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Abstract. Using Givental’s non-linear Maslov index we define a sequence of spectral selectors
on the universal cover of the identity component of the contactomorphism group of any lens
space. As applications, we prove that the standard Reeb flow is a geodesic for the discrimi-
nant and oscillation norms, and we define a stably unbounded conjugation invariant spectral
pseudonorm.

1. Introduction

For any integer k ≥ 2 and n-tuple w = (w1, · · · , wn) of positive integers relatively prime to k, the
lens space L2n−1

k (w) is the quotient of the unit sphere S2n−1 in R2n ≡ Cn by the free Zk-action
generated by the map

(z1, · · · , zn) 7→
(
e

2πi
k ·w1 z1, · · · , e 2πi

k ·wn zn

)
.

Since the weights w do not play a particular role in the discussion, we denote L2n−1
k (w) simply by

L2n−1
k . We endow L2n−1

k with its canonical contact structure ξ0, the kernel of the contact form α0
whose pullback ᾱ0 by the projection S2n−1 → L2n−1

k is equal to the pullback of
∑n

j=1 xjdyj −yjdxj

by the inclusion S2n−1 ↪→ R2n. We denote by C̃ont0(L2n−1
k , ξ0) the universal cover of the identity

component Cont0(L2n−1
k , ξ0) of the contactomorphism group. The non-linear Maslov index is a

quasimorphism
µ : C̃ont0(L2n−1

k , ξ0) → Z ,
defined by Givental [14] for real projective spaces and extended to general lens spaces in [16].
Roughly speaking, it counts with multiplicity the number of intersections of contact isotopies with
(a certain subspace of) the space of contactomorphisms that have at least one discriminant point.

Recall that a point p of a contact manifold (M, ξ) is said to be a discriminant point of a contac-
tomorphism ϕ if ϕ(p) = p and (ϕ∗α)p = αp for some (hence any) contact form α for ξ, and is said
to be a translated point of ϕ with respect to a contact form α if there exists a real number T (in
general not unique) such that p is a discriminant point of rα

−T ◦ ϕ, where {rα
t } denotes the Reeb

flow; such T is then said to be a translation of the translated point p. Discriminant and trans-
lated points play a key role in certain proofs of several global rigidity results in contact topology,
related in particular to contact non-squeezing [19, 13, 1], orderability [10, 6, 19, 20, 16, 1], and
bi-invariant metrics on the contactomorphism group [18, 9, 5]. In particular, Givental’s non-linear
Maslov index for projective spaces has been used in [10], [21] and [9] respectively to prove that
real projective spaces are orderable, satisfy a contact analogue of the Arnold conjecture and have
unbounded discriminant and oscillation norms. All these results have then been generalized to lens
spaces in [16] (recovering for orderability a result also obtained in [17] and [20]). In the original
article of Givental [14], the non-linear Maslov index on projective spaces and a Legendrian version
of it have been applied in particular to prove the Weinstein and chord conjectures, and a result
on existence of Reeb chords between Legendrian submanifolds Legendrian isotopic to each other.
Moreover, an analogue of the non-linear Maslov index for complex projective spaces has been used
by Givental [14] and Théret [22] to prove the Arnold conjectures on fixed points of Hamiltonian
symplectomorphisms and Lagrangian intersections.
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In the present article we use the non-linear Maslov index to define spectral selectors on the universal
cover of the identity component of the contactomorphism group of lens spaces, i.e. maps

cj : C̃ont0(L2n−1
k , ξ0) → R

that associate to every element of C̃ont0(L2n−1
k , ξ0) a real number belonging to its action spectrum.

Recall that the action spectrum of a contactomorphism ϕ of a contact manifold (M, ξ) with respect
to a contact form α is the set Aα(ϕ) of real numbers T that are translations of translated points
of ϕ with respect to α. We denote by

Π : C̃ont0(M, ξ) → Cont0(M, ξ)

the standard projection, which sends an element ϕ̃ = [{ϕt}t∈[0,1]] of C̃ont0(M, ξ) to ϕ1, and define
the action spectrum of an element ϕ̃ of C̃ont0(M, ξ) by Aα(ϕ̃) = Aα

(
Π(ϕ̃)

)
. Let

L : C̃ont0(L2n−1
k , ξ0) → C̃ont0

(
S2n−1, ξ̄0 = ker(ᾱ0)

)
be the map that sends ϕ̃ = [{ϕt}t∈[0,1]] to the element of C̃ont0(S2n−1, ξ̄0) represented by the lift
of {ϕt}t∈[0,1] to (S2n−1, ξ̄0). For ϕ̃ ∈ C̃ont0(L2n−1

k , ξ0) we denote

A(ϕ̃) = Aα0(ϕ̃)
and

Ā(ϕ̃) = Aᾱ0

(
L(ϕ̃)

)
⊂ A(ϕ̃) .

Since the Reeb flow of α0 on L2n−1
k is periodic of period 2π

k and the Reeb flow of ᾱ0 on S2n−1 is
periodic of period 2π, A(ϕ̃) and Ā(ϕ̃) are invariant by translation by 2π

k and 2π respectively. For
a real number T we denote⌈

T
⌉

2π
k

= 2π
k

⌈
k

2π T
⌉

and
⌊
T

⌋
2π
k

= 2π
k

⌊
k

2π T
⌋
,

thus ⌈T ⌉ 2π
k

and ⌊T ⌋ 2π
k

are respectively the smallest multiple of 2π
k greater or equal than T and

the greatest multiple of 2π
k smaller or equal than T .

Before stating our main result we recall that, since (L2n−1
k , ξ0) is orderable, the relation ≤ on

C̃ont0(L2n−1
k , ξ0) defined by posing ϕ̃ ≤ ψ̃ if there is a non-negative contact isotopy representing

ψ̃ · ϕ̃−1 is a bi-invariant partial order; this is the partial order that appears in point (vii) below.
Recall also that a translated point p of a contactomorphism ϕ of a contact manifold (M, ξ) with
respect to a contact form α is said to be non-degenerate for a translation T if there is no vector
X ∈ TpM ∖ {0} such that (rα

−T ◦ ϕ)∗(X) = X and dg(X) = 0, where g is the conformal factor of
ϕ, i.e. the function defined by the relation ϕ∗α = egα. In the case of (L2n−1

k , ξ0) or (S2n−1, ξ̄0),
if a translated point of a contactomorphism with respect to α0 or ᾱ0 is non-degenerate for a
certain translation then it is non-degenerate for all the translations; we then just say that it is
non-degenerate. For any T ∈ R we denote

r̃T = [{rT t}t∈[0,1]] ,

where {rt} is the Reeb flow on L2n−1
k with respect to α0. Moreover, we denote by ĩd the identity

on C̃ont0(L2n−1
k , ξ0).

Our main result is the following theorem.

Theorem 1.1 (Spectral selectors). There exists a non-decreasing sequence of maps{
cj : C̃ont0(L2n−1

k , ξ0) → R , j ∈ Z
}

satisfying the following properties:

(i) Spectrality:
cj(ϕ̃) ∈ Ā(ϕ̃) .
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(ii) Normalization:
c−2n+1(ĩd) = c0(ĩd) = 0 .

(iii) Relation with translated points: if all the translated points of Π
(
L(ϕ̃)

)
are non-degenerate

then the spectral selectors { cj(ϕ̃) , j ∈ Z } are all distinct. On the other hand, if

cj−1(ϕ̃) < cj(ϕ̃) = cj+1(ϕ̃) = · · · = cj+m(ϕ̃) = T < cj+m+1(ϕ̃)

for some j and 1 ≤ m ≤ 2n− 1 and either k is even or j is odd or m > 1 then Π
(
L(ϕ̃)

)
has infinitely many translated points of translation T .

(iv) Non-degeneracy: if
c−2n+1(ϕ̃) = c0(ϕ̃) = 0

then Π
(
L(ϕ̃)

)
is the identity.

(v) Composition with the Reeb flow: for every T ∈ R we have

cj(r̃T · ϕ̃) = cj(ϕ̃) + T ;
in particular, c−2n+1(r̃T ) = c0(r̃T ) = T .

(vi) Periodicity:
cj+2n(ϕ̃) = cj(ϕ̃) + 2π .

(vii) Monotonicity: if ϕ̃ ≤ ψ̃ then cj(ϕ̃) ≤ cj(ψ̃).
(viii) Continuity: if ϕ̃ · ψ̃−1 is represented by a contact isotopy with Hamiltonian function Ht :

L2n−1
k → R with respect to α0 then∫ 1

0
minHt dt ≤ cj(ϕ̃) − cj(ψ̃) ≤

∫ 1

0
maxHt dt .

Moreover, each cj is continuous with respect to the C1-topology.
(ix) Triangle inequality: if either k is even or j is even then

cj+l

(
ϕ̃ · ψ̃

)
≤ cj

(
ϕ̃

)
+

⌈
cl

(
ψ̃

)⌉
2π
k

,

in particular ⌈
cj+l

(
ϕ̃ · ψ̃

)⌉
2π
k

≤
⌈
cj

(
ϕ̃

)⌉
2π
k

+
⌈
cl

(
ψ̃

)⌉
2π
k

.

(x) Conjugation invariance:⌈
cj

(
ψ̃ · ϕ̃ · ψ̃−1)⌉

2π
k

=
⌈
cj

(
ϕ̃

)⌉
2π
k

.

(xi) Poincaré duality: ⌈
cj

(
ϕ̃

)⌉
2π
k

= −
⌊
c−j−(2n−1)

(
ϕ̃−1)⌋

2π
k

.

Using the Hamiltonian version of the non-linear Maslov index for complex projective spaces ([14,
22, 8]) it is possible to define also spectral invariants{

cj : H̃am(CPn, ω0) → R , j ∈ Z
}

satisfying properties analogue to those of Theorem 1.1, with stronger statements for (ix), (x) and
(xi) not involving the 2π

k -floors and ceilings. Such spectral invariants coincide with the ones defined
by the first author in [2], and their projections to S1 coincide with the rotation numbers defined by
Théret in [22]. Moreover, their properties are analogue to those satisfied by the spectral invariants
defined with Floer homology by Entov and Polterovich in [11]. The fact that in the contact case
the statements of the triangle inequality, conjugation invariance and Poincaré duality properties
are weaker than in the symplectic case and involve the 2π

k -floors and ceilings is similar to what
happens for the spectral selectors of compactly supported contactomorphisms of (R2n × S1, ξ0)
defined by the third author in [19]. Indeed, these spectral selectors are contact analogues of the
spectral selectors of compactly supported Hamiltonian symplectomorphisms of (R2n, ω0) defined
by Viterbo in [24], but they satisfy weaker versions of the triangle inequality, conjugation invariance



4 S. ALLAIS, P.-A. ARLOVE, AND S. SANDON

and Poincaré duality properties involving their (integral) floors and ceilings. Roughly speaking,
this can be explained as follows. In both cases the contact spectral selectors are generalizations of
the symplectic ones, in the sense that the symplectic spectral selectors of Hamiltonian isotopies of
(CPn−1, ω0) and (R2n, ω0) coincide with the contact spectral selectors of their lifts to (L2n−1

k , ξ0)
and (R2n ×S1, ξ0) respectively. The fact that the contact spectral selectors satisfy weaker versions
of the triangle inequality, conjugation invariance and Poincaré duality properties involving their
floors and ceilings with respect to the period of the Reeb flow is due to the fact that, while the
lifts of Hamiltonian isotopies of (CPn−1, ω0) and (R2n, ω0) are exactly the contact isotopies that
commute with the standard Reeb flows, general contact isotopies commute with the Reeb flow
at time t only when t is a multiple of the period of the Reeb flow. For conjugation invariance,
for instance, while in the symplectic case the action spectrum is invariant by conjugation, in
the contact case this is in general not true: the translated points of a contactomorphism are in
general not in bijection with those of a conjugation. However, if the Reeb flow is periodic then
the translated points of translation equal to the period of the Reeb flow are discriminant points,
which are invariant by conjugation, and this fact can be used to prove that the corresponding floor
and ceiling of the spectral selectors are invariant by conjugation (see also the discussion in [19]).

