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Abstract

The first goal of this paper is to study the amount of compatibility between two important
constructions in the theory of quantized enveloping algebras, namely the canonical basis
and the quantum Frobenius morphism. The second goal is to study orders with which
the Kashiwara crystal B(∞) of a symmetrizable Kac-Moody algebra can be endowed;
these orders are defined so that the transition matrices between bases naturally indexed
by B(∞) are lower triangular.
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1 Introduction

Let g = n− ⊕ h ⊕ n+ be the triangular decomposition of a symmetrizable Kac-Moody alge-
bra. Twenty years ago, with the help of the quantized enveloping algebra Uq(g), Lusztig and
Kashiwara constructed a basis B in the enveloping algebra U(n+), called the canonical basis,
whose properties make it particularly well suited to the study of integrable highest weight
g-modules [35, 38, 23]. Subsequently, Kashiwara studied the combinatorics of B with his ab-
stract notion of crystal [26], while Lusztig, during his investigation of the geometric problems
raised by his construction of B, was eventually led to the definition of a second basis, called
the semicanonical basis [39].

The quantized enveloping algebra setting leads to other useful tools, as the quantum Frobenius
morphism Fr and its splitting Fr′. Using these maps, Kumar and Littelmann algebraized the
proofs that use Mehta and Ramanathan’s Frobenius splitting for algebraic groups in positive
characteristic [30]. Littlemann also used the quantum Frobenius splitting to define a basis in
all simple g-modules from the combinatorics of LS-paths, completing thereby the program of
standard monomial theory [34].

It is thus desirable to study the extent of compatibility between these two constructions, the
canonical basis and the quantum Frobenius map. The best behavior would be that Fr and
Fr′ map a basis vector to a basis vector or to zero, in a way that admits a combinatorial
characterization.

Lusztig observed that Fr commutes with the comultiplication. It is then tempting to use
duality to understand the situation. More precisely, the graded dual of U(n+) can be identified
with the algebra Q[N ] of regular functions on N , the unipotent group with Lie algebra n+,
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and the dual of the canonical basis behaves rather nicely with respect to the multiplication
of Q[N ] [8]. Unfortunately, rather nicely does not mean perfect agreement, as was shown by
Leclerc [32]. We will see in Section 6.3 that Fr fails to be fully compatible with the canonical
basis at the same spot where Leclerc found his counterexamples. This failure partially answers
a question raised by McGerty ([40], Remark 5.10), asking whether his construction of Fr in
the context of Hall algebras can be lifted to the level of perverse sheaves.

In view of the applications, the study of Fr′ is perhaps even more important. An encouraging
fact is that Fr′ is compatible with B in small rank (type A1, A2, A3 and B2). Alas, in general,
Fr′ is not compatible with B (see Section 6.3).

One can however obtain a form of compatibility between Fr, Fr′ and B by focusing on
leading terms, that is, by neglecting terms that are smaller. This result is hardly more than
an observation, but it invites us to study the orders with which B can be endowed. Since as
a set B is just Kashiwara’s cristal B(−∞), we will in fact investigate orders on B(−∞).

We will present two natural ways to order B(−∞). In the first method, one checks the values
of the functions εi and ϕi; after stabilization by the crystal operations ẽi and f̃i, one obtains
an order ≤str (Section 2.5).

The second method, which works only when g is finite dimensional, relies on the notion of MV
polytope [1, 21, 22]: to each b ∈ B(−∞) is associated a convex polytope Pol(b) ⊆ h∗, and the
containment of these polytopes defines an order ≤pol on B(−∞) (Section 3.3).

The plan of this paper is as follows. In Section 2, we review the properties of the canonical
basis that are important from a combinatorial viewpoint, following the methods set up by
Kashiwara, Berenstein, Zelevinsky, and their coauthors. This leads us quite naturally to the
definition of the order ≤str. In Section 3, we recall the definition of the MV polytope of
an element of B(−∞) and explain how to numerically test whether two elements of B(−∞)
are comparable w.r.t. the order ≤pol. In Section 4, we assume that the Cartan matrix of g
is symmetric and recall Lusztig’s construction of the canonical and semicanonical bases; we
relate ≤pol to the degeneracy order between quiver representations (Proposition 4.1) and we
show that the transition matrix between the canonical basis and the semicanonical basis is
lower unitriangular, for both ≤str and ≤pol (Theorem 4.4). In Section 5, we revisit Leclerc’s
counterexamples in type A5 and D4; Theorem 5.2 provides the expansion on B of certain
monomials in the Chevalley generators of U(n+). This result is used in Section 6 to show that
the Frobenius morphism Fr and its splitting Fr′ are not fully compatible with B.

