Spectral statistics of non-selfadjoint operators subject to small random perturbations

Martin Vogel
(joint work with Stéphane Nonnenmacher)

Université Paris-Sud

Séminaire Laurent Schwartz
16 Mai 2017

$\underline{\text { What is this talk about }}$

For $0<h \ll 1$, we consider a non-selfadjoint P_{h} on $L^{2}\left(S^{1}\right)$

$$
P_{h}:=h D_{x}+\mathrm{e}^{-i x}, \quad D_{x}:=\frac{1}{i} \frac{d}{d x} .
$$

$\rightarrow \operatorname{Spec}\left(P_{h}\right)=h \mathbb{Z}$

What is the spectrum of a small perturbation of P_{h} ?

What is this talk about

For $0<h \ll 1$, we consider a non-selfadjoint P_{h} on $L^{2}\left(S^{1}\right)$

$$
P_{h}:=h D_{x}+\mathrm{e}^{-i x}, \quad D_{x}:=\frac{1}{i} \frac{d}{d x} .
$$

$\rightarrow \operatorname{Spec}\left(P_{h}\right)=h \mathbb{Z}$

What is this talk about

Model for numerical errors

- $A_{N}+\delta Q_{N}$ [von Neumann-Goldstine '47], [Spielmann-Teng '02, Edelman-Rao '05, Trefethen-Embree '05]

Random matrix

- $Q_{N}+\delta A_{N}, \delta \asymp 1, A_{N}$ small rank [Tao-Vu '10, Tao '13]
- $A_{N}+\delta Q_{N}, \delta \asymp 1$ [Bordenave-Capitaine '16]
- $J_{N}+\delta Q_{N}, \delta=o(1)$ [Davies-Hager '08], [Guionnet-Matchett-Wood-Zeitouni '14]
- $T_{N}+\delta Q_{N}, \delta=o(1)$ [Sjöstrand-V '14-'16]

Non-selfadjoint spectral problems

- Quantum Resonances,
- Kramers-Fokker-Planck type operators, damped wave equation
- Evolution equations (also in the non-linear case), ...

Non-selfadjoint (Pseudo-)differential operators

- $P_{h}+\delta Q_{\omega}, \delta=o(1)$ [Hager '06,'08, Sjöstrand '08-'14, Bordeaux-Montrieux '08,'10]
- $T+\delta Q_{\omega}, \delta=o(1)$ [Christiansen-Zworski '10]

Non-selfadjoint operators and Spectral Instability

If $P: \mathscr{H} \rightarrow \mathscr{H}$ is not normal, $(P-z)^{-1}$ may be very large even far away from $\operatorname{Spec}(P)$:

$$
\left\|(P-z)^{-1}\right\| \gg \operatorname{dist}(z, \operatorname{Spec}(P))^{-1} .
$$

Pseudospectral effect: The spectrum can be very unstable under small perturbations of the operator.
ε-pseudospectrum [Trefethen-Embree '05], defined by

$$
\operatorname{Spec}_{\varepsilon}(P):=\operatorname{Spec}(P) \cup\left\{z \in \mathbb{C} ;\left\|(P-z)^{-1}\right\|>\varepsilon^{-1}\right\} ;
$$

Equivalently:

$$
\begin{aligned}
z \in \operatorname{Spec}_{\varepsilon}(P) \Longleftrightarrow & \exists Q \in \mathscr{L}(\mathscr{H}),\|Q\|<1, z \in \operatorname{Spec}(P+\varepsilon Q) \\
& \text { (instability of spectrum w.r.t. perturbations) } \\
\Longleftrightarrow & z \in \operatorname{Spec}(P) \text { or } \exists u_{z} \in \mathscr{D}(P),\left\|(P-z) u_{z}\right\|<\varepsilon\left\|u_{z}\right\| \\
& \text { (existence of quasimodes) }
\end{aligned}
$$

Example

For $0<h \ll 1$, we consider P_{h} on $L^{2}\left(S^{1}\right)$ [Hager '06]

$$
\begin{aligned}
& P_{h}:=h D_{x}+g(x), \quad D_{x}:=\frac{1}{i} \frac{d}{d x}, \quad g \in \mathcal{C}^{\infty}\left(S^{1} ; \mathbb{C}\right) \\
& p(x, \xi)=\xi+g(x), \quad(x, \xi) \in T^{*} S^{1}
\end{aligned}
$$

