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Abstract. We study the notion of orderability of isotopy classes of Legendrian
submanifolds and their universal covers, with some weaker results concerning
spaces of contactomorphisms. Our main result is that orderability is equivalent to
the existence of spectral selectors analogous to the spectral invariants coming from
Lagrangian Floer Homology. A direct application is the existence of Reeb chords
between any closed Legendrian submanifolds of a same orderable isotopy class.
Other applications concern the Sandon conjecture, the Arnold chord conjecture,
Legendrian interlinking, the existence of time-functions and the study of metrics
due to Hofer-Chekanov-Shelukhin, Colin-Sandon, Fraser-Polterovich-Rosen and
Nakamura.

1. Introduction

1.1. Historical background. The abundance of interactions between Hofer ge-
ometry on the group of Hamiltonian diffeomorphisms and symplectic geometry
[43, 46, 51, 61] led Eliashberg and Polterovich in 2000 [30] to introduce the notion
that will be later called orderability on the universal cover G̃ of the group of con-
tactomorphisms isotopic to the identity. To do so they define a bi-invariant binary
relation � on this group: ϕ � ψ if there exists a non-negative contact Hamiltonian
generating an isotopy from ϕ to ψ. They show that for some contact manifolds
this binary relation turns out to be a partial order: we now say that the group G̃
is orderable in this case. Some years later together with Kim [29] they show how
orderability can be used to detect some squeezing and non-squeezing phenomena.
They show in particular that there really is a dichotomy: for some contact manifolds
such as the standard contact sphere G̃ is unorderable.

The study of orderability naturally extends to the group of contactomorphisms
isotopic to the identity G and to the isotopy class L of a closed Legendrian subman-
ifold Λ∗ as well as its universal cover L̃. The notion of orderability has been quite
influential in the study of contact topology: we refer to our paragraph Examples 2.10
in Section 2.4 for an account on the study of the dichotomy orderable/unorderable
space throughout the last two decades. Nevertheless, rather little is known about
the properties that are specifically implied by orderability. One of the most signifi-
cant achievements in that direction is the discovery of Albers-Fuchs-Merry that the
unorderability of G(M, ξ) implies the Weinstein conjecture in (M, ξ) [2]. The goal
of this article is to establish an equivalence between orderability and the existence
of (hopefully spectral) contact selectors.
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The notion of spectral selectors in contact geometry is a natural generalization of
spectral selectors defined in symplectic geometry. Given a closed symplectic mani-
fold (M,ω) satisfying some mild hypothesis (e.g. symplectic asphericality), one can
define spectral selectors on the space of Hamiltonian diffeomorphisms Ham(M,ω)
or its universal cover. In this context a spectral selector is a continuous map
c : Ham(M,ω) → R associating to ϕ a real number c(ϕ) belonging to its spec-
trum, which is the set of action values of its fixed points. Such selectors were first
constructed by Viterbo for compactly supported Hamiltonian diffeomorphisms of
R2n [73] then generalized by the works of Schwarz [67] and Oh [60]. Likewise, given
an isotopy class of Lagrangian submanifolds of (M,ω) satisfying some mild hypoth-
esis, one can associate spectral selectors ` such that `(Λ1,Λ0) is in the spectrum of
the couple of Lagrangian submanifolds (Λ1,Λ0) (which corresponds to symplectic
areas associated to couples of points of Λ0∩Λ1) [73, 59, 47, 48]. Among the spectral
selectors c or ` (a specific construction being given), one can usually distinguish
two specific selectors c− ≤ c+ or `− ≤ `+ (in the case of Hamiltonian Floer theory,
they correspond to the fundamental class and the class of a point) which satisfy
additional property, e.g.
1. (triangular inequality) c+(ϕψ) ≤ c+(ϕ) + c+(ψ),
2. (Poincaré duality) c+(ψ) = −c−(ψ−1),
3. (conjugation invariance) c±(ϕψϕ−1) = c±(ψ),
4. (non-degeneracy) c+(ψ) = c−(ψ) implies ψ = id.
The number of applications of the existence of spectral selectors, especially c+, is
quite large. Among other ones, on the dynamical side, it has recently been used for
the study of the Hofer-Zehnder conjecture [37, 69] or the C∞-closing lemma [24], it
also has more topological applications: the study of non-squeezing phenomena [73],
the geometry of the group of Hamiltonian diffeomorphisms [11, 44] or C0-symplectic
geometry [12].

This notion of spectral selectors has been extended to compactly supported con-
tactomorphisms of R2n×S1 isotopic to the identity by Sandon in [64]. She discovered
that the notion of translated points was key in order to define the spectrum of con-
tactomorphisms (see Section 1.3 below for the definition). These notions of spectral
selectors were then applied in multiple contexts in order to address numerous ques-
tions of contact topology: study of bi-invariant metrics on the group of compactly
supported contactomorphisms isotopic to identity [63, 26], contact non-squeezing
phenomena [64, 4], orderability [65]. Albers-Fuchs-Merry use the Rabinowitz Floer
theory to define contact selectors in a class of Liouville fillable contact manifolds
[2, 3] (see in Section 1.4 some applications of their work). Our main result is that
orderability is the necessary and sufficient condition in order to define contact ana-
logues of selectors c± and `± in full generality (although our c±’s are not spectral
a priori) whose signs only are invariant by contactomorphisms (cf. paragraph just
above Corollary 1.3).

1.2. Conventions. Whenever no precision regarding regularity is given, maps and
manifolds considered are C∞-smooth. Every contact manifold (M, ξ) considered are
assumed to be connected and cooriented (i.e. TM/ξ is an oriented line bundle).
We write that a contact form α is supporting ξ if kerα = ξ and α respects the
coorientation. A contactomorphism of (M, ξ) will always preserve the coorientation.
Given a contact manifold (M, ξ) and a closed Legendrian submanifold Λ∗ ⊂M , one
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denotes L(Λ∗) the isotopy class of Λ∗ and L̃(Λ∗) its universal cover. One denotes
G(M) the group Contc

0(M, ξ) of compactly supported contactomorphisms of (M, ξ)
isotopic to id through compactly supported contactomorphisms while G̃(M) will
denote its universal cover.

Usually, we will only write L for L(Λ∗), L̃ for L̃(Λ∗) etc. implicitly meaning that
Λ∗ and M are fixed. By a slight abuse of notation:
1. id ∈ G̃ will denote the class of the constant isotopy s 7→ id. Given a contact

form α supporting ξ and t ∈ R, let φαt ∈ Cont(M, ξ) denote the α-Reeb flow at
time t ∈ R (see e.g. Section 2.1);

2. when it is understood that φαt must be an element of the universal cover of the
identity component of Cont(M, ξ) (e.g. when acting on G̃ or L̃), it will denote
the isotopy [0, 1]→ Cont0(M, ξ), s 7→ φαst;

3. the cover maps G̃ → G and L̃ → L will both be denoted Π.
On O being either L, L̃, G or G̃, we write x � y, or equivalently y � x, if there

exists a non-negative isotopy from x to y. O is called orderable if and only if �
defines a partial order (see Section 2.4 for details). In particular, the orderability of
L (resp. G) implies the orderability of L̃ (resp. G̃). We refer to Examples 2.10 for
a list of known orderable spaces.

1.3. Order spectral selectors. Let (M, ξ) be a closed cooriented contact manifold.
For any contact form α supporting ξ, let us define cα− and cα+ as the maps G →
R ∪ {±∞} (resp. G̃ → R ∪ {±∞}) defined by

cα−(ψ) := sup{t ∈ R | ψ � φαt } and cα+(ψ) := inf{t ∈ R | ψ � φαt }, (1)

for ψ ∈ G (resp. ψ ∈ G̃). These maps are highly inspired by constructions of
Fraser-Polterovich-Rosen [35] and were already considered by the second author in
his PhD-thesis [8] and very recently by Nakamura [58] from a metrical point of view.

Let us now withdraw the closeness assumption on M and let L = L(Λ∗) for some
closed Legendrian Λ∗ ⊂ M . For any complete contact form α supporting ξ (i.e. a
contact form the Reeb vector field of which is complete), let us define `α− and `α+ as
the maps L × L → R ∪ {±∞} (resp. L̃ × L̃ → R ∪ {±∞}) given by
`α−(Λ1,Λ0) := sup{t ∈ R | Λ1 � φαt Λ0} and `α+(Λ1,Λ0) := inf{t ∈ R | Λ1 � φαt Λ0},

for Λ0,Λ1 ∈ L (resp. L̃).
For ψ ∈ G and α supporting ξ, the α-spectrum of ψ is the set of time-shifts of its

α-translated points that is
Specα(ψ) := {t ∈ R | ∃p ∈M, (ψ∗α)p = αp and ψ(x) = φαt (x)}.

For ψ ∈ G̃, the α-spectrum is defined as the α-spectrum of Πψ. For Λ0,Λ1 ∈ L, the
α-spectrum of (Λ1,Λ0) is the set of (positive and non-positive) lengths of α-Reeb
chords joining Λ0 to Λ1 that is

Specα(Λ1,Λ0) := {t ∈ R | Λ1 ∩ φαt Λ0 6= ∅}.

For Λ0,Λ1 ∈ L̃, the α-spectrum of (Λ1,Λ0) is defined as the α-spectrum of (ΠΛ1,ΠΛ0).
The latter notion of spectrum can be seen as a generalization of the former. Indeed,
if ψ ∈ Cont(M, kerα), its contact graph

grα(ψ) := {(x, ψ(x), g(x)) | x ∈M}, where ψ∗α = egα,
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is a Legendrian submanifold of the contact manifold M ×M ×R endowed with the
contact form α̃ := α2 − eθα1 defined in Example 2.10.6. Then,

Specα(ψ) = Specα̃(grα(ψ), grα(id)).

Theorem 1.1 (Legendrian order spectral selectors). Let Λ∗ be a closed Legendrian
submanifold of (M, ξ) such that L(Λ∗) (resp. L̃(Λ∗)) is orderable and let α be a
complete contact form supporting ξ. The selectors `α± are real-valued and satisfy the
following properties for every Λ0,Λ1,Λ2 ∈ L (resp. L̃),
1. (normalization) `α±(Λ0,Λ0) = 0 and `α±(φαt Λ1,Λ0) = t+ `α±(Λ1,Λ0), ∀t ∈ R,
2. (monotonicity) Λ2 � Λ1 implies `α±(Λ2,Λ0) ≤ `α±(Λ1,Λ0),
3. (triangle inequalities) `α+(Λ2,Λ0) ≤ `α+(Λ2,Λ1) + `α+(Λ1,Λ0) and `α−(Λ2,Λ0) ≥
`α−(Λ2,Λ1) + `α−(Λ1,Λ0),

4. (Poincaré duality) `α+(Λ1,Λ0) = −`α−(Λ0,Λ1),
5. (compatibility) `α±(ϕ(Λ1), ϕ(Λ0)) = `ϕ

∗α
± (Λ1,Λ0), for every ϕ ∈ Cont(M, ξ) (resp.

C̃ont(M, ξ)),
6. (non-degeneracy) `α+(Λ1,Λ0) = `α−(Λ1,Λ0) = t for some t ∈ R implies Λ1 = φαt Λ0

(resp. it only implies the equality ΠΛ1 = φαt ΠΛ0 in L).
7. (spectrality) `α±(Λ1,Λ0) ∈ Specα(Λ1,Λ0).

Theorem 1.2 (Contactomorphism order selectors). Let (M, ξ) be a closed contact
manifold such that G (resp. G̃) is orderable and let α be a contact form supporting
ξ. The selectors cα± are real-valued and satisfy the following properties for ϕ, ψ ∈ G
(resp. ϕ, ψ ∈ G̃):
1. (normalization) cα±(id) = 0 and cα±(φαt ψ) = t+ cα±(ψ), ∀t ∈ R,
2. (monotonicity) ϕ � ψ implies cα±(ϕ) ≤ cα±(ψ),
3. (triangle inequalities) cα+(ϕψ) ≤ cα+(ϕ) + cα+(ψ) and cα−(ϕψ) ≥ cα−(ϕ) + cα−(ψ),
4. (Poincaré duality) cα+(ψ) = −cα−(ψ−1),
5. (compatibility) cα±(ϕψϕ−1) = cϕ

∗α
± (ψ), which extends to every ϕ ∈ Cont(M, ξ)

(resp. C̃ont(M, ξ)),
6. (non-degeneracy) cα−(ψ) = cα+(ψ) = t for some t ∈ R implies ψ = φαt (resp. it

only implies the equality Πψ = φαt in G).

The major results in these statements concern the non-degeneracy property and
the spectrality. The non-degeneracy property has also been recently proven by
Nakamura with a different approach [58].

We emphasize the fact that we do not know that the cα±(ψ)’s do actually select
spectral values of ψ. Nevertheless, we strongly believe it should be the case. The
following direct corollary states that orderability is equivalent to the existence of
selectors in a rather weak sense (a similar statement for spaces L and L̃ also holds).

In contrast with their symplectic counterparts, these selectors are not actually
invariant: identities `(ϕΛ1, ϕΛ0) = `(Λ1,Λ0) and c(ϕψϕ−1) = c(ψ) are not verified
for every contactomorphism ϕ (resp. lift in the universal cover), Λ0,Λ1 and ψ being
fixed. In that sense, the α-selectors are only invariant under α-strict contactomor-
phisms: `α±(ϕΛ1, ϕΛ0) = `α±(Λ1,Λ0) and cα±(ϕψϕ−1) = cα±(ψ) when ϕ∗α = α. Of
course, this is compatible with the fact that the α-spectrum is only invariant under
strict contactomorphisms: as in general ϕ−1φαt ϕ = φϕ

∗α
t for all t ∈ R, one has

Specα(ϕΛ1, ϕΛ0) = Specϕ∗α(Λ1,Λ0) and Specα(ϕψϕ−1) = Specϕ∗α(ψ).
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Nonetheless, the sign of these selectors is invariant (see Lemmata 3.2 and 3.8)
Corollary 1.3. Let (M, ξ) be a closed cooriented contact manifold. The space G
(resp. G̃) is orderable if and only if there exists a non-decreasing map c : (G,�) →
(R,≤) (resp. (G̃,�)→ (R,≤)) such that
1. c(id) = 0,
2. ψ � id and ψ 6= id implies c(ψ) > 0.
Proof of Corollary 1.3. The direct implication is a consequence of Theorem 1.2 (cf.
Corollary 3.13 below). Conversely, assuming the existence of c, if ϕ, ψ ∈ G (resp.
G̃) are such that ϕ � ψ and ψ � ϕ while ϕ 6= ψ, then c(ϕψ−1) > 0 by the positivity
property of c while ϕψ−1 � id implies c(ϕψ−1) ≤ c(id) = 0 by monotonicity of c, a
contradiction. �

When L (resp. L̃) is orderable and Λ0 ∈ L (resp. L̃), any non-decreasing map
`(·,Λ0) : L → R (resp. L̃ → R) that is normalized with respect to the contact form
α in the sense of Theorem 1.1 satisfies

`α−(·,Λ0) ≤ `(·,Λ0) ≤ `α+(·,Λ0),
so that `α− can be thought of as the minimal α-spectral selector and `α+ can be
thought as the maximal one. A similar statement can be asserted for cα±.
Remark 1.4 (Removing the closeness assumption on M). When studying G (resp.
G̃), we have added the additional hypothesis of closeness for the contact space M .
Following Fraser-Polterovich-Rosen [35], one can remove this hypothesis by asking
orderability not only for the group G (resp. G̃) but for the group Gα (resp. G̃α)
generated by G (resp. G̃) and the elements of the Reeb flow (φαt ), once fixed a
complete supporting contact form α. This way the relation ψ � φαt makes sense for
ψ ∈ G (resp. G̃) and t ∈ R, and Theorem 1.2 still holds.
1.4. Applications to the existence of Reeb chords and translated points.
A direct consequence of the existence of spectral selectors in orderable Legendrian
isotopy classes, is the non-triviality of the spectrum.
Corollary 1.5 (Existence of Reeb chords). Let Λ∗ be a closed Legendrian submani-
fold of a cooriented contact manifold (M, ξ) such that L̃(Λ∗) is orderable. Then any
two Legendrian submanifolds Λ0,Λ1 ∈ L(Λ∗) are joined by two distinct (positive or
non-positive) α-Reeb chords, given any complete α supporting ξ.
In particular, if (M, ξ) is a closed contact manifold such that L̃(∆×{0}) as defined
in Example 2.10.6 is orderable, any contactomorphism of M isotopic to id has an
α-translated point (and at least two distinct couples (p, t) where p is a translated
point of time-shift t), given any α supporting ξ.

