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Introduction

In this paper we will examine the canonical map of a stable
curve. ’

Our main reference for definitions, conventions and general
geometrical theorems will be [Ha].

We will assume throughout this paper:

(i) k is an algebraically closed field.

(ii) A curve is a reduced, connected scheme of dimension 1,
that is proper over K. /

(iii) A smooth curve is a curve that is regular in every
point.

(iv) A semi-stable curve is a curve that has only ordinary
double points as singularities.

(v) A semi-stable curve X is called a stable curve if it
satisfies the extra condition that every non singular
rational component of X meets the other components of X in at
ieast 3 points.

The main importance of stable curves is that the moduli space
of smooth curves of genus g22 can be completed by adding

stable curves (see [D,M]).

On a smooth curve C we have a canonical dualising sheaf

Yok
canonical morphism ¢:C — P

The global sections of the line bundle W, give the

91 4. is very ample if g(C)22

and in this case it is well knodi that ¢ is a closed
immersion if and only if C is not hyperelliptic (see eg.
[Hal]). In this case Petri has proven (see [Pe], [A,C,G,H] or
[s=D]) that the homogeneous ideal of ¢(C) is generated by
elements of degree 2 and 3. Furthermore he gives precise
conditions for when only elements of degree 2 are needed.
On a stable curve X we also have a dualising sheaf Wy (see
1.2). We define the arithmetic genus of X to be

m=dim P(X,wx).

Under certain conditions (see sections 1 and 2) the sheaf Wy
gives a birational morphism ¢:X— F“d. In section 3 we will
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prove, under some extra conditions, that the canonical ideal

~of such X is generated by elements of degree 2 and 3.

(see
section 3, especially theorem 3.18).

This generalises the first part of Petri's theorem.



1.

1

2

.3

Generators of P(X,wx)

In this section we will look at some general properties of

W We will exhibit a system of generators for P(X,wx), find

tie base points of this system and determine which components
of X are mapped to a point by the canonical map. Most of
these results can also be deduced from [Ca], especially from
theorem D.

Finally we will reduce our problem to the case where X does

not have any of these "bad" points or components.

Let X bé a semi~-stable curve over k of genus m and let
f:X'— X be the normalisation of X. Let Ci...cﬁ be the
irreducible components of X' let gf=g(ci) and C;=f(C;).
Finally let XY € X' (j=1..M) be the points such that
J -f(x )= f(y ) are the double points of X.

This notatlon will remain fixed throughout this paper.

The canonical invertible sheaf w, ., is equal to f, of the
sheaf of l-forms on X' with at most simple poles in the
points X, and Yy satisfying Resxn + Resyn =0 for all

i i
sections w near z,
So we see that we can regard F(C 9 .) as a submodule of

1
T (X, uy) (for i=1..N) and © P(C;,QC,) as a subalgebra
nz0 i

of @ r(x,wﬁ").
n20

1t follows that we can choose linearly independent wil,.,wig
i

PR < . ] .
(i=1..N) in P(x,wx) such that {wﬂ,..,wmi} c F(Ci,Q%) is a
basis.

If pe C' and f(p) € X is a singular point, we w1ll speak of

the pole of w e T(X,w ) at p, meaning the pole of f (w) at p.

To X we will associate a graph G(X) such that the vertices of
G(X) correspond to the irreducible components of X and two

vertices are joined by one edge for every intersection point
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of‘the corresponding components. We will use the name Ci and
zj for the components and double points of X as well as for
the vertices and edges of G(X).

Similar to the above we shall associate a subgraph G(w) of
G(X) to every w « P(X,wx) consisting of the vertices Ci such
that w doesn't vanish on the component qiof X and of the

edges z; such that w has a pole in z, X.

First we will determine for which double points z of X there
exist sections in P(X,wx) with a pole in z. This will enable
us to determine the base points of P(X,wx).

1.4 Lemma: For every simple cycle H in G(X) there is an
we T'(X,0) with G(w)=H.
Proof: The situation looks like this:

Let x;, Ci with £(x,)=z,. There is a differential form w; on

Ci with poles in x, and y (Riemann-Roch).

Res uw, + Resyw1 =0. On Cé there is a differential form w'

1 n
with Res w, + Res w' =0. Thus we get a section w, of w

sl xl 1 Yl . 2 X
over C1 u CZ' Resxw2 + Resyw2 =0. Continuing this way we

2 n ’
n

can extend to w, on U Cic We have Resx W, + Resywn =0 so

i=1 n n
n

w is a section in wy over U Ci‘ Extending by 0 gives the
i=1

promised w e F(X,wx).

For every cycle H of G we will choose a corresponding

differential form_nH.

1.5 Lemma: If w e P(X,wx) has at least one pole and G(w) Is
connected then G(w) is not a tree.
Proof: On any component of X where w doesn't vanish w must
have at least two poles. But a graph every vertex of which is

incident with two or more edges can not be a tree.
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1.

1.

1.

Proposition: Let w e T (X, wx) Then w is a linear combination
of the wij and the Ty where H is a simple cycle of G(w).
Proof: By induction on n, the number of poles of w. If n—O
then w is a linear combination of the W, i, If n>0 then
choose a cycle H of G(w) (G(w) is not a tree) and an edge z
that occurs in H. Since both w and g have a pole in z there
exists a A € k such that w-an doesn't have a pole in z. H
and therefore G(w-knﬂ) is a subgraph of G(w), so w-an has
only poles in points where w has poles. It follows that wi-)nnH
has at least one pole less than w. By the induction
hypothesis w- XnH is a linear combination of the s i and the
Ny for the cycles H of G(uw- an) and these H are also cycles
of G(w).

Proposition: T'(X,w ) is generated by the w, 1]
(i=1..N,j=1..g&) and the Ty for the simple cycles H of G(X).

Note: This may not be a basis: consider this curve:

< §(Q)

o =

It is worth noting that Hﬁ(G(X),z) is a free group, sSo we can
choose a Z-basis'HV..I% of it. Then it is not difficult to

show that “H"""H
1 n

N o N

i@ P(Ci,Q%). So m= iglgi + rank Hl(G(X),Z).

are linearly independent modulo
=1

Proposition: Let X be a semi-stable curve, then the base

locus of P(X,wx) consists of:

(i) The double points p e X such that the corresponding edge
of G(X) is not contained in any cycle.

(ii) The rational components C of X such that all the
singular points on C satisfy (i).

Proof: (i) If p is a double point then p is not a base point

if and only if there is a section in T(X,wx) with a pole in
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p. According to Proposition 1.7 this is the case if and only
if p is contained in a cycle of G(X).

