, nG = 2

E. Franck 23/42

23/42

Linear advection equation: steady solution

In this case, ε = 0 in the initial condition, so we approximate the steady solution itself.

We compute the error between the exact and approximate solutions, for polynomial bases
with nG ∈ {1, 2, 3, 4} elements, and with or without PINN prior.

We take a quadrature of degree nQ = max(3, nG + 1).

pts errorϕ order errorϕ̄ order gain

10 2.23e-05 — 9.34e-07 — 23.94
20 2.02e-06 3.46 8.80e-08 3.41 23.01
40 1.75e-07 3.53 7.41e-09 3.57 23.60
80 1.45e-08 3.59 6.29e-10 3.56 23.14
160 1.46e-09 3.32 6.35e-11 3.31 22.99

(c) errors with a three-element basis, nG = 3

E. Franck 23/42

23/42

Linear advection equation: steady solution

In this case, ε = 0 in the initial condition, so we approximate the steady solution itself.

We compute the error between the exact and approximate solutions, for polynomial bases
with nG ∈ {1, 2, 3, 4} elements, and with or without PINN prior.

We take a quadrature of degree nQ = max(3, nG + 1).

pts errorϕ order errorϕ̄ order gain

10 2.81e-07 — 6.49e-08 — 4.33
20 1.26e-08 4.48 3.02e-09 4.42 4.17
40 5.72e-10 4.46 1.32e-10 4.52 4.34
80 2.31e-11 4.63 5.40e-12 4.61 4.29
160 1.21e-12 4.25 2.77e-13 4.29 4.40

(d) errors with a four-element basis, nG = 4

E. Franck 23/42

23/42

Linear advection equation: steady solution

In this case, ε = 0 in the initial condition, so we approximate the steady solution itself.

We compute the error between the exact and approximate solutions, for polynomial bases
with nG ∈ {1, 2, 3, 4} elements, and with or without PINN prior.

We take a quadrature of degree nQ = max(3, nG + 1).

The theoretical results show that the gain depend of u − uθ in semi norm Hm. Since we
train the prior with PINNs the second derivative is well reconstructed but less the

high-order derivative. It explains the results.

E. Franck 23/42

23/42

Linear advection equation: perturbed steady solution

We now study the effect of nonzero values of ε in the initial condition: we take
ε ∈ {10−4, 10−2, 10−1, 1} and 20 discretization cells.

We represent the error, over time, between the approximate and exact solutions.

(a) errors with a one-element basis, nG = 1

E. Franck 24/42

24/42

Linear advection equation: perturbed steady solution

We now study the effect of nonzero values of ε in the initial condition: we take
ε ∈ {10−4, 10−2, 10−1, 1} and 20 discretization cells.

We represent the error, over time, between the approximate and exact solutions.

(b) errors with a two-element basis, nG = 2

E. Franck 24/42

24/42

Linear advection equation: perturbed steady solution

We now study the effect of nonzero values of ε in the initial condition: we take
ε ∈ {10−4, 10−2, 10−1, 1} and 20 discretization cells.

We represent the error, over time, between the approximate and exact solutions.

(c) errors with a three-element basis, nG = 3

E. Franck 24/42

24/42

Linear advection equation: unsteady solution

Lastly, we perform the approximation of an unsteady solution with the two bases (with
and without prior), to show that using the enhanced basis does not decrease
approximation performance on unsteady solutions. The source term is zero in this case.

In this case, we take nG = 3 and 20 discretization cells.

(a) without prior; error is 8.874× 10−3

E. Franck 25/42

25/42

Linear advection equation: unsteady solution

Lastly, we perform the approximation of an unsteady solution with the two bases (with
and without prior), to show that using the enhanced basis does not decrease
approximation performance on unsteady solutions. The source term is zero in this case.

In this case, we take nG = 3 and 20 discretization cells.

(b) with prior; error is 8.874× 10−3, the same as without prior

E. Franck 25/42

25/42

Euler-Poisson system in spherical geometry

We consider the Euler-Poisson system in spherical geometry

∂tρ+ ∂rq = −
2

r
q,

∂tq + ∂r

(
q2

ρ
+ p

)
= −

2

r

q2

ρ
− ρ∂rϕ,

∂tE + ∂r

(
q

ρ
(E + p)

)
= −

2

r

q

ρ
(E + p)− q∂rϕ,

1

r2
∂rr (r

2ϕ) = 4πGρ,

The steady solutions at rest are given by

q = 0; ∂rp + ρ∂rϕ = 0; ∂rr (r
2ϕ) = 4πr2Gρ.