The author wishes to thank P. Caldero, J. Kamnitzer, B. Leclerc, P. Littelmann and C. Sabbah
for many discussions connected to the research reported here. He also thanks A. Kleshchev for
the reference to Berenstein and Kazhdan’s work [7]. Results presented in Sections 5.1 and 6.3
were found with the help of a computer running GAP and its package QuaGroup [15, 13].

The material of Section 6.3 was presented at the conference Una giornata di Algebra a Roma
dedicated to the memory of Olivia Rossi-Doria. Olivia died in June 2006 at the age of 35 and
is missed by all her friends.
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2 Crystal operations

For all this paper, we fix a symmetrizable generalized Cartan matrix A = (ai,j), with rows and
columns indexed by a finite set I. We choose a Q-vector space h, with a basis indexed by I.
We denote by (αi)i∈I the dual basis in h∗ and we define elements α∨i in h by the equation
〈α∨i , αj〉 = ai,j . We fix a lattice P ⊆ h∗ such that

{αi | i ∈ I} ⊆ P ⊆ {λ ∈ h∗ | ∀i ∈ I, 〈α∨i , λ〉 ∈ Z}.

We denote the N-span of the simple roots αi by Q+.

2.1 Crystals

A crystal in the sense of Kashiwara [26] is a set B endowed with maps

wt : B → P, εi, ϕi : B → Z and ẽi, f̃i : B → B t {0},

for each i ∈ I. The element 0 here is a ghost element added to B so that ẽi and f̃i are
everywhere defined. One requires that 〈α∨i ,wt(b)〉 = ϕi(b) − εi(b) for each b ∈ B. The
operators ẽi and f̃i are mutually converse partial bijections: b′′ = ẽib

′ if and only if f̃ib′′ = b′,
and when these equalities hold,

wt(b′′) = wt(b′) + αi, εi(b
′′) = εi(b

′)− 1 and ϕi(b
′′) = ϕi(b

′) + 1.

We say that a crystal B is lower normal if for each b ∈ B, the number p = ϕi(b) is the largest
integer p ∈ N such that f̃pi b is defined. (In other words, f̃pi b ∈ B and f̃p+1

i b = 0.)

Let B be a lower normal crystal. For i ∈ I and b ∈ B, we set f̃max
i b = f̃

ϕi(b)
i b. In addition,

for a finite sequence i = (i1, . . . , i`) of elements in I, we define maps Φi : B → N` and
F̃i : B → B in the following fashion. Given b ∈ B, we put b0 = b, and for k ∈ {1, . . . , `}, we
set nk = ϕik(bk−1) and bk = f̃max

ik
bk−1. With these notations,

Φi(b) = (n1, . . . , n`) and F̃i(b) = b`.

Of course, the datum of Φi(b) and of F̃i(b) fully determines b. The map Φi is usually called
the string parametrization in direction i [8, 9, 25].

2.2 Bases of canonical type

Let f be the Q-algebra generated by elements θi, for i ∈ I, submitted to the relations∑
p+q=1−ai,j

(−1)p
θpi
p!
θj
θqi
q!

= 0 (1)

for all i 6= j in I. This algebra f is naturally graded by Q+ (gradation by the weight), the gen-
erator θi being of weight αi; we write f =

⊕
ν∈Q+

fν . In addition, f has an antiautomorphism

σ which fixes the θi. As usual, we introduce the divided powers θ(n)
i = θni /n!.
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Let g = n− ⊕ ĥ ⊕ n+ be the Kac-Moody algebra defined by the Cartan matrix A. By the
Gabber-Kac Theorem [14], there are isomorphisms x 7→ x± from f onto U(n±), that map the
generators θi to the elements ei or fi of g.

A basis B of f is said to be of canonical type if it satisfies the conditions (i)–(v) below:

(i) The elements of B are weight vectors.

(ii) 1 ∈ B.

(iii) Each right ideal θpi f is spanned by a subset of B.

(iv) In the bases induced by B, the left multiplication by θ(p)
i from f/θif onto θpi f/θ

p+1
i f is

given by a permutation matrix.

(v) B is stable by σ.

Let N be the unipotent group with Lie algebra n+. The graded dual of f can be identified
with the algebra Q[N ] of regular functions on N . Berenstein, Zelevinsky, and their coauthors
extensively studied bases ofQ[N ] that enjoy axioms dual to the conditions (i)–(iv) above. More
precisely, the bases considered in [18, 43] (the so-called good bases) forget about condition
(iv), the string bases of [8] satisfy stronger axioms inspired by the positivity properties of
Lusztig’s canonical basis in the quantized enveloping algebra Uq(n+), and the perfect bases
of [7] relax the normalization constraint in condition (iv). Our definition above is of course
directly inspired from these works.