In [4] the first and second authors have defined invariants c+ and c− for elements of the universal
cover of any closed orderable contact manifold and for contactomorphisms of any closed contact
manifold with orderable contactomorphism group. In the universal cover case, these invariants
satisfy all the properties in Theorem 1.1 (including conjugation invariance if the Reeb flow is
periodic, and with stronger versions for the triangle inequality and Poincaré duality properties
not involving floors and ceilings) except for periodicity (there are only two invariants c+ and c−,
while we have a sequence cj related by periodicity), spectrality and (iii). These properties are
important for us to obtain the applications discussed below. In particular, spectrality is crucial
to obtain Corollary 1.5 and the relation between the pseudonorm ν of Corollary 1.6 and the
oscillation norm, while periodicity is used in Corollary 1.6 to show that the induced norm ν∗ is
bounded (see also Remarks 1.2 and 1.3 below for two more consequences of these properties). The
first and second authors also defined in [4] invariants for Legendrian submanifolds and Legendrian
isotopies (when the involved spaces are orderable) that do satisfy a spectrality property. Using the
Legendrian version of the non-linear Maslov index defined in [14] it should be possible to obtain
also a Legendrian version of our spectral selectors, with properties similar to those in Theorem 1.1.
However, as far as we can see, the only new application of these spectral selectors with respect
to those in [4] would be a better lower bound for the number of Reeb chords between Legendrian
submanifolds Legendrian isotopic to each other, but (at least in the case of real projective space)
such bound is already given by Givental in [14] just using the non-linear Maslov index.

Remark 1.2. Properties (vi), (ix) and (xi) imply that each cj is a quasimorphism.

Remark 1.3. Properties (i), (iii) and (vi) imply that every contactomorphism of (L2n−1
k , ξ0)

contact isotopic to the identity has at least n translated points with respect to α0, and at least 2n
if k is even or if all the translated points are non-degenerate. We thus recover the corresponding
result of [16], but not the optimal bound obtained by the first author in [3], where it is proved that
every contactomorphism of (L2n−1

k , ξ0) contact isotopic to the identity has at least 2n translated
points.

Remark 1.4. Suppose that k is prime. Recall that the cohomological index ind(A) of a subset A
of L2n−1

k is the dimension over Zk of the image of the map Ȟ∗(L2n−1
k ;Zk) → Ȟ∗(A;Zk) on Čech

cohomology induced by the inclusion A ↪→ L2n−1
k . As we will see, property (iii) can be refined in

this case as follows: if

cj−1(ϕ̃) < cj(ϕ̃) = cj+1(ϕ̃) = · · · = cj+m(ϕ̃) = T < cj+m+1(ϕ̃)

for some j and 1 ≤ m ≤ 2n − 1 then the set of translated points of translation T of Π(ϕ̃) has
cohomological index greater or equal than m, and greater or equal than m+ 1 if either k = 2 or j
is odd.
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As a first application of Theorem 1.1 we prove that the standard Reeb flow on (L2n−1
k , ξ0) is

a geodesic for the discriminant and oscillation norms introduced in [9]. The definition of the
discriminant norm νdis and of the oscillation pseudonorm νosc on the universal cover of the identity
component of the contactomorphism group of a closed contact manifold (M, ξ) are recalled in
Section 4 below, as well as the definition of the discriminant and oscillation lengths of contact
isotopies. Recall also from [9, Proposition 3.2] that the oscillation pseudonorm is non-degenerate
if and only if (M, ξ) is orderable; in particular, it is thus a norm for lens spaces. As in [5], we say
that a contact isotopy of a closed orderable contact manifold is a geodesic for the discriminant
or for the oscillation norm if its discriminant or oscillation length is equal to the discriminant or
oscillation norm of the element of the universal cover it represents. In other words, a contact
isotopy is a geodesic for the discriminant or oscillation norm if it minimizes the discriminant or
oscillation length in its homotopy class with fixed endpoints. In [5] it is proved that certain contact
isotopies of (R2n ×S1, ξ0) are geodesics for the discriminant and oscillation norms. We obtain here
a similar result for lens spaces, answering a question in [9].

In [9] and [16] respectively it is proved that the discriminant and oscillation norms on real projective
spaces and on general lens spaces are unbounded, by showing that the classes in the universal
cover represented by higher iterations of the Reeb flow have bigger and bigger discriminant and
oscillation norms. More precisely, it is proved in [16] that for every N the discriminant and
oscillation norms on C̃ont0(L2n−1

k , ξ0) of r̃6πN and r̃20πN respectively are at least equal to N + 1.
Since the discriminant length of {r6πNt}t∈[0,1] is 3Nk+1 and the oscillation length of {r20πNt}t∈[0,1]
is 10Nk+1, the results in [16] (as well as the previous ones in [9]) left open the question of whether
there exist contact isotopies in the same homotopy class with fixed endpoints as {r6πNt}t∈[0,1] or
{r20πNt}t∈[0,1] having shorter discriminant or oscillation lengths. Note that this is what happens
for the sphere (S2n−1, ξ̄0): the N -th iteration {r2πNt}t∈[0,1] of the Reeb flow {r2πt}t∈[0,1] of ᾱ0
has discriminant and oscillation length N + 1, but by [9, Proposition 4.3] the discriminant norm
and the oscillation pseudonorm of [{r2πNt}t∈[0,1]] are smaller or equal than 4; in other words,
there exist contact isotopies of (S2n−1, ξ̄0) in the same homotopy class with fixed endpoints as
certain iterations the Reeb flow having strictly shorter discriminant and oscillation length. As an
application of Theorem 1.1, in Section 4 we show that for lens spaces this is not possible. More
precisely, we show that Theorem 1.1 implies the following result.

Corollary 1.5 (Non-shortening of the standard Reeb flow). For every real number T , the Reeb flow
{rT t}t∈[0,1] on (L2n−1

k , ξ0) is a geodesic for the discriminant and oscillation norms. In particular,

νdis(r̃T ) = νosc(r̃T ) =
⌊
k

2π T
⌋

+ 1 .

Using the spectral selectors of Theorem 1.1 we also define a stably unbounded conjugation invariant
pseudonorm on C̃ont0(L2n−1

k , ξ0). More precisely, posing c− = c−2n+1 and c+ = c0 we prove the
following result.

Corollary 1.6 (Spectral pseudonorm). The map ν : C̃ont0(L2n−1
k , ξ0) → 2π

k · Z defined by

ν(ϕ̃) = max
{ ⌈

c+(ϕ̃)
⌉

2π
k

, −
⌊
c−(ϕ̃)

⌋
2π
k

}
is a stably unbounded conjugation invariant pseudonorm, which is compatible with the partial order
≤ and satisfies ν(ϕ̃) ≤ 2π

k · νosc(ϕ̃) for every ϕ̃ ∈ C̃ont0(L2n−1
k , ξ0). The induced pseudonorm ν∗

on Cont0(L2n−1
k , ξ0) is non-degenerate and bounded.

Finally, we remark that the spectral selectors of Theorem 1.1 can also be used as in [4] to define
a time function on C̃ont0(L2n−1

k , ξ0), i.e. a function

τ : C̃ont0(L2n−1
k , ξ0) → R
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that is continuous with respect to the C1-topology and satisfies τ(ϕ̃) < τ(ψ̃) whenever ϕ̃ ≤ ψ̃ with
ϕ̃ ̸= ψ̃. Such function can be defined by

τ(ϕ̃) =

∑
j

1
2j max(1, |c0(ψ̃j)|)

−1 ∑
j

c0(ϕ̃ · ψ̃j)
2j max(1, |c0(ψ̃j)|)

,

where (ψ̃j)j≥1 is any dense sequence in C̃ont0(L2n−1
k , ξ0) with respect to the C1-topology. As in

[4], the time function τ satisfies moreover τ(r̃T · ϕ̃) = T + τ(ϕ̃) for all T and ϕ̃.

The article is organized as follows. In Section 2 we recall the definition of the non-linear Maslov
index and discuss the properties that are needed for the construction of the spectral selectors. In
Section 3 we define the spectral selectors and prove Theorem 1.1. In Section 4 we prove Corollary
1.5, and in Section 5 we prove Corollary 1.6.
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also for his support and for inspiring discussions.
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- 281071066 (Symplectic Structures in Geometry, Algebra and Dynamics). The third author is
partially supported by the ANR project COSY (ANR-21-CE40-0002).

2. The non-linear Maslov index

In this section we recall the definition of the non-linear Maslov index

µ : C̃ont0(L2n−1
k , ξ0) → Z

following the presentation in [16], to which we refer for more details. We also discuss the properties
of the non-linear Maslov index that are needed for the construction of the spectral selectors. Several
of these properties do not appear in [16], and so we include detailed proofs.

As in [16], we first define the non-linear Maslov index assuming that k is prime and then obtain
the general case (Proposition 2.12) by pullback. Assume thus for now that k is prime.

The construction of the non-linear Maslov index is based on generating functions. Recall that
a function F : E → R defined on the total space of a fibre bundle p : E → B is said to be a
generating function if the differential dF : E → T ∗E is transverse to the fibre conormal bundle
N∗

E , the space of points (e, η) of T ∗E such that η vanishes on the kernel of dp(e). Then the set
ΣF = (dF )−1(N∗

E) of fibre critical points of F is a submanifold of E, and the map

iF : ΣF → T ∗B , e 7→
(
p(e), v∗(e)

)
defined by posing v∗(e)(X) = dF (X̂) for X ∈ Tp(e)B, where X̂ is any vector in TeE with
dp(e)(X̂) = X, is a Lagrangian immersion with respect to the canonical symplectic form ωcan on
T ∗B. If iF is an embedding then F is said to be a generating function of the Lagrangian subman-
ifold iF (ΣF ) of (T ∗B,ωcan). A function F is said to be a generating function of a symplectomor-
phism Φ of (R2n, ω0) if it is a generating function of the Lagrangian submanifold of (T ∗R2n, ωcan)
that is the image of the graph of Φ by the symplectomorphism τ : R2n ×R2n → T ∗R2n defined by

τ(x, y,X, Y ) =
(x+X

2 ,
y + Y

2 , Y − y, x−X
)
.
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Any contact isotopy {ϕt}t∈[0,1] of (L2n−1
k , ξ0) starting at the identity can be uniquely lifted to a

Zk-equivariant contact isotopy {ϕ̄t}t∈[0,1] of (S2n−1, ξ̄0) starting at the identity, which in turn can
be uniquely extended to a conical Hamiltonian isotopy {Φt}t∈[0,1] of (R2n, ω0), i.e. a 1-parameter
family of (Zk ×R>0)-equivariant homeomorphisms of R2n that is a Hamiltonian isotopy on R2n ∖
{0}. If M is a multiple of n then we say that a function F : R2M → R is conical if it is C1

with Lipschitz differential, homogeneous of degree 2 with respect to the radial action of R>0
on R2M , and invariant by the diagonal action of Zk on R2M . We say that a conical function
F : E → R defined on the total space of a trivial vector bundle E = R2n × R2nN → R2n is a
conical generating functions of a conical symplectomorphism Φ of (R2n, ω0), i.e. a (Zk × R>0)-
equivariant homeomorphism of R2n that is a symplectomorphism on R2n∖{0}, if it is smooth near
its fibre critical points other than the origin, dF : E → T ∗E is transverse to the fibre conormal
bundle N∗

E except possibly at the origin, and iF is a homeomorphism between ΣF and the image of
the graph of Φ by τ . We say that Ft : R2n ×R2nN → R, t ∈ [0, 1], is a family of conical generating
functions for a contact isotopy {ϕt}t∈[0,1] of (L2n−1

k , ξ0) starting at the identity if for every t the
function Ft is a conical generating function of Φt, where {Φt} denotes the conical Hamiltonian
isotopy of (R2n, ω0) lifting {ϕt}, and the map (e, t) 7→ Ft(e) is C1 with locally Lipschitz differential
and smooth near (e, t) whenever e is a fibre critical point of Ft other than the origin. We say
that Ft, t ∈ [0, 1], is a based family of conical generating functions for {ϕt}t∈[0,1] if moreover
F0 is equivalent to the zero function on R2n, where we consider on the set of conical generating
functions the smallest equivalence relation under which two such functions are equivalent if they
differ by a stabilization (i.e. replacing a conical generating function F : R2n × R2nN → R by
F ⊕Q : R2n ×R2nN ×R2nN ′ → R for a non-degenerate Zk-invariant quadratic form Q on R2nN ′)
or by a fibre preserving conical homeomorphism (i.e. a (Zk ×R>0)-equivariant homeomorphism of
R2n ×R2nN that takes each fibre {z} ×R2nN to itself) that restricts to a diffeomorphism between
neighborhoods of fibre critical points other than the origin. It is proved in [16, Proposition 2.14]
that any contact isotopy {ϕt}t∈[0,1] of (L2n−1

k , ξ0) starting at the identity has a based family
Ft : R2n × R2nN → R of conical generating functions.