The existence of Reeb chords between two isotopic Legendrian submanifolds has
been widely studied. When Legendrian submanifolds are isotopic to RPn in the
standard RP2n+1 (cf. Example 2.10.1), the non-linear Maslov index developed by
Givental [38] directly implies that the number of chords whose images are not over-
lapping each other is at least n+1 for the standard contact form. When Legendrian
submanifolds are Legendrian isotopic to the zero-section of the standard J1N where
N is closed (cf Example 2.10.3), Chekanov gave lower bounds on the number of
chords based on Morse theory (sum of the Betti numbers plus twice torsion num-
bers in the generic case, cuplength in the general case) for the standard contact form
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[19]. With the exception of these two cases and the question of translated points
discussed below, most of the known results concern the case of a small Legendrian
isotopy in various senses (e.g. regarding C1-metric, C0-metric or Hofer type met-
rics), we refer to [27, 49] and references therein where bounds similar to Chekanov’s
are obtained. Of course, one can easily construct examples of isotopic Legendrian
submanifolds without any Reeb chord joining them (e.g. a Legendrian circle in J1R
pushed horizontally). In contrast with these local studies, Corollary 1.5 asserts that
orderability of L̃(Λ∗) is enough for the existence of two chords in between any two
Legendrian submanifolds isotopic to Λ∗, no matter how far they are from each other.
In addition to this global statement, it is remarkable that one gets the existence of
two distinct Reeb chords without any transversality assumption. Indeed, sharper
estimates on the number of Reeb chords involving Morse type estimates are known
in the aforementioned local studies but most of them require additional transver-
sality hypothesis. Without these hypothesis, it is not clear that one could keep two
distinct Reeb chords: when passing from a generic case to the general one, one usu-
ally looses the multiplicity (e.g. the classical Lefschetz fixed-point theorem or more
recently the critical point theory of closed 1-forms [33]).

The existence of translated points is an important question that had been asked
by Sandon in [66]. Originally, Sandon asked whether the number of translated
points of any element of G(M, ξ) was at least the minimal number of critical points
of a map M → R, by analogy with the Arnold conjecture bounding from below
the number of fixed points a Hamiltonian diffeomorphism can have. This original
statement was proven in the case of projective spaces and lens spaces endowed with
their standard contact form [66, 6]. Lower bound related to Morse theory have
been discovered in multiple other cases including the whole class of non-degenerate
contactomorphisms of hypertight contact manifolds (i.e. admitting a Reeb flow
without any contractible closed orbit) [2, 53, 5]. However, Cant proved recently
that some elements of G(S2n+1) do not admit any translated point for the standard
contact form of the sphere of dimension 2n+1 ≥ 3, answering negatively to Sandon’s
question. As the space G̃(S2n+1) is unorderable, this result is compatible with our
conjecture that the selectors cα± are spectral (which implies the existence of translated
points when G̃ is orderable). Concerning the lower bound, the original conjecture of
Sandon might be too optimistic but variants exist: see the introduction of [5].

Corollary 1.5 can in fact be generalized to a statement about positive Legendrian
paths.

Theorem 1.6 (Intersection of a positive Legendrian path). Let Λ∗ be a closed Leg-
endrian submanifold of a cooriented contact manifold such that L̃(Λ∗) is orderable.
Given any uniformly positive isotopy Λ in L(Λ∗) ( c.f. the beginning of Section 3),
any Legendrian submanifold Λ ∈ L(Λ∗) intersect Λt for at least two distinct t ∈ R
unless Λ = Λt for some t ∈ R.

Another consequence of our spectral selectors relating to Reeb chords is the fol-
lowing theorem addressing the Arnold chord conjecture (see a discussion of the
conjecture below).

Theorem 1.7 (About the Arnold chord conjecture). Let Λ∗ ⊂ (M, ξ) be a Leg-
endrian submanifold such that L(Λ∗) is unorderable and L̃(Λ∗) is orderable. Then
for every Legendrian submanifold Λ ∈ L(Λ∗) and every complete contact form α



SPECTRAL SELECTORS AND CONTACT ORDERABILITY 7

supporting ξ, there exist two distinct non-constant Reeb chords γi : [0, 1] → M ,
i ∈ {1, 2}, such that γi({0, 1}) ⊂ Λ.

Having a periodic Reeb flow for some contact form supporting ξ is a sufficient
condition to ensure the unorderability of L (in this case Theorem 1.7 is relevant
when applied to other contact forms supporting ξ). This can be seen as a Legendrian
analogue of the theorem of Albers-Fuchs-Merry addressing the Weinstein conjecture:
every closed contact manifold such that G is unorderable admits a closed Reeb chord
for any supporting contact form [2]. In our setting, we still ask for the orderability
of the universal cover of L. Nonetheless, let us remark that this theorem can be
applied to non closed contact manifolds, only the Legendrian submanifolds need to
be closed, and the statement gives at least two distinct Reeb chords. Therefore, it
implies the Weinstein conjecture on (M, ξ) in the case Λ∗ := ∆×{0} ⊂M ×M ×R
satisfies the hypothesis of Theorem 1.7 for the contact structure of Example 2.10.6;
this set of (M, ξ) could possibly include cases not treated by the aforementioned
theorem of Albers-Fuchs-Merry.

In its original setting, the Arnold chord conjecture asked about the existence
of a non-trivial Reeb chord the endpoints of which lie on a same Legendrian cir-
cle of the standard contact 3-sphere, given any Legendrian circle [9, §8]. In this
setting Mohnke proved a generalization to closed contact manifolds arising as the
boundary of subcritical Stein manifolds (Legendrian circles are replaced by closed
Legendrian submanifolds) [57]. Hutching and Taubes extended it to any closed con-
tact 3-manifolds [45]. Very recent works still discuss generalized forms of the original
conjecture: Chantraine proved a version for a specific kind of fillable contact man-
ifolds with Lagrangian slices taking the place of Legendrian submanifolds [17], the
case of Legendrian submanifolds lying in P ×R, for a Liouville manifold P , has also
received a lot of attention (see [49] and references therein).

Soon before releasing this article, Leonid Polterovich brought to our attention
another potential class of applications: the study of robust Legendrian interlinking
that had been introduced by Entov-Polterovich [31]. It turns out that our spectral
selectors do bring new insights to this notion. We refer directly to Section 4.2 for
more details.

1.5. Applications to the metric structures of L, L̃, G and G̃. Since the dis-
covery by Hofer of a bi-invariant metric on the group of Hamiltonian diffeomor-
phisms [43], multiple attempts to obtain a contact counterpart where made. On
the one hand, the obvious generalization of the Hofer metric, often referred to as
the Shelukhin-Hofer metric, is not bi-invariant. On the other hand, one can define
interesting bi-invariant metrics on G and G̃ but they are discrete, as was discovered
by Colin-Sandon [26] and Fraser-Polterovich-Rosen [35]. Our spectral selectors al-
low us to define a contact analogue of the spectral metric discovered by Viterbo in
[73]. This metric has applications to the study of both Hofer type contact metrics
and discrete bi-invariant metrics of Colin-Sandon and Fraser-Polterovich-Rosen on
the questions of non-degeneracy, unboundedness, metric-equivalence and geodesics.
We directly refer to Section 4 for details.

We point out that the spectral metric has also been introduced by the very re-
cent work of Nakamura [58] (without reference to spectrality) in order to show the
metrizability of the interval topology and to study the Hofer type contact metrics.
Our results and his do overlap on these two subjects.
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A last metric application of our spectral selectors concerns the recent Lorentz-
Finsler structure introduced by Abbondandolo-Benedetti-Polterovich [1]. A natural
question arising from their study was the existence of a so-called time function, a
natural object coming from the theory of relativity [1, Question K.1]. The following
theorem is a positive answer in a broader setting to their question.

Theorem 1.8 (Existence of time functions). Let O be either L, L̃,G or G̃ associated
with a cooriented contact manifold (M, ξ) (which is closed if O = G or G̃). If O is
orderable and α is supporting ξ, then there exists a continuous non-decreasing map
τα : (O,�) → (R,≤) such that x � y and x 6= y implies τα(x) < τα(y) and
τα(φαt x) = t+ τα(x) for all t ∈ R and x, y ∈ O.

The construction is highly non-canonical and one cannot expect much more nat-
ural properties satisfied by our time functions. Nevertheless, it is natural to ask
whether there exists a time function on the orderable group G or G̃ that can be
conjugation invariant. We show that such a map does not exist (Theorem 5.4).

Organization of the paper. In Section 2, we provide the background on contact
geometry needed throughout the article. In Section 3, we study the order spectral
selectors defined in the introduction and prove Theorems 1.1 and 1.2 as well as the
results introduced in Section 1.4. In Section 4, we define the spectral metric and use
it to study Hofer type metrics, Colin-Sandon metrics and the Fraser-Polterovich-
Rosen metric. In Section 5, we show Theorem 1.8.
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2. Preliminaries

2.1. Legendrian and contact isotopies and their Hamiltonian maps. Through-
out this section I ⊂ R will always be an interval containing 0. Let (M, ξ) be a
cooriented contact manifold. A contact form α supporting ξ (i.e. kerα = ξ) is
called complete if its Reeb vector field Rα induces a complete Reeb flow. We recall
that the Reeb vector field Rα is uniquely defined by the equations α(Rα) ≡ 1 and
ιRαdα = 0. Let us fix a complete contact form α supporting ξ.

Let us recall that for any contact isotopy (that is a smooth isotopy of contacto-
morphisms) (ϕt)t∈I with ϕ0 = id, there exists a unique smooth map H : I×M → R
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related to the time-dependent contact vector field (Xt)t∈I generating the isotopy byα(Xt) = Ht,

ιXtdHt = (dHt ·Rα)α− dHt,
(2)

where Rα denotes the Reeb vector field of α and Ht : M → R is induced by the
restriction of H to {t} ×M . (see e.g. [36, §2.3]). The smooth map H is called the
α-contact Hamiltonian map of (ϕt) (Hamiltonian map for short). Conversely, to any
smooth map H : I ×M → R is associated a unique time-dependent contact vector
field (Xt) by the system (2). When the contact vector field is complete (e.g. when
the differential of H is compactly supported), we say that H generates the contact
isotopy obtained by integrating (Xt).

The notion of Hamiltonian map naturally extends to Legendrian isotopies. Through-
out the paper, we only consider closed Legendrian submanifolds. A Legendrian iso-
topy (Λt)t∈I is a family of Legendrian submanifolds Λt ⊂ M , such that there exists
a smooth map j : I ×Λ0 →M whose restriction jt to {t}×Λ0 induces a diffeomor-
phism Λ0 ' Λt for every t ∈ I. Given such an isotopy (Λt) and such a map j, let us
define the family of maps Ht : Λt → R, t ∈ I, by

Ht ◦ j(t, x) := α

(
∂j

∂t
(t, x)

)
, ∀(t, x) ∈ I × Λ0. (3)

As j∗t α = 0 for all t ∈ I, one can deduce that (Ht) only depends on the isotopy
(Λt) and not the specific choice of parametrization j. The family (Ht) is called the
α-contact Hamiltonian map of (Λt). The contact Hamiltonian map can be seen as
a smooth map H : N → R defined on the submanifold N := ⋃

t{t} × Λt of I ×M .
If Λt = ϕt(Λ0) for some contact isotopy (ϕt) generated by the Hamiltonian K, the
Hamiltonian of (Λt) is the restriction of K to N .

We will use the following unparametrized version of the Legendrian isotopy ex-
tension theorem.

Lemma 2.1. Let I ⊂ R be an interval containing 0 and let (Λt)t∈I be a Legendrian
isotopy on (M, kerα), the α-contact Hamiltonian map of which is H : ⋃t{t}×Λt →
R. Let K : I ×M → R be an α-contact Hamiltonian smoothly extending H and
generating a contact isotopy (ϕt), then ϕt(Λ0) = Λt for all t ∈ I.

Before proving Lemma 2.1, let us recall the link between Legendrian isotopies and
the Hamilton-Jacobi equation. Let (Λt) be a Legendrian isotopy. According to the
Legendrian Weinstein neighborhood theorem, there exists an open subset W ⊂ M
containing Λ0 that is contactomorphic to a neighborhood of the zero-section of the
1-jet space J1Λ0 := T ∗Λ0 × R, through this identification Λ0 is sent to the zero-
section. Moreover, our chosen contact form α is sent to the standard contact form
α0 := dz−λ, z being the R-coordinate and λ being the pull-back of the tautological
form of T ∗Λ0. With this local identification, for t ∈ I close to 0, Λt is a Legendrian
graph above the zero section Λ0, so it is the 1-jet of a smooth map ft : Λ0 → R,

j1ft := {(q, dft(q), ft(q)) | q ∈ Λ0} ⊂ J1Λ0.

Applying the parametrization j(t, q) := (q, dft(q), ft(q)) of (Λt), t small enough, to
Equation (3), one then derives the Hamilton-Jacobi equation

Ht(q, dft(q), ft(q)) = ∂ft
∂t

(q), (4)
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for all q ∈ Λ0 and t ∈ I close to 0 (we have used that α is identified to α0 in W ).

Proof of Lemma 2.1. By connectivity of the interval I, it is enough to prove this
statement for t ∈ I close enough to 0. By considering a Weinstein neighborhood
of Λ0 as above, one can then identify Λt and ϕt(Λ0) to the 1-jet of the respective
maps ft : Λ0 → R and gt : Λ0 → R, for all t ∈ I, shrinking I if necessary. Let
us remark that the contact Hamiltonian map of (ϕt(Λ0)) is the restriction of K to⋃
t{t} × ϕt(Λ0). Therefore, by the above discussion, both families of maps (ft) and

(gt) satisfy the same Hamilton-Jacobi equation
∂ut
∂t

(q) = Kt(q, dut(q), ut(q)), ∀q ∈ Λ0,∀t ∈ I,

with the initial condition u0 ≡ 0. By unicity of the smooth solutions of the Hamilton-
Jacobi equation in a small interval of time (see e.g. [52, Exercice 3.5.17]), ft = gt
for all t ∈ I and Λt = ϕt(Λ0). �

Corollary 2.2. Let (M, kerα) be a contact manifold endowed with a complete con-
tact form α. Let I ⊂ R be an interval containing 0 and let (Λt)t∈I be a (closed)
Legendrian isotopy on (M, kerα), the α-contact Hamiltonian map of which is H.
Then there exist contact Hamiltonians K,G : I ×M → R such that inf K = inf H
and supG = supH, the respective contact flows of which (ϕt) and (ψt) satisfy
ϕt(Λ0) = ψt(Λ0) = Λt for all t ∈ I.

