Some recent advances on limit theorems for stationary random
fields

Davide Giraudo (Université de Strasbourg, France)

6th Cincinnati Symposium on Probability
May 1, Wednesday, 2024

1/25



Presentation of strictly stationary random fields
@00000000

Plan

o Presentation of strictly stationary random fields

2/25



Presentation of
080000000

Stationary random fields : definitions and examples

o A random field is a collection of random variables (X;);,q defined on a
probability space (Q2, F,P), where d is an integer.

o We say that (X;);czq is strictly stationary if for each N € N* and
i1,...,in,j € Z%, the vectors (Xi,, ..., Xiy) and (Xiy4j, - - -, Xiy+j) have
the same distribution (the sum is taken coordinatewise).

Example

If T is a Z9-measure preserving action on €, that is, T.Q = Q,
Tio T/ = T for each i and j and for each A € F, P (T*"A) =P (A), then

for each f: Q — R, (f o Ti) is a strictly stationary random field.

iczd
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Stationary random fields : examples

Example (Linear processes)

We say that the random field (Xi);c,q is a linear random field if there exists an
i.i.d. centered random field (Ek)keZd of square integrable random variables and
a family of real numbers (ak)keZd such that ZkeZd a,2( is finite and

X,': E adkEi—k Aa.S..

kezd

Example (Volterra random fields of order two)

Let (ex)eze be an i.id. collection of centered square integrable random
variables and (au,v), ,cz« be a family of real numbers such that a,,, = 0 if

u=vand Zu — aﬁ,v is finite. A Volterra random field is defined as

X,‘ = E Au,vEi—u€i—v-

u,vezd
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Limit theorems

We are interested in the asymptotic behavior of partial sums of a strictly
stationary random field, that is,
=Y %

1<i<n

where 1 = (1,...,1) and i < j means i < j, foreach 1 < ¢ < d.

When d = 2,

S = Z Z Xi).

i=1 j=1
We would like to give sufficient condition on the dependence and the moments
of (Xi);cz¢ and normalizations (an),cnes (bn)yene and (n),ene Such that
° (3n 15,,) e COnverges in distribution as minn — oo ;
o (ba’Sn),

® SUP,cnd G |Shl is bounded.

Nd converges almost surely as maxn — oo;
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Approximation by m-dependent random fields

Suppose that the strictly stationary random field (Xi); .z« admits the

representation Xi = f ((E,'_k)kezd), where (ek) ¢z is i.i.d.. Suppose for
instance that E[|Xo|”] is finite for some p > 1. Define for each fixed i and each
positive integer m > 1 the o-algebra Gim :== 0 (ak, keZ? ||k—i||l < m).
Then we can approximate X; by E[X; | Gi m].

Take a random variable j independent of the random field (ek), .+ and define
the physical dependence measure

dip = 1Xi = X7, (1)

where X[ = f ((E;ik)kezd)' gy =cuif u#0 and g = g; (see El Machkouri,
Volny, Wu, (2013), Biermé and Durieu (2014)).

For linear processus, dip is |ail [[eof, if €0 € L”.

For Volterra processes and p > 2, d; , can be bounded by a constant times

Ve (2, +22,).
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Martingale approximation, d =1 (1)

When d = 1, a strategy is to use a martingale approximation. Here T: Q — Q
is bi-measurable and measure preserving. Let Fo be a sub-o-algebra of F such
that TFo C Fo.

We say that (D o T) - is a martingale difference sequence if D is
Fo-measurable and IE[D | TFo] =0.

