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Abstract. In this article, we give an explicit computation of the order spectral
selectors of a pair of C1-close Legendrian submanifolds belonging to an orderable
isotopy class. The C1-local flatness of the spectral distance and the characterisa-
tion of its geodesics are deduced. Another consequence is the C1-local coincidence
of spectral and Shelukhin-Chekanov-Hofer distances. Similar statements are then
deduced for several contactomorphism groups.

1. Introduction

Recently Nakamura [19] and the authors of this article [1] defined independently
the same distance on the isotopy class of a closed Legendrian whenever it is orderable.
While Nakamura showed that the topology induced by this distance is the interval
topology (see [9] for a definition), the authors showed the spectrality of this distance
and therefore named it the spectral distance. Both results suggest the natural
character and importance of the spectral distance: on the one hand it is a powerful
object to study the geometry of this infinite dimensional space, and on the other
it allows to study and quantify contact dynamic phenomena. We refer directly to
[19, 1] for the illustration of our previous words.

In this article we study the orderable isotopy class of a closed Legendrian subman-
ifold endowed with the spectral distance as a metric space on its own, being much
inspired by the seminal work of Bialy-Polterovich on the geodesics of Hofer’s metric
[6]. In particular we show that it is C1-locally flat in the sense that C1-locally it
is isometric to a normed vector space (see Section 1.1). As a consequence we also
get in this setting the C1-local flatness of the Shelukhin-Chekanov-Hofer distance
[24]. The flatness property allows us moreover to give a complete description of
the geodesics of these two distances (see Section 1.2). Finally this allows us to get
similar statements in some cases for universal covers of certain contactomorphism
groups.

1.1. C1-flatness. From now on (M, ξ = kerα) denotes a cooriented contact mani-
fold endowed with a contact form α the Reeb flow of which is complete. We denote L
(resp. L̃) the Legendrian isotopy class of some closed Legendrian submanifold of M
(resp. the universal cover of L) endowed with the C1-topology. Assuming L (resp.
L̃) is orderable, let ℓα

± : L × L → R (resp. L̃ × L̃ → R) denote the order α-spectral
selectors so that the α-spectral distance between two submanifolds Λ0,Λ1 ∈ L (resp.
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L̃) is defined as

dα
spec(Λ0,Λ1) := max

{
ℓα

+(Λ0,Λ1),−ℓα
−(Λ0,Λ1)

}
∈ [0,+∞).

The map dα
spec is a genuine distance on L and is a priori just a pseudo-distance on

L̃. We refer to Section 2.3 for details.
Let Λ ∈ L be a closed Legendrian submanifold. According to the Weinstein

neighborhood theorem, there is an open set of M containing Λ which is contacto-
morphic to an open set of J1Λ containing the zero-section, identifying Λ with the
zero-section and the contact form α with the canonical contact form α0 := dz−p·dq.
Every Legendrian C1-close to Λ in L is then identified uniquely with the 1-jet of a
map f ∈ C∞(Λ,R) of some C2-neighborhood U of the zero map. Let us call the
induced continuous embedding Φ : U → L an α-Weinstein parametrization of L
centered at Λ (it is a homeomorphism between U and a C1-neighborhood of Λ). As
L and L̃ are locally homeomorphic, one naturally extends the notion of Weinstein
parametrization to L̃.

Following the terminology introduced by Bialy-Polterovich in [6], we say that L
(resp. L̃, and G or G̃ introduced in Section 2.1) endowed with a pseudo-distance d
is C1-locally flat if at any point of it there exists a C1-neighborhood on which d is
isometric to the restriction of a normed distance to some open neighborhood of a
vector space. In our cases, the vector space will always be C∞(Λ,R) endowed with
the C0-norm f 7→ max |f | for some closed manifold Λ.

Theorem 1.1. If L (resp. L̃) is orderable then endowed with the Legendrian spectral
distance it is C1-locally flat. More precisely, for every Λ ∈ L (resp. L̃), and every
α-Weinstein parametrization Φ : U → L (resp. U → L̃) centered at Λ, there exists
U ′ ⊂ U a C2-neighborhood of the zero map such that for all f, g ∈ U ′

ℓα
+(Φ(f),Φ(g)) = max(f − g) and ℓα

−(Φ(f),Φ(g)) = min(f − g),
in particular dα

spec(Φ(f),Φ(g)) = max |f − g|.

Some known examples of orderable L or L̃ are the isotopy class of the zero-section
of any 1-jet space over a closed manifold, the universal cover of the isotopy class of
RPn in the standard contact RP2n+1, the universal cover of the isotopy class of a
fiber S∗

xX of any unit cotangent bundle (see e.g. [1, Examples 2.10] for references).
An analogous statement can be given for contactomorphisms when appropriate

spectral selectors exist. For instance such exist when L̃(∆) is orderable for the
contact product M×M×R (see Section 5) which is the case when M is a hypertight
closed contact manifold or a closed unit cotangent bundle or any contact boundary
of a compact Liouville domain, the symplectic homology of which does not vanish
(we also refer to [1, Examples 2.10]). Other situations in which suitable spectral
selectors exist concern universal covers of contactomorphism groups of contact lens
spaces [2].