Proof. Let U ⊂ I × M be a tubular neighborhood of N := ⋃
t{t} × Λt and let

π : U → N be the associated smooth retraction. Let χ : I×M → [0, 1] be a smooth
map such that χ|N ≡ 1 and χ|(I×M)\U ≡ 0. The statement is now a consequence of
Lemma 2.1 applied to the following smooth extensions of H:

K := χ ·H ◦ π + (1− χ) · supH and G := χ ·H ◦ π + (1− χ) · inf H. �

2.2. The C1-topology of Legendrian and contact isotopy classes. Let Λ∗
be a closed Legendrian submanifold of (M, ξ). Let us briefly describe the C1-
topology of the space L(Λ∗) of Legendrian submanifolds isotopic to Λ∗ and the
space G(M, ξ) of compactly supported contactomorphisms isotopic to the identity.
The C1-topology on G is understood as the topology induced by the Whitney C1-
topology on diffeomorphisms as it is described in [42, Chapter 2] (both weak and
strong topologies coincide for compactly supported diffeomorphisms). One way to
define the C1-topology on L(Λ∗) is to consider L(Λ∗) as a subset of the quotient
Emb(Λ∗,M)/Diff(Λ∗) of smooth embedding Λ∗ ↪→ M by the right-action by dif-
feomorphisms of Λ∗. This quotient being endowed with the topology induced by
the Whitney C1-topology on Emb(Λ∗,M), the C1-topology of L(Λ∗) is the induced
topology as a subset of this quotient. Equivalently, considering L(Λ∗) as the homo-
geneous space G(M, ξ)/Stab(Λ∗), its C1-topology is the quotient topology induced
by the C1-topology of G.

Let us fix Λ0 ∈ L(Λ∗). According to the Legendrian Weinstein neighborhood
theorem, there exists a neighborhood W ⊂ M of Λ0 that is contactomorphic to a
neighborhood of the 0-section of J1Λ0 endowed with the standard contact structure
and that identifies Λ0 with the 0-section. Every Legendrian submanifold Λ that is
C1-close to Λ0 is the 1-jet of a map f : Λ0 → R. Therefore, a base of neighborhoods
of the point Λ0 in its isotopy class L(Λ∗) is identifiable with the set described by
the balls Br := {f ∈ C∞(Λ0,R) | ‖f‖C1 < r}, 0 < r < ε, for a small ε > 0. In
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other words, the topological space L(Λ∗) is locally modeled on the space of smooth
maps on Λ∗ endowed with the C1-topology. Therefore, it is a locally contractible
space and it admits a genuine universal cover L̃(Λ∗) that can be formally described
as a set of equivalent classes of paths γ : [0, 1] → L(Λ∗), with γ(0) = Λ∗, with the
equivalence relation given by homotopy relative to endpoints. With this description
of L̃(Λ∗), the cover Π : L̃ → L is the evaluation γ 7→ γ(1).

Following a similar argument applied to the contact graphs grα(ψ) ⊂M ×M ×R
of contactomorphisms ψ ∈ G(M), the space G(M) endowed with the C1-topology is
locally modeled on the space of compactly supported smooth maps C∞c (M,R) en-
dowed with the C1-topology (see e.g. [66, §1]). It is therefore a locally contractible
space and admits a universal cover G̃(M) that can be described as a space of homo-
topy classes. The space G̃ has a natural group structure making the cover Π : G̃ → G
a morphism (coming from composing homotopies (ϕt) and (ψt) timewise: (ϕt ◦ψt)).
The action by conjugation of contactomorphisms of (M, ξ) on G naturally lift to an
action on G̃: for g, x ∈ G̃, gxg−1 only depends on Πg and x. In particular, Π−1{id}
lies in the center of G̃.

One has a natural map Cont0(M)×L(Λ∗)→ L(Λ∗) given by (ϕ,Λ) 7→ ϕ(Λ). Let
I be an interval containing 0, if (ϕt)t∈I is a contact isotopy with ϕ0(Λ∗) = Λ∗, its
elements act naturally on L̃(Λ∗) by defining ϕt(Λ) for Λ ∈ L̃(Λ∗) and t ∈ I as the
endpoint of the path lifting s 7→ ϕst(ΠΛ), s ∈ [0, 1], and starting at Λ. It induces in
particular a continuous map G̃(M)× L̃(Λ∗)→ L̃(Λ∗).

Section 2.1 can be naturally extended to Legendrian isotopies of L̃(Λ∗). A family
(Λt) of elements of L̃(Λ∗) will be called a Legendrian isotopy if (ΠΛt) is a Legendrian
isotopy (conversely any Legendrian isotopy of L gives rise to a Legendrian isotopy
of L̃ once a starting point is fixed). The contact Hamiltonian map of a Legendrian
isotopy of L̃(Λ∗) will designate the contact Hamiltonian map of the projected Leg-
endrian isotopy on L(Λ∗) and similarly for isotopies of G̃. The lifting property of
the universal cover implies the following extension of Lemma 2.1 (where we use the
natural action of contact flows on L̃ discussed above).

Lemma 2.3. The statement of Lemma 2.1 is still true if the Legendrian isotopy
(Λt) belongs to L̃(Λ∗) for some closed Legendrian submanifold Λ∗ ⊂ M instead of
L(Λ∗). In particular, the action of G̃(M) on L̃(Λ∗) is transitive.

The topology of L and L̃ can be made into the topology of a length metric space.
An auxiliary contact form α supporting ξ and an auxiliary Riemannian metric g on
M being fixed, one can define the length metric

dC1(Λ0,Λ1) := inf
(Λt)

∫ 1

0
‖Ht‖C1(Λt)dt, ∀Λ0,Λ1 ∈ L (resp. L̃), (5)

where the infimum is taken over every isotopy (Λt) from Λ0 to Λ1, the Hamiltonian of
which is denoted Ht, and ‖ · ‖C1(Λ) is the usual C1-norm on maps of the Riemannian
submanifold Λ ⊂ (M, g). The equivalence between the topology induced by dC1 and
the previously described topology is a consequence of the equivalence of their base
of neighborhoods which comes from the Hamilton-Jacobi equation (4).

One defines similarly a length metric on G and G̃ inducing the C1-topology:

dC1(ϕ, ψ) := inf
(Ht)

∫ 1

0
‖Ht‖C1(M,g)dt, ∀ϕ, ψ ∈ G (resp. G̃), (6)
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where the infimum is taken over every Hamiltonian map (Ht)t∈[0,1] generating a flow
from id to ψ ◦ ϕ−1.

Remark 2.4 (from C1 to C0). As they induce C1-topology on their respective space,
these C1-distances are indeed non-degenerate (i.e. only vanishing on the diagonal).
However, it is not clear for their natural C0-analogues obtained by putting C0-norms
instead of C1-norms in their respective definition. In fact, in the case of L, it can
not be the case (see Section 2.3 below). The reason is that it is not clear which
topology is associated with these metrics. Indeed, when e.g. a Legendrian Λ is C0-
close to Λ0, there is no reason for it to be a graph in any Weinstein neighborhood
of Λ0. Therefore, one cannot state that the C0-topology of L is locally modelled
on the C0-topology of C∞c (Λ0,R). Without this local identification to a normed
vector space, the induced length pseudo-metric can be degenerate or even vanish
identically. Nevertheless, this is not always the case and these pseudo-distances
are relevant by themselves since their non-degeneracy and geodesics are intimately
linked to contact and symplectic rigidity phenomena see Section 2.3 and 4.3 below.

The following lemma will be useful in order to construct time-functions.

Lemma 2.5. Let (M, ξ) be a contact manifold and Λ∗ ⊂M be a closed Legendrian
submanifold. The induced topological spaces G̃(M) and L̃(Λ∗) are separable.

Proof. Being a subspace of the separable metrizable space of compactly supported
C1-diffeomorphisms ofM , the space G(M) is a separable metrizable space. So G(M)
admits a countable basis of open sets, which implies that G̃(M) admits a countable
basis of open sets by the Poincaré-Volterra theorem. Since G̃(M) has a countable
basis of open sets, we conclude that it is separable.

The fact that the L̃(Λ∗) is separable is now a consequence of Lemma 2.3. �

2.3. Hofer type pseudo-metrics. In this section, we recall the definitions of the
standard generalization of the Hofer metric of symplectic geometry to the contact
setting.

Let us first recall that a pseudo-distance d on a set X is a symmetric map d :
X ×X → [0,+∞) vanishing on the diagonal and satisfying the triangle inequality.
The pseudo-distance d is non-degenerate if d is a genuine distance, i.e. it only
vanishes on the diagonal.

We denote dαSCH the Shelukhin-Chekanov-Hofer pseudo-distance on L (resp. L̃):

dαSCH(Λ0,Λ1) := inf
(Ht)

∫ 1

0
max |Ht|dt, (7)

where the infimum is taken over Hamiltonian maps Ht : Λt → R, t ∈ [0, 1], gener-
ating a Legendrian isotopy (Λt)t∈[0,1] from Λ0 to Λ1. The Hofer oscillation pseudo-
distance is defined similarly with osc(Ht) := maxHt −minHt in place of |Ht|:

dαH,osc(Λ0,Λ1) := inf
(Ht)

∫ 1

0
osc(Ht)dt. (8)

Let us remark that the Hofer oscillation pseudo-distance is clearly degenerate as
dαH,osc(Λ, φαt Λ) = 0 for all Λ and all t ∈ R.

The pseudo-distance dαSCH was first studied by Rosen-Zhang in [62] where it was
more generally defined on non-Legendrian subsets (the equivalence of their defini-
tion with ours comes from Corollary 2.2). This pseudo-distance is known to be
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non-degenerate in multiple cases including when L is orderable [41, Theorem 5.2]
(see also Corollary 4.1). However, this pseudo-distance can also be degenerate on
unorderable L [15]. In the case it is degenerate on L, dαSCH is actually identically
zero, according to the generalization of the Chekanov’s dichotomy proven by Rosen-
Zhang [62, Theorem 1.10].

Given a group G, a pseudo-(group-)norm ν on G is a map G→ [0,+∞) satisfying
the triangle inequality ν(gh) ≤ ν(g) + ν(h) for all g, h ∈ G and the invariance under
the inversion: ν(g) = ν(g−1), g ∈ G. It is non-degenerate if it only vanishes at the
neutral element, in which case ν is called a (group-)norm. Any group pseudo-norm ν
induces a right-invariant and a left-invariant pseudo-distance on G by defining either
(g, h) 7→ ν(gh−1) or (g, h) 7→ ν(h−1g). The non-degeneracy of the induced metrics is
equivalent to the non-degeneracy of ν while the bi-invariance of the induced pseudo-
distance (which are then equal) is equivalent to the conjugation-invariance of ν.

Given a contact form α supporting the contact structure, we denote |·|αSH the
associated Shelukhin-Hofer pseudo-norm on G (resp. G̃):

|ϕ|αSH := inf
(Ht)

∫ 1

0
max |Ht|dt, ∀ϕ ∈ G (resp. G̃), (9)

where the infimum is taken over Hamiltonian maps generating a contact flow (ϕt)t∈[0,1]
joining id to ϕ. The Hofer oscillation pseudo-norm is defined similarly with osc(Ht) :=
maxHt −minHt in place of |Ht|:

|ϕ|αosc := inf
(Ht)

∫ 1

0
osc(Ht)dt. (10)

As before, the Hofer oscillation pseudo-norm is clearly degenerate as it vanishes on
{φαt }t. We denote dαSH and dαH,osc the respectively induced right-invariant pseudo-
distances. These pseudo-norms were studied in depth by Shelukhin in [68]. He
proved that |·|αSH is always non-degenerate on G using an energy-capacity inequality
intimately linked to non-squeezing phenomena.

In contrast to their symplectic counterparts, neither of these pseudo-distances is
invariant by the left-action of contactomorphisms, but the following compatibility
property for g ∈ Cont(M, ξ), Λ0,Λ1 ∈ L and ϕ, ψ ∈ G holds:

dαSCH(gΛ0, gΛ1) = dg
∗α

SCH(Λ0,Λ1) and dαSH(gϕ, gψ) = dg
∗α

SH (ϕ, ψ).

The same identities hold by considering g,Λ0,Λ1, ϕ and ψ in the universal cover
of their respective spaces. We refer to Remark 4.6 below for a discussion on the
apparent lack of invariance of these contact metrics. Topologies induced by these
pseudo-distances are coarser than the C1-topology, as they are dominated by the
metric defined at (5) and (6).

2.4. Contact orderability. An isotopy (Λt) in L or L̃ is said to be non-negative
(resp. positive) if its contact Hamiltonian for some, and thus for any, supporting
contact form is non-negative (resp. positive). Given Λ0,Λ1 ∈ L or L̃, we write
Λ0 � Λ1 (resp. Λ0 Î Λ1) if there exists a non-negative (resp. positive) isotopy (Λt)
joining Λ0 and Λ1. One defines similarly relations� and Î on G and G̃ by considering
contact Hamiltonian maps of compactly supported contact isotopies (ϕt), one also
defines these relations on the whole space of contactomorphisms and its universal
cover by considering contact isotopies.
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The relation � is reflexive and transitive (i.e. it is a pre-order), whereas Î is only
transitive. These relations satisfy properties of invariance with respect to the action
of contactomorphisms: we have for all x1, y1, x2, y2 ∈ G (resp. G̃, resp. Cont(M, ξ),
resp. C̃ont0(M, ξ)) 

x1 � y1 and x2 � y2 ⇒ x1x2 � y1y2,

x1 Î y1 and x2 � y2 ⇒ x1x2 Î y1y2,

x1 � y1 and x2 Î y2 ⇒ x1x2 Î y1y2,

(11)

and the same is formally true when replacing x2 and y2 with elements in L (resp.
in L̃).

A space L, L̃, G or G̃ is said to be orderable if and only if � is antisymmetric
(i.e. � is a partial order) which is equivalent that they do not contain a non-
negative and non constant loop. Obviously, the orderability of L (resp. G) implies
the orderability of L̃ (resp. G̃), but the orderability of the latter is much more
common (see Examples 2.10 below). The notion of orderability has been introduced
by Eliashberg-Polterovich [30] and has then been investigated by numerous authors.
A short account on these investigations is given by the paragraph Examples 2.10
below.
Remark 2.6 (On the terminology). Depending on the authors, the actual meaning
of orderability may differ. When a contact manifold is referred to as orderable, it
seems to always mean that either G or G̃ is orderable. Most of the time, it means
that G̃ is orderable, following the initial focus on G̃ put by Eliashberg-Polterovich
[64, 18, 58]. In [18, 50], a contact manifold (M, ξ) is called strongly orderable if
L̃(∆ × {0}) is orderable (see Example 2.10.6) but in [16, 58] it means that G is
orderable. Chernov-Nemirovski call L (resp. G) universally orderable when L̃ (resp.
G̃) is orderable [21].

The following lemmata will be useful.
Lemma 2.7 ([30, Proposition 2.1.B], [22, Proposition 4.5]). Let O be either L or L̃.
The space O is orderable if and only if there does not exist any positive loop among
isotopies of O. The same is true for O being either G or G̃ for a closed contact
manifold.

Lemma 2.8. Let O be either L, L̃, G or G̃ for a given contact manifold (M, ξ) and
possibly a closed Legendrian submanifold Λ∗. Thenx � y and y Î z ⇒ x Î z,

x Î y and y � z ⇒ x Î z,
∀x, y, z ∈ O.