(ii) If C is a.smooth curve, g(C)>0 then P(C,wc) is
base-point free, so a smooth point of X can only be a base
point if it lies on a rational component Ci of X. But if
there is a point on Ci that is contained in a cycle H of G(X)
then Ny restricts to a differential form on Ci with two poles

and no zeros, so p can't be a base point.

1.10 Example: Let X be the following curve:

The base locus is {p} U C4

1.11 If the base locus of P(X,wx) is nonempty, then the canonical
map is not defined everywhere on X. This problem can be
solved in the following way: Let Y be the base locus of
I'(X,w,) and U=X\Y. Then T(X,uy) gives a morphism U—s Pl
The closure of the image of this map will be the canonical
image of X. Obviously the result is not changed by omitting
all rational components of\x as in 1.9 (ii), so we may assume
that X has no such components. In this case dim ¥Y=0. Let & be

the sheaf of ideals of Oy locally defined by the image of

I(X,0,) via the map T(X,u.)— I(V,u)— T(V,0,) and let X be
the blowing-up of X in y; Then we obtain a map ﬁ — P“d (see
[Ha II,§7]). The restriction of this map to U is equal to the
canonical map U — P“dp If p is a base point, then Jb is
generated by the two local pgrameters at p. It follows that
the fibre over p of the map X — X has two points. Therefore
the image of the map i — P“4~is precisely the canonical
image of X. We also see that X has t@e same components as X
and that X' is the normalisatiog of X. So i is a semi-stable

curve, the canonical system of X is base-point free and since



we can examine the connected components of X separately we
can assume that X is connected. Note that X may not be a

stable curve, even if. X is.

In the sequel we will, without loss of generality, assume
that:

1.12 X is a semi-stable curve, w22 and for every edge of G(X)
there is a (simple) cycle containing it.
As we have seen this implies that the canonical system is
base-point free. It also implies that if X is not smooth then
on every C; there are at least two points that are mapped to
a singular point of X.

Let ¢:X — P" ! be the map determined by T(X,wy). We will now

examine which components of X are mapped to a point by ¢.
1.13 Remark: All semi-stable curves that satisfy 1.12 but have 7=l

are mapped to a point by ¢, so this is not a very interesting

case. The only such curves are: '

(i) Smooth elliptic curves.

(ii) Semi-stable curves X such that G(X) is a cycle and all

gi are 0. These curves are not stable.

1.14 Proposition: Let X be a semi-stable curve that satisfies

1.12. Then the only only components of X that are mapped to a
point by ¢ are the rational components Ci of X such that only
two points of C; are mapped to a double point of X.

Proof: Because all smooth curves of genus 22 are not mapped
to a point by their canonical system ahd on open subsets the
canonical system of X is equal to the canonical system of a
smooth curve we only need to consider the components Ci of X
with gf=0 or 1. If Ci is such a component of X, then X is not
smooth, since m22. This means that there are two points

pP.4d e C; such that f(p) and £(g) are double points of X
(possibly the same). Because X satisfies the conditions of
1.12 we can choose p and g such that there is a differential
form w on X with poles in p and g.

If g{=1 then we also have a differential form W, on X, and
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.15

the restrictions to C of w and Wi

are independent, so Ci
isn't mapped to a p01nt

If g'-O and there are no other points r e C' w1th f(r) a
singular point of X then

codim {w e T (X, wx) | w vanishes on C }=1 so C. is mapped to a
point. In the case such an r does ex1st we have an

w' e P(X,wx) w1th a pole in r, so w and w' are 1ndependent on

Ci’ which implies that Ci‘is not mapped to a point by ¢.

If X as in 1.12 has a retional component C1 as in 1.14 then
we proceed as follows:

Because w22 there must be two different double points on this
component. If Cl>intersects other rational components of X
that satisfy 1.14 then let C be the longest chain of such
rational curves in X containing Cl. Then ¢ maps this entire
chain to one point. Only the 'outer' curves of C intersect
the rest of X, each in one point. Therefore the canonical
model is the same if we replace C by one rational curve
intersecting §<E in these two points. So now we have reduced
to the case that C1 intersects only components of X that are
not as in 1.14, say in p and g. Now we can make a curve Xﬁ by
omitting C1 and identifying p and q to an ordinary double
point r. So X\C1 2 X{\{r}. Note that X1 also satisfies 1.12.
Any w e F(X,wx) without poles in p and g corresponds (by the
isomorphism X\C, = X;\{r} ) to an w' e P(Xﬁ,wﬁ). An

w e I'(X, wx) that does have poles in p and g gives a section
in PO&\{r} Wy ) that can be extended to X by giving it a

pole in r. Thls can also be reversed, so it gives an
isomorphism F(X,wx) 2 FUﬁ,wx) such that the restriction of
I 1

w e F(X,wx) to X\C1 is the same as the restriction of its
image to Xf\{r}. From this it follows that the maps
m-1

-l given by I'(X,s,) and X,— P given by T (X, wy )
' 1

X\Cr—+ P

are the same. So the canonical image of X is the same as that
of Xr



In view of 1.15 we can restrict our attention to- curves
satisfying 1.12 without the rational components of 1.14. So
from now on we will assume:

X is a stable curve of genus w22 that satisfies the
conditions of 1.12.

Note that demanding that a curve X as in 1.12 is stable is

the same as demanding that it has no components as in 1.14.

Summarizing we have:

If X satisfies the conditions of 1.16 then the canonical map
¢$:X ----»-I]’w'1 is defined everywhere on X and doesn't map any
components of X to a point. Moreover, for every semi-stable
curve Xl there is an X as in 1.16 with the same canonical

image.



Hyperelliptic behaviour

In this section we will determine when the canonical map ¢ is
birational and show that if ¢ is not birational then ¢(X)
contains a rational normal curve such that ¢ gives a double
covering of this curve by one or two components of X. The
main results are 2.4, 2.7,2.9 and 2.16.

Throughout this section X will be a stable curve that
satisfies the conditions of 1.16. ¢:X — P"* will be the

canonical map.

First we will examine when ¢ maps a component Ci of X
birationally to its image (with reduced induced structure)
and what is the image of Ci if this is not the case.

Let C be a smooth curve, 2 be a line bundle on C and .

D e div C, D>0. If Wec I'(C,2) is a subspace then we will
denote: W(=D):=W n T(C,2(=D)).