Zone of spectral instability:

$$
\Sigma:=\overline{p\left(T^{*} S^{1}\right)}
$$

Outside Σ : Spectral stability
$\rightarrow z \in \mathbb{C} \backslash \Sigma \Longrightarrow\left\|\left(P_{h}-z\right)^{-1}\right\|=\mathcal{O}(1)$ uniformly as $h \rightarrow 0$, as $\left(P_{h}-z\right)$ is elliptic,
\rightarrow If $0<\delta \ll h^{\kappa}, \kappa>0$, then $\operatorname{Spec}\left(P_{h}+\delta Q\right) \subset \Sigma+o(1)$.
Energy shell: for any $z \in \Omega \Subset \Sigma^{\circ}$ the energy shell

$$
p^{-1}(z):=\left\{\rho_{+}(z), \rho_{-}(z)\right\} \subset T^{*} S^{1}, \quad \text { s.t.: } \pm\{\operatorname{Re} p, \operatorname{Im} p\}\left(\rho_{ \pm}\right)<0 .
$$

$\underline{\text { Quasimodes and Pseudospectrum }}$

Energy shell: for any $z \in \Omega \Subset \Sigma^{\circ}$ the energy shell

$$
p^{-1}(z):=\left\{\rho_{+}(z), \rho_{-}(z)\right\} \subset T^{*} S^{1}, \quad \text { s.t.: } \pm\{\operatorname{Re} p, \operatorname{Im} p\}\left(\rho_{ \pm}\right)<0
$$

Quasimodes [Davies '99, Dencker-Sjöstrand-Zworski '04]

- $\forall \rho_{+}(z): \exists$ a quasimode $e_{+}(z ; h)$ microlocalized in $\rho_{+}(z)$ with

$$
\left\|\left(P_{h}-z\right) e_{+}(z ; h)\right\|=\mathcal{O}\left(h^{\infty}\right)\left\|e_{+}(z ; h)\right\|
$$

- $\forall \rho_{-}(z): \exists$ a quasimode $e_{-}(z ; h)$ microlocalized in $\rho_{-}(z)$ with

$$
\left\|\left(P_{h}-z\right)^{*} e_{-}(z ; h)\right\|=\mathcal{O}\left(h^{\infty}\right)\left\|e_{+}(z ; h)\right\|
$$

\Longrightarrow every $z \in \Omega$ is in the h^{∞}-pseudospectrum of P_{h} :
i.e. for $\delta=h^{M}, M \gg 1, \exists$ a bounded operator Q such that $z \in \operatorname{Spec}\left(P_{h}+\delta Q\right)$.

Question: What does the spectrum of $P_{h}+\delta Q$ look like for a generic perturbation?

Adding a small random perturbation

Basis: $\left\{e_{k}\right\}_{k \in \mathbb{N}}$ be an ONB of L^{2}

- E.g.: the Fourier modes $e_{k}(x)=\mathrm{e}^{i k x}$ for $L^{2}\left(S^{1}\right)$
- Take $N(h)$ so that $\left\{e_{k}\right\}_{k<N(h)}$ covers a neighbourhood of $p^{-1}(\Omega)$.

Define the random operators

$$
(R M) \quad Q_{\omega}=\sum_{j, k<N(h)} \alpha_{j, k} e_{j} \otimes e_{k}^{*}, \quad(R P) \quad V_{\omega}=\sum_{j<N(h)} \alpha_{j} e_{j}
$$

where α • are complex valued iid random variables satisfying

$$
\mathbb{E}\left[\alpha_{\bullet}\right]=0, \quad \mathbb{E}\left[\alpha_{\bullet}^{2}\right]=0, \quad \mathbb{E}\left[\left|\alpha_{\bullet}\right|^{2}\right]=1, \quad \mathbb{E}\left[\left|\alpha_{\bullet}\right|^{4+\varepsilon_{0}}\right]<\infty
$$

Bounded perturbation

- $(R M)\left\|Q_{\omega}\right\|_{H S} \leq C h^{-2}$ with probability $\geq 1-\mathcal{O}\left(h^{3}\right)$.
- $(R P)\left\|V_{\omega}\right\|_{\infty} \leq C h^{-2}$ with probability $\geq 1-\mathcal{O}\left(h^{3}\right)$.