A conical function F : R2M → R induces uniquely a function f : L2M−1
k → R, which is C1 with

Lipschitz differential. All the critical points of F have critical value zero and come in (Zk ×R>0)-
families; moreover, there is a 1–1 correspondence between the (Zk ×R>0)-families of critical points
of F and the critical points of critical value zero of f . If F is a conical generating function of a
conical symplectomorphism Φ whose restriction ϕ̄ to S2n−1 projects to a contactomorphism ϕ of
(L2n−1

k , ξ0) then there is a 1–1 correspondence between the critical points of critical value zero of f
and the discriminant points of ϕ that lift to discriminant points of ϕ̄. In order to detect discriminant
points of contactomorphisms of (L2n−1

k , ξ0) we thus study the topology of the sublevel set at zero
of the functions on (possibly higher dimensional) lens spaces induced by the corresponding conical
generating functions. The topological invariant that we use for this is the cohomological index for
subsets of lens spaces: for a subset A of L2M−1

k such index, which we denote by ind(A), is the
dimension over Zk of the image of the map Ȟ∗(L2M−1

k ;Zk) → Ȟ∗(A;Zk) on Čech cohomology
induced by the inclusion A ↪→ L2M−1

k . For any conical function F : R2M → R we thus define

ind(F ) = ind({f ≤ 0}) .

The following property is proved in [16, Corollary 3.15] (cf [16, Proposition 3.14, Proposition 3.9
(v) and Remark 3.11] for the case k = 2).

Lemma 2.1. For any two conical functions F and G we have

| ind(F ⊕G) − ind(F ) − ind(G) |≤ 1 ,

and
ind(F ⊕G) = ind(F ) + ind(G)

if either k = 2 or ind(F ) is even or ind(G) is even.
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For a contact isotopy {ϕt}t∈[0,1] of (L2n−1
k , ξ0) we define

µ({ϕt}t∈[0,1]) = ind(F0) − ind(F1) ,

where Ft, t ∈ [0, 1], is any based family of conical generating functions for {ϕt}t∈[0,1]. It is proved
in [16, Proposition 2.20] that any two based families of conical generating functions for {ϕt}t∈[0,1]
are equivalent, where we consider on the set of based families of conical generating functions
the smallest equivalence relation under which two such families are equivalent if they differ by a
stabilization (i.e. replacing Ft : R2n ×R2nN → R by Ft ⊕Q : R2n ×R2nN ×R2nN ′ → R for a non-
degenerate Zk-invariant quadratic form Q on R2nN ′) or by a 1-parameter family of fibre preserving
conical homeomorphism that restrict to diffeomorphisms between neighborhoods of fibre critical
points other than the origin. Since, for k > 2, ind(Q) is even for every Zk-invariant quadratic
form Q ([16, Remark 3.13]), it thus follows from Lemma 2.1 that µ({ϕt}t∈[0,1]) is well-defined, i.e.
it does not depend on the choice of a based family of conical generating functions. Moreover, it is
proved in [16] (as a consequence of [16, Proposition 2.21]) that µ descends to a map

µ : C̃ont0(L2n−1
k , ξ0) → Z .

Example 2.2. By definition we have µ(ĩd) = 0. By [16, Example 4.1], if ϕ̃ is small enough in
the C1-topology then 0 ≤ µ(ϕ̃) ≤ 2n, and if moreover ϕ̃ is positive then µ(ϕ̃) = 2n. In particular,
for ϵ > 0 small enough we have µ(r̃ϵ) = 2n. By [16, Example 4.13], for every integer m we have
µ(r̃2πm) = 2nm.

It is proved in [16, Theorem 1.4 (i) and Remark 1.7] that for any two elements ϕ̃ and ψ̃ of
C̃ont0(L2n−1

k , ξ0) we have
| µ(ϕ̃ · ψ̃) − µ(ϕ̃) − µ(ψ̃) | ≤ 2n+ 1 , (1)

and
| µ(ϕ̃ · ψ̃) − µ(ϕ̃) − µ(ψ̃) | ≤ 2n (2)

if k = 2; in particular, µ : C̃ont0(L2n−1
k , ξ0) → Z is a quasimorphism. The non-linear Maslov index

also satisfies the following triangle inequality, which is not proved in [16].

Proposition 2.3. For any two elements ϕ̃ and ψ̃ of C̃ont0(L2n−1
k , ξ0) we have

µ(ϕ̃ · ψ̃) ≤ µ(ϕ̃) + µ(ψ̃) + 1 ,

and
µ(ϕ̃ · ψ̃) ≤ µ(ϕ̃) + µ(ψ̃)

if either k = 2 or µ(ϕ̃) is even or µ(ψ̃) is even.

Before proving Proposition 2.3, recall ([16, Proposition 2.10]) that if F : R2n × R2nN1 → R and
G : R2n × R2nN2 → R are conical generating functions for conical symplectomorphisms Φ and Ψ
respectively, then the function F ♯G : R2n × (R2n × R2n × R2nN1 × R2nN2) → R defined by

F ♯G (q; ζ1, ζ2, ν1, ν2) = F (ζ1, ν1) +G(ζ2, ν2) − 2 ⟨ζ2 − q, i(ζ1 − q)⟩

is a conical generating function of Ψ ◦ Φ, and ([16, Proposition 2.26]) there is a linear (Zk ×R>0)-
equivariant injection

ι : R2n × R2n × R2nN1 × R2nN2 → R2n × R2n × R2n × R2nN1 × R2nN2

such that (F ♯G) ◦ ι = F ⊕G. Since the cohomological index is monotone, i.e. ind(A) ≤ ind(B)
if A ⊂ B [16, Proposition 3.9 (i)], we deduce that

ind(F ⊕G) ≤ ind(F ♯G) . (3)

Recall also ([16, Lemma 4.2]) that if F and G are equivalent to the zero function then

ind(F ♯G) = ind(F ) + ind(G) .
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Proof of Proposition 2.3. Let Ft and Gt be based families of conical generating functions for
contact isotopies {ϕt}t∈[0,1] and {ψt}t∈[0,1] representing ϕ̃ and ψ̃ respectively. Then, by [16,
Proposition 2.10 and Remark 2.14], Gt ♯ Ft is a based family of conical generating functions for
{ϕt ◦ ψt}t∈[0,1], and thus

µ(ϕ̃ · ψ̃) = ind(G0 ♯ F0) − ind(G1 ♯ F1) .
Since F0 and G0 are equivalent to the zero function, we have ind(G0 ♯ F0) = ind(G0) + ind(F0).
Moreover, by (3) we have

− ind(G1 ♯ F1) ≤ − ind(G1 ⊕ F1) .
Using Lemma 2.1 we thus deduce that

µ(ϕ̃ · ψ̃) ≤ ind(F0) + ind(G0) − ind(F1) − ind(G1) + 1 = µ(ϕ̃) + µ(ψ̃) + 1 ,

and that
µ(ϕ̃ · ψ̃) ≤ µ(ϕ̃) + µ(ψ̃)

if either k = 2 or ind(F1) is even or ind(G1) is even, hence (since, for k > 2, ind(F0) and ind(G0)
are even by [16, Remark 3.13]) if either k = 2 or µ(ϕ̃) is even or µ(ψ̃) is even. □

It is proved in [14] that
µ(ϕ̃ · ψ̃) = µ(ϕ̃) + µ(ψ̃)

if either ϕ̃ or ψ̃ are in π1
(

Cont0(RP2n−1, ξ0)
)
. For our applications we only need this property in

the case when one of the factors is the Reeb flow.

Proposition 2.4. For every element ϕ̃ of C̃ont0(L2n−1
k , ξ0) and every integer m we have

µ(ϕ̃ · r̃2πm) = µ(r̃2πm · ϕ̃) = 2nm+ µ(ϕ̃) .

Proof. Since ϕ̃ · r̃2πm = r̃2πm · ϕ̃, it is enough to prove that µ(ϕ̃ · r̃2πm) = 2nm + µ(ϕ̃). We
represent ϕ̃ · r̃2πm by the concatenation

{φt}t∈[0,1] = {r4πmt}t∈[0, 1
2 ] ⊔ {ϕ2t−1}t∈[ 1

2 ,1] ,

where {ϕt}t∈[0,1] is a contact isotopy representing ϕ̃, and we consider a based family Ft, t ∈ [0, 1],
of conical generating functions for {φt}t∈[0,1] so that Ft, t ∈ [0, 1

2 ], is a family of quadratic forms
generating {r4πmt}t∈[0, 1

2 ] (cf. [16, Proposition 4.9]). Since {r4πmt}t∈[0, 1
2 ] is a loop, by [16, Lemma

4.10] the quadratic form F 1
2

is equivalent to the zero function, and so

µ({ϕt}t∈[0,1]) = ind(F 1
2
) − ind(F1) .

We thus have

µ(ϕ̃ · r̃2πm) = ind(F0) − ind(F1) = ind(F0) − ind(F 1
2
) + ind(F 1

2
) − ind(F1)

= µ(r̃2πm) + µ(ϕ̃) = 2nm+ µ({ϕt}t∈[0,1]) ,
where the last equality follows from Example 2.2. □

In the next section we also need the following result.

Proposition 2.5. For every ϕ̃ ∈ C̃ont0(L2n−1
k , ξ0) and every T0 ∈ R there exists ϵ > 0 such that

µ(r̃−T · ϕ̃) = µ(r̃−T0 · ϕ̃) for every T ∈ [T0, T0 + ϵ).

Before proving Proposition 2.5, recall that the cohomological index is continuous ([16, Proposition
3.9 (ii)]): every closed subset A of L2M−1

k has a neighborhood U such that if A ⊂ V ⊂ U then
ind(V) = ind(A).
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Proof of Proposition 2.5. Let {ϕt}t∈[0,1] be a contact isotopy representing ϕ̃, and let Ft, t ∈ [0, 1],
be a based family of conical generating functions for the concatenation

{ϕ2t}t∈[0, 1
2 ] ⊔ {r−(2t−1)(T0+ϵ′)}t∈[ 1

2 ,1]

for some ϵ′ > 0. Then for every T ∈ [T0, T0 + ϵ′) we have

µ(r̃−T · ϕ̃) = ind
(
{f0 ≤ 0}

)
− ind

({
f 1

2

(
T

T0+ϵ′ +1
) ≤ 0

})
.