We will frequently make use of the following easy lemma:
Lemma: Let C be a smooth curve, £ a line bundle on C and D an
effective divisor. Let W and W' be vectorspaces such that:

W' < I'(C,2)
n n
W < T'(C,2(D))

Then: If p,q « C\Supp D such that dim W' (-p-q) = dim W'-2
then dim W(-p-q) = dim W =2.

We put the following relation R; on the points X e C; for
which f(x) is a double point of X: Xx R Y if and only if
there is a simple cycle in G(X) containing f(x) and £(y).
Lemma: Ry is an equivalence relatioﬁ.

Proof: The reflexivity and symmetry are clear, so let's prove
th?‘transitivityw Suppose X,Y,2 e C; are different points
such that x Ry Y and y R Z- We must show that x R Z (if two
are equal then there is nothing to prove). There exist cycles
H containing £(x) and £(y) and H' containing f(y) and £(z).
Because both Ny and Ny have a pole in y there are \,u e k
such that XnH+unE doesn't have a pole in y. It does however
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2.

5

have poles in x and z. It follows from 1.6 that there must be

a simple cycle containing f(x) and £(z).

Let D, e div C; (¢=1..K;) such that supp D, are the
equivalence classes of R - Then by 1.7 the restriction of
* .

£T(X,uy) to C; can be identified with B

— 1 ' ) —A4

= : P(Ci,R%(Dia)) < r(ci,nq(zr%a)). Let L=dim W.
Next we remark that ¢ maps the component Ci of X into the

linear subspace

PV= P(T(X,u,)/[0 e T(X,up)[u]g=01)"s PI(X,u)'= ",
1

We see that the the map Cf—+ PV given by ¢ is the same as the
map ¢i:C;_* th given by W (more precisely they are equal on
the open part where f gives an isomorphism of C£ with Ci).
Remark: Because X satisfies 1.16 all]%a have degree 22 and

therefore all'r(Ci,QW(th)) are base=-point free.
_ i

Proposition: Let i be an index such that qﬁ3 and Ci is not

hyperelliptic. Then ¢ maps Ci birationally to its image.
Proof: We have to show that ¢i maps C{ birationally to its
image. Let p,q & C;\U supp th then it suffices to show that
dim W(-p-gq)=L-2. To do this we use Lemma 2.1 with 3=Qm,

i

W'=r(c!,Q,) and D=ID, .
i % ia

Now we investigate the behaviour of ¢ on the hyperelliptic
components of X.

Lemma: Let C be a hyperelliptic curve of genus 922 and

X,y € C such that x+y doesn'’t belong to the g; on C. Then the
linear system given by F(C,Qc(x+y)) separates points on

C\{x,y} and separates tangent vectors at those points.

-Proof: We have to.show that if p,q € C\{x,y} then

1(K+x+y-p-g)=g=-1l. Riemann-Roch gives:
1(K+x+y-p-q)=g-1+1(p+g-x-y). So we have to show that
1(p+q-x-y)=0. But l(p+g-x-y)>0 if and only if p+g~x+y and x+y

“and p+q belong to the gi, so this is not the case.
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2.6 Again let C be a hyperelliptic curve of genus g22. Let E
(e=1..K) be divisors belonging to the g2 We can conclude
from the proof of 2.5 that the map given by P(C’QC(Ea)) maps
p and g to the same image if and only if p+g belongs to the
gé. Therefore if W=~Z r(c,Q (E )) every s e« W(-p) vanishes in

g if and only if p+q belongs to the gz , so the map given by
W also maps p and g to the same image if and only if p+g
belongs to the g2

In the same way as in [Ha,IV 5.3] we can prove that the image

is a rational normal curve.

Returning to the situation of 2.4 and combining the results
of 2.5 and 2.6 we have proven:
2.7 Proposition: If C' is byperelllptlc then either:
(i) A11 the Di belong to the g2 In thls»case $lc gives a
1

double covering by Ci of a rational normal curve in a linear
subspace PV < P
(ii) For some a I%u does not belong to the g; and ¢ maps Ci

birationally to ¢(Ci),

Next we examine the elliptic components of X.

2.8 Let C be an elliptic curve. If E e div C is effective and
deg E 23 then QC(E) is very ample, so for every linear system
W such that P(C,RC(E)) c W ch(C,QC(E')) (for some effective
divisor E'>E) according to Lemma 2.1 the map determined by W
is birational.
Now let Eu («=1..K) be effective divisors of degree 2. As
before in the hyperelliptic case we wish to examine
W= L P(C'Qc(Ea))' We see that if p,q e C\U Supp E such that

[+

ptq # EB for some B then dim F(C,QC(Ea-p-q))=0, so in this
case dim W(-p-g)=dim W -2 by Lemma 2.1. It follows that if
Eu¢ EB for some a« and B then W separates points and tangent
vectors on C\lUJ Supp Ea. On the other hand, if Ed~ EB for all
¢ and B then dim W(-p-g)=dim W =1 if and only if p+qg ~ Ea, S0
in this case ¢ maps ciz to 1 to ¢(Cﬂ. As before it is not

difficult to show that ¢(Ci) is a rational normal curve in
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PV.

This proves the following:

2.9 Proposition: If C; is an elliptic curve then either:
(i) Alll%u belong to the same linear equivalence class. In
this case ¢|C:cf'* ¢(Ci) is a double covering of a rational
i

normal curve.
(ii) I%a~ DiB

to its image.

for some o and B. Then ¢ maps Ci birationally

Finally we come to the rational components of X.

2.10 Let C be a rational curve. As in 2.8 we see that if E is an
effective divisor of degree 23 on C then QC(E) is very ample,
so if Wo> F(C,QC(E)) is a linear system then it determines a
birational morphism (by Lemma 2.1).
So let Ea (¢=2..K) be effective divisors of degree 2. We are

going to examine W=® P(C,Q (E )). We see that W is the sum of
o
—F(C,ﬂ (E ))QP(C Q (E )) for o=2..K. Every W is a

base-p01nt free gé and obVlously if p+q doesn' t belong to W
then dim W(-p-g)=0. It follows that if p+qg e C\U Supp E and
therehexists an a_such that p+qg does not belong to Wa then
dim W(-p-g)=dim W -2 by lemma 2.1. Therefore
dim W(-p-q)=dim W -1 if and only if p+q belongs to Wa for
a=2..K.
Because every W is a one dimensional linear subspace of the
complete g2 on C it is uniquely determined by two divisors
contained in it. Since every Wa contains E1 we have that
WG=WB if and only if they have one more common divisor. It
follows that if p,g € C\U Supp Ea and dim W(-p-g)=dim W -1
then all the Wa determine the same g;, so W gives a double
covering by C of its image curve in a projective space. Like
before we can prove that the image is a rational normal

curve.