Macroscopic spectral distribution

Theorem (Hager '06, Hager-Sjöstrand '08)
Spec $\left(P_{h}+\delta Q_{\omega}\right)$ satisfies a probabilistic Weyl's law. For $\Gamma \subset \Omega \Subset \Sigma$ a domain with smooth boundary $\partial \Gamma$, then, with probability $\geq 1-h^{\kappa}$,

$$
\#\left(\operatorname{Spec}\left(P_{h}^{\delta}\right) \cap \Gamma\right)=\frac{1}{2 \pi h}\left(\iint_{p^{-1}(\Gamma)} d x d \xi+o(1)\right), \quad \text { as } h \rightarrow 0^{+} .
$$

(RM) [Hager '06] for $P_{h}=h D_{x}+g(x)$, with $p^{-1}(z)=\left\{\rho_{+}, \rho_{-}\right\}$.
\rightarrow [Hager-Sjöstrand '08] for $P_{h}=O p_{h}(p)$ on \mathbb{R}^{d}.
(RP) [Hager '06b] $P_{h}=O p_{h}(p)$ on \mathbb{R}^{1} with

- $p(x, \xi)=p(x,-\xi)$
- $p^{-1}(z)=\left\{\rho_{ \pm}^{j} ; j=1, \ldots, J\right\}$
\rightarrow [Sjöstrand '08, '09] $P_{h}=O p_{h}(p)$ on \mathbb{R}^{d} or compact manifold M.
[Bordeaux-Montrieux '08]

Numerical Experiments

Numerical Experiments

Spectrum for 3 different operators on S^{1} perturbed by the same δQ_{ω}.
What is the difference?

Numerical Experiments

random matrix δQ_{ω} vs random potential δV_{ω}

For the same operator $P_{3}=\left(h D_{x}\right)^{2}+\mathrm{e}^{-3 i x}$ on S^{1} we compare different types of random perturbations.

What is the difference?
$\underline{Q_{\omega} \text { vs } V_{\omega}}$

Differences in the fine structure of eigenvalues \rightarrow spectral correlations
$\rightarrow \delta Q_{\omega}$: eigenvalues show repulsion on the scale of the mean level spacing
$\rightarrow \delta V_{\omega}$: eigenvalues can be clustered

Point process of eigenvalues - Microscale

Local Statistics

Weyl law \Longrightarrow average spacing of the eigenvalues of P_{h}^{δ} at $z_{0} \in \dot{\Sigma}^{\circ}$ is $d_{h}\left(z_{0}\right)^{1 / 2} \asymp h^{-1 / 2}$.

$$
\mathcal{Z}_{h}^{\delta}=\sum_{\lambda \in \sigma\left(P_{h}^{\delta}\right)} \delta_{\lambda} \xrightarrow{\text { RESCALE }} \widetilde{\mathcal{Z}}_{h}^{\delta}=\sum_{\lambda \in \sigma\left(P_{h}^{\delta}\right)} \delta_{\left(\lambda-z_{0}\right)} \sqrt{d_{h}\left(z_{0}\right)}
$$

Point process of eigenvalues - Microscale

Local Statistics

Weyl law \Longrightarrow average spacing of the eigenvalues of P_{h}^{δ} at $z_{0} \in \dot{\Sigma}^{\circ}$ is $d_{h}\left(z_{0}\right)^{1 / 2} \asymp h^{-1 / 2}$.

$$
\mathcal{Z}_{h}^{\delta}=\sum_{\lambda \in \sigma\left(P_{h}^{\delta}\right)} \delta_{\lambda} \xrightarrow{\text { RESCALE }} \widetilde{\mathcal{Z}}_{h}^{\delta}=\sum_{\lambda \in \sigma\left(P_{h}^{\delta}\right)} \delta_{\left(\lambda-z_{0}\right) \sqrt{d_{h}\left(z_{0}\right)}}
$$

Correlation functions

The k-point density of $\widetilde{\mathcal{Z}}_{h}^{\delta}$ is defined outside $\Delta=\left\{z \in \mathbb{C}^{k} ; z_{i}=z_{j}\right.$ for $\left.i \neq j\right\}$, to avoid trivial self-correlations, by:

$$
\begin{aligned}
\mathbb{E}\left[\left(\widetilde{\mathcal{Z}}_{h}^{\delta}\right)^{\otimes k}(\varphi)\right] & =\mathbb{E}\left[\sum_{\lambda_{1}, \ldots, \lambda_{k} \in \sigma\left(P_{h}^{\delta}\right)} \varphi\left(\lambda_{1}, \ldots, \lambda_{k}\right)\right] \\
& =\int_{\Omega^{k}} \varphi(z) d_{h}^{k}\left(z_{1}, \ldots, z_{k}\right) L\left(d z_{1} \cdots d z_{k}\right), \quad \varphi \in \mathcal{C}_{0}\left(\mathbb{C}^{k} \backslash \Delta\right)
\end{aligned}
$$

k-point correlation function:

$$
K_{h}^{k}\left(z_{1}, \ldots, z_{k}\right):=\frac{d_{h}^{k}\left(z_{1}, \ldots, z_{k}\right)}{d_{h}^{1}\left(z_{1}\right) \cdots d_{h}^{1}\left(z_{k}\right)} \quad\left(z_{1}, \ldots, z_{k}\right) \in \mathbb{C}^{k} \backslash \Delta
$$