By monotonicity of generating functions ([16, Proposition 2.23]) we can assume that dft

dt ≤ 0 for
all t ∈ [ 1

2 , 1], and so {
f 1

2 ( T
T0+ϵ′ +1) ≤ 0

}
⊂

{
f 1

2 ( T ′
T0+ϵ′ +1) ≤ 0

}
for T, T ′ ∈ [T0, T0 + ϵ′) with T ≤ T ′. By continuity of the cohomological index, there is a
neighborhood U of

{
f 1

2

(
T0

T0+ϵ′ +1
) ≤ 0

}
such that if

{
f 1

2

(
T0

T0+ϵ′ +1
) ≤ 0

}
⊂ V ⊂ U then

ind(V) = ind
({
f 1

2

(
T0

T0+ϵ′ +1
) ≤ 0

})
.

For every T ∈ [T0, T0 + ϵ) with ϵ < ϵ′ small enough we have{
f 1

2

(
T0

T0+ϵ′ +1
) ≤ 0

}
⊂

{
f 1

2

(
T

T0+ϵ′ +1
) ≤ 0

}
⊂ U ,

and so
ind

({
f 1

2

(
T

T0+ϵ′ +1
) ≤ 0

})
= ind

({
f 1

2

(
T0

T0+ϵ′ +1
) ≤ 0

})
,

i.e. µ(r̃−T · ϕ̃) = µ(r̃−T0 · ϕ̃) as we wanted. □

It is proved in [16, Proposition 4.21] that if {ϕt}t∈[0,1) is a non-negative (respectively non-positive)
contact isotopy then µ([{ϕt}t∈[0,1)]) ≥ 0 (respectively µ([{ϕt}t∈[0,1)]) ≤ 0). We actually have the
following result.

Proposition 2.6. If ϕ̃ ≤ ψ̃ then µ(ϕ̃) ≤ µ(ψ̃).

Proof. Assume that ϕ̃ ≤ ψ̃. Then ψ̃ can be represented by the concatenation
{ψt}t∈[0,1] = {ϕ2t}t∈[0, 1

2 ] ⊔ {χ2t−1}t∈[ 1
2 ,1]

of a contact isotopy {ϕt}t∈[0,1] representing ϕ̃ and a non-negative contact isotopy {χt}t∈[0,1]. Let
Ft : R2n ×R2nN → R be a based family of generating functions for {ψt}t∈[0,1]. By monotonicity of
generating function ([16, Proposition 2.23]) we can assume that F1 ≥ F 1

2
and so, by monotonicity

of the cohomological index ([16, Proposition 3.9 (i)]), ind(F1) ≤ ind(F 1
2
). We thus have

µ(ψ̃) = µ(ϕ̃) + ind(F 1
2
) − ind(F1) ≥ µ(ϕ̃) .

□

Remark 2.7. It follows from Proposition 2.5 and Proposition 2.6 that the map T 7→ µ(r̃−T · ϕ̃)
is lower semi-continuous, i.e. {T ∈ R |µ(r̃−T · ϕ̃) ≤ y} is closed for every y ∈ R.

If Ft is a based family of conical generating functions for a contact isotopy {ϕt}t∈[0,1] of (L2n−1
k , ξ0)

then for every t there is a 1–1 correspondence between the critical points of critical value zero
of ft and the discriminant points of ϕt that lift to discriminant points of ϕ̄t, where {ϕ̄t}t∈[0,1]
is the lift of {ϕt}t∈[0,1] to (S2n−1, ξ̄0). Since the non-linear Maslov index µ({ϕt}t∈[0,1]) counts,
with multiplicity given by the change in the cohomological index of the sublevel sets {ft ≤ 0}, the
critical points of ft with critical value zero as t varies in [0, 1], its value is related to the presence of
discriminant points of ϕ̄t for t ∈ [0, 1]. More precisely, we have the following result ([16, Theorem
1.4 (iii)]).
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Proposition 2.8. Let {ϕt}t∈[0,1] be a contact isotopy of (L2n−1
k , ξ0) starting at the identity, and

let [t0, t1] be a subinterval of [0, 1]. If µ({ϕt}t∈[0,t0]) ̸= µ({ϕt}t∈[0,t1]) then there is t ∈ [t0, t1] such
that ϕ̄t has discriminant points. If moreover1 the map s 7→ µ({ϕt}t∈[0,s]) is constant on [t0, t) and
on (t, t1] and all the discriminant points of ϕ̄t are non-degenerate then

|µ({ϕt}t∈[0,t0]) − µ({ϕt}t∈[0,t1]) | ≤ 1 .

In particular, it follows from Example 2.2, Proposition 2.4 and the first statement of Proposition 2.8
that for every real number T we have

µ(r̃T ) = 2n
⌈
T

2π

⌉
. (4)

We also have the following result.

Proposition 2.9. Let {ϕt}t∈[0,1] be a contact isotopy of (L2n−1
k , ξ0) starting at the identity, and

let [t0, t1] be a subinterval of [0, 1]. Assume that there is t ∈ [t0, t1] such that ϕ̄t has discriminant
points, and denote by ∆(ϕt) ⊂ L2n−1

k the set of discriminant points of ϕt. Assume also that the
map s 7→ µ({ϕt}t∈[0,s]) is constant on [t0, t) and on (t, t1]. Then

|µ({ϕt}t∈[0,t0]) − µ({ϕt}t∈[0,t1]) | ≤ ind
(
∆(ϕt)

)
+ 1 ,

and
|µ({ϕt}t∈[0,t0]) − µ({ϕt}t∈[0,t1]) | ≤ ind

(
∆(ϕt)

)
if either k = 2 or if {ϕt}t∈[0,1] is negative and µ({ϕt}t∈[0,t0]) is even.

Before proving Proposition 2.9, recall that the cohomological index is subadditive in the following
sense ([16, Proposition 3.9 (iv)]): for any two closed subsets A and B of L2M−1

k we have
ind(A ∪B) ≤ ind(A) + ind(B) + 1 ,

and
ind(A ∪B) ≤ ind(A) + ind(B)

if either k = 2 or ind(A) is even or ind(B) is even.

Proof of Proposition 2.9. The first inequality and the second one in the case k = 2 are proved in
[16, Proposition 4.15]. Suppose thus that {ϕt}t∈[0,1] is negative and µ({ϕt}t∈[0,t0]) is even. By
monotonicity of generating functions ([16, Proposition 2.23]), there is a based family of conical
generating functions Ft for {ϕt}t∈[0,1] with dft

dt ≤ 0. The proof of [16, Proposition 2.23] actually
shows that for every t either dft

dt < 0 or dft

dt = 0. We can thus assume that either {ft0 ≤ 0} =
{ft ≤ 0} or {ft0 ≤ 0} is included in the interior of {ft ≤ 0}. In the first case, by continuity
of the cohomological index and since the map s 7→ µ({ϕt}t∈[0,s]) is constant on (t, t1] we have
µ({ϕt}t∈[0,t0]) = µ({ϕt}t∈[0,t1]), which implies the desired inequality

|µ({ϕt}t∈[0,t0]) − µ({ϕt}t∈[0,t1]) | ≤ ind
(
∆(ϕt)

)
.

In the second case, take ϵ, ϵ′ > 0 such that
{ft0 ≤ 0} ⊂ {ft ≤ −ϵ} ⊂ {ft−ϵ′ ≤ 0} ⊂ {ft ≤ 0} .

By monotonicity of the cohomological index and since s 7→ µ({ϕt}t∈[0,s]) is constant on [t0, t) we
then have

ind
(
{ft ≤ −ϵ}

)
= ind

(
{ft0 ≤ 0}

)
. (5)

As in the proof of [16, Proposition 4.15] we have
|µ({ϕt}t∈[0,t0]) − µ({ϕt}t∈[0,t1]) | ≤ ind

(
{ft ≤ ϵ}

)
− ind

(
{ft ≤ −ϵ}

)
(6)

1In [16, Theorem 1.4 (iii)] it is assumed that there is only one t ∈ [0, 1] such that ϕ̄t has discriminant points.
However, the proof works in the same way also if we only assume that s 7→ µ({ϕt}t∈[0,s]) is constant on [t0, t) and
on (t, t1]. Similarly for Proposition 2.9 below.
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and
ind

(
{ft ≤ ϵ}

)
≤ ind

(
{ft ≤ −ϵ} ∪ U

)
, (7)

where U is a neighborhood of the set C of critical points of ft of critical value zero that has the
same cohomological index as C. Since

µ({ϕt}t∈[0,t0]) = ind
(
{f0 ≤ 0}) − ind

(
{ft0 ≤ 0})

is even (by assumption) and ind
(
{f0 ≤ 0}

)
is even (by [16, Remark 3.13]), using (5) we see that

ind
(
{ft ≤ −ϵ}

)
is even and so, by subadditivity of the cohomological index,

ind
(
{ft ≤ −ϵ} ∪ U

)
≤ ind

(
{ft ≤ −ϵ}

)
+ ind(U) = ind

(
{ft ≤ −ϵ}

)
+ ind(C) .

Since ind(C) = ind
(
∆(ϕt)

)
by [16, Proposition 2.22], using (6) and (7) we thus conclude that

|µ({ϕt}t∈[0,t0]) − µ({ϕt}t∈[0,t1]) | ≤ ind
(
∆(ϕt)

)
.

□

The following Poincaré duality property for the cohomological index is proved in [8, Proposition
4.1.15] for subsets of complex projective space. We adapt here the proof to the case of lens spaces.

Lemma 2.10. Assume that zero is a regular value of a function f : L2M−1
k → R. Then

ind
(
{f ≤ 0}

)
+ ind

(
{f ≥ 0}

)
= 2M .

Proof. Let A = {f ≤ 0} and B = {f ≥ 0}. Since zero is a regular value of f , A and B are smooth
submanifolds with boundary and thus deformation retract to sets A′ and B′ that are strictly
included in {f < 0} and {f > 0} respectively. By continuity of the cohomological index, there are
thus open subsets UA and UB of L2M−1

k strictly included in {f < 0} and {f > 0} respectively with
ind(UA) = ind(A) and ind(UB) = ind(B). Assume first that ind(A) is even. Since A∪B = L2M−1

k ,
by subadditivity of the cohomological index we have

ind(A) + ind(B) ≥ 2M .

Assume by contradiction that
ind(UA) + ind(UB) = ind(A) + ind(B) ≥ 2M + 1 . (8)

Let ind(A) = ind(UA) = 2a. By definition of the cohomological index (cf. [16, Lemma 3.3])
and since Čech cohomology agrees with singular cohomology on open sets, the homomorphism
H2a−1(L2M−1

k ;Zk) → H2a−1(UA;Zk) induced by the inclusion UA ↪→ L2M−1
k is injective. Since

k is prime, the coefficient ring Zk is a field and so cohomology is the dual of homology, thus the
homomorphism H2a−1(UA;Zk) → H2a−1(L2M−1

k ;Zk) induced by the inclusion UA ↪→ L2M−1
k is

surjective. Consider the commutative square

H2a−1
(
L2M−1

k ∖ int(B);Zk

)
// H2a−1(L2M−1

k ;Zk)

H2(M−a)(L2M−1
k , B;Zk)

∼=

OO

jB // H2(M−a)(L2M−1
k ;Zk)

∼=

OO

(9)

where the horizontal arrows are induced by the inclusions and the vertical ones are Poincaré
duality isomorphisms (composed with excision H2(M−a)(L2M−1

k , B;Zk) → H2(M−a)(L2M−1
k ∖

int(B), ∂B;Zk) for the vertical arrow on the left hand side). Since UA ⊂ L2M−1
k ∖ int(B), sur-

jectivity of the inclusion homomorphism H2a−1(UA;Zk) → H2a−1(L2M−1
k ;Zk) implies that the

homomorphism on the top horizontal line of the diagram is also surjective. Thus jB is surjective,
and so there exists a class

u ∈ H2(M−a)(L2M−1
k , B;Zk)

such that jB(u) = βM−a, where β denotes a generator of H2(L2M−1
k ;Zk). By (8) we have

ind(UB) ≥ 2M + 1 − 2a, and so by a similar argument there exists a class
v ∈ H2a−1(L2M−1

k , A;Zk)
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such that jA(v) = αβa−1, where
jA : H2a−1(L2M−1

k , A;Zk) → H2a−1(L2M−1
k ;Zk)

is the homomorphism induced by the inclusion and where α denotes a generator of H1(L2M−1
k ;Zk).