This proves (with the notation of 2.3):
2.11 Proposition: If C; is a rational curve then either:
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.12

.13

: ' - ' , 1
(1)»P(Ci,9%(pﬂ)) o P(Ci,Q%(th)) determine the same gé.for
o=2..K,. In this case ¢ maps C, 2 to 1 to a rational normal

curve.
(ii) In all other cases ¢ gives a birational morphism of Ci

to ¢(Ci).

Now that we have fully investigated ¢‘componentwise, the only
problem left is to determine whether it is possible that two
components of X have the same image.

Lemma: If p,g € X are smooth points, p « Ci' d s Cy for i#i'

. then ¢(p)=¢(q) Implies g{=gy=0.

Proof: If gi>0 then for some ngi wU (see 1.2) doesn't

vanish in p, but it does in g, so this contradicts the fact
that ¢(p)=¢(g). Therefore g{=0. The same argument proves that
gy=0. ’

Let Ci and Cjibe two rational components of X. We want to
determine exactly when Ci and Cjihave smooth points that are
mapped to the same image by ¢. Obviously, for this to be the
case there sould not be any differential form w e T(X,wx)
that vanishes on Ci but doesn't vanish on Cj“ Therefore, if =z
is_a double point on Ci, every simple cycle in G(X) that
contains the edge corresponding to z (there must be such
cycles), passes through Cj. So for every double point z e Ci
there must be a simple path from Ci to Cj beginning with =z.
If Z),2y) € Ci are double points and P1 and P2 are simple

paths from Ci to Cj such that Z; is the first edge of Pi'

then P1 and P2 do not pass through any commonlvertices other
then Ci and Cj: if they do then there are cycles in G(X)
containing Ci, but not Cj' '

So in.case'ci and C., contain smooth points with the same

image, the situation looks like this:




.14

.15

It is easily seen from this figure that there cannot exist a
k, i#k#j such that there is a smooth point of Ck that is
mapped to the same image as a smooth point of Ci. For in that
case we have a similar situation as above for Ci and Ck’ and
we see that there must be a cycle in G(X) passing through Cy
but not through Cy

If we are in the situation of the figure above, then we can
choose coordinates W, and w, on C;‘and Cgvrespectively, such
that f(Oi) and f(Oj), f(li) and f(lj) and f(wi) and f(wj) are
double points of X that are joined by a path in G(X). Let

;ﬂ,..,Xéﬂ be the other points of C; such that f(k;n) is a
)

singular point of X. Choose XU) ’XK = C; such that
f(k(p) are double points of X such that there is a simple

path from £( ") to £(2\7). We remark that 0,1,«,
) G

A

k4 ,,.,XK are precisely the points on C; that are mapped
to a double point of X by f. Let ku> XU) k;n=X§”=l and
xén )‘(J) =0.

We can complete fw Wigrees me} with {nl,..nM} (M=w-2gi) to a
bas1s of T (X, wx), such that for «=2..K the restriction of

£ (n,) to C; and C; is equal to (w;- X(”

(W= A
Now 1t follows from Lemmas 2.15 and 2.1 that there exist
smooth points p e C and g « C. with ¢(p)=¢(q) if and only if
X(l)k(p (viewed as elements og k) for a=4..K. In this case

o
¢ maps C and CJ‘to the same rational curve in P {

)'aw, and

) de respectively.

Because
this curve lies in a M~dimensional linear subspace and it is
the image of Fl under the map given by‘F(Fl,w(M)) it is a ‘
rational normal curve.

Lemma: Let \ e k. P(P Q(O+1+k+w)) glves a map ¢, : F-—+ F If
we choose the base {z dz (z=-1) dz (z=))" dz} of
P(P1,9(0+1+k+m)) then ¢X maps P to the curve with (affine)
equation- X X Xy (1=))%,= -Ax =0. If \#)\' then

P!

by (PN 9y () = wX(O) wx(l) by (M), ()]
The proof is an easy calculation.
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2.16

Proposition: If i#j and p e;Civand de Cj are smooth points
of X then ¢(p)=¢(q) only in the following case: ‘

(1) g, -qJ—O ,
(ii) We can choose coordinates W, and Wj on C and CJ
respectively such that 0,1, k4,. AK = Pl are precisely the

points of C' and C' that are mapped to the double points of
X.

(iii) There exist disjoint simple paths Pa such that P
starts with £(\.") and ends with £ ).

(iv) The cycles formed by the Pa are the only cycles of G(X)
passing through Ci or C,.

]
In this case ¢ maps Ci and Cj‘birationally to the same

- rational normal curve.

To conclude this section something different:
Suppose char k#2.

The curve:
Is the subset of Plx Pl (with

/
AD coordinates ((A:u),(g:1)))
‘ o o ' defined by the equation:
‘ : P Ml (rrg)i=plel (o-1)2.

It is mapped 2 to 1 to a
quadric in Pz, so it behaves in some way like a hyperelliptic
curve. We can find a flat family of smooth hyperelliptic
curves in wich thls curve oCcurs:

Consider in Alx P X Pl (with coordinates (a,(A:u),(o: r))) the
subset V defined by: ‘

A2t (t+a0) (1+0) (1+(a+1)o)=nlo (o+at) (o-1) (0= (a+l)1).
The projection V-— &1 is a flat morphism, the fibre of O of
which is our stable curve. )
Another such example: Fix X,\' e k.

The subset of P’x P’ (with

coordinates ((51:52:53),(0:1)))

3= defined by: §E,=0,

o? (5, (B~NE,)+E,(E,m) " 8y))=

16
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The canonical map maps this curve 2 to 1 to the curve defined
by ££,70 in P’.
Let W < alx P’x P! (with coordinates (a, (£;:£,:§,),(0:1))) be
defined by (M, \' e k fixed):

§5,ma8, o ol (5 (5,-ME,)+E, (5~ £)) =t (5 55 E5mEy) -

As before the projection W— Al is a flat morphism. The fibre
of O is the curve we started with.

17



Generators of the canonical ideal

In this section we will show that if X satisfies certain
conditions (3.1) the the homogeneous ideal of the canonical
image of X is generated by elements of degree 2 and 3. This
generalizes in a way the theorem of Petri ([Pe]). The proof
of Petri's theorem can also be found in [A,C,G,H] for k=C and
in [S-D] for arbitrary algebraically closed fields.

Recall the notation of 1.1, 1.2 and 1.3.