Adopting this dual setting allows to exploit the multiplicative structure of the function algebra
Q[N ]. We will however stick with f , because the quantum Frobenius splitting Fr′ is more
easily defined on the enveloping algebra side.

2.3 Examples

Since A is symmetrizable, the half-quantum group U−q (g) has a canonical basis [36, 38, 23].
After specialization at q = 1, one gets a basis of f of canonical type, by Theorems 14.3.2
and 14.4.3 in [38], or by Theorem 7 in [23], Proposition 5.3.1 in [24] and Theorem 2.1.1 in [25].

If A is symmetric, then f can be endowed with the semicanonical basis [39]. Again, this is a
basis of canonical type, by Theorems 3.1 and 3.8 and by the proof of Lemma 2.5 in [39].

If A is of finite type, then one can use the geometric Satake correspondence [19] and Mirković-
Vilonen cycles [41] to define a basis of f . It can be shown that this basis is of canonical
type.

One major interest of bases of canonical type is that they induce bases in irreducible integrable
highest weight representations of g. In more details, letM be an irreducible integrable highest
weight representation of g, let m be a highest weight vector of V , and let λ be the weight
of m. Then the map a : x 7→ x−m from f to M is surjective with kernel

∑
i∈I fθ

ni
i , where

ni = 1 + 〈α∨i , λ〉 (see [20], Corollary 10.4). If B is a basis of canonical type of f , then ker a is
spanned by a subset of B, hence a(B) \ {0} is a basis of im a = M . Moreover, the analysis
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done in [25], Section 3.2 shows that this basis is compatible with all Demazure submodules of
M . In particular, the semicanonical basis is compatible with Demazure submodules, a result
first obtained by Savage ([47], Theorem 7.1).

2.4 The crystal B(−∞)

Each basis B of canonical type of f is endowed with the structure of a lower normal crystal,
as follows. The application wt maps a vector b ∈ B to its weight. Let i ∈ I and let b ∈ B.
We define ϕi(b) as the largest p ∈ N such that b ∈ θpi f and we set εi(b) = ϕi(b)− 〈α∨i ,wt(b)〉.
Thus, given i ∈ I and p ∈ N, the images of the elements {b ∈ B | ϕi(b) = p} form a basis of
θpi f/θ

p+1
i f . The partial bijections ẽi and f̃i are set up so that when ϕi(b) = p, the element

f̃max
i b is the element of B such that θ(p)

i f̃max
i b ≡ b modulo θp+1

i f .

It turns out that any two bases of canonical type have the same underlying crystal. This fact
is a particular case of a result by Berenstein and Kazhdan [7]. For the convenience of the
reader, we now recall the proof.

Given a basis B of a vector space V , we denote by b∗ the element of the dual basis that
corresponds to b ∈ B; in other words, x =

∑
b∈B〈b∗, x〉 b for all vectors x ∈ V .

Lemma 2.1 Let V be a finite dimensional vector space and let B′ and B′′ be two bases of V .
For a ∈ {1, 2}, let Ca be a partially ordered set and let b′a : Ca → B′ and b′′a : Ca → B′′ be
bijections; thus both the rows and the columns of the transition matrix between B′ and B′′ are
indexed by Ca. If the transition matrix between B′ and B′′ is lower unitriangular with respect
to both indexings (C1, b

′
1, b
′′
1) and (C2, b

′
2, b
′′
2), then b′′1 ◦ (b′1)−1 = b′′2 ◦ (b′2)−1.

Proof. Let Σ = (b′′1)−1 ◦ b′′2 ◦ (b′2)−1 ◦ b′1. Suppose that Σ is not the identity permutation
of C1. Let m ∈ C1 be a maximal element in a nontrivial cycle of Σ and let n = (b′2)−1 ◦
b′1(m). Then

〈
(b′′1(Σ(m)))∗, b′1(m)

〉
=
〈
(b′′2(n))∗, b′2(n)

〉
= 1, and therefore Σ(m) ≥ m in C1, by

unitriangularity of the transition matrix. This contradicts the choice of m. We conclude that
Σ is the identity. �

Lemma 2.2 Let B be a basis of canonical type and let b 6= 1 be an element of B. Then there
exists i ∈ I such that ϕi(b) > 0.