Proof. Let us prove the statement for O = L, the proof being similar for the other
cases. Let us assume Λ0,Λ1,Λ2 ∈ L are such that Λ0 � Λ1 and Λ1 Î Λ2; we want
to show that Λ0 Î Λ2. By smoothly concatenating isotopies, one can assume the
Λi’s, i ∈ {0, 1, 2}, to be part of a non-negative isotopy (Λt)t∈[0,2] that is positive
for t ∈ (1, 2]. Let us now adapt a construction of Fraser-Polterovich-Rosen in the
proof of [35, Proposition 2.6] in order to find a positive isotopy from Λ0 to Λ2. Let
v : [0, 2] → R be a smooth map such that v(0) = v(2) = 0 with v′ positive on
[0, 3/2]. For ε > 0, the isotopy Λε := (φαεv(t)Λt) from Λ0 to Λ2 is then positive for
t ∈ [0, 3/2]. Indeed, by Lemma 2.1, one can write Λt = ψtΛ0 with (ψt) contact
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flow generated by a non-negative Hamiltonian map, so (φαεv(t)ψt) has a α-contact
Hamiltonian Ht ≥ εv′(t) for all t ∈ [0, 2] and so does Λε. Since the positivity of an
isotopy is a C1-open condition, the isotopy Λε is positive on [3/2, 2] for ε > 0 small
enough, which brings the conclusion. The proof of the case Λ0 Î Λ1 and Λ1 � Λ2
is similar. �

Corollary 2.9. If (xt)t∈[0,1] is a non-negative isotopy in either L, L̃, G or G̃, the
Hamiltonian (Ht) of which is positive at some t0 ∈ [0, 1], then x0 Î x1.

Proof. By continuity of (Ht), there is an interval [a, b] ⊂ [0, 1] containing t0 in its
interior such that Ht is positive for t ∈ [a, b]. Therefore, xa Î xb and the conclusion
follows from Lemma 2.8. �

Examples 2.10 (Orderable and unorderable spaces).
1. G̃(RP2n+1) is orderable for the standard contact structure pulled-back from the

sphere. Moreover L̃(RPn) is orderable, where RPn ⊂ RP2n+1 is the projectiviza-
tion of the Lagrangian subspace Rn+1 × {0} of R2(n+1) [38, 30]. It generalizes to
lens spaces [54, 65, 39].

2. G̃(S2n+1) is not orderable for n ≥ 1 [29].
3. Let J1N = T ∗N × R be the 1-jet space of some manifold N endowed with the

standard contact structure ker(dz− λ), z being the R-coordinate and λ the pull-
back of the Liouville form on T ∗N . This contact structure induces a contact
structure on the quotient space J1N/Z∂z = T ∗N × S1. Let 0N ⊂ J1N denote
the zero-section and p : J1N → J1N/Z∂z the quotient map. Then L(0N) and
L̃(p(0N)) are orderable when N is closed (it also generalizes to compactly sup-
ported Legendrian isotopies when N is open) [10, 25, 76].

4. Given any contact manifold, there always are many Legendrian submanifolds for
which L̃ is unorderable. Such submanifolds can be obtain by “stabilizing” any
Legendrian submanifold. For any loose Legendrian submanifold of dimension
≥ 2, L̃ is unorderable [25, 50].

5. Given a Riemannian manifold (N, g), let SN denote the unit tangent bundle of
N endowed with the contact form α(x,v) · η := g(v, dπ · η), where π : SN → N is
the bundle map. For any closed N , L̃(SxN) is orderable for any fiber SxN of π
[22]. In particular, G̃(SN) is orderable. Moreover, L(SxN) is orderable, and thus
so is G(SN), when the universal cover of N is open and dimN ≥ 2 [25, 21].

6. Given a closed contact manifold (M, ξ) and a supporting contact form α, let us
consider the manifold M ×M ×R endowed with the contact structure ξ̃ induced
by the contact form α̃ := α2 − eθα1, where αi is the pull-back of α under the
projection on the i-th factor and θ is the R-coordinate. The contact form α̃ is
complete and its Reeb flow is given by

φα̃t (x1, x2, θ) = (x1, φ
α
t (x2), θ), ∀(x1, x2, θ) ∈M ×M × R,∀t ∈ R.

The contact structure ξ̃ is independent of the choice of α supporting ξ, up to
isomorphism. Let ∆ ⊂ M × M be the diagonal. If (M, ξ) is the boundary
of a Liouville domain the symplectic homology of which does not vanish for
some choice of coefficients, then L̃(∆× {0}) is orderable. In particular, G̃(M) is
orderable [75, 3, 18].

7. A contact manifold (M, ξ) is called hypertight if it admits a contact form having
no contractible periodic Reeb orbit, the latter contact form is called hypertight
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as well. A Legendrian submanifold Λ ⊂ (M, ξ) is called hypertight if there is
a hypertight contact form for which Λ has no contractible Reeb chord, i.e. no
Reeb chord in the null homotopy class of π1(M,Λ). If Λ is a closed hypertight
Legendrian of a closed contact manifold, L̃(Λ) is orderable. If (M, ξ) is a closed
hypertight contact manifold, L̃(∆×{0}) (hence G̃(M)) is orderable for the contact
manifold M ×M × R defined just above [3, 18].

3. Order spectral selectors

3.1. The Legendrian case. Let (M, ξ) be a cooriented contact manifold. Let
Λ := (Λt)t∈R be a uniformly positive path in L (resp. L̃), i.e. a positive path, the
α-Hamiltonian of which satisfies inft minHt > 0 for some complete α supporting the
contact structure. Given Λ ∈ L (resp. in L̃), let us define the spectrum of (Λ,Λ) by

Spec(Λ,Λ) := {t ∈ R | Λ ∩ Λt 6= ∅},
(resp. Spec(ΠΛ,ΠΛ)). The associated order spectral selectors are defined by

`−(Λ,Λ) := sup{t ∈ R | Λ � Λt} and `+(Λ,Λ) := inf{t ∈ R | Λ � Λt}.
According to Lemma 2.8, since Λ is positive, one could replace � (resp. �) in the
definition of the selectors with Î (resp. Î). The selectors `α± correspond to the
special case where Λ = (φαt Λ0).

Proposition 3.1. If L (resp. L̃) is orderable, the order spectral selectors are real-
valued.

Proof. Let us prove the statement for Λ and elements in Λ in the universal cover L̃
assumed orderable. Since � is a partial order, it amounts to proving Λs � Λ � Λt

for some real numbers s < t. Let us fix a complete α supporting ξ such that
ε := inft minHt is positive.

Then according to the Legendrian isotopy extension theorem as expressed at
Lemma 2.3 (see also Corollary 2.2), for every t ≥ 0, there exists gt ∈ C̃ont0(M, ξ)
sending Λ0 on Λt that is the time-one map of a (non necessarily compactly sup-
ported) contact flow, the Hamiltonian map h : [0, 1] ×M → R of which satisfies
inf h = tε. Let us pick an isotopy from Λ to Λ0 and extend its Hamiltonian to
a compactly supported map [0, 1] ×M → R. The induced flow (ϕt) is compactly
supported and ϕ1Λ = Λ0.

The composition formula of Hamiltonian maps implies that gtϕ1 is the time-one
map of a flow generated by a positive Hamiltonian when t is taken large enough.
Since Λt = gtϕ1Λ, Λ � Λt when t is taken large enough. One proceeds similarly
to prove that Λs � Λ for −s > 0 large enough and the proof in L is formally
identical. �

From now on, we always assume that L (resp. L̃) is orderable.
The properties of normalization, monotonicity, triangle inequalities, Poincaré du-

ality stated in Theorem 1.1 directly follow from the invariance and transitivity of
� and the definition of the selectors `α±’s. The compatibility property is a direct
consequence of the fact that for any complete contact form α supporting ξ,

g−1φαt g = φg
∗α
t , ∀g ∈ Cont(M, ξ),∀t ∈ R. (12)

The following consequence of the invariance of � will be useful to restrict ourself to
the spectral selectors `α± when needed.
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Lemma 3.2 (Sign invariance). For every complete contact form α supporting ξ and
every Λ ∈ L (resp. L̃),

`±(Λ,Λ) < 0 (resp. = 0, resp. > 0)⇔ `α±(Λ,Λ0) < 0 (resp. = 0, resp. > 0).

Moreover, if β = efα for some smooth f : M → R, ∀Λ0,Λ1 ∈ L (resp. L̃),einf f`α±(Λ1,Λ0) ≤ `β±(Λ1,Λ0) ≤ esup f`α±(Λ1,Λ0) when `β±(Λ1,Λ0) ≥ 0,
esup f`α±(Λ1,Λ0) ≤ `β±(Λ1,Λ0) ≤ einf f`α±(Λ1,Λ0) when `β±(Λ1,Λ0) ≤ 0.

Proof. One has `+(Λ,Λ) < 0 if and only if Λ Î Λ0 so we have the first equivalence
for `+. Let us assume `+(Λ,Λ) > ε > 0. If `α+(Λ,Λ0) = 0, then Λ � φαt Λ0 for
all t > 0. As Λε/2 ÎΛ0, there exists t > 0 such that Λε/2 Îφαt Λ0 so Λ � Λε/2,
contradicting `+(Λ,Λ) > ε. Conversely, if `+(Λ,Λ) = 0 while `α+(Λ,Λ0) > ε > 0,
one gets a contradiction by using φαε/2Λ0 ÎΛt for small t > 0. This implies the two
other equivalences of the statement for `+. The proof for `− is similar.

Let us prove the second statement regarding the comparison of `α± and `β± for β :=
efα. The β-Hamiltonian map of (φαt ) is β(Rα) = ef while the β-Hamiltonian map of
(φβt ) is the constant ≡ 1. The comparison of Hamiltonian maps einf f1 ≤ ef ≤ esup f1
implies φ

β
einf f t � φαt � φβesup f t for t ≥ 0,
φβesup f t � φαt � φβeinf f t for t ≤ 0,

which easily brings the conclusion. �

Lemma 3.3. A contact form α supporting ξ being fixed, if (Λt)t∈[0,1] is a Legendrian
isotopy of L (resp. L̃), the Hamiltonian maps of which are denoted Ht : Λt → R,
t ∈ [0, 1], one has∫ 1

0
minHtdt ≤ `α−(Λ1,Λ0) ≤ `α+(Λ1,Λ0) ≤

∫ 1

0
maxHtdt.

Proof. By the isotopy extension theorem, one can find a contact Hamiltonian flow
(gt)t∈[0,1] of (M, ξ) sending Λ0 on Λ1, the Hamiltonian map (Kt) of which satisfies
maxKt = maxHt for all t ∈ [0, 1]. Let I(t) :=

∫ t
0 maxHsds, the time derivative I ′

of which generates the reparametrized Reeb flow (φαI(t)). By compatibility of � with
contactomorphisms (cf. properties (11)), g1 � φαI(1) implies Λ1 � φαI(1)Λ0 and the
monotonicity of `α+ together with its normalization property under the Reeb flow
implies the last inequality of the statement. The first inequality is the consequence
of a similar argument or the application of the “Poincaré duality” property. �

Corollary 3.4 (Continuity). A complete contact form α being fixed,

|`α±(Λ1,Λ)− `α±(Λ0,Λ)| ≤ dSCH(Λ0,Λ1), ∀Λ,Λ0,Λ1 ∈ L (resp. L̃).

In particular, the maps Λ 7→ `±(Λ,Λ) are continuous with respect to the C1-topology.

This corollary is somehow reinterpreted in Corollary 4.1 (see also inequality (14)).

Proof. Given any Legendrian isotopy (Λt) joining Λ0 and Λ1, the Hamiltonian map
of which is (Ht), the triangular identity together with Lemma 3.3 imply

`α+(Λ1,Λ)− `α+(Λ0,Λ) ≤ `α+(Λ1,Λ0) ≤
∫ 1

0
maxHtdt.
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Intertwining Λ0 and Λ1 one then gets

|`α+(Λ1,Λ)− `α+(Λ0,Λ)| ≤ max
(
−
∫ 1

0
minHtdt,

∫ 1

0
maxHtdt

)
≤
∫ 1

0
max |Ht|dt,

which brings the desired inequality by taking the infimum over all isotopies. The
analogous inequality for `α− follows by Poincaré duality or a similar proof.

Since dSCH is C1-continuous, the maps Λ 7→ `α±(Λ,Λ′) are C1-continuous, Λ′ being
fixed. In order to prove that a map f : X → R is continuous, it is enough to prove
that f−1(−∞, x) and f−1(x,+∞) are open for all x ∈ R. Let f := `±(·,Λ) for a
fixed Λ. Given a fixed x ∈ R, let Λ′ := (Λt+x)t∈R, then

f−1(−∞, x) = {Λ | `+(Λ,Λ′) < 0} = {Λ | `α+(Λ,Λx) < 0},

where we applied the sign invariance property to some supporting contact form α
at the last step. By C1-continuity of `α+(·,Λx), this last set is C1-open. The other
cases are treated similarly. �

Let us remark that the C1-continuity is also a direct consequence of the C1-
openness of the relations Î and Î.

Proposition 3.5 (Spectrality). For every Λ ∈ L (resp. L̃), both `±(Λ,Λ) belong to
Spec(Λ,Λ).

Proof. Let us prove the statement in L̃. Let us prove that ΠΛ ∩ ΠΛt = ∅ and
`+(Λ,Λ) ≤ t implies `+(Λ,Λ) < t; it would imply the result for `+ and the result for
`− will follow from a similar argument. Since ΠΛ∩ΠΛt = ∅, by compactness ∃ε > 0,
∀s ∈ (−ε, ε), ΠΛ ∩ ΠΛt+s = ∅. We now essentially apply the trick employed by
Chernov-Nemirovski in [21, Lemma 2.2]. By compactly extending the Hamiltonian
generated by the isotopy s 7→ Λt+sε/2, s ∈ [0, 1], in [0, 1] × (M \ ΠΛ), one finds
a compactly supported g ∈ G̃ sending Λt+ε/2 to Λt−ε/2 and fixing Λ (according to
the isotopy extension theorem as expressed in Lemma 2.3). By definition of `+ and
positivity of Λ, Λ � Λt+ε/2. By invariance of � under the action of G̃, applying g,
Λ � Λt−ε/2 so `+(Λ,Λ) ≤ t− ε/2.

The proof in L is formally the same (removing Π’s and tildes). �

Lemma 3.6. Given any Λ ∈ L (resp. L̃), if Λ � Λ0 and Λ 6= Λ0, then `+(Λ,Λ) > 0.

Proof. Let us prove the statement in L̃. Let Λ0 := Λ0 and let α be a complete
contact form supporting ξ. By sign invariance, it is enough to prove `α+(Λ,Λ0) > 0.
Let us consider a non-negative path (Λt) from Λ0 to Λ1 = Λ. By replacing Λ
with Λt for some smaller t ∈ (0, 1], one can moreover assume that ΠΛ belongs
to a Weinstein neighborhood of ΠΛ0. Therefore, one can assume that (M, ξ) is an
open neighborhood of the zero-section of J1ΠΛ0, ΠΛ0 being identified with the zero-
section and ΠΛ being C1-close to ΠΛ0. Let (Ht) be a non-negative Hamiltonian, the
flow (ψt) of which satisfies ψtΛ0 = Λt for all t ∈ [0, 1]. Since ΠΛ0 6= ΠΛ, there exists
t0 ∈ [0, 1), and a non-empty neighborhood U ⊂ ΠΛ0, such that Ht0 ◦ ψt0(q) > 0 for
q ∈ U . One can furthermore assume without loss of generality t0 = 0 (by replacing
Λ0 with ψt0Λ0, U with ψt0U etc.) so that H0(q) > 0 for all q ∈ U .

