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Definition of U-statistics

In order to estimate parameters expressable as E [h (X , Y )] via an empirical
mean, where X and Y are i.i.d. and h : R × R → R, the U-statistic of kernel h,
defined

Un :=
∑

1⩽i<j⩽n

h (Xi , Xj) , n ⩾ 2,

where (Xj)j⩾1 is i.i.d., was introduced by Hoeffding (1948).

One can take as estimator Un/
(n

2

)
, which is unbiaised.

General goal : understand the asymptotic behavior of (Un)n⩾2.

Notice that for each i < j, h (Xi , Xj) has the same law as h (X1, X2). The
U-statistic Un can be viewed as partial sums of the non-independent random
variables Dj :=

∑j−1
i=1 h (Xi , Xj).
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Examples

1. Suppose that (Xi )i⩾1 is i.i.d., centered, and such that E [|X1|p] < ∞ for
some 1 ⩽ p < 2 and h (x , y) = x + y . Then

Un = (n − 1)
n∑

k=1

Xk

hence Un/n1+1/p → 0 almost surely.
2. Suppose that (Xi )i⩾1 is i.i.d., centered, E [|X1|p] < ∞ for some 1 ⩽ p < 2

and h (x , y) = x · y . Then

Un = 1
2

((
n∑

k=1

Xk

)2

−
n∑

k=1

X 2
k

)

hence Un/n2/p → 0 almost surely for each 1 ⩽ p < 2. In this case, the
weaker normalization n2/p can be taken.
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Other examples of kernels

Recall that
Un :=

∑
1⩽i<j⩽n

h (Xi , Xj) , n ⩾ 2.

3. Variance estimator : h (x , y) := (x − y)2 /2.

4. Gini mean differences : h (x , y) = |x − y |.

5. Grassberger-Procaccia estimator : for fixed t > 0,
h (x , y) = 1 {|x − y | ⩽ t}.

6. h (x , y) = sgn (x − y).
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Martingale property ?

Let Dj :=
∑j−1

i=1 h (Xi , Xj) where (Xi )i⩾0 is i.i.d.. Then Un =
∑n

j=2 Dj . We
would like to know whether (Dj)j⩾2 is a martingale difference sequence for the
filtration (Fj)j⩾1, where Fj = σ (Xk , 1 ⩽ k ⩽ j).
Using the property

E [Y | F ∨ G] = E [Y | F ]
valid if G is independent of σ (Y ) ∨ F , we derive

E [Dj | Fj−1] =
j−1∑
i=1

E [h (Xi , Xj) | σ (Xk , 1 ⩽ k ⩽ j − 1)]

=
j−1∑
i=1

E [h (Xi , Xj) | σ (Xi ) ∨ σ (Xk , 1 ⩽ k ⩽ j − 1, k ̸= i)]

=
j−1∑
i=1

E [h (Xi , Xj) | Xi ]

=
j−1∑
i=1

h1 (Xi ) , with h1 (x) = E [h (x , X2)]

hence E [Dj | Fj−1] = 0 if and only if E [h (X1, X2) | X1] = 0.
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Tool : Hoeffding’s decomposition

Let h : R2 → R be a measurable function and let (Xi )i⩾1 be an i.i.d. sequence.
Let

Un =
∑

1⩽i<j⩽n

h (Xi , Xj) .

We define θ := E [h (X1, X2)],

h1 (x) = E [h (x , X2)] − θ, h2 (y) = E [h (X1, y)] − θ,

h3 (x , y) = h (x , y) − h1 (x) − h2 (y) − θ.

Then

Un =
(

n
2

)
θ +

n−1∑
i=1

(n − i) h1 (Xi ) +
n∑

j=2

(j − 1) h2 (Xj) +
∑

1⩽i<j⩽n

h3 (Xi , Xj)

and

E [h3 (Xi , Xj) | X1, . . . , Xj−1] = E [h3 (Xi , Xj) | Xi+1, . . . , Xn] = 0.
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Symmetric case

We assume in this slide that h is symmetric, that is, h (x , y) = h (y , x) for each
x , y ∈ R. We got previously

Un =
(

n
2

)
θ +

n−1∑
i=1

(n − i) h1 (Xi ) +
n∑

j=2

(j − 1) h2 (Xj) +
∑

1⩽i<j⩽n

h3 (Xi , Xj) .