Remark 1.2. Note that for the 1-jet bundle of a closed manifold X a stronger state-
ment can be directly deduced from Corollary 5.4 of [7]. This Corollary tells us that
j1f ⪯ j1g (cf. Section 2.1) if and only if f ≤ g everywhere, where f, g : X → R
are smooth functions and j1f , j1g denote the graph of their respective 1-jet. This
indeed implies that ℓα0

+ (j1f, j1g) = max(f−g) and ℓα0
− (j1f, j1g) = min(f−g), where

α0 = dz − p · dq is the canonical contact form of J1X = T ∗X × R.
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An important consequence of Theorem 1.1 is that the Shelukhin-Chekanov-Hofer
(SCH) distance dα

SCH agrees C1-locally with the spectral distance dα
spec, and therefore

is C1-locally flat (we refer to Section 2.2 for definitions).
Corollary 1.3. Suppose L (resp. L̃) is orderable. Then for every Λ ∈ L (resp. L̃)
there exists U a C1-neighborhood of Λ such that

dα
SCH(Λ1,Λ0) = dα

spec(Λ1,Λ0) for all Λ1,Λ0 ∈ U .

Therefore endowed with the SCH distance L (resp. L̃) is C1-locally flat.
Let us discuss another corollary which has motivated the writing of Theorem

1.1. Recall from [20] that a Legendrian isotopy (Λt) ⊂ L (resp. L̃) is said to be
monotone if Λt ⪯ Λs whenever t ≤ s (cf. Section 2.1). The next corollary answers
[20, Question 2.4.].
Corollary 1.4. If L is orderable (resp. L̃ is orderable) then an isotopy (Λt) ⊂ L
(resp. L̃) is monotone if and only if it is non-negative.
Proof. Suppose by contradiction that a monotone isotopy (Λt) is not non-negative at
some time t0 ∈ [0, 1]. One can assume t0 = 0. Let Φ : U → L be a parametrization
centered at Λ0 given by Theorem 1.1. Therefore for t > 0 small enough Λt lies in
Φ(U) and its corresponding function ft := Φ−1(Λt) ∈ U is such that min ft < 0.
Thus on the one hand ℓα

−(Λt,Λ0) < 0 by Theorem 1.1. But on the other hand
ℓα

−(Λt,Λ0) ≥ 0 since Λ0 ⪯ Λt which brings the contradiction. □

1.2. Geodesics. Note that Theorem 1.1 directly implies that “straight” paths t 7→
Φ(tf) are minimizing geodesics for the spectral distance. More precisely recall that
in a pseudo-metric space (X, d) the length induced by the pseudo-distance d of a
continuous curve γ : [a, b] → X, for some real numbers a ≤ b is defined as follows

Lengthd(γ) := sup
{

k∑
i=1

d(γ(ti−1), γ(ti)) | k ∈ N , a = t0 < · · · < tk = b

}
. (1)

In the following I ⊂ R will denote an interval and a path γ : I → X is by definition
a continuous map.
Definition 1.5. A path γ : I → X is a minimizing geodesic if d(γ(a), γ(b)) =
Lengthd(γ|[a,b]) for all a, b ∈ I such that a < b. A path γ : I → X is a geodesic if
for all t ∈ I there exists a neighborhood J ⊂ I of t such that γ|J is a minimizing
geodesic.
Remark 1.6.

(1) In our situation we are interested only in the subset of paths consisting of
smooth isotopies. Corollary 1.3 implies that the SCH-length functional and
spectral length functional agree on smooth isotopies (see Section 2.2).

(2) In our situation it should also be possible to define geodesics as critical
points of the length functional. Indeed, even if it is not clear that the length
functional is smooth in general, it should be the case at paths satisfying the
previous definition (see [23, Chapter 12] and [17, Section 1.2]).

The main result of this section consists of giving a complete characterization
of smooth geodesics of the spectral and SCH distances. To do so we introduce
the following notion extending the terminology introduced by Bialy-Polterovich [6,
Definition 1.3.C] (see also Section 2.1 for the definition of Hamiltonian maps).
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Definition 1.7. A Legendrian isotopy (Λt)t∈I is α-quasi-autonomous if there exist
ϵ ∈ {±1} and a continuous path (xt) of points belonging to a same α-Reeb orbit such
that xt ∈ Λt and ϵHt(xt) = max |Ht|, ∀t ∈ I where (Ht) denotes the α-Hamiltonian
map of (Λt).
A Legendrian isotopy (Λt)t∈I is locally α-quasi-autonomous if for all t ∈ I there
exists a neighborhood J ⊂ I of t such that (Λt)t∈J is α-quasi-autonomous.

Theorem 1.8. A Legendrian isotopy (Λt) in an orderable L (resp. L̃) is a geodesic
for dα if and only if it is α-quasi-autonomous, where dα denotes either dα

spec or dα
SCH.

The above Theorem 1.8 and Definition 1.7 have their direct analogue for contact
isotopies (see Section 5).

1.3. Discussion. In the symplectic context similar statements have been proven
for the Hofer norm and for the Viterbo’s type spectral norms [21, 26, 29] on the
group of Hamiltonian symplectomorphisms [6, 16, 17, 22]. Bialy-Polterovich [6]
characterized the geodesics of the Hofer norm of compactly supported Hamiltonian
symplectomorphisms of the standard symplectic Euclidean space after proving the
local flatness. Lalonde-McDuff [16] went the other way around by first characterizing
geodesics of symplectic manifolds that do not admit short loops, i.e. 0 is an isolated
point of the Hofer length spectrum, and derive from it local flatness for this family
of symplectic manifolds. Finally McDuff [18] was able to get rid of the assumption
about the non-existence of short loops and thus characterized in full generality the
geodesics and proved the local flatness of the Hofer norm for all closed symplectic
manifolds. To do so, she generalized the non-squeezing theorem of Gromov [13] to
non-trivial symplectic fibrations over the 2-sphere. Her proof involves technical tools
such as Seidel morphism and Gromov-Witten invariants.