We will adapt a procedure due to Eliashberg-Polterovich (see the proof of [30,
Proposition 2.1.B]). Let (ϕi)1≤i≤n be a finite family of diffeomorphisms of ΠΛ0 iso-
topic to the identity such that (ϕi(U)) covers ΠΛ0 (it exists by closeness of ΠΛ0).
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It lifts to J1ΠΛ0 as a family of contactomorphisms isotopic to identity and pre-
serving the zero-section: associating to a diffeomorphism ϕ, the contactomorphism
(q, p, z) 7→ (ϕ(q), p ◦ dϕ−1, z). By cutting-off their Hamiltonian maps away from
the zero section, one gets contactomorphisms (gi)1≤i≤n of (M, ξ) fixing Λ0 such that
(gi(U)) covers ΠΛ0. Let ψti := giψ

tg−1
i for t ∈ [0, 1] and 1 ≤ i ≤ n.

The key point is that ψn · · ·ψ1Λ0 ÎΛ0, where ψk := ψ1
k. Indeed, it is enough to

prove that the Hamiltonian map (Kt) of the flow (ψtnψtn−1 · · ·ψt1)t is positive along
ΠΛ0 at time t = 0 (see Lemma 2.8). But for all q ∈ ΠΛ0,

K0(q) = α

(
d
dt
(
ψtn · · ·ψt1(q)

)∣∣∣∣
t=0

)
=

n∑
i=1

α
(
ψ̇0
i (q)

)
,

where ψ̇0
i stands for the time-derivative of ψti taken at time t = 0. As g∗i α = λiα

for some positive λi : M → (0,+∞), α(ψ̇0
i (q)) has the sign of α(ψ̇0(g−1

i (q))) =
H0(g−1

i (q)). So each term of the summand is non-negative and the i-th term is
positive when q ∈ gi(U). As (gi(U)) covers ΠΛ0, one concludes that K0 is positive
along ΠΛ0.

Therefore ψn · · ·ψ1Λ0 ÎΛ0 so `α+(ψn · · ·ψ1Λ0,Λ0) > 0. Now, by the triangular
inequality,

0 < `α+(ψn · · ·ψ1Λ0, ψn · · ·ψ2Λ0) + `α+(ψn · · ·ψ2Λ0, ψn · · ·ψ3Λ0) + · · ·+ `α+(ψnΛ0,Λ0),

so `α+(ψn · · ·ψkΛ0, ψn · · ·ψk+1Λ0) > 0 for some k. By sign invariance under the
contactomorphism ψn · · ·ψk+1, `α+(ψkΛ0,Λ0) > 0. Since gkΛ0 = Λ0, sign invariance
implies `α+(ψ1Λ0,Λ0) > 0, but ψ1Λ0 = Λ.

The proof in L is similar. �

Proposition 3.7 (Non-degeneracy). Given any Λ ∈ L (resp. L̃), if `−(Λ,Λ) =
`+(Λ,Λ) = t, then Λ = Λt (resp. for L̃ it only implies ΠΛ = ΠΛt).

Proof. Let us prove the statement in L̃, the case of L being similar. By contradiction,
let us assume that `±(Λ,Λ) ≡ t and ΠΛ 6= ΠΛt, where Λt := Λt. By shifting the
parametrization of Λ and fixing a complete contact form α, Lemma 3.2 implies
`α±(Λ,Λt) ≡ 0. Let p ∈ ΠΛ \ ΠΛt and let us consider a non-negative Hamiltonian
map H : M → R supported outside ΠΛt and such that H(p) > 0, the flow of
which is denoted (gs). Then gsΛ � Λ with gsΛ 6= Λ when s > 0 is sufficiently
small (as gs(p) /∈ ΠΛ) whereas gsΛt = Λt. By Lemma 3.6, `α+(gsΛ,Λ) > 0 whereas
sign invariance under gs implies `α+(gsΛ,Λt) = `α+(Λ,Λt) = 0. This contradicts the
triangle inequality `α+(gsΛ,Λ) ≤ `α+(gsΛ,Λt)+`α+(Λt,Λ) as `α+(Λt,Λ) = −`α−(Λ,Λt) =
0. �

As a corollary of Proposition 3.5 and 3.7, one gets Theorem 1.7 stated in the
introduction (Section 1.4).

Proof of Theorem 1.7. According to Lemma 2.7, there exists a positive isotopy (Λt)
in L with Λ1 = Λ0. Let Λ ∈ L. By applying a contactomorphism sending Λ on Λ0,
one can assume Λ0 = Λ. Let (Λ̃t) be a lift of (Λt) in L̃. By positivity, Λ̃1 Î̃Λ0, which
implies `α±(Λ̃1, Λ̃0) > 0. If `α+(Λ̃1, Λ̃0) > `α−(Λ̃1, Λ̃0), one then gets two Reeb chords
of distinct lengths by spectrality (Proposition 3.5). Otherwise, one gets infinitely
many distinct chords of the same length by non-degeneracy of the spectral selectors
(Proposition 3.7). �
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3.2. The case of contactomorphisms. Let us assume that (M, ξ) is a closed
cooriented contact manifold such that G (reps. G̃) is orderable. Following Equa-
tions (1), one defines maps cα± for any supporting contact form α. Similarly to the
Legendrian case, compactness ofM and orderability imply that these maps are real-
valued and the basic properties of normalization, monotonicity, triangle inequalities,
duality and compatibility are straightforward consequences of the compatibility of
the partial order � with the composition of contactomorphisms and (12). They also
obey a sign invariance property analogous to Lemma 3.2.

Lemma 3.8 (Sign invariance). For all contact forms α and β supporting ξ (it is
always assumed that such forms preserve the coorientation) and all ϕ ∈ G (resp. G̃),

cα±(ϕ) < 0 (resp. = 0, resp. > 0)⇔ cβ±(ϕ) < 0 (resp. = 0, resp. > 0).
More precisely, if f : M → R is such that β = efα, ∀ϕ ∈ G (resp. G̃),einf fcα±(ϕ) ≤ cβ±(ϕ) ≤ esup fcα±(ϕ) when cβ±(ϕ) ≥ 0,

esup fcα±(ϕ) ≤ cβ±(ϕ) ≤ einf fcα±(ϕ) when cβ±(ϕ) ≤ 0.

The following results are consequence of the basic properties of the maps cα± and
are proved in a way similar to their Legendrian counterparts.

Lemma 3.9. A contact form α supporting ξ being fixed, if (ϕt) is an isotopy of G
(resp. G̃) with ϕ0 = id, the Hamiltonian map of which is Ht : M → R, t ∈ [0, 1],
one has ∫ 1

0
minHtdt ≤ cα−(ϕ1) ≤ cα+(ϕ1) ≤

∫ 1

0
maxHtdt.

Corollary 3.10 (Continuity). A supporting contact form α being fixed,
|cα±(ϕ)− cα±(ψ)| ≤ dαSH(ϕ, ψ), ∀ϕ, ψ ∈ G (resp. G̃).

In particular, the maps cα± are continuous with respect to the C1-topology.

Remark 3.11 (Extensions of the selectors to completions). Corollaries 3.4 and 3.10
allow us to naturally extend the selectors to C1, Hofer or spectral-completions of the
spaces L, L̃, G and G̃. The Hofer-1-Lipchitzness of the selectors implies their uniform
continuity with respect to the C1-metrics defined in Section 2.2. But we actually do
not need this remark to extend the spectral selectors to C1-contactomorphisms or
Legendrian C1-submanifolds: the definition of � and Î naturally extends to these
spaces and the orderability of the C1-completion is equivalent to the orderability of
the smooth space.

On the other hand, it could be interesting to study the Hofer-completion or the
spectral-completion of orderable L, L̃, G and G̃ (see Section 4.1 and Remark 4.6
below), as was initiated by Humilière [44] and recently revitalized by Viterbo [74]
in the symplectic setting. It would also be interesting to compare these completions
to the respective C0-completions, which in the case of G correspond to its C0-
closure inside the group of homeomorphism [72]. In the symplectic setting, such a
comparison can be done in some special cases thanks to the C0-continuity of the
selectors [12].

Contrary to the Legendrian case, we only conjecture that the maps cα± are indeed
spectral selectors while the non-degeneracy will follow from the theorem of Tsuboi
on the simplicity of the C1-contactomorphisms isotopic to the identity [71].
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Proposition 3.12. Let ψ ∈ G (resp. G̃) be such that cα−(ψ) = cα+(ψ) = t for some
t ∈ R. Then ψ = φαt (resp. Πψ = φαt ).

Proof. Let us first deal with the case of G. We want to apply the theorem of Tsuboi
asserting that the group of C1-contactomorphisms isotopic to identity G1 is a simple
group. The group of C1-contactomorphisms is defined by Tsuboi in [71, §2], it
contains G and its identity component is contained in the C1-completion of G: ϕ
is a C1-contactomorphism if it is a C1-diffeomorphism such that ϕ∗α = efα for a
C1-map f : M → R. As G1 is contained in the C1-completion of G, we endow
it with the C1-topology and the maps cα± naturally extend to C1-continuous maps
c̄α± : G1 → R (see Remark 3.11 just above). Let us define the subset Z1 ⊂ G1

Z1 := {ϕ ∈ G1 | c̄α−(ϕ) = c̄α+(ϕ) = 0},

and denote Z := Z1 ∩ G. The subset Z1 is in fact a normal subgroup of G1 (resp.
G̃). It is indeed a subgroup: id ∈ Z1 by the normalization property, if ϕ, ψ ∈ Z1,
then ϕ−1 ∈ Z1 by the “Poincaré duality” property, while ϕψ ∈ Z1 by applying both
triangle inequalities and c̄α− ≤ c̄α+.

In order to prove that Z1 is normal, let us prove that c̄α±(ϕ) = 0 implies c̄α±(gϕg−1) =
0 (for c̄α+ or c̄α− independently) for all g, ϕ ∈ G1. Since cα±(gϕg−1) = cg

∗α
± (ϕ) for

g, ϕ ∈ G, by Lemma 3.8,

e− sup |fg |cα±(ϕ) ≤ cα±(gϕg−1) ≤ esup |fg |cα±(ϕ), (13)

where fg : M → R is the smooth function such that g∗α = efgα. Let us recall that
g∗α = efgα for fg of class C1 when g ∈ G1 so that h 7→ sup |fh| is a continuous
map G → R that extends to G1. Therefore the identity (13) extends to those g, ϕ
in G1 by replacing cα± with its extension c̄α±. This extended identity implies that Z1

is normal. The theorem of Tsuboi [71] then implies that Z1 = {id} as φαt /∈ Z1 for
t 6= 0. So Z = {id} which brings the conclusion.

In the case of G̃, one needs to also consider the universal cover G̃1 of G1 (it is a
genuine universal cover since G1 is locally contractible [71, §3]). We denote Π1 the
cover map (extending the cover map Π) and define Z1 ⊂ G̃1 as the intersection of
the zero sets of c̄α± as above. As Before, Z1 is a normal subgroup of G̃1. As Π1 is a
surjective group morphism, Π1Z1 is a normal subgroup of G1 which does not contain
φαt for t 6= 0 small enough. The theorem of Tsuboi then implies Π1Z1 = {id}, which
allows us to conclude. �

There is a counterpart to Lemma 3.6 to the case of contactomorphisms that can
be proved using the same procedure inspired by Eliashberg-Polterovich. However,
in the current case, it can also be seen as a consequence of Proposition 3.12.

Corollary 3.13. Given ϕ ∈ G (resp. G̃), if ϕ � id and ϕ 6= id, then cα+(ϕ) > 0 for
any supporting α.

Proof. In the case ϕ ∈ G, by monotonicity of cα± and normalization, cα+(ϕ) ≥ cα−(ϕ) ≥
0. Therefore, cα+(ϕ) = 0 would imply cα−(ϕ) = 0 so ϕ = id by Proposition 3.12. In
the case ϕ ∈ G̃, since ϕ � id, there exists a non-negative isotopy (ϕt) from id to
ϕ1 = ϕ. Assuming furthermore ϕ 6= id, this isotopy is non-constant and Πϕt 6= Πid
for some t ∈ (0, 1]. By a similar argument as above, Proposition 3.12 then implies
cα+(ϕt) > 0 so cα+(ϕ) > 0 by monotonicity. �
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4. Metrics and pseudo-metrics

4.1. The spectral metrics. In this section, we define the natural pseudo-distance
associated with our spectral selectors, following a classical process originated in
Viterbo’s seminal work [73], where he defined a norm γ on the compactly supported
Hamiltonian diffeomorphisms of R2n. During the writing of this paper, the article
of Nakamura [58] was prepublished. In this article, Nakamura defines dαspec with
the aim of generating the interval topology (see Proposition 4.4). Although the link
with the α-spectrum is out of the scope of his work, the results of this section can
also be found there.

Given a supporting contact form α, let us define the following pseudo-distances
on L (resp. L̃): ∀Λ,Λ′ ∈ L (resp. L̃),

the spectral distance dαspec(Λ,Λ′) := max(`α+(Λ,Λ′), `α+(Λ′,Λ)),
the gamma distance γα(Λ,Λ′) := `α+(Λ,Λ′) + `α+(Λ′,Λ).

These pseudo-distance are symmetric, non-negative and satisfy the triangle inequal-
ity, according to the basic properties of the spectral selectors (the non-negativity
follows from the Poincaré duality property). The compatibility properties of the
selectors also imply

dαspec(ϕ(Λ), ϕ(Λ′)) = dϕ∗α
spec(Λ,Λ′) and γα(ϕ(Λ), ϕ(Λ′)) = γϕ

∗α(Λ,Λ′),

for all ϕ ∈ Cont(M, ξ), making these pseudo-distances invariant under strict contac-
tomorphisms of (M,α) (see Remark 4.6 below for a discussion on the apparent lack
of invariance of contact metrics). The normalization property regarding the Reeb
flow also implies the following invariance:

γα(φαt Λ,Λ′) = γα(Λ,Λ′), ∀t ∈ R,

so that γα is clearly degenerate. Concerning non-degeneracy, Proposition 3.7 and
Lemma 3.3 imply the following less direct properties.

Corollary 4.1 ([58, Theorems 2.17 and 2.26]). On either L or L̃ orderable, one has

dαspec ≤ dαSCH and γα ≤ dαH,osc,

for any supporting contact form α. Moreover, dαspec(Λ,Λ′) = 0 implies Λ = Λ′ on L
(resp. ΠΛ = ΠΛ′ on L̃) while γα(Λ,Λ′) = 0 implies Λ = φαt Λ′ for some t ∈ R on L
(resp. ΠΛ = φαt ΠΛ′ on L̃).

Nakamura’s proof of the non-degeneracy properties of the Legendrian spectral
metrics follows a different path than ours: it is inspired by Rosen-Zhang work [62]
and provides a version of Chekanov’s dichotomy.

The triangular inequality satisfied by `α+ implies that the maps `α±(·,Λ0) are dαspec-
1-Lipschitz:

|`α±(Λ,Λ0)− `α±(Λ′,Λ0)| ≤ dαspec(Λ,Λ′), ∀Λ,Λ′,Λ0 ∈ L (resp. L̃). (14)

In particular, Corollary 3.4 can be seen as a consequence of Corollary 4.1.
Similarly to the Legendrian case, given a supporting contact form α, one can

define pseudo-distances dαspec and γα on G (resp. G̃). Since our space of interest is a
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group, it is customary to first define the associated pseudo-norms (see Section 2.3):
∀ϕ ∈ G (resp. G̃),

the spectral norm |ϕ|αspec := max(cα+(ϕ), cα+(ϕ−1)),
the gamma norm γα(ϕ) := cα+(ϕ) + cα+(ϕ−1),

and then define the right-invariant pseudo-distances by dαspec(ϕ, ψ) := |ϕψ−1|αspec and
γα(ϕ, ψ) := γα(ϕψ−1) (although the term “spectral” would suggest it actually comes
from spectral selectors, which we only conjecture for cα±). Although they are not
left-invariant (see however Remark 4.6), they satisfy a compatibility property:

dαspec(gϕ, gψ) =
∣∣∣gϕψ−1g−1

∣∣∣α
spec

=
∣∣∣ϕψ−1

∣∣∣g∗α

spec
= dg∗α

spec(ϕ, ψ).

