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Hypothesis

Given observations X1, . . . ,Xn, assume that P (Xj > x) = x−αjL(x),
j = 1, . . . , n, where αj > 0 and L is a slowly varying function
(L (cx) /L (x)→ 1 for all positive c as x → +∞). The number αj is
called the tail index of Xj .

We consider the testing problem (H,A):

H : α1 = · · · = αn

against

A : α1 = · · · = αk 6= αk+1 = · · · = αn

for some k ∈ {1, . . . , n − 1} .
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Estimation of the tail index of a random variable

Let X be a random variable with distribution function F having regularly
varying tail with index −α, α > 0, that is
F̄ (x) := P (X > x) = x−αL(x), where L is slowly varying at infinity. It
can be shown that

lim
u→∞

E
[
log
(
X
u

)
| X > u

]
= lim

u→∞

E
[
log
(X

u
)

1 {X > u}
]

P (X > u) = 1
α
.

Thus, the tail index of a stationary time series Xj , j ∈ N, with marginal
distribution F having regularly varying tail with index −α, α > 0, can be
estimated using the estimator γ̂ defined by

γ̂ = 1∑n
j=1 1 {Xj > un}

n∑
j=1

log
(
Xj
un

)
1 {Xj > un} ,

where un, n ∈ N, is a sequence such that un →∞ and nF̄ (un)→∞.
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Test statistic

Let

γ̂n,k = 1∑k
j=1 1 {Xj > un}

k∑
j=1

log
(
Xj
un

)
1 {Xj > un}

and

Γk,n = k
n

∣∣∣∣ γ̂n,k
γ̂n,n
− 1
∣∣∣∣ .

Since the location of the change of tail parameter k is unknown, we
define the test-statistic

Γn := max
16k6n−1

Γk,n.
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Empirical process

In order to find the limiting distribution of the test statistics, similar to
Kulik and Soulier (2011) we consider the two-parameter tail empirical
process (TEP)

en(s, t) =
{
T̃n(s, t)− T (s, t)

}
, s > 1, t ∈ [0, 1],

where

T̃n(s, t) = 1
nF̄ (un)

[nt]∑
j=1

1 {Xj > uns}

and
T (s, t) = ts−α.

Then ∫ +∞

1

1
s T̃n(s, t)ds =

n∑
j=1

log
(
Xj
un

)
1 {Xj > un} .
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Stochastic volatility model
We will consider the case of the stochastic volatility model:

Xj = σ (Yj) εj ,

where
• (εj)j∈Z is an i.i.d. sequence of random variables with E [ε1] = 0;
• σ is a non-negative measurable function;
• Yj , j > 1, is a stationary, long-range dependent Gaussian process,
that is,

Yj =
∞∑

k=1
ckηj−k ,

∞∑
k=1

c2
k = 1 ,

for i.i.d. Gaussian random variables ηj , j ∈ Z, with E [η1] = 0,
var η1 = 1, ((εj , ηj))j∈Z is independent and

γY (k) := cov (Yj ,Yj+k) =
∑
`>0

c`c`+k = k−DLγ (k) ,

where D ∈ (0, 1) and Lγ slowly varying at ∞.
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Covariance of the process (σ (Yj))j>1
Let ϕ be the density of the standard normal distribution. Every
G ∈ L2(R, ϕ(x)dx) has an expansion in Hermite polynomials, i.e. for
G ∈ L2(R, ϕ(x)dx) and X standard normally distributed, we have

G(X ) =
∞∑

r=0

Jr (G)
r ! Hr (X ),

where the so-called Hermite coefficient Jr (G) is given by

Jr (G) := 〈G ,Hr 〉L2 = E [G(X )Hr (X )] ,

and Hr is the r -th Hermite polynomial.

Let m := min {k > 1 : Jk(G) 6= 0} . be the Hermite rank of G . Then

d2
n := var

( n∑
j=1

Hm(Yj)
)
∼ cmn2−mDLm(n), cm = 2m!