Local Statistics: 2-point correlation function

$$
K_{h}^{2}\left(z_{1}, z_{2}\right)=\frac{d_{h}^{2}\left(z_{1}, z_{2}\right)}{d_{h}^{1}\left(z_{1}\right) d_{h}^{1}\left(z_{2}\right)}
$$

For $P_{h}^{\delta}=h D_{x}+g(x)+\delta Q_{\omega}$, with $p^{-1}(z)=\left\{\rho_{+}(z), \rho_{-}(z)\right\}$ for each $z \in \Omega$ [Hager '06] \rightarrow universal limiting behaviour (scaling limit):

Theorem (V '14)

For any $z_{0} \in \Omega$ and any $w_{1} \neq w_{2} \in \mathbb{C}$, we have

$$
K_{h}^{2}\left(z_{0}+d_{h}\left(z_{0}\right)^{-1 / 2} w_{1}, z_{0}+d_{h}\left(z_{0}\right)^{-1 / 2} w_{2}\right) \longrightarrow \widetilde{K}^{2}\left(w_{1}, w_{2}\right)=\kappa\left(\frac{\pi}{2}\left|w_{1}-w_{2}\right|^{2}\right)
$$

as $h \rightarrow 0$, with

$$
\kappa(t)=\frac{\left(\sinh ^{2} t+t^{2}\right) \cosh t-2 t \sinh t}{\sinh ^{3} t}
$$

\rightarrow the scaling limit is independent of z_{0} and a function of the distance;
\rightarrow quadratic repulsion at short distances : $\kappa(t)=t\left(1+\mathcal{O}\left(t^{2}\right)\right), t \rightarrow 0$;
\rightarrow decorrelation at long distances : $\kappa(t)=1+\mathcal{O}\left(t^{2} \mathrm{e}^{-2 t}\right), t \rightarrow+\infty$.

Scaling limit is not Ginibre

LHS Red line: $r \mapsto \kappa\left(r^{2}\right)$, with

$$
\widetilde{K}^{2}\left(w_{1}, w_{2}\right)=\kappa\left(\frac{\pi}{2}\left|w_{1}-w_{2}\right|^{2}\right) .
$$

Blue circles: Numerically obtained histogram data of $K_{h}^{2}, h=10^{-3}$, averaged over 200 realisations of Gaussian random matrices.

RHS \widetilde{K}^{2} differs from the 2-point function of the Ginibre ensemble (Q_{ω} alone, in the Gaussian case) :

$$
\widetilde{K}_{\text {Ginibre }}^{2}\left(w_{1}, w_{2}\right)=1-\mathrm{e}^{-\pi\left|w_{1}-w_{2}\right|^{2}} .
$$

The Gaussian analytic function

Random analytic function (RAF)

$$
g: \text { Proba space } \longrightarrow \mathcal{H}(O)
$$

Gaussian analytic function (GAF)

$$
\begin{aligned}
& \left(g\left(z_{1}\right), \ldots g\left(z_{n}\right)\right) \sim \mathcal{N}_{\mathbb{C}}(0, \Sigma), \quad \text { for all } z_{1}, \ldots, z_{n} \in O, n \in \mathbb{N} \\
& \Sigma_{i, j}=\mathbb{E}\left[g\left(z_{i}\right) \overline{g\left(z_{j}\right)}\right]=: C\left(z_{i}, \bar{z}_{j}\right)
\end{aligned}
$$

where C is called the covariance kernel \rightarrow distribution of g.
Example: $\alpha_{n} \sim \mathcal{N}_{\mathbb{C}}(0,1)$ iid

$$
g(z)=\sum_{n \geq 0} \alpha_{n} \frac{\pi^{n / 2} z^{n}}{\sqrt{n!}}, \quad C(z, \bar{w})=\mathrm{e}^{\pi z \bar{w}}, \quad \xi_{G A F}=\sum_{\lambda \in g^{-1}(0)} \delta_{\lambda}
$$

- GAF \Rightarrow covariance kernel determines all k-point correlation functions of $\xi_{G A F}$ (Kac-Rice formula)!
- \widetilde{K}^{2} of Hager's model $=K_{G A F}^{2}$,

GAF and Universality

- [Hannay '95] studied the statistics of random spin states $\rightarrow K_{G A F}^{2}$ as a scaling limit of the 2-point correlation function.
- [Bleher-Shiffman-Zelditch '00] zeros of random holomorphic sections of $L^{\otimes N}$, where L is a positive Hermitian line bundle over a compact Kähler manifold M, in the limit $N \rightarrow \infty$.
\rightarrow for $\operatorname{dim}_{\mathbb{C}} M=1$, they obtain $K_{G A F}^{k}(z)$ as the scaling limit k-point correlation function.