We consider two cases:

■ a polytropic pressure law p(ρ;κ, γ) = κργ such that the steady solutions satisfy

d

dr

(
r2κγργ−2 dρ

dr

)
= 4πr2Gρ,

E. Franck 26/42

26/42

Euler-Poisson in spherical geometry: steady solution

Training takes about 10 minutes on an old GPU, with no data, only the PINN loss. This
time, we have two parameters, κ and γ.

We take a quadrature of degree nQ = nG + 1.

Results for the polytropic pressure law

pts errorhϕ order error
q
ϕ

order errorEϕ order errorh
ϕ̄

order gain error
q

ϕ̄
order gain errorE

ϕ̄
order gain

10 1.90e-01 — 1.84e-02 — 4.88e-01 — 5.84e-04 — 326.34 6.32e-03 — 2.92 1.46e-03 — 333.51
20 6.78e-02 1.49 7.60e-03 1.28 1.71e-01 1.51 2.73e-04 1.10 248.20 1.67e-03 1.92 4.55 6.84e-04 1.10 250.74
40 2.41e-02 1.49 2.93e-03 1.37 6.07e-02 1.50 1.01e-04 1.43 237.53 3.75e-04 2.15 7.80 2.54e-04 1.43 238.71
80 8.55e-03 1.50 1.16e-03 1.34 2.15e-02 1.50 3.64e-05 1.48 234.68 8.15e-05 2.20 14.23 9.12e-05 1.48 236.10
160 3.03e-03 1.50 4.64e-04 1.32 7.58e-03 1.51 1.17e-05 1.63 257.14 1.60e-05 2.35 28.97 2.94e-05 1.63 257.38

(a) errors with a one-element basis, nG = 1

E. Franck 27/42

27/42

Euler-Poisson in spherical geometry: steady solution

Training takes about 10 minutes on an old GPU, with no data, only the PINN loss. This
time, we have two parameters, κ and γ.

We take a quadrature of degree nQ = nG + 1.

Results for the polytropic pressure law

pts errorhϕ order error
q
ϕ

order errorEϕ order errorh
ϕ̄

order gain error
q

ϕ̄
order gain errorE

ϕ̄
order gain

10 3.72e-03 — 5.34e-03 — 6.49e-03 — 3.74e-05 — 99.38 4.70e-05 — 113.63 9.19e-05 — 70.67
20 6.59e-04 2.50 1.21e-03 2.14 1.21e-03 2.42 7.00e-06 2.42 94.19 1.28e-05 1.87 94.14 1.68e-05 2.45 72.07
40 1.17e-04 2.49 2.27e-04 2.41 2.21e-04 2.45 1.27e-06 2.45 91.93 2.56e-06 2.33 88.59 3.07e-06 2.45 71.84
80 2.06e-05 2.51 4.05e-05 2.49 3.86e-05 2.52 2.24e-07 2.51 92.05 4.70e-07 2.45 86.03 5.45e-07 2.50 70.86
160 3.64e-06 2.51 7.15e-06 2.50 6.56e-06 2.56 3.90e-08 2.52 93.17 8.27e-08 2.51 86.41 9.50e-08 2.52 69.08

(b) errors with a two-element basis, nG = 2

E. Franck 27/42

27/42

Euler-Poisson in spherical geometry: steady solution

Training takes about 10 minutes on an old GPU, with no data, only the PINN loss. This
time, we have two parameters, κ and γ.

We take a quadrature of degree nQ = nG + 1.

Results for the polytropic pressure law

pts errorhϕ order error
q
ϕ

order errorEϕ order errorh
ϕ̄

order gain error
q

ϕ̄
order gain errorE

ϕ̄
order gain

10 7.92e-06 — 5.39e-06 — 3.25e-04 — 3.68e-06 — 2.15 3.16e-06 — 1.71 8.16e-06 — 39.81
20 6.96e-07 3.51 9.10e-07 2.57 3.39e-05 3.26 3.60e-07 3.36 1.93 6.02e-07 2.39 1.51 7.41e-07 3.46 45.79
40 6.03e-08 3.53 9.46e-08 3.27 3.21e-06 3.40 3.26e-08 3.47 1.85 5.64e-08 3.42 1.68 7.74e-08 3.26 41.47
80 5.31e-09 3.51 7.97e-09 3.57 2.84e-07 3.50 2.98e-09 3.45 1.78 5.07e-09 3.47 1.57 7.09e-09 3.45 40.15
160 4.81e-10 3.46 7.26e-10 3.46 2.51e-08 3.50 2.74e-10 3.45 1.76 4.61e-10 3.46 1.57 6.46e-10 3.46 39.00