Symmetric of h implies that h1 = h2 hence

Un =
(

n
2

)
θ + (n − 1)

n∑
i=1

h1 (Xi ) +
∑

1⩽i<j⩽n

h3 (Xi , Xj) .

The term (n − 1)
∑n

i=1 h1 (Xi ) is called linear part ; the term∑
1⩽i<j⩽n h3 (Xi , Xj) degenerate part.

We say that h is degenerate if E [h (X1, X2) | X1] = 0 a.s.
When h is not supposed to be symmetric, degeneracy means
E [h (X1, X2) | X1] = E [h (X1, X2) | X2] = 0.
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Treatment of the degenerated part

Denote Un (h3) =
∑

1⩽i<j⩽n h3 (Xi , Xj) the degenerate part.
We combine the martingale property for the summation over i and j with
Burkholder’s inequality.
Moment of order 2 : if (i , j) ̸= (k, ℓ), then E [h3 (Xi , Xj) h3 (Xk , Xℓ)] = 0
(indeed, if j ̸= ℓ, one has
E [h3 (Xi , Xj) h3 (Xk , Xℓ)] = E

[
E
[
h3 (Xi , Xj) h3 (Xk , Xℓ) | X1, . . . , Xmin{j,ℓ}−1

]]
= 0

and if j = ℓ, then necessarily i ̸= k and
E [h3 (Xi , Xj) h3 (Xk , Xℓ)] = E

[
E
[
h3 (Xi , Xj) h3 (Xk , Xℓ) | Xmax{i,k}+1, . . . , Xℓ

]]
= 0).

Consequently,

E
[

max
2⩽n⩽N

Un (h3)2
]
⩽ 4

∑
1⩽i<j⩽N

E
[
h2

3 (Xi , Xj)
]
⩽ KN2E

[
h2

3 (X1, X2)
]

.

Moment of order 1 < p < 2 :

E
[

max
2⩽n⩽N

|Un (h3)|p
]
⩽ KpN2E [|h3 (X1, X2)|p] .

Moment of order p > 2 :

E
[

max
2⩽n⩽N

|Un (h3)|p
]
⩽ KpNpE [|h3 (X1, X2)|p] .
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Law of large numbers

Hoeffding (1948) showed that if (Xi )i⩾1 is i.i.d. and E [|h (X1, X2)|] < ∞, then
Un (h) /

(n
2

)
→ E [h (X1, X2)] almost surely.

Proposition (Giné, Zinn (1991))
Let (Xi )i⩾1 be an i.i.d. sequence and h : R × R → R be a measurable function.
Let 1 ⩽ p < 2. Suppose that E [|h (X1, X2)|p] < ∞.

If h is degenerate with respect to (Xi )i⩾1 (that is,
E [h (X1, X2) | X1] = 0 = E [h (X1, X2) | X2] a.s.), then

1
n2/p

∣∣∣∣∣ ∑
1⩽i<j⩽n

h (Xi , Xj)

∣∣∣∣∣→ 0 a.s.

If we only assume that E [h (X1, X2)] = 0, then

1
n1+1/p

∣∣∣∣∣ ∑
1⩽i<j⩽n

h (Xi , Xj)

∣∣∣∣∣→ 0 a.s.
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Control of the maximal function

Proposition (G. (2024))
Let (Xi )i⩾1 be an i.i.d. sequence and let h : R × R → H be a measurable
function, where (H, ⟨·, ·⟩) is a separable Hilbert space. Let 1 ⩽ p < 2.

If h is degenerate for (Xi )i⩾1 (that is,
E [h (X1, X2) | X1] = E [h (X1, X2) | X2] = 0 a.s.), then

sup
t>0

tpP

(
sup
n⩾1

1
n2/p

∥∥∥∥∥ ∑
1⩽i<j⩽n

h (Xi , Xj)

∥∥∥∥∥ > t

)
H

⩽ κpE [|h (X1, X2)|p] .

