Premières formules de Cauchy - Homographies - Biholomorphismes du disque

S. Allais, L. Poyeton

1 Formule de Cauchy pour les séries entières

Exercice 1. Soit $f(z) = \sum_{n=0}^{\infty} a_n z^n$ la somme d'une série entière de rayon de convergence \mathcal{R} .

1. Montrer que pour tout $0 < r < \mathcal{R}$,

$$\int_{\partial D(0,r)} f(z) dz = 0 = \left(\int_{\theta=0}^{2\pi} f(re^{i\theta}) (rie^{i\theta}) d\theta \right).$$

2. Montrer que pour tout $0 < r < \mathcal{R}$ et $n \ge 0$,

$$a_n = \frac{1}{2i\pi} \int_{\partial D(0,r)} \frac{f(z)}{z^{n+1}} dz \quad \left(= \frac{1}{2\pi} \int_0^{2\pi} \frac{f(re^{i\theta})}{r^n e^{in\theta}} d\theta \right).$$

- 3. Montrer que si *f* est bornée de rayon de convergence infini, alors elle est constante (théorème de Liouville).
- 4. On suppose que f a un rayon de convergence infini. On suppose qu'il existe R > 0 et $P \in \mathbf{R}_d[X]$ tels que pour |z| > R on ait |f(z)| < |P(z)|. Montrer que f est un polynôme de degré au plus d.
- 5. Soit $f(z) = \sum_{n=0}^{\infty} a_n z^n$ la somme d'une série entière de rayon de convergence ≥ 1 . On suppose que f se prolonge en une fonction continue sur le disque unité fermé et que

$$\exists \alpha \in \mathbf{R} \ \exists \theta > 0 \ \forall t \in [\alpha, \alpha + \theta] \ f(e^{it}) = 0.$$

Montrer que f est nulle.

2 Homographies

Exercice 2. On pose $\overline{\mathbb{C}} := \mathbb{C} \cup \{\infty\}$ où ∞ est un élément quelconque hors de l'ensemble \mathbb{C} . Si $(z_n) \in \mathbb{C}^{\mathbb{N}}$ est une suite complexe, on dira que $(z_n) \to \infty$ si, et seulement si, $(|z_n|) \to +\infty$.

Pour toute matrice $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(\mathbf{C})$, on note $h_A : \overline{\mathbf{C}} \longrightarrow \overline{\mathbf{C}}$ la fonction définie comme suit :

- Dans tous les cas autres que les cas ci-dessous, $h_A(z) = \frac{az+b}{cz+d}$;
- $-h_A(\infty) = \frac{a}{c} \operatorname{si} c \neq 0$, et $\infty \operatorname{si} c = 0$;
- $--\operatorname{Si} cz + d = 0, h_A(z) = \infty.$

Ces fonctions sont appelées homographies.

- 1. Montrer que pour tout choix de matrice $A \in GL_2(\mathbf{C})$ et tout $z \in \mathbf{C}$, si cz + d = 0, alors $az + b \neq 0$. En déduire que pour toute $A \in GL_2(\mathbf{C})$ et toute suite complexe (z_n) telle que $(z_n) \to z_\infty \in \overline{\mathbf{C}}$, on a $h_A(z_\infty) = \lim_{n \to \infty} h_A(z_n)$.
- 2. Montrer que pour toutes $A, B \in GL_2(\mathbf{C}), h_A \circ h_B = h_{AB}$.
- 3. On note Möb(**C**) l'ensemble des homographies. Montrer que Möb(**C**) est un groupe isomorphe à $SL_2(\mathbf{C})/\{\pm \mathrm{Id}\}$ (on note $PSL_2(\mathbf{C}) := SL_2(\mathbf{C})/\{\pm \mathrm{Id}\}$).
- 4. Montrer que Möb(\mathbf{C}) est exactement 3-transitif sur \mathbf{C} , c'est-à-dire que si (z_1, z_2, z_3) et (w_1, w_2, w_3) sont des triplets d'éléments distincts de $\overline{\mathbf{C}}$, il existe une unique homographie f telle que $f(z_1) = w_1$, $f(z_2) = w_2$ et $f(z_3) = w_3$.
- 5. Soit $h \in \text{M\"ob}(\mathbf{C})$. Montrer que $h(\mathbf{R} \cup \{\infty\}) = \mathbf{R} \cup \{\infty\}$ si, et seulement si, il existe $A \in GL_2(\mathbf{R})$ tel que $h = h_A$.
- 6. Soit $A \in SL_2(\mathbb{C})$. On considère le demi-plan supérieur $\mathbb{H} = \{z \in \mathbb{C} \mid \Im(z) > 0\}$. Montrer que $h_A(\mathbb{H}) = \mathbb{H}$ si et seulement si $A \in SL_2(\mathbb{R})$ (on pourra utiliser la question précédente).

3 Biholomorphismes

Exercice 3. Un biholomorphisme d'un ouvert $U \subset \mathbf{C}$ vers un ouvert $V \subset \mathbf{C}$ est un holomorphisme bijectif $h: U \to V$ d'inverse holomorphe. On notera $\mathbb{D} := \{z \in \mathbf{C} \text{ tel que } |z| < 1\}$ le disque unité ouvert de \mathbf{C} .

- 1. On considère la fonction définie sur le disque unité ouvert complexe :
 - $T_w: \mathbb{D} \longrightarrow \mathbf{C}$ tel que $T_w(z) = \frac{w-z}{1-\bar{w}z}$, où $w \in \mathbb{D}$.
 - (a) Montrer que T_w est un holomorphisme à valeurs dans $\mathbb D$
 - (b) Montrer que $T_w \circ T_w$ est l'identité, en déduire que T_w est un biholomorphisme du disque (sous-entendu vers lui-même) échangeant 0 et w.
 - (c) Montrer que le groupe des biholomorphismes du disque est transitif.
- 2. On considère à présent la fonction $h : \mathbb{H} \to \mathbb{C}$ telle que $h(z) = \frac{z-i}{z+i}$ pour $z \in \mathbb{H}$.
 - (a) Montrer que h réalise un biholomorphisme de $\mathbb H$ vers $\mathbb D$.
 - (b) En utilisant la dernière question de l'exercice précédent, montrer que le groupe des biholomorphismes de \mathbb{H} admet un sous-groupe isomorphe à $PSL_2(\mathbf{R})$.
 - (c) En considérant la conjugaison $f \mapsto h \circ f \circ h^{-1}$, montrer que le groupe des biholomorphismes de $\mathbb D$ contient un sous-groupe isomorphe à $PSL_2(\mathbf R)$. On déduira de la démonstration l'isomorphisme de groupe suivant :

$$PSL_2(\mathbf{R}) \simeq PSU_{1,1}(\mathbf{C}) := \left\{ \begin{pmatrix} a & b \\ \bar{b} & \bar{a} \end{pmatrix} \text{ de déterminant 1 avec } a, b \in \mathbf{C} \right\} / \mathbf{C}^* \text{Id}$$