(c) errors with a three-element basis, nG = 3

E. Franck 27/42

27/42

Euler-Poisson in spherical geometry: steady solution
Training takes about 10 minutes on an old GPU, with no data, only the PINN loss. This
time, we have two parameters, κ and γ.

We take a quadrature of degree nQ = nG + 1.

Results for the polytropic pressure law

Statistics: gain with respect to the parameter space (from top to bottom:
nG = 1, nG = 2, nG = 3)

min. gain avg. gain max. gain
ρ 22.21 412.57 6080.00
q 40.90 411.13 5384.43
E 22.25 411.40 6014.11

min. gain avg. gain max. gain
ρ 6.57 154.29 1249.70
q 7.47 180.19 1317.09
E 6.14 110.27 627.65

min. gain avg. gain max. gain
ρ 0.17 12.80 102.00
q 0.20 14.12 109.50
E 3.69 48.66 433.81

E. Franck 27/42

27/42

2D shallow water system

We consider the 2D shallow water equations
∂th +∇ · q = 0

∂tq +∇ ·
(
q ⊗ q

h
+

1

2
gh2
)

= −gh∇Z(x , y ;α, r0)

We define the following compactly supported bump function:

Ω(x , y ;α, r0) =


α exp

 −1(
1−

r2

r20

)3

 if r < r0,

0 otherwise,

and we take Z(x , y ;α, r0) = Ω(x , y ;α, r0).

The steady solution is a vortex, whose amplitude and radius depend on α, r0 and an
additional parameter Γ: this time, we have three parameters, in addition to x and y .

E. Franck 28/42

28/42

2D shallow water system: steady solution

Training takes about 20 minutes on an old GPU, with the PINN loss supplemented with
data.

We need a high-quadrature, of degree nQ = 14, because of the large derivatives of the
compactly supported smooth bump function.

pts errorhϕ order error
qx
ϕ

order error
qy
ϕ

order errorh
ϕ̄

order gain error
qx
ϕ̄

order gain error
qy

ϕ̄
order gain

20 1.91e-01 — 1.13e+00 — 1.13e+00 — 2.31e-03 — 82.79 1.02e-03 — 1116.93 1.01e-03 — 1119.33
40 4.72e-02 2.02 2.76e-01 2.04 2.76e-01 2.04 5.85e-04 1.98 80.64 2.30e-04 2.15 1199.70 2.22e-04 2.19 1242.66
80 1.16e-02 2.02 6.71e-02 2.04 6.71e-02 2.04 1.46e-04 2.00 79.77 5.72e-05 2.01 1173.39 5.52e-05 2.01 1216.72
160 2.90e-03 2.00 1.68e-02 1.99 1.68e-02 1.99 3.66e-05 2.00 79.45 1.43e-05 2.00 1178.29 1.38e-05 2.00 1222.59

(a) errors with a one-element basis, nG = 1

E. Franck 29/42

29/42

2D shallow water system: steady solution

Training takes about 20 minutes on an old GPU, with the PINN loss supplemented with
data.

We need a high-quadrature, of degree nQ = 14, because of the large derivatives of the
compactly supported smooth bump function.

pts errorhϕ order error
qx
ϕ

order error
qy
ϕ

order errorh
ϕ̄

order gain error
qx
ϕ̄

order gain error
qy

ϕ̄
order gain

20 2.32e-02 — 2.10e-01 — 2.10e-01 — 2.59e-04 — 89.71 5.49e-04 — 382.67 5.73e-04 — 367.32
40 3.60e-03 2.69 2.86e-02 2.88 2.86e-02 2.88 3.15e-05 3.04 114.33 4.24e-05 3.70 675.67 4.30e-05 3.73 665.36
80 5.28e-04 2.77 3.56e-03 3.01 3.57e-03 3.01 3.95e-06 2.99 133.61 6.07e-06 2.80 587.71 6.16e-06 2.80 578.89
160 7.02e-05 2.91 4.63e-04 2.94 4.63e-04 2.94 4.96e-07 2.99 141.49 7.90e-07 2.94 586.16 8.02e-07 2.94 577.49

(b) errors with a two-element basis, nG = 2

E. Franck 29/42

29/42

2D shallow water system: steady solution

Training takes about 20 minutes on an old GPU, with the PINN loss supplemented with
data.