For the rest of this section we will assume that:

X is a stable curve that satisfies 1.16, gi>2 for i=1..N and
none of the C; is hyperelliptic.

In this case it follows from 2.4 and 2.12 that ¢ maps X
birationally to ¢(X) (with reduced induced structure).

For the rest of this section we fix the following notation:
Let M=w~2gi. It follows from 1.2 and 1.7 that we can choose
wi,..,wM < F(X,wx) such that G(wa) is a simple cycle for
e=1,..,M and {wu,..,wmnuﬁ,..,wu} is a basis of F(X,wx).
For i=1l,..,N let Ai=k[xil""xig ]1; let A= @® Ai and

) i i '
B= [Xl,,.,Xﬁ].
Let SﬂV denote the symmetric algebra on a k-vectorspace V.

The identification Xﬁp—+ wu, Xﬂ—» w, gives isomorphisms

. * ' o ®
Ai= S r(ci’QCE) and B 2z S I‘(X,wx).
For P &« B let deg P denote the degree of P considered as a

polynomial over k and degﬁ’its degree as a polynomial in

A[xl,..,XM]o B
Let R=v®'P(X,w§n) then we have a homomorphism of k-algebras
n20

8:B— R. The kernel I of this map is the homogeneous ideal of

the canonical image of X.

Also, for i=1l..N we have maps 8,:A,— R= 8 P(C;,Q??). Let
- n20 i
Ii= ker Gi. Obviously Ii is the canonical ideal of C;.

18



For i=1,..,N we have an exact,commuting diagram:

» R

5
L4

R,
i

]

0
where the rightmost vertical arrow Rig R is the inclusion of

-

o
4

O =3 H —) H
L 4

o — p— W
2

1.2. From this diagram we see: Ii= In Af

We recall:

Max _Noether's Theorem: The maps Bi are surjective.

The proof of this theorem can be found in [A,C,G,H] (for k=C)
and in [S-D] (k arbitrary).

Lemma: Let n>0 and s e P(X,w?n) be such that s only has poles
of order < r<n. Then there exists a Q e B, homogeneous of
degree n, such that degAQ < r and s=0(Q).

Proof: By induction on r. If r=0 then the Lemma follows from
Noether's Theorem.

So let r>0 and let m be the number of poles of order r that s
has on X'. By decreasing induction on m we will show, that
there is a Q'e B such that s-6(Q') has only poles of order
<r. |

Let X « X' such that s has a pole in x. By 3.1 and 1.17 there
must be a B such that wa has a pole in x. Suppose X € C; then
there must be precisely one other point y e C; such that wg
also has a pole in y (because G(wB) is a simple cycle). Now

~ there is a Q" « A;, homogeneous of degree n-r>0 such that
ei(Q") has a zero in y, but not in x. Therefore G(Q"XE)
vanishes on all components but Ci' it has a pole of order r
in x, a pole of order <r in y and no other poles. So there is
a A € k such that s-XB(Q"Xg)) has a pole of order < r in X
and poles of order r exactly in the other points where s has
poles of order r. Therefore s-B(Q"Xé) has m-1 poles of order

r.
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3.

For s « P(X,w?n), P(s) will denote the collection of points x
of X' such that s has a pole of order n in x. For such points
f(x) must be a double point.

On the collection of such points of X' we have the following
relation: x=y if and only if x e P{(w) (w = P(X,wx)) >

Yy e P(w).

Of course we have x=y if and only if every (simple) cycle of
G(X) that contains f(x) also contains f(y). We remark that

Plw) N P(u'")= ?(ww’).

Lemma: = is an equivalence relation.
Proof: The reflexivity and transitivity are obvious, we have
to prove the symmetry. So suppose x¥y then there exists an

'w = I'(X,w,) such that x e »(w), ¥ & 2(v). T(X,uy) is

base-point free, so there is an w'e P(X,wx) such that
veP(w'). If x @ #(vw') then y#x and we have what we want. If
X « #(w') then there is a A\ e k such that w'+\w has no pole
in x. But it has a pole in y, so y#x.

Note that if K is an equivalence class for = then for every i
it contains at most two points of C;.

Lemma: Suppose x=y, let Q,Q' e B homogeneous of degree n,
such that x,y € £(8(Q)) n »£(6(Q')). If \,u € k such that

x a P(O0(AQ+uQ")) then y & 2(8(2Q+uQ")).

Proof: Choose local paramiters tX as X and tY at y. We
consider the ratios (Resxfw : Resyfw) for all w e F(X,Qx)
that have a pole at x (and since x=y also at y). This ratio
is independent of w, because if it is different for w and w',
then there is a linear combination of w and w' with a pole in
X but not in y, contradicting the fact that x=y. Let (a:b) be
this ratio.

It follows that if S e B is a monomial of degree n such that
x e P(06(S)), then locally at x we have:

fﬁe(S)=(aamg? +higher order terms)(d%ﬁn and at y:
f*G(S)=(abnt;n +h.o.t.)(dty)n, for some O#« « k. Since a
polynomial is the sum of monomials this is also true for
polynomials, so we see that if x &« »(0(A\Q+uQ')) then a=0 so
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Yy & 2(0(2Q+uQ')).

Lemma: Let K be an equivalence class of =. Then there exist
wK,wi < I'(X,wy) such that G(w,) and G(wi) are simple cycles
and ?(wkwi)=K. ‘

Proof: We have K= #(w). This intersection only has to

_ w:Kep(w)
be take over the w such that G(w) is a simple cycle.

Therefore it suffices to prove:

Let G be a graph and Clﬁ% and C3 simple cycles in G, such
that E(Cl)n E(Cz)n E(C3) > e for some edge e of G. Then there
are simple cycles C and C' such that

e € E(C)n E(C') < E(C))N E(C,)N E(CB)‘ The proof of this
graphtheoretical lemma can be found in the appendix.

Let E&,Ui e B such that 6(U;)=w; and 8(Ui)=wé.

3.10 Lemma: Let «,B e {1,..,M}, then there are CaB e B,

(3.10.1)

homogeneous of degree 2, degycass 1 and for every ==-class K
there is a kaBK e k such that:

1 -
W g + ; kaBwa”K-+ e(cas) =Q.
Proof: ?(waws)=?(wa)ﬂ?(w6) is the union of ==-classes. If
Kez ?(wawB) then we take kaBK=O. If Ke ?(waws) then we
choose X € K and take kaBK such that w g + A
pole of order <2 at x. By Lemma 3.8, wuwB + A

aﬂﬂﬁwi has a
?
| «BRYKVK
pole of order <2 at all points of K. By 3.9 it has a pole of

has a

order 2 precisely at the other points where W bg has a pole
of order 2. So we have chosen the Xasx such that

] -
wawB + ixaﬁﬂkwk only has poles of order <1. The existence of

the promised C_ g now follows from 3.5.

