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Stationary random fields : definitions and examples

A random field is a collection of random variables (Xi )i∈Zd defined on a
probability space (Ω, F ,P), where d is an integer.

We say that (Xi )i∈Zd is strictly stationary if for each N ∈ N∗ and
i1, . . . , iN , j ∈ Zd , the vectors (Xi1 , . . . , XiN ) and (Xi1+j , . . . , XiN +j ) have
the same distribution (the sum is taken coordinatewise).

Example

If T is a Zd -measure preserving action on Ω, that is, T i : Ω → Ω,
T i ◦ T j = T i+j for each i and j and for each A ∈ F , P

(
T −i A

)
= P (A), then

for each f : Ω → R,
(
f ◦ T i)

i∈Zd is a strictly stationary random field.
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Stationary random fields : examples

Example (Linear processes)
We say that the random field (Xi )i∈Zd is a linear random field if there exists an
i.i.d. centered random field (εk)k∈Zd of square integrable random variables and
a family of real numbers (ak)k∈Zd such that

∑
k∈Zd a2

k is finite and

Xi =
∑
k∈Zd

akεi−k a.s..

Example (Volterra random fields of order two)
Let (εk)k∈Zd be an i.i.d. collection of centered square integrable random
variables and (au,v )u,v∈Zd be a family of real numbers such that au,v = 0 if
u = v and

∑
u,v∈Zd a2

u,v is finite. A Volterra random field is defined as

Xi :=
∑

u,v∈Zd

au,v εi−uεi−v .
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Limit theorems

We are interested in the asymptotic behavior of partial sums of a strictly
stationary random field, that is,

Sn =
∑

1≼i≼n

Xi ,

where 1 = (1, . . . , 1) and i ≼ j means iℓ ⩽ jℓ for each 1 ⩽ ℓ ⩽ d .

When d = 2,

Sm,n =
m∑

i=1

n∑
j=1

Xi,j .

We would like to give sufficient condition on the dependence and the moments
of (Xi )i∈Zd and normalizations (an)n∈Nd , (bn)n∈Nd and (cn)n∈Nd such that(

a−1
n Sn

)
n∈Nd converges in distribution as min n → ∞ ;(

b−1
n Sn

)
n∈Nd converges almost surely as max n → ∞ ;

supn∈Nd c−1
n |Sn| is bounded.
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Approximation by m-dependent random fields

Suppose that the strictly stationary random field (Xi )i∈Zd admits the
representation Xi = f

(
(εi−k)k∈Zd

)
, where (εk)k∈Zd is i.i.d.. Suppose for

instance that E [|X0|p] is finite for some p ⩾ 1. Define for each fixed i and each
positive integer m ⩾ 1 the σ-algebra Gi,m := σ

(
εk , k ∈ Zd , ∥k − i∥ ⩽ m

)
.

Then we can approximate Xi by E [Xi | Gi,m].

Take a random variable ε′
0 independent of the random field (εk)k∈Zd and define

the physical dependence measure

δi,p := ∥Xi − X ∗
i ∥p , (1)

where X ∗
i = f

((
ε∗

i−k
)

k∈Zd

)
, ε∗

u = εu if u ̸= 0 and ε∗
0 = ε′

0 (see El Machkouri,
Volný, Wu, (2013), Biermé and Durieu (2014)).

For linear processus, δi,p is |ai | ∥ε0∥p if ε0 ∈ Lp.
For Volterra processes and p ⩾ 2, δi,p can be bounded by a constant times√∑

v∈Zd

(
a2

i,v + a2
v,i

)
.
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Martingale approximation, d = 1 (1)

When d = 1, a strategy is to use a martingale approximation. Here T : Ω → Ω
is bi-measurable and measure preserving. Let F0 be a sub-σ-algebra of F such
that TF0 ⊂ F0.

We say that
(
D ◦ T i)

i⩾0
is a martingale difference sequence if D is

F0-measurable and E [D | TF0] = 0.