These pseudo-norms and pseudo-distances share properties similar to their Legen-
drian counterparts, among which

|cα±(ϕ)− cα±(ψ)| ≤ dαspec(ϕ, ψ). (15)

Corollary 4.2 ([58, Theorem 2.6]). On either G or G̃ orderable, one has
|·|αspec ≤ |·|

α
SH and γα ≤ |·|αosc ,

for any supporting contact form α. Moreover, |ϕ|αspec = 0 implies ϕ = id on G (resp.
Πϕ = id on G̃) while γα(ϕ) = 0 implies ϕ = φαt for some t ∈ R on G (resp. Πϕ = φαt
on G̃)

Let us recall that a partially ordered metric space (Z, d,≤) is a metric space (Z, d)
endowed with a partial order ≤ such that a ≤ b ≤ c implies d(a, b) ≤ d(a, c). The
following statement directly follows from the definitions.

Proposition 4.3. Let O be either L, L̃, G or G̃, associated to some contact man-
ifold (M, kerα) (and possibly some closed Legendrian submanifold of M). If O is
orderable, then (O, dαspec,�) is a partially ordered metric space.

The topology induced by the spectral distance is already known and has been
introduced by Chernov-Nemirovski [23]. It was the motivation of the recent work of
Nakamura for introducing this distance independently [58].

Proposition 4.4 ([58, Proposition 2.3]). Let O be either L, L̃, G or G̃, associated to
some contact manifold (M, kerα) (and possibly some closed Legendrian submanifold
of M) and let us assume that O is orderable. The topology induced by the spectral
distance dαspec is the interval topology, that is the topology generated by the basis of
open subsets

(a, b) := {x ∈ O | a Î x Î b},
where a, b ∈ O satisfies a � b.

Proof. Indeed, given r ≥ 0 and x ∈ O, the open dαspec-ball Br(x) centered at x
of radius r in O is exactly (φα−rx, φαr x) and these subsets form a basis of open
neighborhoods of both the interval topology and the dαspec-topology.

Let us show precisely that Br(x) = (φα−rx, φαr x) in the case O = L̃, the other
cases being similar. Let Λ ∈ L̃, then Λ ∈ Br(x) is equivalent to `α+(Λ, x) < r and
`α−(Λ, x) > −r (applying `α− ≤ `α+ and the Poincaré duality). Now, by definition
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of `α+, `α+(Λ, x) < r is equivalent to Λ Î φαr x while `α−(Λ, x) > −r is equivalent to
Λ Îφα−rx, bringing the conclusion.

The fact that the intervals (φα−rx, φαr x) form a basis of the interval topology is a
consequence of the fact that if x Î y then x Î φαε x Î φα−εy Î y for ε > 0 small
enough, which comes from the openness of the relation Î. �

This proposition incidentally shows that spectral metrics induce a same topology,
any complete contact form supporting ξ being given. It can be quantified as a
corollary of Lemmata 3.2 and 3.8.

Corollary 4.5. Let (M, ξ) be a contact manifold and α be a complete contact form
supporting ξ. Let f : M → R be a bounded map and β := efα. Then, on either L,
L̃, G or G̃ orderable for which selectors are well-defined,

einf fgα ≤ gβ ≤ esup fgα,

where gδ either stands for |·|δspec or dδspec for any complete contact form δ. In partic-
ular, on the non-vanishing set of gα,∣∣∣ log |gα| − log |gβ|

∣∣∣ ≤ dC0(α, β),

with dC0(α, β) = sup |f | where α = efβ.

Remark 4.6 (Invariant uniform structures and invariant metrics). Let us assume
(M, ξ) is closed, for simplicity. Corollary 4.5 implies that one can not only endow
orderable spaces L, L̃, G or G̃ with a topology that is invariant by the natural action
by contactomorphisms (left and right actions in the case of G and G̃) but that this
topology is induced by an invariant uniformity structure. Indeed, one can make
sense of Cauchy sequences or uniform continuity by using any α-spectral metric,
given any auxiliary contact form α. And since these spectral metrics are sent to
one-another by the actions induced by contactomorphisms, the uniformity structure
they induce is invariant. A consequence is that the spectral completion of these
spaces will not depend on the choice of α either. In fact, a bit more is invariant:
the notion of Lipschitz maps is also preserved as well as the notion of boundedness.
The same story could also be applied to the Hofer-type pseudo-distance.

One could ask whether one could have more: a natural invariant metric (bi-
invariant in the case of G and G̃). According to Fraser-Polterovich-Rosen [35, The-
orem 3.1], such metric would essentially be discrete because of the possibility to
squeeze a Darboux ball of (M, ξ) into an arbitrarily small open subset. Therefore,
the induced topology will not be that interesting, although discrete bi-invariant
metrics could carry interesting information, especially regarding their asymptotic
behaviors (see Sections 4.3, 4.4 and 4.5 below).

4.2. Spectrally robust Legendrian interlinkings. The notion of interlinked
Legendrian submanifolds was introduced by Entov and Polterovich in [31]. We
recall below the definition of interlinked Legendrian submanifolds given in [32]. Let
(M, ξ) be a cooriented contact manifold and α be a complete contact form support-
ing ξ. An ordered pair (Λ0,Λ1) of disjoint Legendrian submanifolds is µ-interlinked
for some positive number µ if for every Hamiltonian map H : R ×M → R gener-
ating the contact flow (gt) and satisfying H ≥ c for some c > 0 there exist x ∈ Λ0
and t ∈ (0, µ/c] such that gt(x) ∈ Λ1. The number µ does depend on the specific
choice of supporting α. A pair (Λ0,Λ1) is called interlinked if it is µ-interlinked for
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some µ > 0. A pair (Λ0,Λ1) is called C1-robustly interlinked if any pair (Λ′0,Λ′1)
obtained from a sufficiently C1-small Legendrian isotopy is interlinked. We define
spectral-robustness and Hofer-robustness by replacing C1-smallness with dαspec and
dαSH-smallness respectively.

Theorem 4.7. Suppose there exists a closed Legendrian Λ∗ ⊂ M such that L̃(Λ∗)
is orderable. If Λ0,Λ1 ∈ L̃(Λ∗) satisfies µ := `α+(Λ1,Λ0) > 0, then (ΠΛ0,ΠΛ1)
is µ-interlinked with respect to α. In particular, (ΠΛ0,ΠΛ1) is spectral-robustly
interlinked (so Hofer and C1-robustly interlinked).

In particular the hypothesis of Theorem 4.7 is satisfied whenever Λ0 and Λ1 are
two different elements in L̃ satisfying Λ0 � Λ1 thanks to Lemma 3.6. Moreover
for any ϕ ∈ G̃ the sign invariance guarantees that `α+(Λ1,Λ0) > 0 if and only if
`α+ (ϕ(Λ1), ϕ(Λ0)) > 0 (Lemma 3.2). Therefore, Theorem 4.7 generalizes [32, Theo-
rem 1.5 (i)].

Let us first prove the following lemma.

Lemma 4.8. Let α be a complete contact form supporting the structure of (M, ξ)
and Λ∗ ⊂ M be a closed Legendrian submanifold such that L̃(Λ∗) is orderable. Let
H : R×M → R be a Hamiltonian map such that it generates a contact flow (gt)t∈R
and c := inf H > 0. If Λ0,Λ1 ∈ L̃(Λ∗) satisfy `α+(Λ1,Λ0) > 0, then

0 < `+ (Λ1, (gtΛ0)t∈R) ≤ 1
c
`α+(Λ1,Λ0).

Proof. The first inequality comes from the sign invariance property of Lemma 3.2.
For the second inequality, let us remark that 1

c
`α+ = `

1
c
α

+ since φ
1
c
α

t = φαct for all
t ∈ R. Moreover thanks to our hypothesis on the sign of `α+(Λ1,Λ0) we get the
following equality

1
c
`α+(Λ1,Λ0) = `

1
c
α

+ (Λ0,Λ1) = inf
{
t ≥ 0 | φctαΛ0 � Λ1

}
.

Since inf H = c > 0 we deduce that φctαΛ0 � gtΛ0 for all t ≥ 0. Therefore, we get
the desired inequality `+(Λ1,Λ0) ≤ 1

c
`α+(Λ1,Λ0) by transitivity of �. �

Proof of Theorem 4.7. If Λ0,Λ1 ∈ L̃(Λ∗) satisfies µ := `α+(Λ1,Λ0) > 0, for a Hamil-
tonian H ≥ c > 0 generating a contact flow (gt), Lemma 4.8 implies that 0 <
`+ (Λ1, (gtΛ0)t∈R) ≤ µ/c. By spectrality of `+ (Proposition 3.5), there exists t ∈
(0, µ/c] such that ΠΛ1 intersects gtΠΛ0, which brings the conclusion.

The spectral-robustness now follows from the 1-dαspec-Lipchitzness of `α+(Λ1, ·) and
`α+(·,Λ0) (by (14) and the Poincaré duality property). It implies Hofer and C1-
robustness by Corollary 4.1. �

4.3. Unboundedness of Hofer type pseudo-metrics. The results of this section
have also been derived by Nakamura [58] except for Proposition 4.14.

Corollary 4.9. Let Λ∗ ⊂ (M, ξ) be a closed Legendrian submanifold of a contact
manifold such that L (resp. L̃) is orderable and α be a complete contact form
supporting ξ. Then dαSCH(Λ,Λ′) = 0 if and only if Λ = Λ′ (resp. ΠΛ = ΠΛ′), for
any Λ,Λ′ ∈ L (resp. L̃). Moreover, for all Λ ∈ L (resp. L̃), (φαt Λ)t∈R is a geodesic
for dαSCH:

dαSCH(φαt Λ, φαsΛ) = |t− s|, ∀t, s ∈ R,∀Λ ∈ L (resp. L̃).
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In particular, dαSCH is unbounded. When M is closed, the analogous statements for
dαSH on G (resp. G̃) hold when the latter is orderable.

Remark 4.10. Note that the maps cα,∞± (ψ) := limn→+∞
cα±(ψn)

n
are well-defined and

conjugation invariant for all ψ ∈ G (resp. G̃) orderable, since the sequences (cα+(ψn))
and (cα−(ψn)) are respectively subadditive and superadditive. Moreover, they satisfy
cα,∞± (φαt ) = t for all t ∈ R and cα− ≤ cα,∞− ≤ cα,∞+ ≤ cα+. Therefore, even the maps
ψ 7→ infϕ∈G |ϕψϕ−1|αspec and ψ 7→ infϕ∈G |ϕψϕ−1|αSH are unbounded.

The non-degeneracy of dαSCH when L is orderable was originally due to Hedicke
[41, Theorem 5.2], while the non-degeneracy of dαSH was proven by Shelukhin without
any condition on G [68], as mentioned earlier in Section 2.3. The unboundedness
of dαSH and dαSCH had already been proven by Hedicke in the special case where
(M, ξ) is a unit tangent bundle with open cover and Λ∗ is a fiber of the bundle
(cf Example 2.10.5) [41, Theorems 5.7 and 5.8]. For the open contact manifold
(R2n × S1, kerαst) defined in Example 2.10.3 (here N := Rn and αst := dz − λ),
some geodesics of dαst

SH have also been characterized in [7] using, among other things,
the spectrality of Sandon contact selectors [64].

Proof. According to Corollaries 4.1 and 4.2, one has dαspec ≤ dαSCH on L or L̃ orderable
and dαspec ≤ dαSH on G or G̃ orderable. The non-degeneracy statements directly follow
from their counterpart relative to dαspec.

Let us prove that (φαt Λ) is a geodesic for Λ ∈ L orderable. By the above inequality,
one gets

dαSCH(φαt Λ, φαsΛ) ≥ dαspec(φαt Λ, φαsΛ) = |t− s|, ∀t, s ∈ R,
the equality coming from the normalization property of `α+. On the other hand, since
φαt−s can be generated by the α-contact Hamiltonian H ≡ t− s, dαSCH(φαt Λ, φαsΛ) ≤
|t− s|, for any t, s ∈ R. �

For n ≥ 2, let us consider the unit tangent bundle of the flat torus (Tn :=
Rn/Zn, 〈·, ·〉), where 〈·, ·〉 is the standard inner product of Rn, that can be seen
as Tn × Sn−1, that we endow with the contact form α defined in Example 2.10.5.
In this context, Eliashberg and Polterovich [30] used the Shape invariant [70, 28]
to construct maps r±(p, ·) : G̃ → R, for all p ∈ Sn−1, which are compatible with
the order: if ϕ � ψ then r±(p, ϕ) ≤ r±(p, ψ). They showed moreover that for
Hamiltonian maps H of the form H(q, p) := f(p), where f : Sn−1 → R, one has
r±(p, φH1 ) = f(p), where φH1 ∈ G̃ is the lift of the path (φHt ) generated by H. The
proposition was already noticed by the second author [8, §5.2.2] and Nakamura [58,
Example 2.9].

Proposition 4.11. For any ϕ ∈ G̃ and p ∈ Sn−1

cα−(ϕ) ≤ r±(p, ϕ) ≤ cα+(ϕ).

Proof. Let us set c := cα+(ϕ). This implies that ϕ � φαc+ε for any ε > 0 and so
r±(p, ϕ) ≤ r±(p, φαc+ε). Since φαc+ε is generated by the constant function equal to
c+ε by the result of Eliashberg and Polterovich discussed above r±(p, φαc+ε) = c+ε.
Letting ε going to 0 we get the inequality r±(p, ϕ) ≤ cα+(ϕ). The proof for the other
inequality follows the same lines. �
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Corollary 4.12. Let H : Tn × Sn−1 → R be a Hamiltonian map of the form
H(q, p) := f(p) for some smooth f : Sn−1 → R generating the flow (φHt ). Then
cα−(φH1 ) = minH and cα+(φH1 ) = maxH so that

γα
(
φH1
)

=
∣∣∣φH1 ∣∣∣αosc

= oscH.

In particular, the gamma pseudo-norms and the Hofer oscillation pseudo-norms are
unbounded on G̃(Tn × Sn−1, kerα).

Proof. As H ≤ maxH, one has φH1 � φαmaxH so cα+(φH1 ) ≤ maxH. Conversely,
Proposition 4.11 implies cα+(φH1 ) ≥ r+(p, φH1 ) = f(p) for all p ∈ Sn−1 so that
cα+(φH1 ) = maxH. Similarly, cα−(φH1 ) = minH so γα(φH1 ) = oscH. By definition,∣∣∣φH1 ∣∣∣αosc

≤ oscH so the last equality is a consequence of Corollary 4.2. �

Remark 4.13. For any closed contact manifold (M, kerα) a Hamiltonian map H :
M → R that is invariant under the Reeb flow (i.e. H◦φαt = H for all t ∈ R) generates
a path (φHt ) of strict contactomorphisms: (φHt )∗α = α for all t ∈ R. In this case,
for any critical point p ∈ M of H one can easily check that φHt (p) = φαH(p)t(p). In
particular {tH(p) | dH(p) = 0} is contained in Specα(φHt ). Since in (Tn×Sn−1, kerα)
the Reeb flow is the geodesic flow, i.e. φαt (q, p) = (q + tp, p), any Hamiltonian map
H : Tn × Sn−1 → R of the form H(q, p) = f(p) satisfies H ◦ φαt ≡ H. Therefore for
such Hamiltonian maps, the previous corollary guarantees that cα±(φH1 ) ∈ Specα(φH1 ).