We need a high-quadrature, of degree nQ = 14, because of the large derivatives of the
compactly supported smooth bump function.

pts errorhϕ order error
qx
ϕ

order error
qy
ϕ

order errorh
ϕ̄

order gain error
qx
ϕ̄

order gain error
qy

ϕ̄
order gain

20 5.17e-03 — 6.05e-02 — 6.05e-02 — 3.05e-04 — 16.97 1.63e-03 — 37.11 1.60e-03 — 37.72
40 4.32e-04 3.58 4.35e-03 3.80 4.34e-03 3.80 2.07e-06 7.20 208.24 4.35e-06 8.55 999.02 4.47e-06 8.49 969.66
80 2.87e-05 3.91 2.73e-04 3.99 2.73e-04 3.99 1.30e-07 3.99 220.41 2.84e-07 3.94 961.63 2.89e-07 3.95 942.16
160 1.72e-06 4.06 1.81e-05 3.91 1.81e-05 3.91 8.17e-09 3.99 210.88 1.59e-08 4.15 1136.57 1.62e-08 4.16 1117.87

(c) errors with a three-element basis, nG = 3

E. Franck 29/42

29/42

Second enhanced DG schemes

E. Franck 30/42

30/42

General problem

■ We want to solve general hyperbolic PDEs:

∂tU+ ∂xF(U) = 0

■ High order method (MUSCL, HO finite volumes or DG) generate oscillations around
areas with strong gradients or shock waves: Gibbs phenomenon.

■ Example on the advection equation:

■ Solutions: slope limiting, artificial viscosity, filtering, etc.

Goal
Design slope limiting for MUSCL or artificial viscosity for DG using neural networks.

E. Franck 31/42

31/42

Artificial viscosity problem for DG
■ We have a DG scheme, written under the form

∂rk
t Uh + ∂DG

x F(Uh) = 0.

■ Artificial viscosity method: add a diffusion operator, which acts on the oscillations.

■ Modified scheme:

∂rk
t Uh + ∂DG

x F(Uh) = ∂DG
x (D(Uh)∂

DG
x Uh).

■ How to construct D?
■ Derivative-based approach:

D(Uh) = λmaxh|∂DG
x Uh)|

■ MDH approach: we reconstruct the modes within the cells, and apply viscosity to
decrease the highest modes.

■ Other approaches: MDA, entropy-based, etc.

■ How to use neural networks? Approach from J. Hesthaven: compute the best viscosity
on many test cases, and learn this viscosity with a NN.

■ The NN interpolates between known viscosities.
□ There is no new viscosity model,
□ and we cannot use this method to tune a scheme where we do not have a prior

viscosity model.

E. Franck 32/42

32/42

Differentiable physics approach I

Tool
We propose to use differentiable physics (control optimal approach) to design new types
of viscosity model.

■ Formalism of optimal control and RL.

■ We define a NN Dθ(Uh(t)) with Uh(t) the discrete solution.

■ We define a value function:

VT
θ (U0) =

∫ T

0
C(Uh(t))dt,

with C a cost function and U0 = Uh(0) an initial condition.

Goal
Our objective to find a solution of the minimization problem:

min
θ

∫
U0

Vθ(U0)dP(U0)dU0 (2)

with P(U0) a probability law of initial data on U0.

E. Franck 33/42

33/42

Differentiable physics approach II
■ After Monte-Carlo discretization, we obtain the minimization problem:

min
θ

J(θ) = min
θ

ndata∑
i=1

VT
θ (Ui ,0).

■ We provide an approximation in time of the value function:

VT
θ (U0) = ∆t

T∑
t=1

C(Ut
h)

■ The transition between two time steps is given by Un+1
h = Sh(U

n
h,Dθ(U

n
h)) with our

scheme. As a consequence, we have:

VT
θ (U0) = C(U0)+C(Sh(U0,Dθ(U0)))+C(Sh(Sh(U0,Dθ(U0)),Dθ(Sh(U0,Dθ(U0)))))+... ,

■ As previously mentioned in the paradigm of differential physics, we can compute by
automatic differentiation:

∇θV
T
θ (U0)

■ We solve the minimization problem on J(θ) using a gradient method, with

∇θJ(θ) =
m∑
i=1

∇θV
T
θ (Ui ,0)

E. Franck 34/42

34/42

Differentiable physics approach III
■ To complete the algorithm, the NN and loss function still have to be defined.