Surprisingly enough our proofs of local flatness and characterization of geodesics
in the contact context involve only elementary arguments relying essentially on the
axiomatic properties of the Legendrian spectral distance that we list below (see
Theorem 2.2). As in [1], the explanation of this surprising ease comes from the
orderability assumption. Indeed, non trivial machineries, such as Floer Homology
or generating functions techniques, are hidden behind this assumption. Nevertheless
once this assumption has been made, the contact spectral distance is well defined
and seems easier and more intuitive to handle than its symplectic cousins.

As illustrated by the present article, it is very common that one adapts statements
from symplectic geometry to statements in contact geometry. However according to
the previous paragraph it should also be interesting in the future to go the other
way around and see whether one can use the contact spectral distance to shed some
light on the Hofer or Viterbo’s type distances of symplectic geometry.

Organization of the article. In Section 2, we fix the notations and the conven-
tions on the objects that we will use throughout the paper. In Section 3, we prove
Theorem 1.1 and Corollary 1.3. In Section 4, we prove Theorem 1.8 characterizing
geodesics of the spectral distance. Finally, in Section 5, the extension to universal
covers of some contactomorphism groups is discussed.
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2. Preliminaries

2.1. Conventions. Let (M, ξ) be a cooriented contact manifold and fix a contact
form α supporting ξ and its coorientation whose Reeb vector field is complete and
denote by ϕα

t ∈ Cont0(M, ξ) its flow at time t ∈ R. Here Cont0(M, ξ) denotes the
group of contactomorphisms isotopic to the identity. We denote by G the group of
contactomorphisms isotopic to the identity through compactly supported contacto-
morphisms and we endow it with the C1-topology. We denote by G̃ its universal
cover and Π : G̃ → G the covering map. By a slight abuse of notation, we still call
the identity and denote id ∈ G̃ the class of the constant isotopy s 7→ id.

Fix a closed Legendrian Λ ⊂ M and denote by L(Λ) = {ϕ(Λ) | ϕ ∈ Cont0(M, ξ)}
(or simply L) its isotopy class that we endow with the C1-topology. We denote by
L̃ its universal cover and Π : L̃ → L the covering map.

Everywhere in the paper, I ⊂ R will denote an interval. Let us recall that a
Legendrian isotopy (Λt)t∈I in L is a path of Legendrian submanifolds such that
there exists a smooth map j : I × Λ → M whose restriction jt to {t} × Λ is an
embedding onto Λt for all t ∈ I. The α-Hamiltonian map of (Λt) is the family of
maps (ht : Λt → R) defined by ht ◦ jt = α(∂tjt) for any smooth parametrization
j. Given a (smooth) contact isotopy (ϕt) ⊂ Cont0(M, ξ), we recall that its α-
Hamiltonian map h : I × M → R is defined by ht ◦ ϕt = α(∂tϕt). We say that a
path (Λt) ⊂ L̃ (resp. (ϕt) ⊂ G̃) is an isotopy if its projection to L (resp. G) is an
isotopy and we define its α-Hamiltonian to be the α-Hamiltonian of its projection.

On O being either G, G̃,L or L̃ we write x ⪯ y, or equivalently y ⪰ x, if there
exists a non-negative isotopy from x to y, i.e. an isotopy whose Hamiltonian is
non-negative. O is called orderable if and only if ⪯ defines a partial order. This
relation has been introduced by Eliashberg-Polterovich [12] and has been widely
studied [1, 5, 8, 10, 11, 25].

2.2. Hofer type distances. The Shelukhin-Chekanov-Hofer (resp. Shelukhin-
Hofer) length functional is a functional defined on the space of Legendrian isotopies
(Λt) ⊂ L (resp. contact isotopies (ϕt) ⊂ G) as follows: the length of any isotopy of
α-Hamiltonian (Ht)t∈I is given by ∫

I
max |Ht|dt,

(see also [24, Section 7] and [27]). We denote this length functional by Lα
SCH (resp.

Lα
SH). The Shelukhin-Chekanov-Hofer (SCH) pseudo-distance dα

SCH on L or L̃ is
defined for any Λ0,Λ1 ∈ L or L̃ as

dα
SCH(Λ1,Λ0) := inf{Lα

SCH(Λt) | (Λt) ⊂ L or L̃ joining Λ0 to Λ1}.
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The Shelukhin-Hofer pseudo-norm |·|αSH on G or G̃ is defined for any ϕ ∈ G or G̃ as

|ϕ|αSH = inf{Lα
SH(ϕt) | (ϕt)t∈[0,1] ⊂ G or G̃ such that ϕ0 = id and ϕ1 = ϕ}.

When M is closed Shelukhin [27] showed that |·|αSH is a genuine norm on G.
Hedicke [15] showed that dα

SCH is a genuine distance when L is orderable (even for
non-closed M).

Remark 2.1. Note that Theorem 1.1 together with Corollary 1.3 imply that Lengthdα
SCH

and Lengthdα
SH

(as defined in (1)) restricted to isotopies correspond respectively to
Lα

SCH and Lα
SH, where dα

SH denotes the right-invariant distance associated with the
norm |·|αSH. See also [14, Proposition 1.6] and the remark following it.