If we only assume that E [h (X1, X2)] = 0, then

sup
t>0

tpP

sup
n⩾1

1
n1+1/p

∥∥∥∥∥ ∑
1⩽i<j⩽n

h (Xi , Xj)

∥∥∥∥∥
H

> t

 ⩽ κpE [|h (X1, X2)|p] .
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Generalizations of U-statistic of order two

1. We can consider U-statistics of higher order : for h : Rm → R,

Un =
∑

1⩽i1<···<ik⩽m

h (Xi1 , . . . , Xim ) .

2. It is also possible to replace h by a function depending on (i1, . . . , im) :

Un =
∑

1⩽i1<···<im⩽n

hi1,...,im (Xi1 , . . . , Xim ) .

3. The random variables Xi can take their values in a measurable space
(S, S).
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Goal

Let h : S2 → H be a measurable function, where (S, d) is a separable metric
space and H a separable Hilbert space. Let (Xi )i⩾1 be a strictly stationary
sequence.
For 1 ⩽ p < 2, we study the almost sure convergence of

1
n1+1/p

∥∥∥∥∥ ∑
1⩽i<j⩽n

(h (Xi , Xj) − E [h (Xi , Xj)])

∥∥∥∥∥
H

to 0 and when it is possible, that of

1
n2/p

∥∥∥∥∥ ∑
1⩽i<j⩽n

(h (Xi , Xj) − E [h (Xi , Xj)])

∥∥∥∥∥
H

.

The assumptions will concern the dependence of (Xi )i⩾1 and the moments of
the random variables ∥h (X1, Xj)∥H, j ⩾ 2.

14 / 22



U-statistics of independent data Mixing data

Why do we consider Hilbert-space valued kernel and data with values in a
metric space ?

Some robust tests (Chakraborty and Chaudhuri (2015, 2017) ; Wegner
and Wendler (2023), Jiang, Wang and Shao (2023) ) are based on a
generalization of the real-valued kernel h (x , y) = sgn (x − y), which is
given by

h : H × H → H, h (x , y) =


x−y

∥x−y∥H
if x ̸= y ,

0 if x = y .

Working with metric space valued data allows to consider for instance
functional data.
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Mixing coefficients

Given a strictly stationary sequence (Xi )i⩾1, we define

β (k) := sup
m⩾1

β (σ (Xi , 1 ⩽ i ⩽ m) , σ (Xi , i ⩾ m + k)) ,

where

β (A, B) := 1
2 sup

{
I∑

i=1

J∑
j=1

|P (Ai ∩ Bj) − P (Ai )P (Bj)|

}
,

and the supremum is taken over finite partitions (Ai )I
i=1 , Ai ∈ A and

(Bj)J
j=1 , Bj ∈ B of Ω.

See Rio (2000) for some examples of mixing sequences

16 / 22



U-statistics of independent data Mixing data

Approach (1)

One can still do the Hoeffding’s decomposition, but the martingale property of
the degenerate part does not hold. The convergence of the linear part is
guaranted by existing results : Dedecker et Merlevède (2003, 2006).

We are reduced to show that for each ε > 0,

∞∑
M=0

P

2−M
(

1+ 1
p

)
max

2⩽n⩽2M

∥∥∥∥∥ ∑
1⩽i<j⩽n

h3 (Xi , Xj)

∥∥∥∥∥
H

> ε

 < ∞

in the non-degenerate case ; in the degenerate one, that is, when

E
[
h
(
X1, X ′

1
)

| X1
]

= E
[
h
(
X1, X ′

1
)

| X ′
1
]

= 0

(X ′
1 is an independent copy of X1), the exponent 1 + 1/p has to be replaced by

2/p.

We thus need to control P
(

max2⩽n⩽2M

∥∥∥∑1⩽i<j⩽n h3 (Xi , Xj)
∥∥∥
H

> x
)

for
x > 0.
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Approach (2)

For fixed q ∈
{

1, . . . , 2M−1}, we express
∑

1⩽i<j⩽n h3 (Xi , Xj) as a U-statistic
based on the vectors

Vk,u := (X2uq+k+1, . . . , X2qu+k+q+1) , −q ⩽ k ⩽ q,

plus some remainder terms.
For fixed k, by Berbee (1979) we can find vectors V ∗

k,u such that
• for each u ⩾ 1, Vk,u has the same law as V ∗

k,u ;
• P

(
Vk,u ̸= V ∗

k,u
)
⩽ β (q) and

•
(
V ∗

k,u
)

u⩾1
is independent.