For a centered F0-measurable and square integrable f ∈ L2, if we can find a
martingale difference sequence

(
D ◦ T i)

i⩾0
such that

lim
n→∞

1√
n

∥∥∥∥∥max
1⩽j⩽n

∣∣∣∣∣
j∑

i=1

f ◦ T i −
j∑

i=1

D ◦ T i

∣∣∣∣∣
∥∥∥∥∥

2

= 0,

then we can deduce a functional central limit theorem for n−1/2∑⌊nt⌋
i=1 f ◦ T i ,

where ⌊x⌋ = max {n ∈ Z, n ⩽ x}.
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Martingale approximation, d = 1 (2)

Gordin-Peligrad (2011) found a necessary and sufficient condition for the
existence of such a martingale approximation, which is satisfied when

Hannan’s condition : f is
∨
i∈Z

Fi − measurable,E

[
f |
⋂
i∈Z

Fi

]
= 0 and

∞∑
i=0

∥E [f ◦ | F−i ] − E [f | F−i−1]∥2 =
∞∑
i=0

∥∥E [f ◦ T i | F0
]

− E
[
f ◦ T i | F−1

]∥∥
2

< ∞,

where Fi = T −i F0, and also when

Maxwell and Woodroofe condition :
∞∑

n=1

1
n3/2

∥∥∥∥∥E
[

n∑
i=1

f ◦ T i | F0

]∥∥∥∥∥
2

< ∞

takes place.
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Commuting filtrations

We would like to find an analog of the previous martingale approximation. The
first step is to define multi-indexed martingales and the corresponding
filtrations.
Definition
We say that the the collection (Fi )i∈Zd is a completely commuting filtration if
for each integrable random variable Y ,

E [E [Y | Fi ] | Fj ] = E [E [Y | Fj ] | Fi ] = E
[
Y | Fmin{i,j}

]
,

where min {i , j} = (min {iℓ, jℓ})ℓ∈J1,dK.

Example
Let Fi = σ (εk , k ≼ i), where (εk)k∈Zd is i.i.d. ; then (Fi )i∈Zd is completely
commuting.

Example

Let
(

F (1)
i

)
i∈Z

and
(

F (2)
j

)
j∈Z

be filtrations such that for each i and j, F (1)
i is

independent of F (2)
j . Then (Fi,j)i,j∈Z is commuting, where Fi,j = F (1)

i ∨ F (2)
j .
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Orthomartingales

Definition (Orthomartingale difference random field)
We say that (Di )i∈Zd is an orthomartingale difference random field with respect
to the completely commuting filtration (Fi )i∈Zd if for each i ∈ Zd , Di is
integrable, Fi -measurable and for each 1 ⩽ ℓ ⩽ d , E [Di | Fi−eℓ ] = 0, where eℓ

is the ℓ-th element of the canonical basis of Rd .

When d = 2, this reads as Di,j is Fi,j -measurable and

E [Di,j | Fi−1,j ] = 0 = E [Di,j | Fi,j−1] .

Observe that(∑m
i=1 Di,j

)
j⩾1

is a martingale difference sequence with respect to
(Fm,j)j⩾0(∑n

j=1 Di,j

)
i⩾1

is a martingale difference sequence with respect to

(Fi,n)i⩾0.
Therefore, martingale property in each coordinate can be used.
In the sequel, we will assume that the filtration (Fi )i∈Zd is of the form(
T −i F0

)
i∈Zd and Xi = X0 ◦ T i .
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A partial sum process

Let
Wn (f , t) := 1√

|n|

∑
1≼i≼⌊n·t⌋

f ◦ T i , t ∈ [0, 1]d ,

where ⌊x⌋ = (⌊x1⌋ , . . . , ⌊xd⌋), for x ∈ R, ⌊x⌋ is the unique integer for which
⌊x⌋ ⩽ x < ⌊x⌋ + 1 and |n| =

∏d
ℓ=1 nℓ.

When d = 1,

Wn (f , t) = 1√
n

⌊nt⌋∑
i=1

f ◦ T i .