Proof. For each i ∈ I, the right ideal θif is a spanned by a subset of B, namely by Bi;>0 =
B ∩ θif = {b ∈ B | ϕi(b) > 0}. The subspace

∑
i∈I θif is thus spanned by

⋃
i∈I Bi;>0. Any

element of B in this subspace therefore belongs to
⋃
i∈I Bi;>0. �

Given an integer ` ≥ 0, we endow N` with the lexicographic order ≤lex.

Proposition 2.3 Let B′ and B′′ be two bases of canonical type of f . Let i = (i1, . . . , i`) be a
finite sequence of elements of I.

(i) Let (b′, b′′) ∈ B′ ×B′′. If 〈(b′′)∗, b′〉 6= 0, then Φi(b
′) ≤lex Φi(b

′′).
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(ii) In (i), if moreover Φi(b
′) = Φi(b

′′), then 〈(b′′)∗, b′〉 = 〈(F̃ib
′′)∗, F̃ib

′〉.

(iii) For each b′′ ∈ B′′, there is b′ ∈ B′ such that 〈(b′′)∗, b′〉 6= 0 and Φi(b
′) = Φi(b

′′).

Proof. The proof proceeds by induction on the length ` of i. The result is trivial if ` = 0. We
now assume that ` > 0 and that the result holds for the sequence j = (i2, . . . , i`).

Let b′ ∈ B′, let n1 = ϕi1(b′), and let b′1 = f̃max
i1

b′. Let us write

b′1 =
∑
b′′1∈B′′

〈(b′′1)∗, b′1〉 b′′1 ≡
∑
b′′1∈B′′

ϕi1
(b′′1 )=0

〈(b′′1)∗, b′1〉 b′′1 (mod θi1f).

Multiplying on the left by θ(n1)
i1

, we obtain

b′ ≡ θ(n1)
i1

b′1 ≡
∑
b′′1∈B′′

ϕi1
(b′′1 )=0

〈(b′′1)∗, b′1〉 θ
(n1)
i1

b′′1 ≡
∑
b′′1∈B′′

ϕi1
(b′′1 )=0

〈(b′′1)∗, b′1〉 ẽ
n1
i1
b′′1 (mod θn1+1

i1
f).

Since θn1+1
i1

f is spanned by {b′′ ∈ B′′ | ϕi1(b′′) > n1}, we see that if 〈(b′′)∗, b′〉 6= 0, then
either ϕi1(b′′) > n1, or b′′ = ẽn1

i1
b′′1 with ϕi1(b′′1) = 0 and 〈(b′′1)∗, b′1〉 = 〈(b′′)∗, b′〉. Assertions (i)

and (ii) for b′ and i thus readily follow from the corresponding assertions for b′1 and j.

Now let b′′ ∈ B′′, let n1 = ϕi1(b′′), and let b′′1 = f̃max
i1

b′′. By induction, there exists b′1 ∈ B′

such that 〈(b′′1)∗, b′1〉 6= 0 and Φj(b
′
1) = Φj(b

′′
1). We then have 0 ≤ ϕi1(b′1) ≤ ϕi1(b′′1) = 0.

Let b′ = ẽn1
i1
b′1. Then Φi(b

′) = Φi(b
′′), and also, by the reasoning used in the proof of (i),

〈(b′′)∗, b′〉 = 〈(b′′1)∗, b′1〉 6= 0. This shows (iii). �

Theorem 2.4 Let B′ and B′′ be two bases of canonical type of f . Then there is a unique
bijection Ξ : B′ → B′′ such that Φi(b

′) = Φi(Ξ(b′)) for any finite sequence i of elements of I
and any b′ ∈ B′. Moreover, Ξ is an isomorphism of crystals which commutes with the action
of the involution σ.

Proof. Proposition 2.3 generalizes in an obvious way to infinite sequences i = (i1, i2, . . .) of
elements of I, because for any element b in a basis of canonical type, the sequence

(b, f̃max
i1 b, f̃max

i2 f̃max
i1 b, . . .)

eventually becomes constant for weight reasons. In this situation, if each i ∈ I appears an
infinite number of times in i, then the limit of this sequence is necessarily equal to 1, by
Lemma 2.2.

Let us fix such a sequence i. Then for any basis B of canonical type, Φi is an injective map
from B to the set N(∞) of sequences of non-negative integers with finitely many nonzero terms.
In addition, Ci = Φi(B) does not depend on B, by Proposition 2.3 (iii).

We can thus index any basis B of canonical type by Ci. Using this for two bases B′ and B′′ of
canonical type, we moreover deduce from Proposition 2.3 (i) and (ii) that the transition matrix
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is lower unitriangular if we endow Ci with the lexicographic order on N(∞). From Lemma 2.1,
we conclude that the bijection Ξ : B′ → B′′ defined by the diagram

B′

Φi
''

Ξ // B′′

Φi
wwCi

does not depend on i. (Lemma 2.1 can be applied in our context because the weight spaces
of f are finite dimensional.)