For a centered Fo-measurable and square integrable f € L2, if we can find a
martingale difference sequence (D o T’)l_>0 such that

J J
Ll USRS R R

2

then we can deduce a functional central limit theorem for n=/2 ZIL:";J foT
where | x| = max{n € Z,n < x}.
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Martingale approximation, d =1 (2)

Gordin-Peligrad (2011) found a necessary and sufficient condition for the
existence of such a martingale approximation, which is satisfied when

Hannan’s condition : f is \/]-',- — measurable, E lf | ﬂ]-',] =0 and

i€Z i€EZ
Y IElfo| Ful—EIf | Foall, =) [[E[fo T Fo] —E[fo T'| Fuu ||, < oo,
i=0 i=0

where F; = T~/ Fy, and also when

Maxwell and Woodroofe condition : Z ﬁ E [Z foT'| }—01 < o0
n=1 i=1 2

takes place.
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Commuting filtrations

We would like to find an analog of the previous martingale approximation. The
first step is to define multi-indexed martingales and the corresponding
filtrations.

Definition

We say that the the collection (F;); ;4 is a completely commuting filtration if
for each integrable random variable Y/,

EE[Y | F]| FI=EE[Y | F I F]=E[Y | Fungig]

where min {i, j} = (min {i¢, je}) o1, qp-

Example

Let Fi = o (ck, k < i), where (ek),cz0 is i.i.d.; then (F;), .54 is completely
commuting.

Example

Let (J-",-(l)> and (}'J@) be filtrations such that for each i and j, }',-(1) is
i€z jez

independent of }-j(z)_ Then (Fi); jcz is commuting, where F;; = _7-",.(1) \% ]-'j(Z).
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Orthomartingales

Definition (Orthomartingale difference random field)

We say that (D;);.;4 is an orthomartingale difference random field with respect
to the completely commuting filtration (F;);.,a if for each i € 7%, Dj is
integrable, Fi-measurable and for each 1 < ¢ < d, E[D; | Fi—e,] = 0, where e
is the (-th element of the canonical basis of RY.

When d = 2, this reads as D;; is F; j-measurable and
E[Dij| Fi-1,] =0=E[D; | Fij-].

Observe that
m . . . .
° (Zi:l D,-’j)»1 is a martingale difference sequence with respect to
(fmvj)j;o
° (Z;:l D,-d-) . is a martingale difference sequence with respect to
(Fin)izo-
Therefore, martingale property in each coordinate can be used.
In the sequel, we will assume that the filtration (F;);c,q is of the form
(T7"F), ., and X; = Xoo0 T'.

iczd
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A partial sum process

Let
Wa(ft)i=—— Y foT te01]",
LIPWewryy
where | x| = (|x1],..., [xd4]), for x € R, |x] is the unique integer for which
x) < x < Lx]+ L and |n| = TT7_, ne
When d =1,

Lnt]

(f, 1) = — ZfoT’

If (D o T")i>1 is a martingale difference sequence, then

W, (D,-) — (E[D? | Z])"* B(-) in distribution in D ([0,1]),

where 7 is the o-algebra of T invariant sets and B is a standard Brownian
motion independent of E [D2 | I].
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Functional central limit theorem for orthomartingale difference random
fields

Let d = 2 and D;; = €&}, where the sequences (g;),, and (aj)jez are
mutually independent, both i.i.d. and ¢;, s} take the values —1 and 1 with
probability 1/2. Then (D), ;c; is a stationary orthomartingale difference
random field and (Win,» (Do,0, S, t)),,, ,»1 converges in distribution to BB,
where (Bs),c[o.1) and (B:),co,1] 2re two independent standard Brownian
motions (Wang and Woodroofe (2013)).

Theorem (Volny (2015,2019))
Let T be a 7Z9-measure preserving action on a probability space (, A, P) and
let (T_']-'o)iezd be a completely commuting filtration. Let (Do o T’)ieZd be a
strictly stationary orthomartingale difference random field such that E [Dﬁ] is
finite.
© The net (Wa (Do, +)),,., converges in D ([O, l]d) as minn — oo.
@ If moreover one of the maps T* is ergodic, then (Wu (Do, *)),.,
converges to || Dol|, W (-) in D ([O, 1]d) as minn — oo, where
(W (t),t €0, l]d) is a standard Brownian sheet.
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omartingale approximation

In dimension one : let fiyy = M™! ZJA;IE [f o T | }'0]. Then
f—fuw=Dm+ Gu— Guo T, where (DM o T’)i>1 is a martingale difference

sequence. If
Z fM o TI

then (Dwm),, converges in L? to some D and

zj:foTi—zJ:DoTi
i=1 i=1

max =0,

||m limsup —
1<j<n

M—oo psoo

max =0.