If
(
D ◦ T i)

i⩾1
is a martingale difference sequence, then

Wn (D, ·) →
(
E
[
D2 | I

])1/2 B (·) in distribution in D ([0, 1]) ,

where I is the σ-algebra of T invariant sets and B is a standard Brownian
motion independent of E

[
D2 | I

]
.
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Functional central limit theorem for orthomartingale difference random
fields

Let d = 2 and Di,j = εi ε
′
j , where the sequences (εi )i∈Z and

(
ε′

j
)

j∈Z
are

mutually independent, both i.i.d. and εi , ε′
j take the values −1 and 1 with

probability 1/2. Then (Di,j)i,j∈Z is a stationary orthomartingale difference
random field and (Wm,n (D0,0, s, t))m,n⩾1 converges in distribution to BsB′

t ,
where (Bs)s∈[0,1] and (B′

t)t∈[0,1] are two independent standard Brownian
motions (Wang and Woodroofe (2013)).

Theorem (Volný (2015,2019))

Let T be a Zd -measure preserving action on a probability space (Ω, A,P) and
let
(
T −i F0

)
i∈Zd be a completely commuting filtration. Let

(
D0 ◦ T i)

i∈Zd be a
strictly stationary orthomartingale difference random field such that E

[
D2

0
]

is
finite.

1 The net (Wn (D0, ·))n≽1 converges in D
(
[0, 1]d

)
as min n → ∞.

2 If moreover one of the maps T eℓ is ergodic, then (Wn (D0, ·))n≽1
converges to ∥D0∥2 W (·) in D

(
[0, 1]d

)
as min n → ∞, where(

W (t) , t ∈ [0, 1]d
)

is a standard Brownian sheet.

13 / 25



Presentation of strictly stationary random fields Functional central limit theorem Strong law of large numbers Bounded LIL

Orthomartingale approximation

In dimension one : let fM = M−1∑M
j=1 E

[
f ◦ T j | F0

]
. Then

f − fM = DM + GM − GM ◦ T , where
(
DM ◦ T i)

i⩾1
is a martingale difference

sequence. If

lim
M→∞

lim sup
n→∞

1√
n

∥∥∥∥∥max
1⩽j⩽n

∣∣∣∣∣
j∑

i=1

fM ◦ T i

∣∣∣∣∣
∥∥∥∥∥

2

= 0,

then (DM)M⩾1 converges in L2 to some D and

lim
n→∞

1√
n

∥∥∥∥∥max
1⩽j⩽n

∣∣∣∣∣
j∑

i=1

f ◦ T i −
j∑

i=1

D ◦ T i

∣∣∣∣∣
∥∥∥∥∥

2

= 0.

In dimension d = 2 :

f − fM = f − 1
M

M∑
i=1

E
[
f ◦ T i,0 | F0,0

]
− 1

M

M∑
j=1

E
[
f ◦ T 0,j | F0,0

]
+ 1

M2

M∑
i,j=1

E
[
f ◦ T i,j | F0,0

]
,

which can be decomposed into 4 terms, which are difference martingale in
some directions and coboundaries in others. 14 / 25
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Projective conditions

One has to find condition which guarantee that the contribution of fM defined
as previously is negligible, usuall via moment inequalities involving
E
[
f ◦ T i | F0

]
.

We will state results in the case d = 2 and when f is F0,0-measurable, the
general case is addressed in the corresponding papers. Volný and Wang (2014)
showed that if

lim
ℓ→∞

∥E [f | F−ℓ,0]∥2 = 0 = lim
ℓ→∞

∥E [f | F0,−ℓ]∥2 , (2)∑
i,j⩽0

∥E [f | Fi,j ] − E [f | Fi−1,j ] − E [f | Fi,j−1] + E [f | Fi−1,j−1]∥2 < ∞ (3)

and one of the maps T 1,0 or T 0,1 is ergodic, then Wm,n (f , ·) converges to a
Brownian sheet as min {m, n} → ∞. The same conclusion holds (G., 2018) if
(2) and (3) are replaced by

∞∑
m,n=1

1
m3/2n3/2

∥∥∥∥∥E
[

m∑
i=1

n∑
j=1

f ◦ T i,j | F0,0

]∥∥∥∥∥
2

< ∞.