We then obtain a contradiction: on the one hand v ∪ u ∈ H2M−1(L2M−1
k , A ∪B;Zk) is zero since

A ∪B = L2M−1
k , on the other hand by naturality of the cup product we have

jA∪B(v ∪ u) = jA(v) ∪ jB(u) = αβM−1 ̸= 0 .
This finishes the proof in the case when ind(A) is even. If ind(B) is even a similar argument also
gives the result. Suppose thus that ind(A) and ind(B) are odd. Then ind(A) + ind(B) is even,
and so it is enough to prove

2M − 1 ≤ ind(A) + ind(B) ≤ 2M .

The first inequality follows from subadditivity of the cohomological index. For the second one,
suppose by contradiction that

ind(UA) + ind(UB) = ind(A) + ind(B) ≥ 2M + 1 ,
and let ind(A) = 2a − 1. By a similar argument as above, there exist cohomology classes u in
H2M−2a+1(L2M−1

k , B;Zk) and v in H2a−2(L2M−1
k , A;Zk) such that jB(u) = αβM−a and jA(v) =

βa−1. Since jB(u) ∪ jA(v) = αβM−1 ̸= 0, this leads to the same contradiction as above. □

Applying Lemma 2.10 we obtain the following result.

Proposition 2.11. For every ϕ̃ ∈ C̃ont0(L2n−1
k , ξ0) such that Π

(
L(ϕ̃)

)
does not have discriminant

points we have
µ(ϕ̃) + µ(ϕ̃−1) = 2n .

Proof. Let Ft : R2n × R2nN → R be a based family of conical generating functions for a contact
isotopy {ϕt}t∈[0,1] representing ϕ̃. Then −Ft is a based family of conical generating functions for
{ϕ−1

t }t∈[0,1], which represent ϕ̃−1. Thus

µ(ϕ̃) + µ(ϕ̃−1) = ind(F0) − ind(F1) + ind(−F0) − ind(−F1) .
Since F0 is equivalent to the zero function, up to a fibre preserving conical homeomorphism it is
equal to a Zk-invariant quadratic form Q0. Since F0 generates the identity, by [16, Proposition
2.22] the nullity of Q0 is equal to 2n. Let ι be the dimension of the maximal subspace on which
Q0 is negative definite. Then

ind(F0) + ind(−F0) = ind(Q0) + ind(−Q0) = (2n+ ι) +
(
2n+ (2nN − ι)

)
= 4n+ 2nN .

On the other hand, since Π
(
L(ϕ̃)

)
has no discriminant points we have that zero is a regular value

of F1 and so we can apply Lemma 2.10 to obtain
ind(F1) + ind(−F1) = 2n+ 2nN .

We conclude that µ(ϕ̃) + µ(ϕ̃−1) = 2n. □

So far we have assumed that k is prime. Suppose now that k is not prime, and let k′ be the
smallest prime that divides k. As in [16, Remark 1.4], we define the non-linear Maslov index

µ : C̃ont0(L2n−1
k , ξ0) → Z

by pulling back µ : C̃ont0(L2n−1
k′ , ξ0) → Z by the natural map C̃ont0(L2n−1

k , ξ0) → C̃ont0(L2n−1
k′ , ξ0).

This general non-linear Maslov index then satisfies the following properties.

Proposition 2.12 (Non-linear Maslov index for general k). For any integer k ≥ 2 the non-linear
Maslov index

µ : C̃ont0(L2n−1
k , ξ0) → Z

satisfies the following properties:
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(i) Identity and small elements: if ϕ̃ is small enough in the C1-topology then 0 ≤ µ(ϕ̃) ≤ 2n,
and if moreover ϕ̃ is positive then µ(ϕ̃) = 2n. Moreover, µ(ĩd) = 0.

(ii) Quasimorphism property:

| µ(ϕ̃ · ψ̃) − µ(ϕ̃) − µ(ψ̃) | ≤ 2n+ 1 ,

and
| µ(ϕ̃ · ψ̃) − µ(ϕ̃) − µ(ψ̃) | ≤ 2n

if k is even; in particular, µ : C̃ont0(L2n−1
k , ξ0) → Z is a quasimorphism.

(iii) Triangle inequality:

µ(ϕ̃ · ψ̃) ≤ µ(ϕ̃) + µ(ψ̃) + 1 ,

and
µ(ϕ̃ · ψ̃) ≤ µ(ϕ̃) + µ(ψ̃)

if either k is even or µ(ϕ̃) is even or µ(ψ̃) is even.
(iv) Monotonicity: if ϕ̃ ≤ ψ̃ then µ(ϕ̃) ≤ µ(ψ̃).
(v) Relation with discriminant points: for any contact isotopy {ϕt}t∈[0,1] of (L2n−1

k , ξ0) start-
ing at the identity and any subinterval [t0, t1] of [0, 1], if µ({ϕt}t∈[0,t0]) ̸= µ({ϕt}t∈[0,t1])
then there is t ∈ [t0, t1] such that ϕ̄t has discriminant points. Assume that the map
s 7→ µ({ϕt}t∈[0,s]) is constant on [t0, t) and on (t, t1], and denote by ∆k′(ϕt) ⊂ L2n−1

k′ the
set of discriminant points at time t of the lift of {ϕt} to L2n−1

k′ , where k′ is the smallest
prime dividing k. Then

|µ({ϕt}t∈[0,t0]) − µ({ϕt}t∈[0,t1]) | ≤ ind
(
∆k′(ϕt)

)
+ 1 ,

and
|µ({ϕt}t∈[0,t0]) − µ({ϕt}t∈[0,t1]) | ≤ ind

(
∆k′(ϕt)

)
if either k is even or if {ϕt}t∈[0,1] is negative and µ({ϕt}t∈[0,t0]) is even. If moreover all
the discriminant points of ϕ̄t are non-degenerate then

|µ({ϕt}t∈[0,t0]) − µ({ϕt}t∈[0,t1]) | ≤ 1 .

(vi) Reeb flow: for every real number T we have

µ(r̃T ) = 2n
⌈
T

2π

⌉
.

(vii) Composition with the Reeb flow: for every integer m we have

µ(ϕ̃ · r̃2πm) = µ(r̃2πm · ϕ̃) = 2nm+ µ(ϕ̃) .

(viii) Lower semi-continuity: the map T 7→ µ(r̃−T · ϕ̃) is lower semi-continuous.
(ix) Poincaré duality: for every ϕ̃ such that Π

(
L(ϕ̃)

)
has no discriminant points we have

µ(ϕ̃) + µ(ϕ̃−1) = 2n .

Proof. In the case when k is prime all the properties have been discussed above in Example 2.2,
(1), (2), Proposition 2.3, Proposition 2.6, Proposition 2.8, Proposition 2.9, (4), Proposition 2.4,
Remark 2.7 and Proposition 2.11. If k is not prime and k′ is the smallest prime that divides k then
the properties of µ : C̃ont0(L2n−1

k′ , ξ0) → Z imply the corresponding properties for the pullback
µ : C̃ont0(L2n−1

k , ξ0) → Z by the natural map C̃ont0(L2n−1
k , ξ0) → C̃ont0(L2n−1

k′ , ξ0). □
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3. Spectral selectors

For any j ∈ Z we define the j-th spectral selector on C̃ont0(L2n−1
k , ξ0) by

cj(ϕ̃) = inf
{
T ∈ R

∣∣ µ(r̃−T · ϕ̃) ≤ −j
}
.

By Proposition 2.12 (iv), (ii) and (vi), the function T 7→ µ(r̃−T · ϕ̃) is non-increasing and tends to
∓∞ as T → ±∞, thus cj(ϕ̃) is a well-defined real number. By Proposition 2.12 (viii) the infimum
is in fact a minimum, in particular⌈

cj

(
ϕ̃

)⌉
2π
k

= min
{
N ∈ 2π

k
· Z

∣∣∣ µ(r̃−N · ϕ̃) ≤ −j
}
. (10)

It follows from the definition that the sequence {cj} is non-decreasing. In the rest of this section
we prove the other properties listed in Theorem 1.1.

We say that a contactomorphism of (L2n−1
k , ξ0) is non-degenerate with respect to α0 if all its

translated points with respect to α0 are non-degenerate. We then have the following lemma.

Lemma 3.1. The set of contactomorphisms of (L2n−1
k , ξ0) contact isotopic to the identity that

are non-degenerate with respect to α0 is dense in Cont0(L2n−1
k , ξ0) for the C1-topology.

Proof. We first prove the following result. Let Λ0 be a closed Legendrian submanifold of a contact
manifold

(
M, ξ = ker(α)

)
, and denote by Leg(Λ0) its Legendrian isotopy class. Then for any

submanifold N of M the set LegN (Λ0) of elements of Leg(Λ0) transverse to N is dense in Leg(Λ0)
for the C1-topology. Indeed, let Λ be an element of Leg(Λ0) and let U(Λ) ⊂ M be a Weinstein
neighborhood of Λ. Fix a diffeomorphism Ψ from U(Λ) to an open neighborhood U(j10) of the zero
section of J1Λ such that Ψ(Λ) = j10 and Ψ∗(dz−λcan) = α. Denote the submanifold Ψ

(
N∩U(Λ)

)
of U(j10) by N ′. Since the map j1 : C∞(Λ) → Leg(j10) that associates to a function its 1-jet is a
local homeomorphism with respect to the C2-topology on C∞(Λ) and the C1-topology on Leg(j10)
(cf. for instance [23, Section 3]), for a sufficiently small C2-neighborhood U(0) of the zero function
in C∞(Λ) the 1-jet of any f ∈ U(0) is in U(j10) and the map U(0) → Leg(Λ0) that sends f
to Ψ−1(j1f) is a local homeomorphism. By Thom’s transversality theorem (see for instance [15,
Corollary 4.10]), the subset T 1

N ′ of U(0) consisting of functions with 1-jet transverse to N ′ is dense
in U(0) for the C∞-topology, hence also for the C2-topology. Thus for any C1-neighborhood U of
Λ in Leg(Λ0) there exists f ∈ T 1

N ′ such that Ψ−1(j1f) ∈ U . The Legendrian Ψ−1(j1f) intersects
N transversely, and so belongs to LegN (Λ0). This shows that LegN (Λ0) is C1-dense in Leg(Λ0).

Using this, we now prove that the set of contactomorphisms of (L2n−1
k , ξ0) contact isotopic to the

identity that are non-degenerate with respect to α0 is C1-dense in Cont0(L2n−1
k , ξ0). Consider

the product L2n−1
k × L2n−1

k × R endowed with the contact structure given by the kernel of the
contact form π∗

2α0 − eθπ∗
1α0, where π1 and π2 denote the projections on the first and second

factor respectively and where θ is the coordinate in R. Consider the closed submanifold N =⋃
t∈[0, 2π

k ] rt(∆ × {0}), where {rt} denotes the Reeb flow of π∗
2α0 − eθπ∗

1α0 and ∆ denotes the
diagonal. A contactomorphism ϕ of (L2n−1

k , ξ0) is non-degenerate with respect to α0 if and only
if its graph

grα0(ϕ) =
{(
p, ϕ(p), g(p)

) ∣∣ p ∈ L2n−1
k

}
,

where g is the conformal factor of ϕ with respect to α0, is transverse to N . In other words, using
the notation of the first part of the proof and since ∆ × {0} = grα0(id), ϕ is non-degenerate with
respect to α0 if and only if grα0(ϕ) ∈ LegN (grα0(id)). Our result thus follows from the first part
of the proof and the fact that the map grα0 : Cont0(L2n−1

k , ξ0) → Leg(grα0(id)) that associates to
a contactomorphism its graph is a local homeomorphism with respect to the C1-topologies. □

We also remark the following fact.

