IRMA, UMR 7501 |
7 rue René-Descartes |
67084 Strasbourg Cedex |
Tél. 33 (0)3 68 85 01 29 |
Fax. 33 (0)3 68 85 03 28 |
Accueil > Agenda > Colloques et rencontres > Archives > Agenda 2008 > Recent Progress in Arithmetic D-modules theory
IRMA, Friday 3rd October 2008
Recent Progress in Arithmetic D-modules theory
on Friday 3rd October 2008,
at Institut de Recherche Mathematique Avancée, Strasbourg.
The aim of this conference is the exposition of recent progress
on arithmetic D-modules theory. We will focus in particular on
the work of Caro and Tsuzuki, which, combined with the semi-stable
theorem of Kedlaya, proves that the category of overholonomic arithmetic
D-modules with Frobenius, contructed by Caro, is stable by the 6 Grothendieck
cohomological operations.
Organizers : C.Noot-Huyghe and A.Marmora
| |
08h00 | A confirmerA confirmer |
08h30 | Pierre Berthelot - Univ Rennes 1An introduction to finiteness conditions in arithmetic D-module theory |
09h05 | Kiran Kedlaya - MITSemistable reduction for overconvergent F-isocrystals |
10h20 | Nobuo Tsuzuki - Tohoku Univ.On the overholonomicity of overconvergent F-isocrystals on smooth varieties I. Comparison between log-rigid and rigid cohomologies |
11h20 | |
11h45 | Daniel Caro - Univ. CaenOn the overholonomicity of overconvergent F-isocrystals on smooth varieties II |
12h45 | |
14h30 | Richard Crew - Florida Univ.Rings of p-adic differential operators on tubes |
15h45 | Takeshi Tsuji - Tokyo Univ.Nearby cycles and D-modules of log schemes in characteristic p>0 |
Dernière mise à jour le 5-08-2009