2.3. Order spectral selectors and induced distances. Following [1] let us de-
fine two functions ℓα

± : L × L → R ∪ {∓∞} (resp. L̃ × L̃ → R ∪ {∓∞}) by
ℓα

+(Λ1,Λ0) := inf{t ∈ R | Λ1 ⪯ ϕα
t ·Λ0} and ℓα

−(Λ1,Λ0) := sup{t ∈ R | ϕα
t ·Λ0 ⪯ Λ1},

for Λ1,Λ0 ∈ L (resp. Λ1,Λ0 ∈ L̃), where ϕα
t · Λ0 denotes the natural action of the

Reeb flow at time t ∈ R on Λ0 ∈ L (resp. Λ0 ∈ L̃). Recall that the α-spectrum
of (Λ1,Λ0) ∈ L2 (resp. L̃2) is the set of lengths of α-Reeb chords joining Λ0 to Λ1
(resp. Π(Λ0) to Π(Λ1)) that is
Specα(Λ1,Λ0) := {t ∈ R | Λ1∩ϕα

t Λ0 ̸= ∅} (resp. Specα(Λ1,Λ0) := Specα(ΠΛ1,ΠΛ0)).

Theorem 2.2 ([1]). The maps ℓα
± are real-valued if and only if L (resp. L̃) is

orderable. Moreover when real valued they satisfy the following properties for every
Λ0,Λ1,Λ2 ∈ L (resp. L̃),
1. (normalization) ℓα

±(Λ0,Λ0) = 0 and ℓα
±(ϕα

t Λ1,Λ0) = t+ ℓα
±(Λ1,Λ0), ∀t ∈ R,

2. (monotonicity) Λ2 ⪯ Λ1 implies ℓα
±(Λ2,Λ0) ≤ ℓα

±(Λ1,Λ0),
3. (triangle inequalities) ℓα

+(Λ2,Λ0) ≤ ℓα
+(Λ2,Λ1) + ℓα

+(Λ1,Λ0) and ℓα
−(Λ2,Λ0) ≥

ℓα
−(Λ2,Λ1) + ℓα

−(Λ1,Λ0),
4. (Poincaré duality) ℓα

+(Λ1,Λ0) = −ℓα
−(Λ0,Λ1),

5. (compatibility) ℓα
±(φ(Λ1), φ(Λ0)) = ℓφ∗α

± (Λ1,Λ0), for every φ in Cont0(M, ξ)
(resp. in its universal cover),

6. (non-degeneracy) ℓα
+(Λ1,Λ0) = ℓα

−(Λ1,Λ0) = t for some t ∈ R implies Λ1 = ϕα
t Λ0

(resp. it only implies the equality ΠΛ1 = ϕα
t ΠΛ0 in L).

7. (spectrality) ℓα
±(Λ1,Λ0) ∈ Specα(Λ1,Λ0).

As a consequence the map dα
spec := max{ℓα

+,−ℓα
−} is a distance (resp. a pseudo-

distance) on L (resp. L̃) whenever it is orderable. Thanks to the last property of
Theorem 2.2 we call this (pseudo-)distance the Legendrian spectral distance. A con-
sequence of normalization and monotonicity properties are the following inequalities.
If (Λt)t∈[0,1] is an isotopy of L (resp. L̃), then∫ 1

0
minHtdt ≤ ℓα

−(Λ1,Λ0) ≤ ℓα
+(Λ1,Λ0) ≤

∫ 1

0
maxHtdt, (2)

where (Ht) is the associated α-Hamiltonian map [1, Lemma 3.3]. In particular, the
spectral distance is dominated by the SCH distance:

dα
spec ≤ dα

SCH, (3)

which subsequently implies the C1-continuity of ℓα
± [1, Corollary 3.4].
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Assuming that M is closed, similarly we defined in [1, 3] two functions cα
± : G →

R ∪ {∓∞} (resp. G̃ → R ∪ {∓∞})
cα

+(ϕ) = inf{t ∈ R | ϕ ⪯ ϕα
t } and cα

−(ϕ) = sup{t ∈ R | ϕα
t ⪯ ϕ}.

We showed that the maps cα
± take values in R if and only if G (resp. G̃) is order-

able and moreover cα
± satisfy properties analogous to the ones of ℓα

± except for the
spectrality. Let us recall that the α-spectrum of ϕ ∈ G (resp. ϕ ∈ G̃) is the set of
translations of its α-translated points that is

Specα(ϕ) := {t ∈ R | ∃x ∈ M, ϕ(x) = ϕα
t (x), (ϕ∗α)x = αx} (4)

(resp. Specα(ϕ) := Specα(Π(ϕ))).
Nevertheless this allows us to define a norm (resp. a pseudo-norm)

|·|αspec := max{cα
+,−cα

−}

that we still call the spectral norm on G (resp. G̃). Since normalization and mono-
tonicity are still satisfied by cα

±, one has analogues of (2) and (3). Given ϕ ∈ G (resp.
∈ G̃), ∫ 1

0
minHtdt ≤ cα

−(ϕ) ≤ cα
+(ϕ) ≤

∫ 1

0
maxHtdt, (5)

for any α-Hamiltonian map (Ht) generating ϕ. As a consequence |·|αspec ≤ |·|αSH.

3. Proof of Theorem 1.1

In order to prove Theorem 1.1 let us assume L (resp. L̃) to be orderable and
let us fix once for all Λ in it. Let us be more explicit on the construction of the
parametrization Φ centered at Λ in order to fix notation. By the Weinstein neigh-
borhood theorem, there exists Ψ a diffeomorphism between a neighborhood V ⊂ M
of Λ and a neighborhood V ⊂ J1Λ of the 0-section j10 that moreover satisfies
Ψ(Λ) = j10, and more precisely Ψ(x) is the image of the 0-section at x for all x ∈ Λ,
and Ψ∗α0 = α where α0 = dz−p ·dq denotes the canonical 1-form of J1Λ. Let U be
a sufficiently C2-small open neighborhood of the 0-function in C∞(Λ,R) such that
j1f ⊂ V for any f ∈ U . Then one can show that the map

Φ : U → L f 7→ Ψ−1(j1f)
is injective and open (see for example the third paragraph of [28] for more details).