Since |·|αspec is not a conjugation invariant norm, a natural question is to ask
whether

ϕ 7→ sup
ψ∈G

∣∣∣ψϕψ−1
∣∣∣α
spec

is a well defined conjugation invariant norm, i.e. whether it takes finite values or
not. This question was already asked by Shelukhin [68, Question 18] for the Hofer-
Shelukhin norm |·|αSH. We do not know the answer to this question, however if we
extend the action by conjugation to the whole group of coorientation preserving
contactomorphisms that are not necessarily isotopic to the identity we have the
following proposition.

Proposition 4.14. Seeing the time-one map of the Reeb flow φα1 as an element of
G̃(Tn × Sn−1, kerα),

sup
ψ∈Cont

∣∣∣ψφα1ψ−1
∣∣∣α
spec

= sup
ψ∈Cont

∣∣∣ψφα1ψ−1
∣∣∣α
SH

= +∞.

Proof. We recall that any diffeomorphism ψ of the torus Tn can be lifted to a con-
tactomorphism of Tn × Sn−1

Ψ(q, p) :=
(
ψ(q), dψ(q)−T · p

‖dψ(q)−T · p‖

)

whose conformal factor is g(q, p) := − ln
(∥∥∥dψ(q)−T · p

∥∥∥), where dψ(q)−T denotes
the adjoint of dψ(q)−1. In particular, if ψ ∈ GLn(Z) is a linear diffeomorphism of
the torus, the conformal factor g of its lift is the function g(q, p) := − ln

(∥∥∥ψ−T · p∥∥∥)
depending only on Sn−1.
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Consider the sequence of linear diffeomorphisms (ψk := ψk)k∈N where

ψ :=

 −1 2 0
1 −1 0
0 0 In−2

 ∈ GLn(Z)

and denote by (Ψk)k∈N the lifted sequence of contactomorphisms. We note that
for k ≥ 1 the contactomorphism Ψk is not isotopic to the identity since its action
on the fundamental group of Tn × Sn−1 is given by the non trivial action of ψk on
π1(Tn) = Zn. We will show that lim

k→+∞
cα+
(
Ψ−1
k φα1 Ψk

)
= +∞.

Indeed, v0 := (
√

2, 1, 0, . . . , 0)T ∈ Rn is an eigenvector of ψ−Tk =

 1 2 0
1 1 0
0 0 In−2


k

associated to the eigenvalue (1+
√

2)k for all k ∈ N. Moreover the Hamiltonian map
of the path

(
Ψ−1
k φtαΨk

)
is given by (q, p) 7→ e−gk(q,p) = ‖ψ−Tk · p‖ depending only

on p. By the result of Eliashberg and Polterovich discussed above we deduce that
r±
(
p0,Ψ−1

k φα1 Ψk

)
= (1 +

√
2)k where p0 := v0

‖v0‖ . Therefore∣∣∣Ψ−1
k φα1 Ψk

∣∣∣α
spec

= cα+(Ψ−1
k φα1 Ψk) ≥ (1 +

√
2)k

where the equality comes from the relation id � Ψ−1
k φα1 Ψk and the inequality from

Proposition 4.11. Letting k go to infinity implies the result for both norms since
|·|αSH ≥ |·|

α
spec. �

Remarks 4.15.
1. Eliashberg and Polterovich showed that the maps r±(p, ·) are invariant under the

action by conjugation of G on G̃ for all p ∈ Sn−1. Together with Corollary 4.12 it
implies in particular that the conjugation invariant map γα∞ : G̃ → R defined by
γα∞(φ) := inf

ψ∈G
γα(ψ−1φψ) is also unbounded. However as shown in the previous

proof the maps r±(p, ·) are not anymore invariant under the action of Cont by
conjugation.

2. It is interesting to note that if (M, kerα) is a closed contact manifold such that
the Reeb flow of α is 1-periodic and G̃(M) is orderable then

sup
ψ∈Cont

∣∣∣ψϕψ−1
∣∣∣α
spec
≤ |ϕ|FPR < +∞, ∀ϕ ∈ G̃,

where the definition of |·|FPR is given in Section 4.5. It is not known whether there
exists or not a closed contact manifold (M, ξ) such that G(M, ξ) is orderable and
G̃(M, ξ) is not bounded in the sense of [14], i.e. so that there exists an unbounded
conjugation invariant norm on G̃(M, ξ).

4.4. Colin-Sandon discriminant and oscillation metrics. Let Λ∗ be a closed
Legendrian submanifold of a cooriented contact manifold (M, ξ) (not necessarily
closed) and let L := L(Λ∗) (resp. L̃ := L̃(Λ∗)). In this specific section, given
Λ0,Λ1 ∈ L (resp. L̃), by a path γ : Λ0 ; Λ1 we will mean a continuous map
γ : [0, 1]→ L (resp. [0, 1]→ L̃) such that γ(i) = Λi for i ∈ {0, 1}. The concatenation
γ1 · γ2 of two paths γ1 : Λ0 ; Λ1 and γ2 : Λ1 ; Λ2 in L (resp. in L̃) is by definition
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the path Λ0 ; Λ2,

γ1 · γ2 : t 7→

γ1(2t) t ∈ [0, 1/2],
γ2(2t− 1) t ∈ [1/2, 1].

The reverse path γ̄ of a path γ : Λ0 ; Λ1 is the path Λ1 ; Λ0, t 7→ γ(1 − t). By
definition of the topology defined on L, for any path γ : [0, 1] → L, there exists
a continuous map jγ : [0, 1] × Λ∗ → M such that for every t ∈ [0, 1], jγ(t, ·) is a
diffeomorphism between Λ∗ and γ(t). A path γ in L will be called embedded if there
exists a continuous map jγ as above that is a smooth embedding [0, 1]× Λ∗ ↪→ M .
A path γ in L̃ will be called embedded if Πγ : t 7→ Π(γ(t)) is an embedded path.

In [26, Section 8], Colin and Sandon defined the discriminant length of a path γ
in L (resp. L̃) as the integral number

`disc(γ) := min

n ∈ N

∣∣∣∣∣∣
there exist embedded paths γ1, . . . , γn such that
γ1 · · · γn and γ are in the same homotopy class with
fixed endpoints

 ,
with convention `disc(γ) = 0 if γ is a constant map. Colin-Sandon proved that `disc
takes values in N (with convention 0 ∈ N) and that it induces an integral metric on
L (resp. L̃) called the discriminant metric and defined by

ddisc(Λ0,Λ1) = min
γ:Λ0;Λ1

`disc(γ), ∀Λ0,Λ1 ∈ L (resp. L̃). (16)

Moreover, this metric is invariant under the action by contactomorphisms of (M, ξ)
since embedded paths are preserved by this action. Let us remark that in the case
of the universal cover L̃, there is a unique homotopy class of paths Λ0 ; Λ1 so that
one can erase the minimum from Equation (16).

In addition to the discriminant length, Colin-Sandon defined an oscillation norm
(to be distinguished from the Hofer oscillation norms). In order to properly define
it, let us say that a path γ of L (resp. L̃) is monotone if it is either a positive or a
negative isotopy. Then, for a path γ, one defines the integral number ν+

osc(γ) by

ν+
osc(γ) := min

k ∈ N

∣∣∣∣∣∣
there exist embedded monotone paths γ1, . . . , γn, k
of which are positive, such that γ1 · · · γn and γ are
in the same homotopy class with fixed endpoints

 ,
with convention ν+

osc(γ) = 0 if γ is constant and defines ν−osc(γ) := −ν+
osc(γ̄). Colin-

Sandon proved that these numbers are finite for all paths and they defined the
oscillation norm of a path γ by

νosc(γ) := ν+
osc(γ)− ν−osc(γ) ∈ N.

Colin-Sandon proved that the induced distance dCS,osc on L (resp. L̃) is non-
degenerate if and only if L (resp. L̃) is orderable. It is also a metric invariant
under the action by the contactomorphisms. We are primarily interested in the
case of the universal cover L̃ for which dCS,osc(Λ0,Λ1) is simply defined as νosc(γ)
for any γ : Λ0 ; Λ1. In the case of L̃, one can thus write dCS,osc as the difference
d+

CS,osc − d−CS,osc with

d±CS,osc(Λ0,Λ1) := ν±osc(γ), ∀γ : Λ0 ; Λ1.
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In [26], the unboundedness of these two distances was only proven in the case of
L̃(RPn) (see Example 2.10.1), some 1-dimensional Legendrian knots, and L̃(p(0N))
defined in Example 2.10.3.
Theorem 4.16. Let us assume there exists a contact form α supporting ξ the Reeb
flow of which is T -periodic for some T > 0. If L̃ is orderable, thendαspec(Λ0,Λ1) < Tddisc(Λ0,Λ1),

`α+(Λ1,Λ0) < Td+
CS,osc(Λ0,Λ1),

∀Λ0,Λ1 ∈ L̃ with Λ0 6= Λ1.

In particular, the discriminant metric and the Colin-Sandon oscillation metric are
unbounded.

Let us point out that the second inequality of Theorem 4.16 implies
dαspec(Λ0,Λ1) < TdCS,osc(Λ0,Λ1), ∀Λ0,Λ1 ∈ L̃ with Λ0 6= Λ1, (17)

as d+
CS,osc(Λ1,Λ0) equals −d−CS,osc(Λ0,Λ1) and is always non-negative.

Proof. Let us first prove the inequality involving the discriminant metric. Let Λ0 6= Λ
be elements of L̃ and let n := ddisc(Λ0,Λ) ∈ N∗. By symmetry of the role of Λ0 and
Λ, it is enough to prove `α+(Λ,Λ0) < nT .

By definition, there exists embedded paths γi : Λi−1 ; Λi, 1 ≤ i ≤ n, with
Λn = Λ. Let us consider the maps fi : t 7→ `α+(γi(t), γi(0)), 1 ≤ i ≤ n. By the
normalization property of `α+, fi(0) = 0 for all i. By continuity of `α+, the fi’s
are continuous maps. By spectrality of `α+, if fi(t) = T for some t ∈ (0, 1] and
1 ≤ i ≤ n, it would imply that Π(γi(t)) intersects φαTΠ(γi(0)). But φαT = id by
assumption so γi would not be an embedded path. Therefore, fi does not take the
value T . By continuity, it implies that the fi’s take their values in (−T, T ). Now,
by the triangular inequality,

`α+(Λ,Λ0) ≤ f1(1) + f2(1) + · · ·+ fn(1) < nT,

the conclusion follows.
For the second inequality, one can apply the same strategy. Let k := d+

CS,osc(Λ0,Λ).
By definition, there exists embedded monotone paths γi : Λi−1 ; Λi, 1 ≤ i ≤ n
for some n ∈ N such that k of them are positive, n − k of them are negative and
Λn = Λ. By the triangular inequality,

`α+(Λ,Λ0) ≤ `α+(Λn,Λn−1) + · · ·+ `α+(Λ1,Λ0). (18)
By the previous discussion, since γi is embedded, `α+(Λi,Λi−1) < T , 1 ≤ i ≤ n.
Moreover, if γi is negative, the monotonicity property implies that `α+(Λi,Λi−1) < 0.
As exactly n−k of the γi’s are negative, the inequality (18) implies `α+(Λ,Λ0) < kT .

The unboundedness of both metrics then follows from the unboundedness of the
spectral metric (see also Equation (17)): we recall that dαspec(φαt Λ,Λ) = |t| for all
t ∈ R and Λ ∈ L̃. �

Corollary 4.17. Let us assume that there exists a contact form α supporting ξ the
Reeb flow of which is T -periodic for some T > 0. If Λ ∈ L̃ orderable is such that
φαt ΠΛ∩ΠΛ = ∅ for all t /∈ TZ, then the isotopy (φαtTΛ)t∈R defines a geodesic of both
the discriminant and the Colin-Sandon oscillation metrics, in the sense that

d(φαtTΛ, φαsTΛ) =
⌈
|t− s|

⌉
, ∀t, s ∈ R with t− s /∈ Z∗,

for d = ddisc or dCS,osc (when t− s ∈ Z∗, the distance is d|t− s|e+ 1).
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For G̃(R2n× S1, ξst), there is a characterization of some geodesics of the discrimi-
nant and oscillation norms of Colin-Sandon in [7].
Proof. Concerning the case t− s /∈ Z∗, by invariance of both metrics under contac-
tomorphisms, it is enough to prove that d(φαtTΛ,Λ) = dte for every t ∈ R+ \ N.
Let us fix such a t and consider the case d = ddisc. Then Theorem 4.16 im-
plies that this distance is at least dte. The assumption on Λ implies that paths
s 7→ φαt0+s(T−ε)Λ, s ∈ [0, 1], are embedded for every ε ∈ (0, T ) and t0 ∈ R. Let
ε := T

(
1− t

dte

)
∈ (0, T ). The path s 7→ φαstTΛ is homotopic (with fixed endpoints)

to the concatenation γ1 · · · γdte of the paths
γi : s 7→ φα(s+i−1)(T−ε)Λ, ∀i ∈ {1, . . . , dte} ,

which are embedded paths, as was just remarked. By definition of the discriminant
metric, it implies the reverse inequality: ddisc(φαtTΛ,Λ) ≤ dte.

The argument to prove dCS,osc(φαtTΛ,Λ) = dte for t ∈ R+ \ N is the same once
remarked that dCS,osc(φαtTΛ,Λ) = d+

CS,osc(φαtTΛ,Λ) in order to apply Theorem 4.16
(since the path s 7→ φαstTΛ is positive).

Concerning the case t − s ∈ Z∗, Theorem 4.16 implies the optimal lower bound
since both metrics take integral values, while a similar decomposition of the isotopy
gives the reverse inequality. �

Examples 4.18. The space L̃(RPn) described at Example 2.10.1 is a space for which
Corollary 4.17 applies by taking Λ := RPn and the contact form of RP2n+1 induced
by the Liouville form 1

2(ydx− xdy) on R2(n+1). It extends to lens spaces as well.
When N is a closed manifold, L̃(p(0N)) described at Example 2.10.3 also applies

by taking Λ := p(0N) and the standard contact form α = dz − λ.
Let us give another family of examples of such a situation. Consider the unit

tangent bundle M := SN of a Riemannian manifold N all of whose geodesics are
closed embedded curves (e.g Sn, RPn, CPn, HPn, CaP2 for the metric induced by
the round metric on the sphere). For the standard choice of contact form on M ,
the Reeb flow corresponds to the geodesic flow and L̃(SxN) is orderable given any
x ∈ N (cf. Example 2.10.5). By the geometric assumption on the geodesics of N ,
Λ := SxN satisfies the hypothesis of Corollary 4.17 for any x ∈ N .

4.5. Equivalence of the Colin-Sandon oscillation metric and the Fraser-
Polterovich-Rosen metric. Let us study the natural generalization of the norm
introduced by Fraser-Polterovich-Rosen [35] in the context of Legendrian isotopy
classes. Let (M, ξ) be a contact manifold endowed with a contact form α the Reeb
flow of which is 1-periodic. If G̃ is orderable, the Fraser-Polterovich-Rosen norm of
ϕ ∈ G̃ is defined as

|ψ|FPR := min
{
k ∈ N | φα−k � ψ � φαk

}
.

If L̃ is orderable for some closed Legendrian submanifold of M , one then naturally
generalizes the Fraser-Polterovich-Rosen norm as the distance defined by

dFPR(Λ,Λ′) := min
{
k ∈ N | φα−kΛ′ � Λ � φαkΛ′

}
, ∀Λ,Λ′ ∈ L̃.