Lemma: Let o e {1,..,M} then for every =-class K there are

Da]( e B, homogeneous of degree 3, degADaKS?‘ and Wop € k such

that:
2

T 1 -
(3.11.1) w ww, + B9k + B(DaK) =0.

¢ KK
Proof: ?(wawKwi)=?(wa)n K so it is either § or equal to K. If

Pw )N K=§ then we take u _,=0. If P(w )N K=K then we choose

24! does not have a

x « K and take u_, such that wawKwi OBy
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3.15

pole of order 3 at x. By 3.8.it has poles of order <2 at all
. ] .

points of K, so ?(wawkwK + KK K) =f. The existence of DaK

now follows from 3.5.

Next we recall the relations Rj and the divisors th from 2.2
and 2.3.
Let Kﬁa=deg Di -1. Then there are points X0 Y

(a=1..K.,B=1..K. ) such that D. =x* I y. B Choose
. B _
).

“;aﬁ = P(C SZ_Uﬂa+y B))\I’(C ) (for B= 1
Then, together with fw "f‘%g the "iaB form a basis of
i

W, :=2 P((C;,Qoilaa)). W, is, as we have seen in 2.3, the
1 i .
restriction of f*r(x,wx) to C!.
Because there is a simple cycle H in G(X) that contains
f(xn!) and f(yEaB) there exist Mg € P(X,wx) such that the

m

restriction of fﬂ] oB to C' is equal to “1aB

Let V, e B such that 8(V,

iaB 1aB) Miag "

Lemma: Let w P(X,wx) then there are Viaﬁ’vﬁ e k such that

w + I v n
o, B iep "iaPB

Proof This 1mmed1ately follows from the fact that the f«oJ
(j=1. -9 ) and the n «B (ae=1. Ki’B =1.. ia) form a basis of the

+ I v]wJ vanishes on C'u

restriction to C; of £ P(X,wx).

For every i=1l..N and X,y e C{ with x#y there are thx s A
(¥=1. g) such that: '

(i) {B(N c P(C' o ) is a basis.

1xy%’)}81 9
(11) 0(Ny ) « reel, 9 (- y))\r(C' 9 (=)

0 (N ) e»r(c;,sz;(-x-y)) (¥=3,..,9,).
1

We will write bﬁasx for N y

8 (N,

mB

Lemma: Let P & Ai be homogeneous of degree d and X,Y & C{.
Then:
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g, i

(i) If o(P) e P(C;,Qv(—x)) then there are PZ,..,P e A,
. i 1

homogeneous of degree d-1 such that P= I PXN'
‘ > ixy¥

(ii) If 8(P) e P(C{,QV(-x-y)) then there are
i
P',Ps,..,Pg < A homogeneous, deg P'=d-2, deg Px=d—1
i
o — 1
(¥=3..9,), such that P= P Nl.xleixyz +X53PXNixyK'

The proof of this is elementary algebra.

.16 We list the following elements of I:
If i#j then obviously we have: wmwﬂ=0, so:
() meﬂ e I (i#j)f

Let K be an equivalence class for =.

If i is an index such that C; does not contain any points of
K, then wxwi vanishes on C;. Therefore we have:
(B) X”UﬂQ e I (for all =-classes K such that K does not

contain points of C;)

If i is an index such that C; contains one point of K, then
choose vy C{ arbitrarily. )

For X=2,..,gibﬁwxwxwi vanishes outside Cl and has no poles
of order 2 on‘C;, so by 3.5 there are E ., « B (¥=2..9;),
homogeneous of degree 3, degﬂ%ﬂxisz, such that:

(¢) N, UUy + E

. 1 .
iy ¥ kYK (x the only point of Ci in K,

¥=2. .gi)

WKy € I

If K contains two points X,y e C;, then the only points of C{
where Wy has poles are x and y (because G(wK) is a simple
cycle). It follows that there are anx = A (K=3..g”,
homogeneous of degree 2, such that:

1 —
(D) NDWXUK + anx el (x,ve Cin K, Xf3..gi)
And similarly there are th e A, homogeneous of degree 3
such that: .
’ 1
(E) Nixleixyzul( + Fixy el (x,7v s Cin K)
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(F)

(G)

(H)

(1)

(J)

(K)

.17

In exactly the same way as above we see that there are
G s < A (K=3..gi), homogeneous of degree 2, such that:

+ ey = I (¥=3..9))

ieB
Nia BUVia B

And there are GMB e A, homogeneous of degree 3, such that:

NigpNiap2Viap * Ciap = 1

Because e(bﬂaﬁl)niuﬁ and e(r%aXI)niaX both have a pole of

order 1 at X and no other poles, there are p. ¥ € k and .

iaB
e A, homogeneous of degree 2, such that:

v

HiaBX

PiaBtNiap1Viap * Pia¥pNia¥l * Higpy €1

ia¥
We recall from 3.10.1 that:

!
XmXB + E‘Xaﬁﬁ&UK + CaB eI

and from 3.11.1:

' 2111
X UpUp * MogUiUx * Do = 1
Finally we deduce from 3.13 that:
X (Xy +asziaBKviaB *IoveX) el (k=l..qp)

Proposition: The ideal 1 is generated by the ideals Ii and

the polynomials listed in (A)-(K) above.

Proof: Let J be the ideal generated by Il""IN and the
polynomials (A)-(K). Let P « I. By induction on m:=degXP we
will show that P « J.

(i) If m=0 then P « A. If follows from (A) that there is a
polynomial P's P mod J such that P'= g Q with Q. e A,. By

i=1
looking at each component of X separately we see that

Q, e I, so P' & J and therefore P e J.

(ii) m=1. We will show that there is a P'= P mod J such that
P' € A. From (A) it follows that there exists a PIE P mod J
such that P1 has no terms that are divisible by xﬁ?%l for
i#j. We can assume that degﬁ3=1.