1<j<n

lim —

n—oo f

In dimension d =2 :

M
f—fM:f—%ZE[foT"’o\Fo,o]

i=1

ZE [foT% | Fool + M2Z]E [foTH | Fool,
j=1 ij=1
which can be decomposed into 4 terms, which are difference martingale in

some directions and coboundaries in others. 14/25
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Projective conditions

One has to find condition which guarantee that the contribution of fy defined
as previously is negligible, usuall via moment inequalities involving

E[foT' | Fl.

We will state results in the case d = 2 and when f is Fg o-measurable, the
general case is addressed in the corresponding papers. Volny and Wang (2014)
showed that if

lim [[E[f [ Frolll, = 0= lim [[E[f | Fo,—]ll,, (2)
L—00 L— o0

SIRL | Fil =E[f | Fioagl = E[f | Fija]l + E[f | Fiojall, <00 (3)
i.j<0
and one of the maps T%° or T%! is ergodic, then W, , (f,-) converges to a
Brownian sheet as min {m, n} — oco. The same conclusion holds (G., 2018) if
(2) and (3) are replaced by

oo
ZW [ZZfoT"J foo] < 00.
m,n=1 i=1 j=1

Necessary and sufficient condition for orthomartingale approximation were
obtained by Peligrad and Zhang (2018). For the CLT, martingale coboundary
decomposition were studied by Lin, Merlevede and Volny (2022).
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Quenched functional central limit theorem (1)

Denote by (i, a version of the regular conditional probability P (- | Fo).
Definition
We say that a random field (Y;),,. ; satisfies the quenched invariance principle

on squares (respectively on rectangles) if there exist a real number o and a set
Q' of probability one such that for each w € ',

di/zyLntJ — oW (t) in distribution in D ([0, 1]d) under (i,
n

(respectively, if

LYL,,,” — oW (t) in distribution in D ([0, l]d) under i, as minn — o).

\/m D
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Quenched functional central limit theorem (2)

Peligrad and Volny (2020) considered orthomartingale difference random fields
(Do o T’)iEZd such that one of the shift maps T is ergodic and got the
following results :

QIfE DS < 00, then the quenched invariance principle on squares takes
place for (Sp (Do)),,., with o = || Dol|,.

@ If we furthermore assume that
E [D§ (log (1 + | Do[))™"] < oo, (4)

then the quenched functional central limit theorem on rectangles takes
place for (Sn (Do)),,., with o = ||Dol|,.

© The assumption (4) is optimal.
Peligrad, Reding and Zhang (2020) obtained quenched invariance principle over

squares and rectangles under Hannan type conditions for the appropriately
centered partial sums of a stationary random field.
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omartingale case

Theorem (G.,2022+)

Let (D o Ti)ieZ , be a stationary orthomartingale difference random field and
letl < p<2.
@ Suppose that E[|D|P] < co. Then

nILn;ond/ Z DoT'=0as.

1<ignl
@ If we moreover assume that
E [|DI (log (1 + |D]))’™"] < oo,

then

lim  sup l/p ZD oT' =0 as.

N—00 max n>N |I'l‘ 1<i<n

v
The result is valid in the vector valued case under some conditions on the
smoothness of the Banach space.
Random fields expressable as a function of an i.i.d. random field are also
19/25
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@ Sufficient condition for the bounded law of the iterated logarithms
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l.i.d. case

When d = 1, it is known that if (X;),, is i.i.d., centered and has a finite
variance, then

limsup ————

n—oo A/ N

where L (x) = max{1,Inx} and LL(x) = Lo L(x).