This is indeed a non-degenerate distance by definition of orderability. Moreover,
this distance is invariant under the action of the universal cover of Cont0(M, ξ), as
φαk ∈ C̃ont0(M, ξ) belongs to the center of this group for every k ∈ Z. This metric
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also endows the partially ordered space (L̃,�) with the structure of a partially
ordered metric space (see above Proposition 4.3).

In the original setting of G̃, the domination of dFPR over the oscillation metric
of Colin-Sandon has been remarked by Fraser-Polterovich-Rosen [35, Remark 3.8].
The close link between dFPR and the spectral invariant `α± allows us to prove even
more in the Legendrian case.

Theorem 4.19. Let (M, ξ) be a contact manifold endowed with a contact form α

the Reeb flow of which is 1-periodic and let us assume that L̃(Λ∗) is orderable for
some closed Legendrian submanifold Λ∗ ⊂ M . Then the associated Colin-Sandon
oscillation metric and Fraser-Polterovich-Rosen metric satisfy

dFPR ≤ dCS,osc + 1 ≤ 3AdFPR + 1,
where A := dCS,osc(Λ0, φ

α
1 Λ0) for some Λ0 ∈ L̃(Λ∗). In particular, the two metrics

are equivalent.

Proof. The spectral distance satisfies
dαspec(Λ,Λ′) = inf

{
t ∈ [0,+∞) | φα−tΛ′ � Λ � φαt Λ′

}
, ∀Λ,Λ′ ∈ L̃,

so ⌈
dαspec(Λ,Λ′)

⌉
≤ dFPR(Λ,Λ′) ≤

⌊
dαspec(Λ,Λ′)

⌋
+ 1, ∀Λ,Λ′ ∈ L̃.

In particular, when dαspec is not an integer, dFPR = ddαspece. The inequality dFPR ≤
dCS,osc + 1 is then a consequence of Theorem 4.16 (see also inequality (17)).

The domination of dCS,osc by dFPR had already been remarked by Fraser-Polterovich-
Rosen [35, Remark 3.8]. It is a consequence of the fact that dCS,osc induces a
partially ordered metric space on (L̃,�) (see [26, Proposition 3.4]). Let us fix
A := dCS,osc(Λ0, φ

α
1 Λ0) for some Λ0 ∈ L̃ and let us show that

dCS,osc(Λ, φαkΛ) ≤ A|k|, ∀k ∈ Z,∀Λ ∈ L̃. (19)
First, the left-hand side of the inequality does not depend on the choice of Λ: let
g ∈ G̃ such that gΛ = Λ0, then

dCS,osc(Λ, φαkΛ) = dCS,osc(gΛ, gφαkg−1gΛ) = dCS,osc(Λ0, φ
α
kΛ0),

where we have used the G̃-invariance of dCS,osc and the fact that φαk commutes with
g±1. The inequality (19) now follows from the triangular inequality associated with
the invariance of the distance under the action of the Reeb flow. Now, let Λ,Λ′ ∈ L̃
and let k := dFPR(Λ,Λ′). By definition, φα−kΛ′ � Λ � φαkΛ′ so dCS,osc(Λ, φα−kΛ′) ≤
dCS,osc(φα−kΛ′, φαkΛ′) by compatibility of dCS,osc with the partial order �. Therefore,

dCS,osc(Λ,Λ′) ≤ dCS,osc(Λ, φα−kΛ′) + dCS,osc(φα−kΛ′,Λ′)
≤ dCS,osc(φα−kΛ′, φαkΛ′) + Ak

≤ 3Ak,
which brings the conclusion as k = dFPR(Λ,Λ′). �

Remark 4.20. With slight adaptations, one can loosen the hypothesis in both Theo-
rems 4.16 and 4.19 by asking for the existence of a 1-periodic positive contact isotopy
(φt) with φ0 = id instead of a 1-periodic Reeb flow. One should then replace the
use of `α+ with the use of

`φ+(Λ1,Λ0) := `+(Λ1, (φtΛ0)t∈R), ∀Λ0,Λ1 ∈ L̃,
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and make the necessary changes in the definition of dαspec as well as dFPR. As (φt)
is not an autonomous flow, the triangular inequality is not accessible anymore but
one still has

d`φ+(Λ2,Λ0)e ≤ d`φ+(Λ2,Λ1)e+ d`φ+(Λ1,Λ0)e.
In this case, the inequalities stated in Theorem 4.16 are not open anymore but it
still allows to show the unboundedness of the metrics and Theorem 4.19. Moreover,
for any Λ ∈ L̃ such that φtΠΛ ∩ΠΛ = ∅ for all t ∈ R \ Z, (φtΛ) is a geodesic in the
sense of Corollary 4.17.

5. Lorentzian geometry and time functions

When (M, kerα) is a closed cooriented contact manifold, the relations � and Î

on G (resp. G̃) have the property to come from a closed proper cone structure, i.e.
a distribution of closed sharp convex cones with non empty interiors [34, 55, 40].
Indeed, the Lie algebra g of the infinite dimensional Lie group G is the space of
contact vector fields. The subset g≥0 of contact vector fields X ∈ g \ {0} satisfying
α(X) ≥ 0 is a closed proper cone whose interior g>0 consists of vector fields for which
the previous inequality is open. The closed proper cone structure used to define �
and Î is then given by right translating these cones of the Lie algebra to the whole
tangent space. Note that left translations would give rise to the same closed proper
cone structure since g≥0 is invariant under the adjoint action of G (which is the push
forward). This point of view recently led Abbondandolo-Benedetti-Polterovich [1]
and Hedicke [41] to introduce objects of Lorentzian geometry to study (G,�,Î)
such as Lorentz-Finsler structure or Lorentzian distances. An open question in [1]
was about the existence or not of a time function on (G̃(RP2n−1),�), i.e. a function
τ such that x � y and x 6= y implies τ(x) < τ(y). In this section, we give a positive
answer to this question generalized to all orderable G, G̃,L and L̃. We show moreover
that time functions cannot be invariant.

Remarks 5.1.
1. In Lorentzian geometry, the existence of a time function is equivalent to stable

causality. The notion of stable causality in this context is strictly stronger than
the notions of causality and of strong causality [56, 55].

2. From a different perspective, Chernov-Nemirovski imported Lorentzian geometric
notions to the study of some Legendrian isotopy classes [20, 23, 22]. The starting
point of their study is that the space of null future pointing unparametrized
geodesics of a globally hyperbolic Lorentzian manifold carries a canonical contact
structure.

3. A consequence of a recent paper of Buhovsky-Stokić [13] is that the Lie algebra of
the group of Hamiltonian symplectomorphisms of any closed symplectic manifold
has no non-trivial invariant convex cone. It would be interesting to know if the
only non-trivial invariant convex cones of g are ±g≥0 and ±g>0 for any closed
cooriented contact manifold (M, ξ).

Let us fix a contact form α supporting ξ. According to Lemma 2.5, G̃ is separable
(and so is G). Then, let us fix (ψn)n≥1 a dense sequence on G (resp. G̃) and consider

τα(ϕ) := a
∑
n

cα+(ϕψn)
2n max(1, |cα±(ψn)|) + b, ∀ϕ ∈ G (resp. G̃),
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where a, b ∈ R are normalization factors defined by the relations (assuming the
series does converge)

a =
[∑
n

1
2n max(1, |cα±(ψn)|)

]−1

and τα(id) = 0.

Theorem 5.2. τα is a well-defined dαspec-1-Lipschitz (so dαSH-1-Lipschitz and C1-
continuous) map G → R (resp. G̃ → R) satisfying
1. τα(id) = 0,
2. τα(φαt ψ) = τα(ψ) + t for all t ∈ R and ψ ∈ G (resp. G̃),
3. ϕ � ψ with ϕ 6= ψ implies τα(ϕ) < τα(ψ).

Proof. In order to simplify the notation let c := cα+. According to the triangular
inequality,

c(ϕ)− c(ψ−1) ≤ c(ϕψ) ≤ c(ϕ) + c(ψ),
where the left-hand side inequality comes from the decomposition ϕ = (ϕψ)ψ−1.
Therefore, ∣∣∣|c(ϕψ)| − |c(ϕ)|

∣∣∣ ≤ max
(
|c(ψ)|, |c(ψ−1)|

)
.

Applying this inequality with ψ = ψn, one gets that the sum defining τα is absolutely
convergent. Since c is dαspec-1-Lipschitz (Equation (15)), and dαspec is right-invariant,
one gets

|τα(ϕ)− τα(ψ)| ≤ a
∑
n

dspec(ϕψn, ψψn)
2n max(1, |cα±(ψn)|) ≤ dspec(ϕ, ψ),

so τα is dspec-1-Lipschitz which implies that it is Hofer-1-Lipschitz as well as C1-
continuous according to Corollary 4.2.

Property 1 is true by construction while property 2 is a direct consequence of the
normalization property of c.

Finally, suppose ϕ � ψ with ϕ 6= ψ, then by Corollary 3.13, c(ψϕ−1) > 2ε for
some ε > 0 while c(ϕϕ−1) = 0. By C1-density of (ψn) and C1-continuity of c
(Corollary 3.10), c(ϕ ◦ ψk) < ε < c(ψ ◦ ψk) for some k such that ψk is close to ϕ−1.
Since c is non-decreasing, c(ϕ ◦ψn) ≤ c(ψ ◦ψn) for all n and property 3 follows. �

One defines time functions on L (resp. L̃) similarly. Keeping the previously fixed
dense sequence (ψn) of G (resp. G̃) and fixing some Λ0 ∈ L (resp. in L̃), let us
consider

ταΛ0(Λ) := a
∑
n

`α+(Λ, ψnΛ0)
2n max(1, |cα±(ψn)|) + b, ∀Λ ∈ L (resp. L̃),

where a ∈ R is defined as above and b ∈ R is such that ταΛ0(Λ0) = 0. One proves
similarly the Legendrian counterpart of Theorem 5.2

Theorem 5.3. ταΛ0 is a well-defined dαspec-1-Lipschitz (so dαSCH-1-Lipschitz and C1-
continuous) map L → R (resp. L̃ → R) satisfying
1. ταΛ0(Λ0) = 0,
2. ταΛ0(φαt Λ) = ταΛ0(Λ) + t for all t ∈ R and Λ ∈ L (resp. L̃),
3. Λ � Λ′ with Λ 6= Λ′ implies ταΛ0(Λ) < ταΛ0(Λ′).
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Since the binary relations considered on L and L̃ are invariant by the left action
of G and G̃ respectively, and the ones considered on G and G̃ are invariant by the
action by conjugation, it is natural to ask if there exists a time function on these
spaces that can be invariant with respect to these actions. We show that it is not
possible.

Theorem 5.4 (Non existence of invariant time function).
1. Let L (resp. L̃) such that L (resp. L̃) is orderable and τ a time function on

(L,�) (resp. (L̃,�)). Then there exist Λ,Λ′ ∈ L (resp. L̃) and g ∈ G (resp.
G̃) such that the time difference between Λ and Λ′ is not the same as the time
difference between gΛ and gΛ′, i.e. τ(gΛ)− τ(gΛ′) 6= τ(Λ)− τ(Λ′).

2. Let O be either G or G̃ such that O is orderable. Let τ be a time function. Then
there exist ϕ, g ∈ O such that τ(g−1ϕg) > τ(ϕ).

Proof of Theorem 5.4 part 1. Let us prove it for the case L̃. For any Λ0 ∈ L̃, by
applying a Reeb flow for a small timespan, one obtains Λ1 ∈ L̃ such that ΠΛ1∩ΠΛ0 =
∅ and Λ0 � Λ1. We now consider a point p ∈ ΠΛ0 and a neighborhood U of p
such that U does not intersect ΠΛ1. Let h : M → [0,+∞) be a Hamiltonian map
compactly supported in U such that h(p) > 0. The induced contact flow (gt) satisfies
Λ0 � gtΛ0 and Λ0 6= gtΛ0 for t > 0 small enough. Moreover since supp(h)∩ΠΛ1 = ∅,
we deduce that gtΛ1 = Λ1. This implies that τ(gtΛ0)− τ(gtΛ1) > τ(Λ0)− τ(Λ1) for
t > 0 small enough. �

Let us remark that to prove the second part of Theorem 5.4 it is enough to
construct two elements g, ϕ ∈ G (resp. g ∈ G and ϕ ∈ G̃) such that

ϕ � g−1ϕg and ϕ 6= g−1ϕg. (20)
We will first construct such elements when the contact manifold is the standard
Euclidean contact manifold (R2n+1, ξst) and then transport this construction to any
cooriented contact manifold using Darboux charts.
Proof of Theorem 5.4 part 2. We will prove that there exist g, ϕ ∈ G (resp. G̃) such
that (20) is satisfied. Let us first remark that it is enough to prove it in the standard
contact vector space (R2n+1, ξst) (we recall that in an open manifold, G stands for the
set of time-one maps of compactly supported contact flows). Indeed, there would
exists contact isotopies (gt), (ϕt) and (ht) supported in some open ball B ⊂ R2n+1

such that g0 = id = ϕ0, (ht) is non-negative with h0 = ϕ1 and h1 = g−1
1 ϕ1g1,

and ϕ1 6= g−1
1 ϕ1g1. Now, given any contact (2n + 1)-manifold (M, ξ), there exists

a contact embedding of B inside (M, ξ) by the Darboux neighborhood theorem.
Since the contact isotopies (gt), (ϕt) and (ht) are compactly supported in B, they
naturally extend by the identity to contact isotopies of (M, ξ). Seen in (M, ξ), (ht) is
still non-negative so that ϕ := ϕ1 and g := g1 still satisfy (20) as needed to conclude.

Let us now prove the existence of such g, ϕ ∈ G (resp. G̃) for (R2n+1, ξst) to
finish the proof. The standard contact form αst is dz − ∑

i yidxi where (x, y, z)
denotes the usual coordinate functions on R2n+1. Let ρ : [0,+∞) → [0,+∞) be
a smooth non-increasing function supported in [0, 1/4] such that ρ(0) = 1. Let
H : R2n+1 → R be the Hamiltonian map defined by H(p) := ρ(|p|2) for all p ∈ R2n+1

and where | · | denotes the usual Euclidean norm. We denote by (ϕt) the contact
flow generated by H. Finally for all a ∈ R we denote by Φa the non compactly
supported contactomorphism of R2n+1 defined as (x, y, z) 7→ (eax, eay, e2az).
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Let a < 0 be sufficiently close to 0 so that Φ−1
a (B0(1/2)) is strictly included in

B0(1), where B0(r) denotes the open ball centered at 0 of radius r > 0. Then the
support of Φ−1

a ◦ ϕt ◦ Φa, that is Φ−1
a (suppϕt), is contained in B0(1) and contains

strictly suppϕt for all t ∈ [0, 1]. Moreover since the compactly supported Hamilton-
ian function

ha : R2n+1 → [0,+∞), (x, y, z) 7→ e−2ah(eax, eay, e2az),
generates the contact flow (Φ−1

a ϕtΦa) and trivially satisfies ha ≥ h we deduce that
(Φ−1

a ϕtΦa) is a non-negative compactly supported contact isotopy, so
ϕ1 � Φ−1

a ϕ1Φa and ϕ1 6= Φ−1
a ϕ1Φa.

In order to conclude, one needs to replace Φa with a compactly supported contac-
tomorphism. Since Φ−1

a ϕtΦa = g−1ϕtg for any t ∈ R and any diffeomorphism g
agreeing with Φa on Φ−1

a B0(1/2), one can take any such g in G. Such a g can be
induced by a compactly supported Hamiltonian map obtained by cutting off the
Hamiltonian map generating (Φta)t∈[0,1]. Finally, the elements g and ϕ1 satisfy the
relations (20), as needed. �
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