Necessary and sufficient condition for orthomartingale approximation were
obtained by Peligrad and Zhang (2018). For the CLT, martingale coboundary
decomposition were studied by Lin, Merlevède and Volný (2022).
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Quenched functional central limit theorem (1)

Denote by µω a version of the regular conditional probability P (· | F0).

Definition
We say that a random field (Yn)n≽1 satisfies the quenched invariance principle
on squares (respectively on rectangles) if there exist a real number σ and a set
Ω′ of probability one such that for each ω ∈ Ω′,

1
nd/2 Y⌊nt⌋ → σW (t) in distribution in D

(
[0, 1]d

)
under µω,

(respectively, if

1√
|n|

Y⌊n·t⌋ → σW (t) in distribution in D
(
[0, 1]d

)
under µω as min n → ∞).
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Quenched functional central limit theorem (2)

Peligrad and Volný (2020) considered orthomartingale difference random fields(
D0 ◦ T i)

i∈Zd such that one of the shift maps T eℓ is ergodic and got the
following results :

1 If E
[
D2

0
]

< ∞, then the quenched invariance principle on squares takes
place for (Sn (D0))n≽1 with σ = ∥D0∥2.

2 If we furthermore assume that

E
[
D2

0 (log (1 + |D0|))d−1] < ∞, (4)

then the quenched functional central limit theorem on rectangles takes
place for (Sn (D0))n≽1 with σ = ∥D0∥2.

3 The assumption (4) is optimal.

Peligrad, Reding and Zhang (2020) obtained quenched invariance principle over
squares and rectangles under Hannan type conditions for the appropriately
centered partial sums of a stationary random field.
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Orthomartingale case

Theorem (G.,2022+)

Let
(
D ◦ T i)

i∈Zd be a stationary orthomartingale difference random field and
let 1 < p < 2.

1 Suppose that E [|D|p] < ∞. Then

lim
n→∞

1
nd/p

∑
1≼i≼n1

D ◦ T i = 0 a.s.

2 If we moreover assume that

E
[
|D|p (log (1 + |D|))d−1] < ∞,

then

lim
N→∞

sup
max n⩾N

1
|n|1/p

∣∣∣∣∣ ∑
1≼i≼n

D ◦ T i

∣∣∣∣∣ = 0 a.s.

The result is valid in the vector valued case under some conditions on the
smoothness of the Banach space.

Random fields expressable as a function of an i.i.d. random field are also
considered. 19 / 25
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I.i.d. case

When d = 1, it is known that if (Xi )i⩾1 is i.i.d., centered and has a finite
variance, then

lim sup
n→∞

1√
nLL (n)

n∑
i=1

Xi =
√

2 ∥X0∥2 = − lim inf
n→∞

1√
nLL (n)

n∑
i=1

Xi

where L (x) = max {1, ln x} and LL (x) = L ◦ L (x).

When
(
f ◦ T i)

i∈Zd is an i.i.d. random field and d > 1, it has been shown by
Wichura (1973) that

E
[
f 2 (L (|f |))d−1 /LL (|f |)

]
< ∞

⇔ lim sup
n→∞

1√
|n| LL (|n|)

Sn (f ) = ∥f ∥2

√
d = − lim inf

n→∞

1√
|n| LL (|n|)

Sn (f ) ,

where for a family of numbers (xn)n≽1, lim supn→+∞ xn := limN→∞ supn≽N1 xn
and similarly for lim inf.
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Function of i.i.d. of independent random fields

Theorem (G., 2021)
Let (Xi )i∈Zd be a centered random field such that there exist an i.i.d. collection
of random variables

