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Evaluation

For P a polynomial and x € K, we can evualuate P at x:

(addition and multiplication in K).

Polynomials

The basics

A polynomial is an expression
d -
P(X) =) aX
i=0

for some integer d > 0.
The degree of P is < d.

A word on the a;

The a; belong to a field K,
for the time being we can think of K =R or K = C.

Computing P(x)

Computational complexity
The number of operations needed to compute P(x):

e d — 1 multiplications to compute the x’ and
e another d multiplications and d additions to obtain P(x).

A total of 2d — 1 multiplications and d additions.

In practice, a multiplication is much more ‘expensive’ than an
addition.



Another way of computing P(x)

We can do better!
In fact,

P(x) = ao + x(a1 + x(a2 + - - - + x(ag—-1 + xaq))),
so starting from the innermost parenthesis we only need
d multiplications and d additions.

An improvement by a factor 2!

. and multiplication

The product PQ is
2d
PR(X) =) X',
i=0

where
min(i,d)

Ci = E ajb,-_j.

Jj=max(0,i—d)

e This is a convolution product.

e The function associated to PQ is the product of the functions
defined by P and Q.

e The degree of PQ may be > d, but is < 2d.

Addition . ..

For two polynomials
d _ d '
P(X)=> aX" and  Q(X)=>_ bX'
i=0 i=0

the sum is
d

(P+Q)(X) = (ai + b)X'.

i=0

It can be computed in just d additions.

The evaluation function associated to P + @ is the sum of the
functions defined by P and Q.

Computing PQ

Using the formula, ¢; can be computed in / + 1 multiplications and
i additions (for i < d) so the computation of PQ takes

(d + 1)? multiplcations and d? additions.

NB. To compute (PQ)(x) for x € K, take P(x) and Q(x) and then
multiply instead of first computing the polynomial PQ and then

taking (PQ)(x).



A silly idea?

Why not define a product

d

P Q(X)=> (aib)X'?

i=0

e Much easier to compute: d + 1 multiplications,

e but has no meaning in terms of functions.

The Discrete Fourier Transform

Definition
The Discrete Fourier Transform (DFT) of P (of degree < d) is

d
FDg4(P) =) y;X?™
j=0

where y; = P({).

Roots of unity

Assume that d + 1 # 0 (in K) and let { € K be a primitive
(d + 1)th root of unity:

e (911 =1 but
o ('#£1for1<i<d.

We have:
e For i=0,---d, the ¢/ are the distinct x € K with x9+1 =1.
e Fori=1,...,d:

The inverse of the DFT

Theorem

FDy(P)(¢¥) = (d + 1)ar¢*
FDy(FDy(P)) = (d + 1)X9P (5{) .

(Which is indeed a polynomiall)



More properties of the DFT

FDy o FDy is bijective.

Hence FD, is bijective (on polynomials of degree < d).
(PQ)(¢) = P(¢")Q(C") so FDa(PQ) = FDa(P) + FD4(Q).
If P =FDy(P) and Q = FDy(Q) for P, Q of degree < d/2
then

FDgy(P % Q) = FD4(FDy(P) * FD4(Q)) = FD4(FD4(PQ)) =

(d+1x? (PQ) (&) ~ G Txa"PH(PIFDA(Q)

A special case

From now on: d + 1 = 2¢ is a power of 2.

Write d’ = (d — 1)/2 and

even) Z i X and odd) Z 32,+1Xi

SO
P(X) _ P(even)(X2) —I—XP(Odd)(X2).

Conclusion

A formula for PQ
For polynomials P, Q of degree < d/2

d

(POX) = 57y

FDy(FDy(P) « FDy(Q)) (&) .

A useful algorithm?

e It takes d multiplications to compute FD4(P) * FD4(Q),
e so everything depends on the complexity of FDg,

e but the obvious algorithm evaluates P for d + 1 values so it
takes 3(d? + d) multiplications. . .

Fast Fourier Transform

Theorem

FDg(P)(X) =
Xd’+1 (FDd,(P(even))(X) _ C_lFDd/(P(Odd))(<_1X)> +

<FDdl(P(even))(X) + C_IFDd/(P(Odd))(C_IX)> )

So FDy can be computed by induction!



Computing the FFT A useful algorithm!

M(d) = number of multiplications to compute FD4(P) Theorem

(for P of degree d). Using the Fast Fourier Transform, the formula
By the theorem M(d) = 2M(d’) + d + 1. PO X xd D(FDA(P) 4 B 1
Hence (PR)(X) = m d(FDq4(P) * FD4(Q)) (CX> .

M(d) = Cdlogd + lower order terms
computes the product PQ in
for some constant C > 0.

Notation: M(d) = ©(d logd). ©(d log d) multiplications.

But in practice? FFT with coefficients in F,

For K = C we need floating point arithmetic, that's not good.
For p a prime number, F, = Z/pZ is a field.

[Fp contains a primitive (p — 1)th root of unity. e Take p prime with p — 1 divisible by 2¢.
Choose p such that p — 1 is divisible by a large power of 2. e The multiplication algorithm applies to polynomials of degree
For example < 271 with coefficients in F,.

12289 = 3-21241, 40961 =5-2'3+1, 61441 = 15-2'24+1.



Applications

Error correcting codes
Cryptography

Integer arithmetic

Avoid pitfalls

The coefficients of PyPy; may be > R so:

e Take p > R such that the coefficients stay < p.
e The coefficients are determined by their reduction modulo p.
e Treat carries to obtain a valid representation in base R.

(Computationally easy.)
Choose R close to the word-size of the computer.
Best to have p within the word-size as well.

But that is too small to get the necessary precision.

Multiplication of integers

Write integers in base R,
for example R = 2%% on a 64 bit processor.
N > 0 is expressed as

N:ao—l—alR—i—'--—i—ade:PN(R)

with a; € {0,..., R — 1}.
Multiplying integers amounts to multiplying polynomials.

Want to take p > R and work with coefficients in [F,.

A final trick

Use several primes p1, po, ..., px and start by computing PQ
modulo p1, modulo po,. ..

By the Chinese Remainder Theorem this determines PQ
modulo the product p1ps - - - pk.

For p1po - - - pi large enough this determines the coefficients in

7.

Can treat integers up to R27'-1,
think of R = 2°% and e = 12!

This is Pollard’s method for integer multiplication.
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