Theorem (Nonnenmacher-V '16)

Assume that $p^{-1}(z)=\left\{\rho(z)_{+}, \rho(z)_{-}\right\}$for any $z \in \Omega \Subset \Sigma \Sigma^{\circ}$. Then,

$$
\widetilde{\mathcal{Z}}_{h}^{\delta} \xrightarrow{d} \xi_{G A F}, \quad h \rightarrow 0 .
$$

Moreover, for any $k \geq 1$ and any $z_{0} \in \dot{\Sigma}$ the k-point correlation function of $\widetilde{\mathcal{Z}}_{h}^{\delta}$ satisfies the scaling limit

$$
\forall w \in \mathbb{C}^{k} \backslash \Delta: \quad K_{h}^{k}(w) \longrightarrow K_{G A F}^{k}(w), \text { as } h \rightarrow 0,
$$

where $K_{G A F}^{k}$ is the k-point correlation function of $\xi_{G A F}$.

Sketch of the Proof

From Eigenvalues to Zeros of a RAF

z-(anti)-holomorphic quasimodes (WKB)

$$
\begin{aligned}
& \widetilde{e}_{ \pm}(x, z ; h)=\chi_{ \pm}(x) \mathrm{e}^{\frac{i}{h} \varphi_{ \pm}(x, z)}, \quad\left\|\widetilde{e}_{ \pm}\right\|=\mathrm{e}^{\frac{1}{h} \Phi_{ \pm}(z ; h)} \\
& e_{ \pm}=\widetilde{e}_{ \pm} \mathrm{e}^{-\frac{1}{h} \Phi_{ \pm}} \Longrightarrow\left\|\left(P_{h}-z\right) e_{+}\right\|,\left\|\left(P_{h}-z\right)^{*} e_{-}\right\|=\mathcal{O}\left(h^{\infty}\right) \\
& \mathrm{WF}_{h}\left(e_{ \pm}\right)=\left\{\rho_{ \pm}\right\}
\end{aligned}
$$

Grushin problem for $P_{h}^{\delta}-z$
\rightarrow Set

$$
R_{+} u=\left(u \mid e_{+}\right), u \in H^{1}\left(S^{1}\right), \quad R_{-} u_{-}=u_{-} e_{-}, u_{-} \in \mathbb{C}
$$

Then

$$
\left(\begin{array}{cc}
P_{h}-z & R_{-} \\
R_{+} & 0
\end{array}\right): H^{1}\left(S^{1}\right) \times \mathbb{C} \rightarrow L^{2}\left(S^{1}\right) \times \mathbb{C} \text { is of inverse }\left(\begin{array}{cc}
E(z) & E_{+}(z) \\
E_{-}(z) & E_{-+}(z)
\end{array}\right)
$$

\rightarrow Schur's complement formula $\Longrightarrow z \in \sigma\left(P_{h}\right) \Longleftrightarrow E_{-+}(z)=0$
$\rightarrow e_{ \pm}$are h^{∞}-quasimodes for $P_{h} \Longrightarrow E_{-+}(z)=\mathcal{O}\left(h^{\infty}\right)$
Use same Grushin Problem for $P_{h}^{\delta}-z$ to obtain:

$$
E_{-+}^{\delta}(z)=E_{-+}(z)-\delta\left(Q_{\omega} e_{+}(z) \mid e_{-}(z)\right)+\mathcal{O}\left(\delta^{2} h^{5 / 2}\right)
$$

By Shur's formula: study the zeros of $E_{-+}^{\delta}(z)$.