Lemma 3.2. For any ϕ̃ ∈ C̃ont0(L2n−1
k , ξ0), A(ϕ̃) and Ā(ϕ̃) are closed and nowhere dense in R.
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Proof. Let Ft : R2n × R2nN → R, t ∈ [0, 1], be a based family of conical generating functions for
the concatenation

{ϕ2t}t∈[0, 1
2 ] ⊔ {r−2π(2t−1)}t∈[ 1

2 ,1] .

For every t ∈ [ 1
2 , 1], the Zk-orbits of translated points of ϕ̄1 of translation 2π(2t − 1) are in 1–1

correspondence with the critical points of critical value zero of ft : L2n(N+1)−1
k → R. Consider the

function
f : L2n(N+1)−1

k ×
[1

2 , 1
]

→ R , (x, t) 7→ ft(x) .

As in [22, Section 5.2 and Lemma 4.4], zero is a regular value of f and so f−1(0) is a submanifold
of L2n(N+1)−1

k × [ 1
2 , 1]. Let p : f−1(0) →

[ 1
2 , 1

]
be the composition of the inclusion f−1(0) ↪→

L
2n(N+1)−1
k × [ 1

2 , 1] with the projection on the second factor. Then (x, t) ∈ f−1(0) is a critical
point of p (of critical value t) if and only if x is a critical point of ft (of critical value zero). Thus
the Zk-orbits of translated points of ϕ̄1 of translation 2π(2t − 1) are in 1–1 correspondence with
the critical points of p of critical value t. It follows that

Ā(ϕ̃) = 2π
(

2 p
(

Crit(p)
)

− 1
)

+ 2π · Z ,

and so Ā(ϕ̃) is closed and nowhere dense. This implies that A(ϕ̃) = Ā(ϕ̃) + 2π
k · Z is also closed

and nowhere dense. □

We now prove that the spectral selectors satisfy the properties listed in Theorem 1.1.

Spectrality. We have to show that
cj(ϕ̃) ∈ Ā(ϕ̃)

for every ϕ̃ in C̃ont0(L2n−1
k , ξ0). Suppose by contradiction that this is not the case. Since Ā(ϕ̃) is

closed (by Lemma 3.2), there is then ϵ > 0 such that [cj(ϕ̃) − ϵ, cj(ϕ̃) + ϵ] ⊂ R ∖ Ā(ϕ̃). By the
first statement of Proposition 2.12 (v) we thus have

µ
(

˜r−(cj(ϕ̃)−ϵ) · ϕ̃
)

= µ
(

˜r−(cj(ϕ̃)+ϵ) · ϕ̃
)
,

but this contradicts the definition of cj(ϕ̃).

Normalization. It follows from Proposition 2.12 (vi) that

cj(ĩd) =



· · ·
−4π for j = −6n+ 1, · · · ,−4n
−2π for j = −4n+ 1, · · · ,−2n
0 for j = −2n+ 1, · · · , 0
2π for j = 1, · · · , 2n
4π for j = 2n+ 1, · · · , 4n
· · ·

In particular, c−2n+1(ĩd) = c0(ĩd) = 0.

Relation with translated points. If all the translated points of Π
(
L(ϕ̃)

)
are non-degenerate,

it follows from the last statement of Proposition 2.12 (v) that the spectral selectors {cj(ϕ̃) , j ∈ Z}
are all distinct. Suppose now that

cj−1(ϕ̃) < cj(ϕ̃) = cj+1(ϕ̃) = · · · = cj+m(ϕ̃) = T < cj+m+1(ϕ̃)

for some j and 1 ≤ m ≤ 2n− 1. Then for ϵ > 0 small enough we have

|µ
(
˜r−(T −ϵ) · ϕ̃

)
− µ

(
˜r−(T +ϵ) · ϕ̃

)
|= m+ 1
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and µ
(
˜r−(T −ϵ) · ϕ̃

)
= −j + 1. It thus follows from Proposition 2.12 (v) that if either k is even or j

is odd or m > 1 then Π
(
L(ϕ̃)

)
has infinitely many translated points of translation T . If moreover

k is prime then Proposition 2.12 (v) also implies that the set of translated points of translation
T of Π(ϕ̃) has cohomological index greater or equal than m, and greater or equal than m + 1 if
either k = 2 or j is odd.

Non-degeneracy. Assume that
c−2n+1(ϕ̃) = c0(ϕ̃) = 0 .

Then for ϵ > 0 small enough we have
|µ

(
r̃ϵ · ϕ̃

)
− µ

(
r̃−ϵ · ϕ̃

)
|= 2n

and µ
(
r̃ϵ · ϕ̃

)
= 2n. By Proposition 2.12 (v) we then conclude that Π(ϕ̃) is the identity. Since, by

spectrality, 0 ∈ Ā(ϕ̃), we have in fact that Π
(
L(ϕ̃)

)
is the identity.

Composition with the Reeb flow. By definition of the spectral selectors, for every ϕ̃ and every
T ∈ R we have

cj(r̃T · ϕ̃) = inf{T ∈ R | µ(r̃−T · r̃T · ϕ̃) ≤ −j }

= inf{T − T ∈ R | µ(r̃−T +T · ϕ̃) ≤ −j } + T

= cj(ϕ̃) + T .

Periodicity. Using the previous property and Proposition 2.12 (vii) we have

cj(ϕ̃) + 2π = cj(r̃2π · ϕ̃) = cj+2n(ϕ̃) .

Monotonicity. Suppose that ϕ̃ ≤ ψ̃. Then r̃−T · ϕ̃ ≤ r̃−T · ψ̃ and so, by Proposition 2.12 (iv),

µ(r̃−T · ϕ̃) ≤ µ(r̃−T · ψ̃) .

This implies that cj(ϕ̃) ≤ cj(ψ̃).

Continuity. Suppose that ϕ̃ · ψ̃−1 is represented by a contact isotopy with Hamiltonian function
Ht : L2n−1

k → R with respect to α0. Let m(t) = minHt and M(t) = maxHt. The flows of m and
M are respectively

{
r∫ t

0
m

}
and

{
r∫ t

0
M

}
, thus

r̃∫ 1

0
m

≤ ϕ̃ · ψ̃−1 ≤ r̃∫ 1

0
M

and so
r̃∫ 1

0
m

· ψ̃ ≤ ϕ̃ ≤ r̃∫ 1

0
M

· ψ̃ .

By the composition with the Reeb flow property and monotonicity we thus have∫ 1

0
minHt dt ≤ cj(ϕ̃) − cj(ψ̃) ≤

∫ 1

0
maxHt dt . (11)

We now show that (11) implies that each cj is continuous with respect to the C1-topology.

Notice first that the Shelukhin–Hofer norm να : C̃ont0(L2n−1
k , ξ0) → R, which is defined by

να(ϕ̃) = inf
∫ 1

0
max |Ht| dt

with the infimum taken over all contact Hamiltonian functions Ht whose flow represents ϕ̃, is con-
tinuous with respect to the C1-topology. Indeed, this can be seen as follows. Since C̃ont0(L2n−1

k , ξ0)
is a topological group, it is enough to show that να is C1-continuous at the identity, i.e. that for
every ϵ > 0 there is a C1-neighborhood Ũ of ĩd in C̃ont0(L2n−1

k , ξ0) such that for every ϕ̃ ∈ Ũ we
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have να(ϕ̃) < ϵ. As in the proof of Lemma 3.1 we consider the product L2n−1
k × L2n−1

k × R
endowed with the contact structure given by the kernel of the contact form π∗

2α0 − eθπ∗
1α0.

Applying the Weinstein theorem we can find a neighborhood U(∆ × {0}) of the Legendrian
∆ × {0} ∼= L2n−1

k of L2n−1
k × L2n−1

k × R, a neighborhood U(j10) of the zero section of J1L2n−1
k

of the form U(j10) = U(j10) × (−ϵ′, ϵ′) with ϵ′ < ϵ and a diffeomorphism Ψ from U(∆ × {0})
to U(j10) with Ψ(∆ × {0}) = j10 and Ψ∗(dz − λcan) = π∗

2α0 − eθπ∗
1α0. Since the map j1 :

C∞(L2n−1
k ) → Leg(j10) that associates to a function its 1-jet is a local homeomorphism with

respect to the C2-topology on C∞(L2n−1
k ) and the C1-topology on Leg(j10), we can find a convex

C2-neighborhood U(0) of the zero function in C∞(L2n−1
k ) such that j1f ∈ U(j10) for any f ∈ U(0),

and the map U(0) 7→ Leg(∆ × {0}) that sends f to Ψ−1(j1f) is a local homeomorphism. Since
∆ × {0} = grα0(id) and the map grα0 : Cont0(L2n−1

k , ξ0) → Leg
(

grα0(id)
)

that associates to
a contactomorphism its graph is a local homeomorphism with respect to the C1-topologies, we
obtain a map U(0) → Cont0(L2n−1

k , ξ0) that associates to a function f a contactomorphism ϕ
with j1f = Ψ(grα0(ϕ)), which is a homeomorphism on its image U . Since U(0) is convex, U is
simply connected; let thus Ũ be the open neighborhood of ĩd in C̃ont0(L2n−1

k , ξ0) that projects
homeomorphically to U . Consider now any ϕ̃ in Ũ . Let f : L2n−1

k → (−ϵ, ϵ) be the function in
U(0) such that j1f = Ψ

(
grα0

(
Π(ϕ̃)

))
. Since U(0) is convex, ft := tf is in U(0) for every t ∈ [0, 1],

and so for every t ∈ [0, 1] there is ϕt ∈ U with j1ft = Ψ
(

grα0(ϕt)
)
. Consider the two Legendrian

isotopies j1ft and grα0(ϕt), with parametrizations given respectively by

i1 : [0, 1] × j10 → J1L2n−1
k , i1

(
t, (x, 0, 0)

)
= j1ft(x)

and
i2 : [0, 1] ×

(
∆ × {0}

)
→ L2n−1

k × L2n−1
k × R , i2

(
t, (x, x, 0)

)
=

(
x, ϕt(x), gt(x)

)
,

where gt is the conformal factor of ϕt. Let Ht be the contact Hamiltonian function of the contact
isotopy {ϕt}. Then

Ht

(
ϕt(x)

)
= (π∗

2α0 − eθπ∗
1α0)

( d

dt
i2

(
t, (x, x, 0)

))
= (dz − λcan)

( d

dt
i1

(
t, (x, 0, 0)

))
= f(x) ,

and so |Ht|< ϵ. Moreover [{ϕt}t∈[0,1]] = ϕ̃, because ϕ̃ · [{ϕt}t∈[0,1]]−1 ∈ π1
(

Cont0(L2n−1
k , ξ0)

)
can

be represented by a loop in U , which is simply connected. We thus conclude that να(ϕ̃) < ϵ, as
we wanted.

Using (11) and the fact that να is C1-continuous we now deduce that each cj is C1-continuous.
Let ϕ̃ ∈ C̃ont0(L2n−1

k , ξ0). By C1-continuity of να, for any ϵ > 0 there is a C1-neighborhood Ũ of
ĩd in C̃ont0(L2n−1

k , ξ0) such that να|Ũ < ϵ. Then Ṽ := Ũ · ϕ̃ is a C1-neighborhood of ϕ̃ such that
for every ψ̃ ∈ Ṽ we have

να(ϕ̃ · ψ̃−1) = να(ψ̃ · ϕ̃−1) < ϵ .