One can have the same discussion for the universal cover L̃ of L. Indeed in
this situation, ensuring that Φ(U) is small enough, one can use the projection Π :
L̃ → L, which is a local homeomorphism, to construct the local homeomorphism
Π|−1

Φ(U) ◦ Φ : U → L̃ . By a slight abuse of notation we also denote this latter local
homeomorphism by Φ.

Before proving Theorem 1.1 let us prove the following lemmata.

Lemma 3.1. Let f ∈ U . If an α-Reeb chord between Λ and Φ(f) of length ℓ ∈ R is
contained in V, i.e. {ϕα

tℓ(x)}t∈[0,1] ⊂ V for some x ∈ Λ and ϕα
ℓ (x) ∈ Φ(f), then ℓ is

a critical value of f .

Proof. Since Ψ : V → V is a strict contactomorphism Ψ(ϕα
tℓ(x)) = (x, 0, tℓ) ∈ V ⊂

T ∗X × R. Therefore (x, 0, ℓ) ∈ j1f = {(x, df(x), f(x)) | x ∈ Λ} which brings the
conclusion. □
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Let ε0 > 0 be sufficiently small so that:
(i) ϕα

t (Λ) ⊂ V for any t ∈ (−ε0, ε0)
(ii) there exists an open set of the form Vε0 := V × (−ε0, ε0) ⊂ J1Λ = T ∗Λ × R

that is contained in V .
From now on, for any positive ε ≤ ε0 we will denote by Uε a convex C2-neighborhood

of the 0-function such that j1f ∈ Vε := V × (−ε, ε) for all f ∈ Uε.

Corollary 3.2. Let f ∈ Uε then ℓα
±(Φ(f),Λ) are critical values of f .

Proof. Since f ∈ Uε by (2) it implies that −ε < min f ≤ ℓα
−(Φ(f),Λ) ≤ ℓα

+(Φ(f),Λ) ≤
max f < ε. Since ℓ± := ℓα

±(Φ(f),Λ) are spectral values it implies that there exists
x± ∈ Λ such that {ϕtℓ±

α (x±)} are Reeb chords between Λ and Φ(f). By (i) these
Reeb chords are included in V and therefore we conclude by Lemma 3.1. □

Lemma 3.3. There exists a positive δ0 ≤ ε0 such that for any positive δ ≤ δ0

ℓα
±(Φ(f),Φ(g)) = ℓα

±(Φ(f − g),Λ) for any f, g ∈ Uδ.

Proof. Note that if there exists a contactomorphism ϕ ∈ Cont0(M, kerα) that com-
mutes with the Reeb flow, or equivalently ϕ∗α = α, such that

ϕ(Φ(h)) = Φ(h− g) for any h ∈ Uδ (6)
then Lemma 3.3 follows from the compatibility property of Theorem 2.2. This is the
case when (M, kerα) = (J1Λ, kerα0) with the trivial α0-Weinstein parametrization
centered at the zero section, i.e. Φ(h) = j1h, since the contact isotopy (ϕt), ϕt :
(q, p, z) 7→ (q, p− tdg(q), z− tg(q)), is an isotopy of strict contactomorphisms whose
time 1 satisfies (6). The α0-Hamiltonian of this isotopy is given by the autonomous
function H : (q, p, z) 7→ −g(q).

When (M, kerα) is a general contact manifold and for δ small enough, we get the
desired result by cutting off the Hamiltonian function H properly. More precisely let
δ be small enough so that (ft := f−tg), (gt := (1−t)g) and (gα

t,s := gs+(2t−1)2δ) ⊂
U for all f, g ∈ Uδ and t, s ∈ [0, 1]. Consider ρ : J1Λ → R a cutoff function supported
in V such that ρ is equal to 1 on a neighborhood containing (j1ft), (j1gt) and (j1gα

t,s).
Let K : M → R be the compactly supported α-Hamiltonian function defined by
x 7→ ρ(Ψ(x))H(Ψ(x)) if x ∈ V and x 7→ 0 otherwise. It is easy to check that its
time 1-flow ϕ commutes with ϕt

α on Φ(g) for t ∈ [−2δ, 2δ] and satisfies (6) when h
is either f or g. Moreover by the previous Corollary 3.2 and triangle inequality we
get that ℓα

±(Φ(f),Φ(g)) ∈ (−2δ, 2δ). The conclusion follows from the definition of
ℓα

±. □

Proof of Theorem 1.1. We will show Theorem 1.1 for U ′ → L (resp. U ′ → L̃) where
U ′ := Uδ0/2 and δ0 is the positive constant of Lemma 3.3.

Remark that for any f ∈ Uδ0 convexity ensures that tf ∈ Uδ0 for all t ∈ [0, 1].
Since the set of critical values CV(tf) = tCV(f) of tf is nowhere dense, we deduce
by continuity of ℓα

+(·,Λ) (see (3) and below) and Corollary 3.2 that there exists
x0 ∈ Λ a critical point of f such that ℓα

+(Φ(tf),Λ) = tf(x0). It thus remains to
show that f(x0) = max f for any f ∈ Uδ0/2 to get the desired equality for ℓα

