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Abstract
In 1936, Margherita Piazzola Beloch showed that paper folding allows to solve every cubic

equation, thus extending the field of constructible numbers. In this article we give an elementary
proof of this result based on analytic geometry. This proof gives a means to solve cubic
equations that we applied to doubling the cube and trisecting the angle.

1 Introduction
Famous classical problems play an important role in the development of mathematics. Some of
them required more than two thousand years to be solved. Doubling the cube and trisecting the
angle with ruler and compass were among them.

The first serious answer to these ancient problems was given by Pierre-Laurent Wantzel who
proved in 1837 that doubling the cube and trisecting the angle can’t be done with ruler and compass.
[7] As a matter of fact, he showed that cubic equations can’t generally be solved with these tools
which would be necessary to obtain the desired constructions. On the other hand, in 1853, Tandalam
Sundara Rao suggested that paper folding provides at least the same results as ruler and compass.
[6] Moreover, in 1936, Margherita Piazzola Beloch showed that doubling and trisecting the angle
can be done by paper folding. [1] Her proof was based on the fact that paper folding does allow to
solve every cubic equation.

However, these constructions aren’t well known. Thus, the purpose of this article is to introduce
paper folding, which is an elementary but under recognised subject. We want to give a simple proof
of an easy algorithm to solve any cubic equation and, thus, to give a means to double the cube and
to trisect the angle by paper folding.

2 Paper folding construction
Paper folding constructions are described as a sequence of basic folds, also called axioms. Here is
a list of them (according to Huzita [4]):

• O1: Given two points p1 and p2, we can fold a line connecting them.

• O2: Given two points p1 and p2, we can fold p1 onto p2.

• O3: Given two lines l1 and l2, we can fold line l1 onto l2.
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Figure 1: the six basic folds (from [2])

• O4: Given a point p and a line l, we can make a fold perpendicular to l passing through the
point p.

• O5: Given two points p1 and p2 and a line l, we can make a fold that places p1 onto l and
passes through the point p2.

• O6: Given two points p1 and p2 and two lines l1 and l2, we can make a fold that places p1
onto line l1 and places p2 onto l2.

It is well known that the first five basic folds are equivalent to the ruler and compass construc-
tions (see [5] for instance). Actually, the sixth basic fold is the one which extends the field of
constructible numbers. This basic fold is equivalent to finding a common tangent of two parabolas
of the plane. [3] As a matter of fact, (p1, l1) and (p2, l2) can be seen as the pairs focus-directrix
which determine parabolas. Then one can remark that folding p1 onto a point of l1 gives a tangent
of the (p1, l1)-parabola.

Actually, finding common tangents of two parabolas is equivalent to solving every cubic equation.
[3] We will now give an elementary proof of this using the “paper folding” approach.

3 The link with cubic equations
Given two points A and B and two lines D0 and D of the plane, we will show that applying O6 is
equivalent to solving a certain cubic equation. The whole construction is illustrated in figure 2.

We can choose an orthogonal frame (O;~ı,~) such that A = (0, 1) and D0 = (Ox), then B =
(xB , yB) and D : ax + by + c = 0. Let C(t) = (t, 0) (where t ∈ R) be a moving point of (Ox)
and ∆(t) be the fold leading A onto C (i.e. the perpendicular bisector of [AC]). Let H(t) be the
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Figure 2: the construction

orthographic projection of B onto ∆(t) and I(t) be the intersection of (BH) and D (if it exists).
We want to know for which t, BH = HI.

Simple calculus gives that BH = HI is equivalent to

at3 + (b(yB − 1) + c− axB)t2 + (2(bxB + ayB)− a)t+ axB + b(yB + 1) + c = 0 (1)

which is a cubic equation.

4 Solving cubic equations by paper folding
Given a polynomial on R: P = aX3 + bX2 + cX + d with a 6= 0, finding its roots is equivalent to
finding roots of Q = 1

aP
(
X − b

3a
)

= X3 + pX + q. Now we choose to take b = 0 in (1), then, with

D : x = −q2 and B =
(
q

2 ,
p+ 1

2

)
,

C(t, 0) given by O6 verifies
t3 + pt+ q = Q(t) = 0.

Thus, as q
2 and p+1

2 are easily constructible, we have a simple construction of the roots of Q by
paper folding.

5 Doubling the cube and trisecting the angle
Doubling the cube of vertices c is equivalent to constructing the number x such that the cube of
vertices xc has a doubled volume. That is to say

(xc)3 = 2c3 which is equivalent to x3 = 2.

Thus applying our algorithm with p = 0 and q = 2, the problem is solved.
Trisecting the angle θ is equivalent to constructing cos θ3 which is a solution of 4X3−3X−cos θ =

0. Thus, applying our algorithm with p = − 3
4 and q = − cos θ

4 , the problem is also solved.
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6 Conclusion
Thus we’ve given a proof which provides a simple means to extend the field of constructible numbers
using paper folding in addition to ruler and compass. We can notice that some studies extend these
constructions to more complex origami. In this case, basic moves no longer consist in one fold but
in multiple folds. These new means of construction extend the field a bit more (see [5] for instance).
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