{
εu , u ∈ Zd} and a measurable function f : RZd

→ R such
that Xi = f

(
(εi−j )j∈Zd

)
. For all 1 < p < 2, the following inequality holds :∥∥∥∥∥ sup

n∈Nd

1√
|n| LL (|n|)

∣∣∣∣∣ ∑
1≼i≼n

Xi

∣∣∣∣∣
∥∥∥∥∥

p

⩽ cp,d

∞∑
j=0

(j + 1)d/2 ∥X0,j∥2,d−1 ,

where L (x) = max {1, log x}, cp,d depends only on p and d, ∥·∥2,d−1 is the
Orlicz norm associated to the function t 7→ t2 (log (1 + t))d−1,

X0,j = E
[
X0 | σ

{
εu , ∥u∥∞ ⩽ j

}]
− E

[
X0 | σ

{
εu , ∥u∥∞ ⩽ j − 1

}]
, j ⩾ 1;

X0,0 := E [X0 | σ {ε0}] .

This result applies to Hölder continuous functions of a linear random field,
Volterra processes, function of Gaussian linear processes. This rests on the use
of physical dependence measure introduced in Wu (2005) (norm of the
difference between Xi and a coupled version with ε0 replaced by ε′

0,
independent of (εi )i∈Zd ). 22 / 25
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Orthomartingale case (1)

Let d = 2 and Di,j = εi ε
′
j , where the sequences (εi )i∈Z and

(
ε′

j
)

j∈Z
are mutually

independent, both i.i.d. and εi , ε′
j take the values −1 and 1 with probability

1/2. Then (Di,j)i,j∈Z is a stationary orthomartingale difference random field and

sup
m,n⩾1

1√
mnLL (mn)

∣∣∣∣∣
m∑

i=1

n∑
j=1

Di,j

∣∣∣∣∣
⩾ sup

m⩾1

1√
m

∣∣∣∣∣
m∑

i=1

εi

∣∣∣∣∣ lim sup
n→∞

√
LL (n)

LL (mn)
1√

nLL (n)

∣∣∣∣∣
n∑

j=1

ε′
j

∣∣∣∣∣
⩾

√
2 sup

m⩾1

1√
m

∣∣∣∣∣
m∑

i=1

εi

∣∣∣∣∣ ,
which is almost surely infinite.

Therefore, a normalization compatible with the product structure has to be
taken.
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Orthomartingale case (2)

Let

M (f ) = sup
n≽1

d∏
ℓ=1

1√
nℓLL (nℓ)

∣∣∣∣∣ ∑
1≼i≼n

f ◦ T i

∣∣∣∣∣ .
Let ∥·∥2,q be the Orlicz norm associated to the function t 7→ t2 (log (1 + t))q.

Theorem (G., 2021)
Let d ⩾ 1 be an integer. For all 1 ⩽ p < 2, there exists a constant Cp,d
depending only on p and d such that for all strictly stationary orthomartingale
difference random field

(
D0 ◦ T i)

i∈Zd , the following inequality holds :

∥M (D0)∥p ⩽ Cp,d ∥D0∥2,2(d−1) .

Moreover, for all r ⩾ 0,

∥M (D0)∥2,r ⩽ Cp,d,r ∥D0∥2,r+2d .

Results in the same spirit have been obtained under similar conditions as for
the functional central limit theorem, with the norm ∥·∥2 replaced by ∥·∥2,2(d−1)
(respectively ∥·∥2,r+2d).
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Some open questions

1 For an ergodic action of Zd , the limit in the central limit theorem for
orthomartingale difference random fields is expressed as η · N, where N is a
standard normal random variable independent of η and η is the limit in
distribution as min {m, n} → ∞ of

ηm,n =

√√√√ 1
m

m∑
i=1

(
1√
n

n∑
j=1

D ◦ T i,j

)2

.

Is their a nice characterization of the possible laws of functions η ? What
about the functional central limit theorem ?

2 Projective criterion in the sprit of Hannan in some directions and Maxwell
and Woodroofe in the others.

3 A law of the iterated logarithms with a characterization of the
lim sup/lim inf.
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