Neural network
A ResNet convolution neural network (without coarsening operator) with q channels
(polynomial order q); once trained, it can be used on arbitrary uniform grids, by sliding
the convolution window.

Loss function
The cost function C() is composed of three parts:

□ L2 error compared to a MUSCL solution on a fine grid:

Cerror(U
n
h) = hFV

n∑
i=1

∥ΠFV (U
n
h)i − Ui ,ref ∥22 ,

□ L1 error on the Laplacian compared to the Laplacian of the reference solution

Cosc(U
n
h) = hfv

n∑
i=1

∥∥∥D fv
xx (Πfv (U

n
h))i − D fv

xxUj ,ref

∥∥∥
1
.

□ L2 norm of Dθ:
Cvis(U

n
h) = ∥Dθ(U

n
h)∥

2
2 .

E. Franck 35/42

35/42

Results I
■ We make a training with the loss ”oscillation” and ”viscosity”.

■ How the NN learn:

E. Franck 36/42

36/42

Results II

■ We compare the training for different ratio loss.

■ We fixe the weight of the oscillation loss.

■ The final result is mainly related to this ratio.

■ The train stability around a error which depends of this ratio

E. Franck 37/42

37/42

Results III

■ We solve ∂tρ+ ∂xρ = 0 with periodic boundary condition with Tf = 2 (long time).

■ Comparison between differents viscosities:

E. Franck 38/42

38/42

Results III

■ We solve ∂tρ+ ∂xρ = 0 with periodic boundary condition with Tf = 2 (long time).

■ Comparison between differents viscosities:

E. Franck 38/42

38/42

Results III

■ We solve ∂tρ+ ∂xρ = 0 with periodic boundary condition with Tf = 2 (long time).

■ Comparison between differents viscosities:

E. Franck 38/42

38/42

Results III

■ We solve ∂tρ+ ∂xρ = 0 with periodic boundary condition with Tf = 2 (long time).

■ Comparison between differents viscosities:

E. Franck 38/42

38/42

Results III

■ We solve the Euler equation with Neumann BC.

■ Comparison between differents viscosities:

■ SOD test case 32 cells

E. Franck 39/42

39/42

Results III

■ We solve the Euler equation with Neumann BC.

■ Comparison between differents viscosities:

■ SOD test case 64 cells

E. Franck 39/42

39/42

Results III

■ We solve the Euler equation with Neumann BC.

■ Comparison between differents viscosities:

■ Shu Osher test case

E. Franck 39/42

39/42

Conclusion and futur works

E. Franck 40/42

40/42

Conclusion

Deep learning
The deep learning approaches give news tools for large dimensional problem (NN) and
optimization (autodiff tools)

WB
Using a ”offline prediction online corrector” method where we compute a ”large
dimensional” equilibrium family offline and use it online to solve a perturbative flow we
obtain a very efficient scheme for complex equilibrium for hyperbolic systems.

Viscosity
Using the autodiff tools we compute a new viscosity model without reference viscosity
models taking into account to the effect of the viscosity model on the simulation in time.

E. Franck 41/42

41/42

Full hybrid code

■ We want in the futur design a ”full hybrid code”.

■ Modeling:

∂tU+∇ · Fθ(U) = ∇ · (Dθ(U)∇(U))

with Fθ = Flocal (U) + Ff (U) ⋆ U, Dθ = Dlocal (U) + Kg (U) ⋆ .

■ All the terms can be analytic, partial learned or fully learned with neural networks,
symbolic models (Sindy etc) imposing or not specific structures.

■ Resolution: we can partial or fully learn the fluxes, the basis, change of variables etc.

■ We can pre-train the network (as in the WB project) or training solving the scheme
(as in the viscosity project)

■ We want apply this to hyperbolic systems and general moment models for kinetic
equations.

E. Franck 42/42

42/42

	Introduction
	Numerical methods and PINNs
	First enhanced DG schemes
	Second enhanced DG schemes
	Conclusion and futur works