+.
Let us first assume f ≥ 0 and f ∈ Uδ0 is Morse. In particular f ̸= 0. Let B

be a Morse neighborhood of a maximum x1 of f : there exist ε > 0 and a diffeo-
morphism Q := (q1, . . . , qn) from B to the Euclidean ball of radius ε centered at 0
such that Q(x1) = 0 and f(x) := max f − ∑

qi(x)2 for any x ∈ B. It is then easy
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to construct a cut-off function ρ : M → [0, 1] supported in B such that ρ(x1) = 1
and CV(ρf) := {max f, 0}. Note that ρf ≤ f since f ≥ 0 but ρf may not be
contained in U . However there exists µ > 0 small enough so that tρf ∈ Uδ for all
t ∈ [0, µ]. Therefore thanks to Corollary 3.2 ℓα

+(Φ(tρf),Λ) ∈ {tmax f, 0}. More-
over Φ(tρf) ̸= Λ (resp. Π(Φ(tρf)) ̸= Π(Λ)) for t ∈ (0, µ) since f ̸= 0 therefore by
non-degeneracy of the selectors ℓα

+(Φ(tρf),Λ) = tmax f . Thus by monotonicity we
deduce that ℓα

+(Φ(tf),Λ) = tmax f .
Let us now assume f ∈ Uδ0/2 is Morse but −δ0/2 < m := min f < 0. Consider

then g := f − m ≥ 0. Remark that max g = max f − m < δ0/2 + δ0/2 = δ0.
Therefore g ∈ Uδ0 is Morse and non-negative. So we deduce by the previous case
that ℓα

+(Φ(g),Λ) = max f −m. Moreover ϕα
m(Φ(g)) = Φ(f) so by normalization we

deduce that ℓα
+(Φ(f),Λ) = max f .

Finally, let f be any function in Uδ0/2. Since Morse functions are C2-dense, one
can find a sequence (fn) of Morse functions in Uδ0/2 that converges to f in the C2-
topology. Therefore (Φ(fn)) C1-converges to Φ(f). By C1-continuity of ℓα

+ (see (3)
and below) and the previous cases, we deduce that ℓα

+(Φ(f),Λ) = max f .
Thanks to Lemma 3.3 ℓα

+(Φ(f),Φ(g)) = ℓ+(Φ(f − g),Λ) = max(f − g).
We deduce the analogous result for ℓα

− by a similar reasoning or simply by using
the Poincaré duality property, and this concludes the proof. □

Let us conclude this section by deducing the C1-local coincidence of dα
spec and

dα
SCH.

Proof of Corollary 1.3. As recalled at (3), one always has dα
spec ≤ dα

SCH. In the neigh-
borhood of Λ = Φ(0), one has dα

spec(Φ(f),Φ(g)) = max |f − g|. The α0-Hamiltonian
map associated with (j1ft) for ft := (1− t)f+ tg, t ∈ [0, 1], is (q, p, z) 7→ g(q)−f(q),
therefore Lα0

SCH(j1ft) = max |f − g|. Since the SCH-length of an isotopy is invariant
under strict contactomorphism Lα

SCH(Φ(ft)) = max |f − g|. As a consequence, one
gets the reverse inequality dα

SCH(Φ(f),Φ(g)) ≤ max |f − g|. □

4. Characterization of the geodesics

To prove Theorem 1.8 let us first state and prove the two following lemmata.

Lemma 4.1. Given a continuous map g : [a, b]t × N → R on a compact set, the
following two conditions are equivalent:

(1)
∫ b

a max |gt|dt = maxx

∣∣∣∫ b
a gt(x)dt

∣∣∣,
(2) there exist ϵ ∈ {±1} and x0 ∈ Λ such that ∀t ∈ [a, b], ϵgt(x0) = max |gt|.

Proof. The implication (2) ⇒ (1) is clear. Conversely, let x0 ∈ N and ϵ ∈ {±1} be
such that ϵ

∫ b
a gt(x0)dt = maxx |

∫ b
a gt(x)dt|. Then t 7→ max |gt| − ϵgt(x0) is a non-

negative continuous map the integral of which vanishes over [a, b] by assumption.
The conclusion follows. □

Lemma 4.2. Let f : [0, 1]t × N → R be a smooth map on a closed manifold N .
Then (j1ft) is a minimizing geodesic for dα0 if and only if it is α0-quasi-autonomous,
where α0 denotes the canonical 1-form of J1N and dα0 either dα0

spec or dα0
SCH.

Proof. It is enough to prove the result for dα0
SCH thanks to Corollary 1.3 and the

first point in Remark 1.6. Moreover thanks to Remark 2.1 (j1ft) is a geodesic if
and only if dα0

SCH(j1f0, j
1f1) =

∫ 1
0 max |Ht|dt where (Ht) is the α0-Hamiltonian map
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of (j1ft). But Ht = ∂tft ◦ π|j1ft
where π : J1N → N is the bundle map and

dα0
SCH(j1f0, j

1f1) = max |f1 − f0| thanks to Remark 1.2, so it boils down to∫ 1

0
max |∂tft|dt = max

q

∣∣∣∣∫ 1

0
∂tft(q)dt

∣∣∣∣ .
By Lemma 4.1, this is equivalent to the existence of q0 ∈ N and ϵ ∈ {±1} such that
∀t ∈ [0, 1], ϵ∂tft(q0) = max |∂tft|.

Let assume that (j1ft) is a geodesic. In particular, q0 is a critical point of ∂tft

where t ∈ [0, 1] is fixed. As the time-derivative commutes with the differential
operator on N , ∂t(dft) vanishes at q0 so t 7→ dft(q0) is constant. Therefore (j1ft) is
quasi-autonomous, by taking xt = (q0, df0(q0), ft(q0)).