Letting H = ∥h (X1, X ′
1)∥H, we get, for r ⩾ 2, R, x > 0 and 1 ⩽ q ⩽ 2M−1 :

P

 max
2⩽n⩽2M

∥∥∥∥∥ ∑
1⩽i<j⩽n

h3 (Xi , Xj)

∥∥∥∥∥
H

> x

 ⩽ Cr x−r qr 2MrE [H r 1H⩽R ]

+ Cr x−122ME [H1H>R ] + Cr x−1qN sup
j⩾2

E
[
∥h (X1, Xj)∥H

]
+ 2M+2β (q) .
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The results for moments of order smaller than two

Recall that
Un (h) =

∑
1⩽i<j⩽n

h (Xi , Xj) ,

where (Xi )i∈Z is strictly stationary and let Uc
n = Un (h) − E [Un (h)]. Let

H := ∥h (X1, X ′
1)∥H, where X ′

1 is an independent copy of X1. The required
assumptions are of the form

CH(q) : H ∈ Lq

Cβ(γ) :
∑∞

k=1 kγβ (k) < ∞.
We assume that supj⩾2 E

[
∥h (X1, Xj)∥H

]
< ∞. Let 1 < p < 2 and

γ (p, δ) = max
{

p − 2 + p (p − 1)
δ

,
p (p − 1) + (p − 1) δ

p (p − 1) + (p + 1) δ

}
.

We assume that for some δ ∈ (0, 2 − p),

Theorem G. (2024) Non-degenerate case Degenerate case

Assumption on H : CH (p + δ) CH (p + δ)

Assumption on β (·) : Cβ (γ (p, δ)) Cβ

(
(p − 1)

(
1 + p

δ

))
Convergence 1

n1+1/p ∥Uc
n (h)∥H → 0 a.s. 1

n2/p ∥Uc
n (h)∥H → 0 a.s. 19 / 22
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The results for moments of order higher than two

Recall that
Un (h) =

∑
1⩽i<j⩽n

h (Xi , Xj) ,

where (Xi )i∈Z is strictly stationary and let Uc
n = Un (h) − E [Un (h)]. Let

H := ∥h (X1, X ′
1)∥H, where X ′

1 is an independent copy of X1. The required
assumptions are of the form

CH(q) : H ∈ Lq

Cβ(γ) :
∑∞

k=1 kγβ (k) < ∞.
We assume that supj⩾2 E

[
∥h (X1, Xj)∥H

]
< ∞. Let 1 < p < 2.

Theorem G. (2024) Non-degenerate case Degenerate case

Assumption on H CH (p + δ) for some δ ⩾ 2 − p CH (2)

Assumption on β (·) : Cβ (p − 1 + η) and Cβ

( p(p−1)
δ

)
Cβ

( 2(p−1)
2−p + η

)
for some η > 0 for the same δ as in CH

Convergence 1
n1+1/p ∥Uc

n (h)∥H → 0 a.s. 1
n2/p ∥Uc

n (h)∥H → 0 a.s.
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Comparison with previous results

Non-degenerated case : Dehling, Sharipov (2009) : with

γ (p, δ) = max
{

p − 2 + p (p − 1)
δ

,
p (p − 1) + (p − 1) δ

p (p − 1) + (p + 1) δ

}
replaced by max {p − 2 + p (p − 1) /δ, 1}, H = R and h symmetric.

Our result also extends that of Dehling, Sharipov (2009) in the
degenerate case, since we treat the not-necessarily symmetric case and the
Hilbert-space valued case.
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Remaining questions

1. Treatment of incomplete U-statistics :

U inc
n =

∑
1⩽i<j⩽n

Zn,i,jh (Xi , Xj) ,

where (Zn,i,j)1⩽i<j is i.i.d., independent of (Xi )i⩾1 and Zn,i,j has a
Bernoulli distribution with parameter pn.

2. Treatment of U-statistics of higher order : for h : Sm → H,

Un =
∑

1⩽i1<···<im⩽n

h (Xi1 , . . . , Xim ) .

3. α-mixing sequences can also be considered. Assumptions on the kernel
have to be made, since we can only control the probability that distance
between the original random variables and the coupled ones is bigger than
some number.
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