This implies that there is a contact Hamiltonian function Ht whose flow represents ϕ̃ · ψ̃−1 and
satisfies

∫ 1
0 max |Ht| dt < ϵ. Using (11) we thus conclude that for every ψ̃ ∈ Ṽ we have

∣∣ cj(ϕ̃) −
cj(ψ̃)

∣∣ < ϵ, and so that cj is C1-continuous.

Triangle inequality. We have to prove that if either k is even or j is even then

cj+l(ϕ̃ · ψ̃) ≤ cj(ϕ̃) +
⌈
cl(ψ̃)

⌉
2π
k

.

Let T = cj(ϕ̃) and N = ⌈cl(ψ̃)⌉ 2π
k

. Since Π : C̃ont0(L2n−1
k , ξ0) → Cont0(L2n−1

k , ξ0) is a local
homeomorphism, by the continuity property of the spectral selectors and Lemma 3.1 we can
assume that Π(ϕ̃) is non-degenerate with respect to α0. By the relation with translated points
property, the spectral selectors of ϕ̃ are thus all distinct, and so µ

(
r̃−T · ϕ̃

)
= −j. Using the fact
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that r̃−N commutes with ϕ̃ (since {rt} is 2π
k -periodic) and the triangle inequality for the nonlinear

Maslov index (Proposition 2.12 (iii)) we thus have

µ
(

˜r−(T +N) · ϕ̃ · ψ̃
)

= µ
(
(r̃−T · ϕ̃) · (r̃−N · ψ̃)

)
≤ µ

(
r̃−T · ϕ̃

)
+ µ

(
r̃−N · ψ̃

)
≤ −(j + l) .

By definition of cj+l we conclude that

cj+l

(
ϕ̃ · ψ̃

)
≤ T +N = cj(ϕ̃) +

⌈
cl(ψ̃)

⌉
2π
k

.

Conjugation invariance. We have to prove that⌈
cj(ψ̃ · ϕ̃ · ψ̃−1)

⌉
2π
k

=
⌈
cj(ϕ̃)

⌉
2π
k

. (12)

Assume first that Π(ϕ̃) does not have discriminant points. Let {ψt}t∈[0,1] be a contact isotopy
representing ψ̃, and consider the homotopy ψ̃s = [{ψst}t∈[0,1]] from ψ̃0 = ĩd to ψ̃1 = ψ̃. By the
continuity property, the map

s 7→ cj(ψ̃s · ϕ̃ · ψ̃−1
s ) ∈ Ā(ψ̃s · ϕ̃ · ψ̃−1

s )

is continuous. Moreover, cj(ψ̃s · ϕ̃ · ψ̃−1
s ) ∈ R ∖ 2π

k · Z for all s ∈ [0, 1]. Indeed, if we had
cj(ψ̃s · ϕ̃ · ψ̃−1

s ) ∈ 2π
k · Z for some s then, by the spectrality property, Π(ψ̃s · ϕ̃ · ψ̃−1

s ) would have
discriminant points. But this is absurd, because the discriminant points of Π(ψ̃s · ϕ̃ · ψ̃−1

s ) are in
bijection with the discriminant points of Π(ϕ̃). We thus obtain (12) in this case.

The general case can be obtained as follows. Given any ϕ̃ ∈ C̃ont0(L2n−1
k , ξ0), since (by Lemma 3.2)

A(ϕ̃) is nowhere dense, there is a sequence (ϵn) of positive real numbers with ϵn → 0 such that,
for every n, Π(r̃−ϵn

· ϕ̃) does not have discriminant points. Pose χ̃n = r̃−ϵn
· ϕ̃. By the first part

of the proof we have ⌈
cj(ψ̃ · χ̃n · ψ̃−1)

⌉
2π
k

=
⌈
cj(χ̃n)

⌉
2π
k

(13)

for all n. Since (χ̃n) converges to ϕ̃ in the C1-topology and χ̃n ≤ ϕ̃ for all n, by the continuity and
monotonicity properties of the spectral selectors for n big enough we have

⌈
cj(ϕ̃)

⌉
2π
k

= ⌈cj(χ̃n)⌉ 2π
k

and
⌈
cj(ψ̃ · ϕ̃ · ψ̃−1)

⌉
2π
k

=
⌈
cj(ψ̃ · χ̃n · ψ̃−1)

⌉
2π
k

. Equation (13) thus gives the desired result (12).

Poincaré duality. We first notice that if Π
(
ϕ̃

)
does not have discriminant points then⌊

cj

(
ϕ̃

)⌋
2π
k

= max
{
N ∈ 2π

k
· Z

∣∣∣ µ(r̃−N · ϕ̃) > −j
}
. (14)

Indeed, by spectrality we have cj(ϕ̃) /∈ 2π
k ·Z and thus N :=

⌊
cj

(
ϕ̃

)⌋
2π
k

< cj(ϕ̃). This implies that

µ(r̃−N · ϕ̃) > −j, and so the inequality ≤ in (14). On the other hand, the opposite inequality
follows (without any assumption on ϕ̃) from (10) and the fact that

⌊
cj

(
ϕ̃

)⌋
2π
k

+ 2π
k ≥

⌈
cj

(
ϕ̃

)⌉
2π
k

.

We now prove the Poincaré duality property, i.e. that⌈
cj(ϕ̃)

⌉
2π
k

= −
⌊
c−j−(2n−1)(ϕ̃−1)

⌋
2π
k

(15)

for any ϕ̃ ∈ C̃ont0(L2n−1
k , ξ0). Assume first that Π

(
ϕ̃

)
does not have discriminant points. Then

Proposition 2.12 (ix) implies that

µ(r̃N · ϕ̃) + µ(ϕ̃−1 · r̃−N ) = 2n (16)

for every N that is a multiple of 2π
k . The Poincaré duality (15) then follows from (10), (14), (16)

and the fact that ϕ̃−1 · r̃−N = r̃−N · ϕ̃−1 for every N that is a multiple of 2π
k .
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For a general ϕ̃, as in the proof of conjugation invariance we can find a sequence (χ̃n) that
converges to ϕ̃ in the C1-topology and such that, for all n, χ̃n ≤ ϕ̃ and Π(χ̃n) does not have
discriminant points. By the first part of the proof we have ⌈cj(χ̃n)⌉ 2π

k
= −

⌊
c−j−(2n−1)(χ̃−1

n )
⌋

2π
k

.
By monotonicity and continuity of the spectral selectors we thus obtain (15) also in this case.

4. Non-shortening of the standard Reeb flow with respect to the discriminant
and oscillation norms

Recall from [9] that the discriminant norm νdis on the universal cover C̃ont0(M, ξ) of the identity
component of the contactomorphism group of a closed contact manifold (M, ξ) is the word norm
associated to the generating set D ⊂ C̃ont0(M, ξ) formed by elements ϕ̃ that can be represented by
an embedded contact isotopy, i.e. a contact isotopy {ϕt}t∈[0,1] such that ϕt◦ϕ−1

s has no discriminant
points for all s ̸= t ∈ [0, 1]. Recall also from [5] that the discriminant length of a contact isotopy
{ϕt}t∈[0,1] is the minimal N such that there is a decomposition 0 = t0 < · · · < tN = 1 of the time
interval [0, 1] with {ϕt}t∈[tj ,tj+1] embedded for all j = 0, · · · , N − 1.

Consider the discriminant norm on C̃ont0(L2n−1
k , ξ0). For every positive real number T we have

νdis(r̃T ) ≥
2n⌈ T

2π ⌉ + 1
2n+ 1 .

Indeed, let N = νdis(r̃T ) and write r̃T =
∏N

j=1 ϕ̃j with ϕ̃j ∈ D. Then, by Proposition 2.12 (vi),
(iii), (i) and the first statement of (v) we have

2n
⌈
T

2π

⌉
= µ(r̃T ) ≤

N∑
j=1

µ(ϕ̃j) +N − 1 ≤ 2nN +N − 1 . (17)

Similarly, in the case of projective space we have

νdis(r̃T ) ≥
⌈
T

2π

⌉
. (18)

The estimates (17) and (18) are better than those obtained in [9] and [16], since in those references
just the quasimorphism property of the non-liner Maslov index (Proposition 2.12 (ii)) is used and
not the triangle inequality (Proposition 2.12 (iii)). However, they are still not optimal. Indeed,
writing

0 < T0 := T⌊
k

2π T
⌋

+ 1
<

2π
k

we have
{rT t}t∈[0,1] = {rT0t ◦ · · · ◦ rT0t︸ ︷︷ ︸

⌊ k
2π T⌋+1

}t∈[0,1] (19)

and so, since {rT0t}t∈[0,1] ∈ D, {rT t}t∈[0,1] has discriminant length smaller or equal than
⌊

k
2π T

⌋
+1;

this length is actually equal to
⌊

k
2π T

⌋
+ 1, because for any interval [t0, t1] of length t1 − t0 ≥ 2π

k
the contact isotopy {rt}t∈[t0,t1] is not embedded. For instance, in the case of projective space the
discriminant length of {r2πmt}t∈[0,1] is thus 4m+ 1, while (18) only gives νdis(r̃2πm) ≥ m. In this
section we prove the optimal estimates for the discriminant and oscillation lengths of the Reeb flow
of lens spaces using the spectral selectors defined in Section 3. The main advantage of using the
spectral selectors is that while (by Proposition 2.12 (v)) the non-linear Maslov index only jumps
in the presence of discriminant points of the lift of a contact isotopy of (L2n−1

k , ξ0) to the sphere,
so that in particular for instance µ(r̃T ) = 2n

⌈
T
2π

⌉
, the spectral selectors allow to distinguish r̃T

also for different values of T in [0, 2π], indeed by Theorem 1.1 (v) we have for instance c0(r̃T ) = T .

We start with the following lemma.

Lemma 4.1. For any element ϕ̃ of C̃ont0(L2n−1
k , ξ0), if ϕ̃ ∈ D then c0(ϕ̃) < 2π

k .
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Proof. If ϕ̃ ∈ D then ϕ̃ can be represented by a contact isotopy {ϕt}t∈[0,1] such that ϕt does not
have discriminant points for all t ∈ (0, 1]. Suppose by contradiction that c0(ϕ̃) ≥ 2π

k , and for
s ∈ [0, 1] let ϕ̃s = [{ϕst}t∈[0,1]]. Since c0(ϕ̃1) = c0(ϕ̃) ≥ 2π

k and, by Theorem 1.1 (ii), c0(ϕ̃0) =
c0(ĩd) = 0, by continuity of c0 (Theorem 1.1 (viii)) there is a value of s in (0, 1] such that
c0(ϕ̃s) = 2π

k . But then, by spectrality (Theorem 1.1 (i)), 2π
k belongs to Ā(ϕ̃s). This means that

ϕs has discriminant points, which is a contradiction. □

We have seen above that {rT t}t∈[0,1] has discriminant length
⌊

k
2π T

⌋
+ 1. In order to prove that it

is a geodesic we thus have to show that

νdis(r̃T ) ≥
⌊
k

2π T
⌋

+ 1 . (20)

Let νdis(r̃T ) = N , and write r̃T =
∏N

j=1 ϕ̃j with ϕ̃j ∈ D for all j. By Theorem 1.1 (v), (ix) and
Lemma 4.1 we then have

T = c0(r̃T ) ≤ c0(ϕ̃1) +
N∑

j=2

⌈
c0(ϕ̃j)

⌉
2π
k

< N
2π
k
.

This implies that νdis(r̃T ) ≥
⌊

k
2π T

⌋
+ 1, as we wanted.