Conversely, if (j1ft) is quasi-autonomous, the associated path of xt ∈ j1ft be-
longing to a same Reeb orbit such that ϵHt(xt) = max |Ht|, for some ϵ ∈ {±1},
is necessarily of the form (q0, df0(q0), ft(q0)), t ∈ [0, 1]. As Ht = ∂tft ◦ π|j1ft

, the
conclusion follows from the beginning of the proof. □

Proof of Theorem 1.8. It is enough to prove the result for dα
spec thanks to Corollary

1.3. Let (Λt)t∈I be an isotopy of L (resp. L̃) and let us fix t0 ∈ I. Let us consider an
α-Weinstein parametrization Φ : U → L (resp. U → L̃) centered at Λt0 and U ′ ⊂ U
given by Theorem 1.1. Let J ⊂ I be a neighborhood of t0 such that (Λt)t∈J ⊂ Φ(U ′)
and denote ft := Φ−1(Λt) for t ∈ J . According to Theorem 1.1,

dα
spec(Λt,Λs) = dα0

spec(j1ft, j
1fs), ∀t, s ∈ J,

(see also Remark 1.2). Therefore, (Λt)t∈J is a minimizing geodesic for dα
spec if and

only if (j1ft) is a minimizing geodesic for dα0
spec in J1Λt0 . The conclusion now follows

from Lemma 4.2 as the notion of quasi-autonomy is stable under strict contacto-
morphisms. □

5. The case of contactomorphisms

Let us deduce from the Legendrian case the analogous statements for contacto-
morphisms when a stronger orderability condition is assumed.

5.1. C1-local flatness. Let us first recall that for any closed cooriented contact
manifold (M, ξ := kerα), the 1-form β := π∗

2α−eθπ∗
1α is a contact form onM×M×R

where πi : M ×M × R → M , (x1, x2, θ) 7→ xi. Its cooriented kernel Ξ := ker β does
not depend (up to isomorphism) on the choice of the contact form α supporting
ξ. Note that the diagonal ∆ := {(x, x, 0) | x ∈ M} is a closed Legendrian of
(M ×M ×R,Ξ). For any contactomorphism ϕ of (M, kerα) isotopic to the identity,
the graph of ϕ, grα(ϕ) := {(x, ϕ(x), g(x)) | x ∈ M} where ϕ∗α = egα, lies in L(∆).
Moreover the map G → L(∆) (resp. G̃ → L̃(∆)) we have just described is a local
homeomorphism at the identity.

In particular this allows again to construct a continuous embedding U → G (resp.
U → G̃) sending the zero map to the identity where U denotes a C2-neighborhood
of the zero map in C∞(M,R). Such a map is called an α-Weinstein parametrization
centered at the identity.

Corollary 5.1. If (M, kerα) is closed and L̃(∆) is orderable then endowed with
the spectral pseudo-norm G̃ is C1-locally flat. More precisely, for every α-Weinstein
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parametrization Φ : U → G̃ centered at the identity, there exists U ′ ⊂ U a C2-
neighborhood of the zero map such that for all f ∈ U ′

cα
+(Φ(f)) = max f and cα

−(Φ(f)) = min f
in particular |Φ(f)|αspec = max |f |.

Proof. Let us define the map Cα
±(ϕ) := ℓ±(grα(ϕ),∆) where by a slight abuse of

notation ∆ ∈ L̃(∆) denotes the class of the constant path and gr(ϕ) ∈ L̃(∆)
denotes the class of the path (grα(ϕt)) for a path (ϕt) ⊂ G representing ϕ ∈ G̃.
By Theorem 1.1 Cα

+(Φ(f)) = max f , Cα
−(Φ(f)) = min f . By maximality of cα

± (see
the discussion at the end of [1, Section 1.3]) we deduce that cα

+(Φ(f)) ≥ max f and
cα

−(Φ(f)) ≤ min f . The reverse inequalities come from (5). □

A proof similar to that of Corollary 1.3 then brings the corresponding statement
for G̃.
Corollary 5.2. Suppose that (M, kerα) is closed and L̃(∆) is orderable. Then for
every ϕ ∈ G̃ that is C1-close to the identity,

|ϕ|αSH = |ϕ|αspec .

Therefore endowed with the Shelukhin-Hofer pseudo norm G̃ is C1-locally flat.

By mimicking the proof of Theorem 1.1 one can see that Corollary 5.1 and Corol-
lary 5.2 actually hold whenever there exist maps c− ≤ c+ that are spectral, com-
patible with the partial order, non-degenerate and normalized in the sense of [1]. In
particular it holds for G̃ of lens spaces [2]. When (M, kerα) is a closed contact man-
ifold such that G (resp. G̃) is orderable, it is conjectured in [1] that cα

± on G (resp.
G̃) are spectral. It is interesting to note that for elements that can be joined to the
identity by a minimizing geodesic this conjecture holds. More precisely denote by
E− :=

{
ϕ ∈ G (resp. ∈ G̃) | ϕα

cα
−(ϕ) ⪯ ϕ

}
E+ :=

{
ϕ ∈ G (resp. ∈ G̃) | ϕ ⪯ ϕα

cα
+(ϕ)

}
.

Proposition 5.3. Let ϕ ∈ E± then cα
±(ϕ) ∈ Specα(ϕ).

It seems however unlikely that E+ = E− = G – which is equivalent to saying that
{ϕ ⪰ id} ⊂ G is closed for the C1-topology. See Section 5.2 for discussions.

Given a pair of points x, y in G or G̃, let us write x Î y if there exists a positive
isotopy joining x to y. The statement of Proposition 5.3 follows directly from the
following lemma.

Lemma 5.4. Let ϕ ∈ G (resp. G̃) such that id ⪯ ϕ. If ϕ (resp. Π(ϕ)) does not have
any discriminant point then id Î ϕ.