(1− Dm)(2− Dm) .
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Type of assumptions

(TA.1)

P (X1 > x) = cx−α exp
(∫ x

1

η∗ (u)
u du

)
,

where η∗ (u) = u−ρLη∗ (u), ρ > 0, Lη∗ slowly varying;

(TA.2) Assumptions on the moments of σ (Y1) and 1/σ (Y1).

(TA.3) η∗(un) = o
(

dn
n + 1√

nF̄ (un)

)
.

Example
Assume that η∗(x) = x−αβ for some β > 0; then, for x →∞,
P (X1 > x) = C

(
x−α +O(x−α(β+1))

)
. Taking σ such that

0 < c 6 σ (x) 6 C , x ∈ R, the assumptions (TA.1-2) are satisfied.
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Limit of the empirical process
Theorem (Betken, G., Kulik (2019+))
Assume that the technical assumptions hold. Let

en (s, t) := 1
nF̄ (un)

[nt]∑
j=1

1 {Xj > uns} − ts−α.

• If n
dn

= o
(√

nF̄ (un)
)

,

n
dn

en(s, t)⇒ s−α

E [σα(Y1)]
Jq(Ψ)

q! Zq(t),

where ⇒ denotes weak convergence in D ([1,∞]× [0, 1]), Ψ(y) = σα(y),
q is the Hermite rank of Ψ.

• If
√

nF̄ (un) = o
( n

dn

)
, √

nF̄ (un)en(s, t)⇒ Bs−α,t

in D ([1,∞]× [0, 1]), where B denotes a standard Brownian sheet.
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Explanation of the two cases
We consider the following decomposition:

en(s, t) = 1
nF̄Z (un)

bntc∑
j=1

(1 {Xj > uns} − E [1 {Xj > uns} | Fj−1])

+ 1
nF̄Z (un)

bntc∑
j=1

(
E [1 {Xj > uns} | Fj−1)− F̄ (uns)

]
= Mn(s, t) + Rn(s, t),

where
Fj := σ (εk , ηk , k ∈ Z, k 6 j) .

We call Mn the martingale part, while we refer to Rn as the long memory
part.

If n
dn

= o
(√

nF̄ (un)
)
, the martingale part is negligible.
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Convergence of the tail estimator

γ̂n(t) =

∑[nt]
j=1 log

(
Xj
un

)
1{Xj > un}∑bntc

j=1 1{Xj > un}
.

Corollary (Betken, G., Kulik (2019+))
Under the technical assumptions,

• if n
dn

= o
(√

nF̄ (un)
)
, then

n
dn

t (γ̂n(t)− γ)→ 0 in probability in D[0, 1];

• if
√
nF̄ (un) = o

(
n
dn

)
, then√

nF̄ (un)t
(
γ̂n(t)− α−1)⇒ 1

α
B in distribution in D[0, 1],

where B is a standard Brownian motion.
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Convergence of the test statistic

Corollary (Betken, G., Kulik (2019+))
Under the technical assumptions,

• if n
dn

= o
(√

nF̄ (un)
)
, then

n
dn

sup
t∈[0,1]

t
∣∣∣∣ γ̂n(t)
γ̂n
− 1
∣∣∣∣→ 0 in probability;

• if
√
nF̄ (un) = o

(
n
dn

)
, then

√
nF̄ (un) sup

t∈[0,1]
t
∣∣∣∣ γ̂n(t)
γ̂n
− 1
∣∣∣∣ D=⇒ 1

α
sup

t∈[0,1]
|B(t)− tB(1)|

where B is a standard Brownian motion.
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Conclusion

What we have done:

• Convergence of the empirical process.

• Convergence of the tail estimator and test statistic when the
martingale part dominates.

Remaining questions:

• Find the good normalisation for the tail estimator when the long
memory part dominates.

• Treat the case where n/dn and
√
nF̄ (un) are equivalent.
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