Because the wij and the W, form a basis of F(X,wx) we must
have deg EHZZ. Using (K) we show that there is a PZE PI mod J
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.18

such that:
P,= f (azBQmBViaB) + terms.in A (Qp = A)-
Because only Mg B has a pole in y&aﬁ, B(anﬁ) vanishes in
Yigp* It follows from Lemma 3.15 (i), (F) and (H) (with ¥=1)
that we can find P35 P2 mod J such that:
P3= f (2 Qiavial) + terms in A (Qm s Ai)'

Therefore G(Qia) vanishes at X and Yig1r S° from 3.15 (ii),
(F) and (G) we deduce that there is a P's P3E P mod J, such
that P' e A.
(iii) m22. We will show that there is a P's P mod J such that
degAP'<m. |
It follows from (A) that we can find a PIE P mod J such that
Pl'has no terms that are divisible by meﬂ for i#j.vBy (1)
and (J) we see that there is a PZE P1 mod J such that:

P,= i ()i: Q) Uy 'yl + terms of deg,<m (Qy < A))
The outer summation is taken over all =-classes K. It follows
from (B) that we can assume that the inner sum is taken over
those i for which C; contains points of K.
Let L be a =*-class. Because only wngﬂ
in the points of L every B(Qm) must vanish in the points of
L on C;. For those i such that there is one such point we use
3.15 (i) and (C), for the i such that there are two such
points we use 3.15 (ii), (D) and (E) to conclude that there

is a P's P, mod J with deg,P' <m.

has poles of order m

Theorem: Let X be a stable curve that satisfies the
conditions of 3.1 and suppose X is not a smooth curve of
genus 3. Then the homogeneous ideal of the canonical image of
X is generated b? elements of degfee 2 and 3.

Proof: If X is smooth then this follows from Petri's theorem,
so from now on we will assume that X is not smooth.

It also follows from Petri's theorem, that if gi>3 then Ii is

generated by elements of degree 2 and 3. So it follows from

proposition 3.17 that we only have to look at the i such that

g{=3. In this case Ii=(si)' Si = Ai’ homogeneous of degree 4.

The theorem is proven if we can write Si as a combination of
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polynomials of degree 2 and 3 in I.

Since X is not smooth we have Kizl and KiaZI' so it makes
sense to speak of the points /¥ € C; and of Vﬂl’ From
3.16 (F) and (G) we have

N,.,,N.. V. + (3111 e I

in1rrinz T in

NinaVin* Gz = I

By multiplying the first by N1113 and the second by

leNi112 and subtracting we find T If If T#0 then

deg T=4 so T=\S (\ e k,2#0) and we are done. So we only have
to prove than T#O0.

But suppose T=0, then NﬂnNﬂuGﬂB is divisible by Nﬂm’

so Gil13 is divisible by an' This is impossible because

t
then LEFTRE Span(wn,wm,wm).

3.19 Example: Let X be a stable curve, w=5, such that X' is a

3.20

smooth curve of genus 4. Let X,y e X' such that f(x)=£f(y)=z,
the double point of X. Now theorem 3.18 is applicable to X.
We see that we can choose a basis {wl,wruh,w4} of P(X',Qr)
such that W) vanishes in y, not in X, w, vanishes in x, not
in y and Wy and w, vanish in both x and y. Let

Wy € r(X',Qx(x+y))\r(X',Qr), s0 {wl,wrm@,w4,w5} is a basis
of F(X,wx).

For X we have: N=1, K1=l, K1a=l, N
take Ny~ Wge
take W= wi= wg. We observe that 3.16 (B) and (C) do not
occur and that in (D) we can take thx= XX (¥=1..4).

Let I' be the canonical ideal of X'. We get: I, the canonical
ideal of X is generated by I' and XX+ F,, XX+ F, (D),

X1X2X5+ F (E), X3X5+ G3, X4X5+ G4 (F), X1X2X5+ G (G). (H)=-(K)

are not needed (they are trivial, for example (I) gives

le}%+ C e I for some C). Finally we observe that (D) and

5
(E) only differ from (F) and (G) by elements of I' so I is

. ! = = =
generated by I, P1 X3X5+ F3, Pz X4X5+ F4 and P3 X1X2X5+ E.

1HX=XX (¥§=1..4) and we can

There is only one =-class: K={x,y}, so we can

We continue example 3.19. It follows from Petri's work that
I' is generated by polynomials P,Q € A with deg P=2 and

deg Q=3. If we suppose {ws,wyuﬁ,wz} is a cleverly chosen

26



3

.21

basis of F(X',Qx,) (in the sequel we will call such a basis a
Petri-basis, in 3.21 we will return to this point) then Petri
gives explicit formulas for P and Q.

In this case: P=X1XZ-)\1X1X3—k2X2X3-u1X1X4-u2X2X4-bX3X4.
(xl,xz,ul,uz,b e k). Let Q'=X4PleX3P2= X Fy=X,F, . Then

Q' « I' and, since X, doesn't divide E,, Q'#0, so deg Q'=3.
Suppose that Q'=LP for some linear form L. Then L=a§%+a£&
(a3,a4'e k) because Q' does not have any terms of the form
X?% or Xﬁé. Now LP=Q' implies that

(aaP + E‘4)X3= (-a4P + F3)X4 so X4 divides a3P + E‘4 but since
XX+ aP + F, eI this implies that w, e I‘(X',SZX,),
contradiction.

Therefore LP#Q' for any L so Q'e (P,P,P,), I'e (P,P,P,))=:J
and I=(P,P1,P2,P3).

Finally we show that I=J. Of course it suffices to prove that
P3 e J. We have:

P, xlxlx3x5+x2x2x3x5+ulxlx4x5+u2x2x4x5+bx3x4x5+Es P' mod J,

with P'e A and therefore P'e I'c J so P, e J.

Summarizing, we see that we have shown that if {wa,wyuﬁ,wz}

is a Petri-basis of P(X,wx) then I=(P,P1,P2), so I is

generated by elements of degree 2.

We will now describe when a basis {w{,wé,wé,w;} is a
Petri-basis of P(X',ﬂr) (following [S~D]).

Let P;/P;.P3.P, be points on X', in general position with
respect to T(X',ﬂr) and let D=p,*p,. Then by [S-D], for
allmost all choices of Py -P, the system |K-D| is a

base-point free pencil. For each i, Vi:=P(X',9y(-Z pj)) is
' i#]
one dimensional. Now {wi,wé,wé,w;} is a Petri-basis if [K~D|

is base-point free and if w; s V, for each i.

Finally we examine when our basis {w3,wyuﬁ,w2}={wi,wé,wé,w;}
is a Petri-basis.

Let ¢':X'— P3 be the canonical embedding. Then for our basis
to be a Petri-basis at least the span of w{(=w3) and wé(=w4)
should be base-point free. This is the same as demanding that

the line ¢'(x),¢'(y) is not a trisecant of ¢'(X').