We now show that {rT t}t∈[0,1] is a geodesic with respect to the oscillation norm. Recall from [9]
that the oscillation pseudonorm νosc on the universal cover C̃ont0(M, ξ) of the identity component
of the contactomorphism group of a closed contact manifold (M, ξ) is defined as follows. Let
D+ and D− be the sets of elements of C̃ont0(M, ξ) that can be represented respectively by an
embedded non-negative or non-positive contact isotopy. It is proved in [9] that every element ϕ̃
of C̃ont0(M, ξ) can be written as ϕ̃ =

∏N
j=1 ϕ̃j with ϕ̃j ∈ D+ or ϕ̃j ∈ D− for every j. We denote

by ν+(ϕ̃) and ν−(ϕ̃) respectively the minimal number of elements of D+ and minus the minimal
number of elements of D− in such a decomposition. The oscillation pseudonorm is then defined
by

νosc(ϕ̃) = ν+(ϕ̃) − ν−(ϕ̃)

for ϕ̃ ̸= ĩd, and νosc(ĩd) = 0. By [9, Proposition 3.2], the oscillation pseudonorm on C̃ont0(M, ξ)
is non-degenerate if and only if (M, ξ) is orderable; it is thus a norm for lens spaces. Recall also
from [5] that the oscillation length of a contact isotopy {ϕt}t∈[0,1] is the sum of L+

(
{ϕt}t∈[0,1]

)
and L−

(
{ϕt}t∈[0,1]

)
, where L+

(
{ϕt}t∈[0,1]

)
is the minimal N+ for which there is N ≥ N+ and

a decomposition 0 = t0 < · · · < tN = 1 with each {ϕt}t∈[tj ,tj+1] embedded and non-negative or
non-positive and exactly N+ of them non-negative, and L−

(
{ϕt}t∈[0,1]

)
is the minimal N− for

which there is N ≥ N− and a decomposition 0 = t0 < · · · < tN = 1 with each {ϕt}t∈[tj ,tj+1]
embedded and non-negative or non-positive and exactly N− of them non-positive.

Consider now as above the Reeb flow r̃T = [{rT t}t∈[0,1]] on (L2n−1
k , ξ0). The decomposition (19)

shows that ν−(r̃T ) = 0 and ν+(r̃T ) ≤
⌊

k
2π T

⌋
+ 1, thus

νosc(r̃T ) = ν+(r̃T ) ≤
⌊
k

2π T
⌋

+ 1 .

In order to show that {rT t}t∈[0,1] is a geodesic with respect to the oscillation norm we thus have
to show that

ν+(r̃T ) ≥
⌊
k

2π T
⌋

+ 1 .

Let ν+(r̃T ) = N+, and write r̃T =
N∏

j=1
ϕ̃j with ϕ̃j ∈ D± for all j and with exactly N+ of the ϕ̃j

in D+. Denote such elements by ϕ̃σ(1), · · · , ϕ̃σ(N+). Then r̃T ≤
N+∏
j=1

ϕ̃σ(j), and so by Theorem 1.1
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(v), (vii), (ix) and Lemma 4.1 we have

T = c0(r̃T ) ≤ c0

( N+∏
j=1

ϕ̃σ(j)

)
≤ c0(ϕ̃σ(1)) +

N+∑
j=2

⌈
c0(ϕ̃σ(j))

⌉
2π
k

<
2π
k

·N+ .

This implies that ν+(r̃T ) ≥
⌊

k
2π T

⌋
+ 1, as we wanted.

5. A spectral pseudonorm

Let c− = c−2n+1 and c+ = c0, and define ν : C̃ont0(L2n−1
k , ξ0) → 2π

k · Z by

ν(ϕ̃) = max
{ ⌈

c+(ϕ̃)
⌉

2π
k

, −
⌊
c−(ϕ̃)

⌋
2π
k

}
.

In this section we prove that ν is a pseudonorm satisfying the properties stated in Corollary 1.6.

Recall that a pseudonorm ν on a group G is said to be stably unbounded if there is an element σ
of G such that limm→∞

ν(σm)
m ̸= 0, and is said to be compatible with a bi-invariant partial order

≤ if id ≤ σ1 ≤ σ2 implies ν(σ1) ≤ ν(σ2).

Proposition 5.1. The map ν : C̃ont0(L2n−1
k , ξ0) → 2π

k · Z is a stably unbounded conjugation
invariant pseudonorm compatible with the partial order ≤.

Proof. We first show that for every ϕ̃ we have ν(ϕ̃) ≥ 0. Suppose by contradiction that ν(ϕ̃) < 0.
Then

⌈
c+(ϕ̃)

⌉
2π
k

< 0, thus c+(ϕ̃) < 0, and −
⌊
c−(ϕ̃)

⌋
2π
k

< 0, thus c−(ϕ̃) > 0. But this contradicts

the fact that, since the sequence cj is non-decreasing, c−(ϕ̃) ≤ c+(ϕ̃). The triangle inequality
ν(ϕ̃ · ψ̃) ≤ ν(ϕ̃) + ν(ψ̃) follows from Theorem 1.1 (ix) and (xi), and symmetry, i.e. ν(ϕ̃) = ν(ϕ̃−1),
from Theorem 1.1 (xi). This shows that ν is a pseudonorm. Invariance by conjugation follows
from Theorem 1.1 (x) and (xi). The pseudonorm ν is stably unbounded, indeed Theorem 1.1 (v)
implies that

ν
(
r̃ 2π

k

m
)

= ν
(
r̃m 2π

k

)
= m

for every positive integer m, thus posing σ = r̃ 2π
k

we have limm→∞
ν(σm)

m = 1 ̸= 0. Finally, the
fact that ν is compatible with the partial order ≤ follows from Theorem 1.1 (vii) and (xi). □

It would be interesting to know if ν is equivalent to the oscillation norm νosc. In this direction,
we prove the following inequality.

Proposition 5.2. For every element ϕ̃ of C̃ont0(L2n−1
k , ξ0) we have

ν(ϕ̃) ≤ 2π
k

· νosc(ϕ̃) .

Proof. Let ν+(ϕ̃) = N+, and write ϕ̃ =
N∏

j=1
ϕ̃j with all the ϕ̃j in D+ or D− and exactly N+ of

them in D+. Denote such elements by ϕ̃σ(1), · · · , ϕ̃σ(N+). Then ϕ̃ ≤
∏N+

j=1 ϕ̃σ(j), and thus by
Theorem 1.1 (vii), (ix) and Lemma 4.1 we have

c+(ϕ̃) ≤ c+

( N+∏
j=1

ϕ̃σ(j)

)
≤

N+∑
j=1

⌈
c+(ϕ̃σ(j))

⌉
2π
k

≤ 2π
k

·N+ .

Similarly, setting ν−(ϕ̃) = −N− we have c+(ϕ̃−1) ≤ 2π
k ·N− and so, by Theorem 1.1 (xi),

−
⌊
c−(ϕ̃)

⌋
2π
k

=
⌈
c+

(
ϕ̃−1

)⌉
2π
k

≤ 2π
k

·N− .
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We deduce that

ν(ϕ̃) ≤ 2π
k

max
{
ν+(ϕ̃) , −ν−(ϕ̃)

}
≤ 2π

k

(
ν+(ϕ̃) − ν−(ϕ̃)

)
= 2π

k
· νosc(ϕ̃) .

□

We do not know whether the pseudonorm ν is non-degenerate, i.e. whether ν(ϕ̃) = 0 if and only
if ϕ̃ = ĩd. Indeed, by the definition of ν we have that ν(ϕ̃) = 0 if and only if c+(ϕ̃) = c−(ϕ̃) = 0,
which by Theorem 1.1 (iv) only implies that Π(ϕ̃) is the identity. On the other hand, the induced
conjugation invariant pseudonorm on Cont0(L2n−1

k , ξ0), i.e. the pseudonorm ν∗ defined by

ν∗(ϕ) = inf{ ν(ϕ̃) | Π(ϕ̃) = ϕ } ,
is non-degenerate, hence a norm. However, this norm is bounded (hence equivalent to the trivial
norm, since it is discrete), as shown in the following proposition.
Proposition 5.3. For every ϕ ∈ Cont0(L2n−1

k , ξ0) we have ν∗(ϕ) ≤ 2π + 2π
k .

Proof. We show that

ν∗
(
Π(ϕ̃)

)
≤

⌈
c+(ϕ̃)

⌉
2π
k

−
⌊
c−(ϕ̃)

⌋
2π
k

≤ 2π + 2π
k

(21)

for every ϕ̃ ∈ C̃ont0(L2n−1
k , ξ0). Using periodicity of the spectral selectors (Theorem 1.1 (vi)) and

the fact that the sequence of spectral selectors cj is non-decreasing we have c+(ϕ̃) ≤ c−(ϕ̃) + 2π,
which implies the second inequality in (21). For the first inequality, it is enough to find N ∈ 2π

k ·Z
such that ν(r̃−N · ϕ̃) =

⌈
c+(ϕ̃)

⌉
2π
k

−
⌊
c−(ϕ̃)

⌋
2π
k

. Suppose first that ν(ϕ̃) =
⌈
c+(ϕ̃)

⌉
2π
k

, and pose

N =
⌈
c+(ϕ̃)

⌉
2π
k

. By Theorem 1.1 (v) we then have

ν(r̃−N · ϕ̃) = max
{ ⌈

c+(r̃−N · ϕ̃)
⌉

2π
k

, −
⌊
c−(r̃−N · ϕ̃)

⌋
2π
k

}
= max

{
0 ,

⌈
c+(ϕ̃)

⌉
2π
k

−
⌊
c−(ϕ̃)

⌋
2π
k

}
=

⌈
c+(ϕ̃)

⌉
2π
k

−
⌊
c−(ϕ̃)

⌋
2π
k

.

Similarly, if ν(ϕ̃) =
⌊
c−(ϕ̃)

⌋
2π
k

=: N then ν(r̃−N · ϕ̃) =
⌈
c+(ϕ̃)

⌉
2π
k

−
⌊
c−(ϕ̃)

⌋
2π
k

. □

Remark 5.4. It follows from [4, Corollary 4.12] that on the universal cover of the identity com-
ponent of the contactomorphism group of the unit cotangent bundle of the torus Tn for n ≥ 2
the difference of the invariants c+ and c− defined in [4] is unbounded. This difference with re-
spect to (21) might be related to the fact that the identity component of the contactomorphism
group of the unit cotangent bundle of the torus does not contain positive loops. It would be in-
teresting to investigate if on the other hand the difference of the invariants c+ and c− of [4] is
bounded on C̃ont0(L2n−1

k , ξ0). This would then imply as in Proposition 5.3 that the induced norm
on Cont0(L2n−1

k , ξ0) is bounded, and therefore answer partially a question in [12, Example 2.21].
Remark 5.5. If ν : G → R≥0 is a pseudonorm on a group G then, for any c > 0, the map
ν′ : G → R≥0 defined by

ν′(g) :=
{

max{ν(g), c} if g ̸= id
0 if g = id

is a norm. Moreover, ν′ is invariant by conjugation if and only if so is ν. This trick (which is
similar to one used in [7]) can be applied to our pseudonorm ν, with c = 2π

k , to obtain a stably
unbounded conjugation invariant norm ν′ on C̃ont0(L2n−1

k , ξ0). Since ν takes values in 2π
k · Z, if

ν is already a norm then ν′ ≡ ν. Proposition 5.2 holds also for ν′, indeed for any element ϕ̃ ̸= ĩd
we have

ν′(ϕ̃) = max
{⌈
c+(ϕ̃)

⌉
2π
k

,−
⌊
c−(ϕ̃)

⌋
2π
k

,
2π
k

}
≤ 2π

k
· max

{
νosc(ϕ̃), 1

}
= 2π

k
· νosc(ϕ̃) .
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