Note that if G (resp. G̃) is not orderable the proposition is trivial.
Proof of Lemma 5.4. Consider (ϕt) ⊂ G a non-negative path starting at the identity
such that ϕ1 = ϕ ∈ G (resp. [(ϕt)] = ϕ). Since ϕ1 does not have discriminant
point there exists ε0 > 0 such that the path of closed Legendrian submanifolds
(gr(ϕα

−tε ◦ϕ1))t∈[0,1] does not intersect ∆ for any ε ∈ (0, ε0). Therefore there exists a
compactly supported contactomorphism (ψε) of M ×M ×R isotopic to the identity
that sends (gr(ϕ1)) on gr(ϕα

−ε ◦ ϕ1) and that fixes ∆. Moreover, for ε sufficiently
small, one can construct ψε sufficiently C1-small such that the non-negative path
of Legendrians (ψε(gr(ϕt)) starting at ∆ is graphical, i.e. there exists an isotopy
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(φt) ⊂ G starting at the identity such that ψε(gr(ϕt)) = gr(φt). This implies that
id ⪯ φ1 = ϕα

−ε ◦ ϕ1 Î ϕ1 and concludes the proof. □

Proof of Proposition 5.3. Let t := cα
−(ϕ). Since ϕα

t ⪯ ϕ it implies that id ⪯ ϕα
−tϕ.

Suppose by contradiction that t is not in the spectrum. Therefore id Î ϕα
−tϕ by

Lemma 5.4 which contradicts the definition of t. To deduce the result for cα
+ one

can use Poincaré duality. □

5.2. Geodesics. Identifying contactomorphisms with their graphs in the contact
product of M , the definition of quasi-autonomous contact isotopies is straightfor-
ward.

Definition 5.5. A contact isotopy (ϕt) ⊂ G is α-quasi-autonomous if the corre-
sponding Legendrian isotopy (grα(ϕt)) ⊂ (M×M×R, ker β) is β-quasi-autonomous.

Note that a contact isotopy (ϕt) starting at the identity is α-quasi-autonomous if
and only if there exist a point x ∈ M and ϵ ∈ {±1} such that x is an α-translated
point of ϕt (cf. (4) and above) and ϵHt(ϕt(x)) = max |Ht| for all t ∈ [0, 1] where H
denotes the α-Hamiltonian function of (ϕt).

The characterization of geodesics in this context is now a direct consequence of
Theorem 1.8 and the C1-local isometry between G or G̃ and L̃(∆). Let us recall
that a geodesic for the group pseudo-norm | · | is by definition a geodesic for the
right-invariant pseudo-distance (g, h) 7→ |gh−1| (in fact it will also be a geodesic for
the associated left-invariant pseudo-distance in our case).

Corollary 5.6. Let (M, kerα) be a closed contact manifold such that L̃(∆) is or-
derable. A contact isotopy (ϕt) is a geodesic for | · |α if and only if it is α-quasi-
autonomous, where | · |α denotes either |·|αspec or |·|αSH.

The second author in [4] characterized some minimizing geodesics of the Shelukhin-
Hofer norm on the identity component of the group of compactly supported contac-
tomorphisms of R2n×S1 endowed with its standard contact form αst . Since R2n×S1

is non compact, the previous Corollary 5.6 does not cover this case. However the
geodesics characterized in [4] are indeed special cases of αst-quasi-autonomous iso-
topies. It would be interesting to extend the selectors ℓα

± and cα
± to compactly

supported isotopies and extend the results of this paper to the non compact settings
(see also [1, Remark 1.4]).

Questions 5.7.
(1) Does it exist Λ1 ∈ L(Λ0) or L̃ (resp. ϕ1 ∈ G or G̃) that cannot be attained

by minimizing smooth geodesics, i.e. for any isotopy (Λt) ⊂ L or L̃ (resp.
(ϕt) ⊂ G or G̃)

Lα
SCH(Λt) = Lengthdα

spec
(Λt) > dα

SCH(Λ1,Λ0) ≥ dα
spec(Λ1,Λ0)

(resp. Lα
SH(ϕt) = Length|·|αspec

(ϕt) > |ϕ1|αSH ≥ |ϕ1|αspec)?
(2) Does Shelukhin-Chekanov-Hofer type distance (resp. norm) agree with the

spectral distance (resp. spectral norm)?
(3) Does orderable L (resp. G) endowed with the spectral distance (resp. spectral

norm) is an intrinsic metric space (when taking the infimum of length over
continuous paths for the topology induced by the distance, i.e. the interval
topology [9, 19])?
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Note that a negative answer to question (3) implies a negative answer to question
(2). Moreover a negative answer to question (2) implies a positive answer to question
(1) for the spectral type distances.

To answer positively to question (1) one can try to adapt some construction of
Lalonde-McDuff. Indeed in the Hamiltonian case Lalonde-McDuff [16, Prop 5.1 Part
I] constructed examples of ψ̃ ∈ H̃am(CP1) that cannot be joined to the identity by
any minimizing geodesics {ψt} ⊂ Ham(CP1) for the Hofer length. It would be
interesting to investigate whether certain lifts φ̃ ∈ G̃(RP3) of ψ̃ satisfy a similar
property : they cannot be joined to the identity by minimizing geodesics of the
Hofer-Shelukhin length. Moreover since Corollary 5.2 and the discussion following
it imply that the Hofer-Shelukhin length and the spectral length agree on smooth
paths in this context, such φ̃ would be examples of elements lying inside G̃ \ E±.

To answer negatively to question (2) it would be enough to show that the Shelukhin-
Hofer type distance (resp. norm) is not compatible with the partial order.
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