Zeros of a RAF

E_{-+}^{δ} only smooth in z, but can be made holomorphic as it satisfies a $\bar{\partial}$-equation:

$$
\partial_{\bar{z}} E_{-+}^{\delta}(z)+\partial_{\bar{z}} f^{\delta}(z) E_{-+}^{\delta}(z)=0
$$

We are then left to study the zeros of the RAF

$$
F^{\delta}(z)=(Q_{\omega} \widetilde{e}_{+}(\underbrace{z_{0}+h^{1 / 2} z}_{=\widetilde{z}}) \mid \widetilde{e}_{-}\left(z_{0}+h^{1 / 2} z\right))+\text { small }
$$

1) Q_{ω} can couple $\widetilde{e}_{-}(z)$ to $\widetilde{e}_{+}(z)$

2) $g_{h}(z)=\left(Q_{\omega} \widetilde{e}_{+}(\tilde{z}) \mid \widetilde{e}_{-}(\tilde{z})\right) \xrightarrow{d} G A F, h \rightarrow 0$
3) For any $\varepsilon>0$ we have $\mathbb{P}[\mid$ small $\mid>\varepsilon] \rightarrow 0$, as $h \rightarrow 0$.

$$
\Longrightarrow \quad F^{\delta}(z) \xrightarrow{d} G A F
$$

4) [Shirai '12] observed that this implies that

$$
\xi_{F^{\delta}(z)} \xrightarrow{d} \xi_{\mathrm{GAF}}, \quad h \rightarrow 0, \quad \xi_{f}=\sum_{\lambda \in f^{-1}(0)} \delta_{\lambda}
$$

Covariance and CLT

$$
g_{h}(z)=\left(Q_{\omega} \widetilde{e}_{+}(\tilde{z}) \mid \widetilde{e}_{-}(\tilde{z})\right)=\sum_{i, j<N(h)} \alpha_{i, j}\left(\widetilde{e}_{+}(\tilde{z}) \mid e_{i}\right)\left(e_{j} \mid \widetilde{e}_{-}(\tilde{z})\right) \xrightarrow{d} G A F, h \rightarrow 0 .
$$

Covariance

$$
\mathbb{E}\left[g_{h}(z) \overline{g_{h}(w)}\right]=\left(\widetilde{e}_{+}(z) \mid \widetilde{e}_{+}(w)\right)\left(\widetilde{e}_{-}(w) \mid \widetilde{e}_{-}(z)\right)+\mathcal{O}\left(h^{\infty}\right)
$$

$\widetilde{e}_{ \pm}(z)$ microlocalized in a \sqrt{h}-neighbourhood of $\rho_{ \pm}(z)$, thus

$$
\left(\widetilde{e}_{ \pm}\left(z_{0}+h^{1 / 2} z\right) \mid \widetilde{e}_{ \pm}\left(z_{0}+h^{1 / 2} w\right)\right)=\mathrm{e}^{\sigma_{ \pm}\left(z_{0}\right) z \bar{w}+\mathcal{O}(\sqrt{h})}
$$

where $\sigma_{+}+\sigma_{-}=d\left(z_{0}\right) / 2 \Longrightarrow$ rescaling z, w by $\sqrt{d\left(z_{0}\right) /(2 \pi)}$ and performing the limit $h \rightarrow 0^{+}$, yields the covariance kernel

$$
\mathbb{E}\left[\left(Q_{\omega} \widetilde{e}_{+}(z) \mid \widetilde{e}_{-}(z)\right) \overline{\left(Q_{\omega} \widetilde{e}_{+}(w) \mid \widetilde{e}_{-}(w)\right)}\right] \longrightarrow C(z, \bar{w})=\mathrm{e}^{\pi z \bar{w}}, \quad h \rightarrow 0
$$

Central Limit Theorem under the Lyapunov condition we need to check that as $h \rightarrow 0$

$$
\sum_{i, j<N(h)}\left|\left(\widetilde{e}_{+}(\tilde{z}) \mid e_{i}\right)\right|^{4} \cdot\left|\left(e_{j} \mid \widetilde{e}_{-}(\tilde{w})\right)\right|^{4} \longrightarrow 0
$$

More general 1-D Pseudos

Operators with J quasimodes

The operators we consider: P_{h} be the Weyl quantization of $p \in S\left(\mathbb{R}^{2} ; m\right)$

$$
\left(P_{h} u\right)(x)=\frac{1}{2 \pi h} \iint \mathrm{e}^{\frac{i}{h}(x-y) \xi} p\left(\frac{x+y}{2}, \xi\right) u(y) d y d \xi
$$

- $\Omega \in \Sigma$ ́ and $\sigma\left(P_{h}\right) \cap \Omega$ purely discrete

The energy shell: for every $z \in \Omega$

$$
p^{-1}(z)=\left\{\rho_{ \pm}^{j}(z) ; j=1, \ldots, J\right\} \text { with } \pm\{\operatorname{Re} p, \operatorname{Im} p\}\left(\rho_{ \pm}^{j}(z)\right)<0
$$