ZX V21Xl = - IImlnfmZ

When (fo T) 74 15 an i.i.d. random field and d > 1, it has been shown by
Wichura (1973) that

E [ (L(F)*/LL(fD)] < o0

< limsup ;S,, (f) = ||f|l, Vd = — liminf ;5,, (f),
oo \/[n[ LL(|n]) oo/ [n| LL(|n[)
where for a family of numbers (xa),_;, limsup,_, .o Xn = liMn—s o0 SUP, 1 Xn

and similarly for liminf.

21/25



Bounded LIL
[e]e] lelele}

Function of i.i.d. of independent random fields

Theorem (G., 2021)
Let (Xi)iGZ
of random variables {6.,, u e Zd} and a measurable function f : ]de — R such
that Xi = f ((E,‘_j jeZd)' For all 1 < p < 2, the following inequality holds :

> %

1<ign

4 be a centered random field such that there exist an i.i.d. collection

1

o0
sup —— < Gpd G+ 1)1 Xo0,ll5 gy
wert /I LL(Jn]) DD T

j=0

where L (x) = max {1, log x}, ¢4 depends only on p and d,
Orlicz norm associated to the function t — t* (log (1 + 1)),

~||2’[171 is the

X0y =E [Xo | o {eu, lull, <j}] —E[Xo |0 {ewllull, <i-1}], j=L

Xoo :=E[Xo | o{e0}]-

This result applies to Hélder continuous functions of a linear random field,

Volterra processes, function of Gaussian linear processes. This rests on the use

of physical dependence measure introduced in Wu (2005) (norm of the

difference between X; and a coupled version with g replaced by 56,

independent of (&;);c44)- 2/
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omartingale case (1)

Let d =2 and D;; = e}, where the sequences (&;),., and (sj’-)jez are mutually

independent, both i.i.d. and ¢;, ej’- take the values —1 and 1 with probability
1/2. Then (D;;); jcz is a stationary orthomartingale difference random field and

mS';:>pl v/ mnLL (mn) Z;le:

1 | |. LL(n ) 1 =
> sup — g il E
sup — €i| limsup LL (mn) oL (r €]

m>1 i—1 n— oo
i=

1 m
> \@sup— ZE,‘ ,
i=1

m>1 m

which is almost surely infinite.

Therefore, a normalization compatible with the product structure has to be
taken.

23/25



Bounded LIL
[e]e]e]e] Te}

omartingale case (2)

Let

ZfoTi.

1<i<n

f' —_
(= itf:H T

Let |||, , be the Orlicz norm associated to the function t t? (log (1 + t))“.

Theorem (G., 2021)

Let d > 1 be an integer. For all 1 < p < 2, there exists a constant C, g
depending only on p and d such that for all strictly stationary orthomartingale
difference random field (Do o T’) czd” the following inequality holds :

M (Do)ll, < Cp,allDoll5 (-1 -
Moreover, for all r > 0,

IM (Do)ll,,, < Cp,a.r | Do

Results in the same spirit have been obtained under similar conditions as for
the functional central limit theorem, with the norm |-[|, replaced by ||-[|, 41

(respectively [|-[|, ., 2q)-
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Some open questions

@ For an ergodic action of Zd, the limit in the central limit theorem for
orthomartingale difference random fields is expressed as 77- N, where N is a
standard normal random variable independent of 1 and 7 is the limit in
distribution as min {m, n} — oo of

m 2

1 1 .
MNm,n = ;Z %;DO TiJ

i=1

Is their a nice characterization of the possible laws of functions n? What
about the functional central limit theorem ?

@ Projective criterion in the sprit of Hannan in some directions and Maxwell
and Woodroofe in the others.

O A law of the iterated logarithms with a characterization of the
limsup/liminf.
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