‘In the case it is a trisecant {wi,wé,wé,w;} cannot be a
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Petri-basis. If it is not then we can choose P,=x and P=Y
and now we only have to choose P, and P, such that
pypﬁ,py;a are in general position, which is obviously
always possible.

So we can choose {ws,w " to be a Petri=-basis if and

Y

only if ¢'(x) and ¢'(y) are not on a trisecant of ¢'(X').
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Appendix

We will prove:

Lemma: Let G be a graph and cl’CZ'CB simple cycles in G and e
an edge such that e e E(Cl)ﬂ E(Cz)n E(C3). Then there are
simple cycles C4 and 05 in G such that

e e E(C4)n E(CS) c E(Cl)n E(Cz)n E(C3).

Proof: If e is a loop then there is nothing to prove.
Otherwise e connects two vertices v and v,. Cl,Cz and C3

2

give simple paths Pl,P2 and P3 from v, to vy We have to show

that there are two paths P4 and P5 from v, to vy such that
E(P4)n E(Ps) = E(Pl)n E(Pz)n E(Pa). If either Pl,Pz or P3 is

an edge connecting v, and v then we are done.

Otherwise we proceed as follows. Let G' be the graph obtained
by omitting the edge e from G and identifying two vertices of
G if they are connected by an edge in’E(Pl)n E(Pz)n‘E(Ps) and
omitting these edges (that have now become loops). Pl’PZ and
P3 give paths Pi,Pé and Pé in G' guch that

E(Pi)n E(Pé)n E(Pé)=¢. If we can show that there are two
paths P; and Pg in G¢' such that E(Pl)ﬂ E(Pé)=¢ then the Lemma
is proven.

We will show this by induction on #E(Pi)u E(Pé)u E(Pé). If
this number is 2 then we are done. Otherwise the situation
looks like this:

.P' p' We see that there are 2
Frh . .
T - disjoint paths from v, to v'.
/ ‘ There are 3 paths from v' to v,
’ .
o< ; CLBYQ' such that there are no edges
2 -~ -
éj* ~ L ' shared by all three of them.
~—>
~! N 1 The induction hypothesis says

that there are 2 disjoint
paths from v' to v, We can link the paths of these two pairs
together to get two disjoint paths frqm vz‘to vy (If A is
used twice, then it is used in different directions, so it

cancels out.)
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Appendix 2

Suppose X is a stable curve of genus g, with no rational components and
such that the canonical system has base points. In 1.11 a way is described
to obtain a canonical image of X in spite of the base points of I'(X,wx).
The insatisfactory thing about this method is that the canonical image of
a connected curve will be disconnected whenever I'( X, wx') has base points.
We propose to circumvent this problem in the following way: Instead of
embedding X as it is, we choose a (one dimensional) family Y/C of curves
in which X occurs as (the only) singular fibre, say over the point z € C.
Note that C is an open part of a curve. It easily follows from [D,M],
Section 1, that we can choose Y to be a nonsingular surface over k. We
choose an open part of C' such that the canonical restriction I'(Y, wy;c) —
I'(X,wx) is an isomorphism. Then we try to map Y to a projective space
(of dimension g¢) using the sheaf I'(Y,wy/c). We will consider the image
of the fibre Y, as the ‘canonical’ image of X. It must be noted that a
priori there is nothing canonical about this image since we have chosen Y
rather arbitrarily. However, an open subset of this image is the image of
the complement of the base locus of I'(X,wx) under the map induced by
the canonical system on X, and therefore the ‘canonical’ image we have
just defined contains the canonical image in the sense of 1.11.

Of course the system I'(Y,wy/¢) will not be base-point free because the
canonical system of X is not. We therefore proceed in the same way as in
1.11: Let {y1,..,y;} be the support of the base scheme of I'(Y,wy;¢). We
take the closure of the image of Y\ {y1, .., y;} under the map corresponding
to this system. The image of Y that is obtained in this way is equal to the
image of the blowing-up of Y in the sheaf of ideals of the base scheme of

T(Y,wy/c) under the map defined by the inverse image of I'(Y,wy/¢) (see
[Ha II, §7]). We will now determine the blowing-up 7: ¥ — Y of Y.

Because all fibres of Y//C' except the one over z are non singular and of
genus greater than zero, the canonical systems of the other fibres are base-
point free, so the set {y1,..,y;} is exactly the base locus of the canonical
system of X = Y,. Moreover, the stalk in y; of the sheaf of ideals of the
base scheme is the image of I'(Y,wy/¢) under the map

(Y, wyse) = D(U,wy/o)>T(U, Oy) — Oy,
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(where U is an open subset of ¥ on which wy/¢ is trivial), which is precisely
the maximal ideal of Oy,,. This follows from the fact that the image of the
map

P(X;wx) — F(V,LOX)—:PI‘(V, Ox) - Ox,y‘

(where V trivialises wx) is generated by the two local parameters 2, and t,
on X in y; (see 1.11) and is therefore equal to the maximal ideal of Ox 4,
and from the fact that Ox,, = Oy, /(t1t2). It follows that the image of
- T'(Y,wy/c) generates the maximal ideal of Oy,y, modulo #123, so it generates
the maximal ideal itself. So we see that in this case in the blowing-up the
points 1, .., y; are all replaced by a P* (cf [Ha V, 3.1]).

Finally we will determine the image of Y under the map obtained from
the inverse image on ¥ of I'(Y,wy,¢). On the P* lying over y; we can choose
homogeneous codrdinates (£; : €;) corresponding to the generators ; and ¢,
of the maximal ideal of Oy,,. If we choose a basis {wr, ..,w,} of I'(Y,wy/c)
we see that there exist contstants a;, b € k(I = 1..g) such that w; = aity+bit;
~ mod m%,’yl.. On the P! lying over y; we have: 7*w; = a;§y + b2 + h.o.t..
These sections generate I'(P!, O(1)) on this fibre, because wy, ..,w, generate
My, So we have shown that for all points y; the fibre over y; of 7 : Y -7,
which is a P!, is mapped biregularly to a straight line.

From the description of the ‘image’ of ¥ as the closure of the image
of Y\{y1,..,y;} it is obvious that this line containes the two points of the
canonical image of X (in the sense of 1.11) that correspond to y;. Therefore
in this case the ‘canonical’ image image of X is like the one that was
obtained in 1.11, but this time for every base point of I'(X,wx) the two
points of the canonical image of X corresponding to it are joined by a
straight line. It follows that the ‘canonical’ image of X described above
doesn’t depend on the Y chosen after all.
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