$\Longrightarrow\left(P_{h}-z\right),\left(P_{h}-z\right)^{*}$ have J quasimodes $e_{ \pm}^{j}(z ; h)$ microlocalized in $\rho_{ \pm}^{j}(z)$.
Grushin Problem for P_{h} :
$\left(\begin{array}{cc}P_{h}-z & R_{-} \\ R_{+} & 0\end{array}\right): H(m) \times \mathbb{C}^{J} \rightarrow L^{2}\left(S^{1}\right) \times \mathbb{C}^{J}$ is of inverse $\left(\begin{array}{cc}E(z) & E_{+}(z) \\ E_{-}(z) & E_{-+}(z)\end{array}\right)$
with

$$
\left(R_{+} u\right)_{k}=\left(u \mid e_{+}^{k}\right), u \in H(m), \quad R_{-} u_{=} \sum_{k} u_{-}^{k} e_{-}^{k}, u_{-} \in \mathbb{C}^{J}
$$

Operators with J quasimodes - Random Matrix

$$
z \in \sigma\left(P_{h}^{\delta}\right) \Longleftrightarrow \operatorname{det} E_{-+}^{\delta}(z)=(-\delta)^{J} \operatorname{det}\left[\left(Q_{\omega} e_{+}^{i}(z) \mid e_{-}^{j}(z)\right)_{i j}\right]+\text { small }=0
$$

1) Rescale: $\tilde{z}=z_{0}+h^{1 / 2} z$
2) $\left(Q_{\omega} e_{+}^{i}(\tilde{z}) \mid e_{-}^{j}(\tilde{z})\right) \xrightarrow{d} \mathrm{GAF}_{i j}, h \rightarrow 0$ with covariance $\mathrm{e}^{\left(\sigma_{-}^{j}+\sigma_{+}^{j}\right) z \bar{w}}, h \rightarrow 0$
3) $\mathrm{GAF}_{i j}$ are independent
4) $\sum_{j=1}^{J}\left(\sigma_{+}^{j}(z)+\sigma_{-}^{j}(z)\right) L(d z)=p_{*}(d \xi \wedge d x)$.

Theorem (Nonnenmacher-V '16)
For any $z_{0} \in \stackrel{\circ}{\Sigma}$

$$
\sum_{\lambda \in \operatorname{Spec}\left(P+\delta Q_{\omega}\right)} \delta_{\left(\lambda-z_{0}\right) h^{-1 / 2}} \xrightarrow{d} \sum_{\lambda \in F^{-1}(0)} \delta_{\lambda}, \quad F(z)=\operatorname{det}\left(G A F_{i, j}(z)\right)_{1 \leq i, j \leq J}
$$

Question: What is the statistics of the zeros of $\operatorname{det}\left(\mathrm{GAF}_{i j}\right)$?

Operators with J quasimodes - Random Matrix

Blue circles: numerically obtained histogram data of the rescaled 2-point correlation function of the operators ($h=10^{-3}, \delta=10^{-12}$)

$$
P_{J}^{\delta}=\left(h D_{x}\right)^{2}+\mathrm{e}^{-i(J / 2) x}+\delta Q_{\omega}, \quad J=2,6,10 \text { (\# of quasimodes) }
$$

Red line: for comparison, the scaling limit 2-point correlation function of the Ginibre ensemble (as a function of the distance).

Conjecture

For $J \geq 1$, two eigenvalues repel each other quadratically (at the scale of \sqrt{h}).

Operators with J quasimodes - Random Potential

- Now: perturbation by (RP) δV_{ω}, with $V_{\omega}(x)=\sum_{k<C / h} \alpha_{k} e_{k}(x)$.
- Symmetric symbol $p(x, \xi)=p(x,-\xi)$

$$
\Longrightarrow \rho_{ \pm}^{j}(z)=\left(x^{j}, \pm \xi^{j}\right), \text { with } x^{i} \neq x^{j} \text { for } i \neq j \text {. }
$$

Effective Hamiltonian: $\operatorname{det} E_{-+}^{\delta}(z)=(-\delta)^{J} \operatorname{det}\left[\left(V_{\omega} e_{+}^{i}(z) \mid e_{-}^{j}(z)\right)_{i j}\right]+$ small

1) The effect of V_{ω} is local:

$$
\left(V_{\omega} e_{+}^{i}(z) \mid e_{-}^{j}(z)\right)=\int V e_{+}^{i}(z) \overline{e_{-}^{j}(z)} d x
$$

$$
\Longrightarrow V_{\omega} \text { can couple } e_{-}^{j} \text { and } e_{+}^{j} \Longleftrightarrow x^{i}=x^{j}
$$

2) $\left(V_{\omega} e_{+}^{i}(z) \mid e_{-}^{j}(z)\right)=\mathcal{O}\left(h^{\infty}\right)$ for $i \neq j$
3) Rescale: $\tilde{z}=z_{0}+h^{1 / 2} z$
4) $\left(V_{\omega} e_{+}^{i}(\tilde{z}) \mid e_{-}^{i}(\tilde{z})\right) \xrightarrow{d} \mathrm{GAF}_{i}$, with covariance

$$
\mathrm{e}^{2 \sigma_{i} z \bar{w}} \text { and } 2 \sum_{i} \sigma_{i}(z) L(d z)=p_{*}(d \xi \wedge d x)
$$

Moreover, the GAF_{i} are independent !

$$
\Longrightarrow(-\delta \sqrt{h})^{-J} \operatorname{det} E_{-+}^{\delta}(z) \xrightarrow{d} \prod_{i=1}^{J} G A F_{i}(z), \quad \text { as } h \rightarrow 0 .
$$

Operators with J quasimodes - Random Potential

Theorem (Nonnenmacher-V '16)

For any $z_{0} \in \Sigma$

$$
\sum_{\lambda \in \operatorname{Spec}\left(P+\delta V_{\omega}\right)} \delta_{\left(\lambda-z_{0}\right) h-1 / 2} \xrightarrow{d} \sum_{\lambda \in \bigcup_{j=1}^{J} G A F_{i}^{-1}(0)} \delta_{\lambda}, \quad h \rightarrow 0
$$

\Longrightarrow Around z_{0} the local rescaled limiting point process of eigenvalues of P_{h}^{δ} is given by the superposition of J independent GAF-processes with covariance kernel $\mathrm{e}^{2 \sigma_{i} u \bar{v}}$.
\Longrightarrow The global k-point densities can be obtained from the k-point density of each of these J GAF-processes.
Absence of close range repulsion: For $\left|z_{1}-z_{2}\right| \ll 1$

$$
K^{2}\left(z_{1}, z_{2}\right)=1-\sum_{j=1}^{J} \frac{\left(\sigma_{+}^{j}\left(z_{0}\right)\right)^{2}}{\left(\sum_{j=1}^{J} \sigma_{+}^{j}\left(z_{0}\right)\right)^{2}}\left[1-\frac{\sigma_{+}^{j}\left(z_{0}\right)}{4}\left|z_{1}-z_{2}\right|^{2}\left(1+\mathcal{O}\left(\left(\left|z_{1}-z_{2}\right|^{2}\right)^{2}\right)\right]\right.
$$

Long range decorrelation: For $\left|z_{1}-z_{2}\right| \gg 1$

$$
K^{2}\left(z_{1}, z_{2}\right)=1+\mathcal{O}\left(\mathrm{e}^{-\min _{j}^{j} \sigma_{+}^{j}\left(z_{0}\right)\left|z_{1}-z_{2}\right|^{2} / 2}\right) .
$$

Operators with J quasimodes - Random Potential

Blue circles: numerically obtained histogram data of the rescaled 2-point correlation function of the operators ($h=10^{-3}, \delta=10^{-12}$)

$$
P_{J}^{\delta}=\left(h D_{x}\right)^{2}+\mathrm{e}^{-i(J / 2) x}+\delta V_{\omega}, \quad J=2,4,6 \text { (\# of quasimodes) }
$$

\rightarrow Absence of quadratic repulsion at the origin! The presence of J independent processes allows for clusters of size $\leq J$ eigenvalues.

Conclusions and Perspectives

1) Macroscopic distribution is given by a Weyl law (with good probability).
2) Microscopic distribution is universal but depends on the structure of the energy shell and type of random perturbation.

- Case of J quasimodes and perturbation by a random matrix ?
- Eigenvalue correlations for P_{h}^{δ} close to the pseudospectral boundary;

3) NSA operators in dimension $d>1$: the energy shell is a codimension 2 submanifold \Longrightarrow number of quasimodes is $\sim h^{1-d} \Longrightarrow E_{-+}^{\delta}$ is a large "random matrix".
4) Weaker non-selfadjointness

- In our case: the non-normality comes from the principal symbol p.
- In the case of the damped wave equation (Sjöstrand '00, Anantharaman '10) the principal symbol is real-valued and the non-normality comes from the subprincipal symbol.
- The effects of random perturbations in this case are as of yet unknown.

Merci de votre attention