Lastly, we observe that the transition matrix is also lower unitriangular if we use the indexa-
tions σ ◦ Φ−1

i from Ci to B′ and B′′, and so Ξ = σ ◦ Ξ ◦ σ, again by Lemma 2.1. �

The crystal common to all bases of canonical type is denoted by B(−∞).

Remark 2.5. Let i and Ci be as in the proof of Theorem 2.4. To each sequence n = (n1, n2, . . .)

in Ci, define Θ
(n)
i = θ

(n1)
i1

θ
(n2)
i2
· · · . Let B be a basis of canonical type of f . Arguing as in the

proof of Proposition 2.3, one shows that

〈
b∗,Θ

(n)
i

〉
=

{
1 if n = Φi(b),
0 if n 6≤lex Φi(b).

It follows that the elements Θ
(n)
i form a basis of f . This result is due to Lakshmibai ([31],

Theorems 6.5 and 6.6).

2.5 The string order on B(−∞)

Given (b′, b′′) and (c′, c′′) in B(−∞)2, we write (b′, b′′) ≈ (c′, c′′) if one of the following three
conditions holds:

• There is i ∈ I such that ϕi(b′) = ϕi(b
′′) and (c′, c′′) = (ẽib

′, ẽib
′′).

• There is i ∈ I such that ϕi(b′) = ϕi(b
′′) > 0 and (c′, c′′) =

(
f̃ib
′, f̃ib

′′).
• (c′, c′′) = (σ(b′), σ(b′′)).

Given (b′, b′′) ∈ B(−∞)2, we write b′ ≤str b
′′ if b′ and b′′ have the same weight and if for any

finite sequence of elementary moves

(b′, b′′) = (b′0, b
′′
0) ≈ (b′1, b

′′
1) ≈ · · · ≈ (b′`, b

′′
` ),

one has ϕi(b′`) ≤ ϕi(b′′` ) for all i ∈ I.

Proposition 2.6 (i) The relation ≤str is an order on B(−∞).

(ii) The transition matrix between two bases of canonical type is lower unitriangular w.r.t.
the order ≤str.
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Proof. The relation ≤str is obviously reflexive. Let us show that it is transitive. Suppose that
b′ ≤str b

′′ and b′′ ≤str b
′′′ and let us consider a finite sequence

(b′, b′′′) = (b′0, b
′′′
0 ) ≈ (b′1, b

′′′
1 ) ≈ · · · ≈ (b′`, b

′′′
` ).

By induction, we construct elements b′′0 = b′′, b′′1, . . . , b′′` such that

(b′, b′′) = (b′0, b
′′
0) ≈ (b′1, b

′′
1) ≈ · · · ≈ (b′`, b

′′
` )

and
(b′′, b′′′) = (b′′0, b

′′′
0 ) ≈ (b′′1, b

′′′
1 ) ≈ · · · ≈ (b′′` , b

′′′
` ).

More precisely, assuming that b′′k−1 is constructed, the assumption b′ ≤str b
′′ and b′′ ≤str b

′′′

implies that ϕi(b′k−1) ≤ ϕi(b′′k−1) ≤ ϕi(b′′′k−1) for all i ∈ I. Now:

• If ϕi(b′k−1) = ϕi(b
′′′
k−1) and (b′k, b

′′′
k ) = (ẽib

′
k−1, ẽib

′′′
k−1), then we note that ϕi(b′k−1) =

ϕi(b
′′
k−1) = ϕi(b

′′′
k−1), and we set b′′k = ẽib

′′
k−1.

• If ϕi(b′k−1) = ϕi(b
′′′
k−1) > 0 and (b′k, b

′′′
k ) =

(
f̃ib
′
k−1, f̃ib

′′′
k−1

)
, then we note that ϕi(b′k−1) =

ϕi(b
′′
k−1) = ϕi(b

′′′
k−1) > 0 and we set b′′k = f̃ib

′′
k−1.

• If (b′k, b
′′′
k ) = (σ(b′k−1), σ(b′′′k−1)), then we simply set b′′k = σ(b′′k−1).

Lastly, we note that if b′ ≤str b
′′, then Φi(b

′) ≤lex Φi(b
′′) for any sequence i of elements of I.

If in addition b′′ ≤str b
′, then Φi(b

′) = Φi(b
′′). The antisymmetry of ≤str thus follows from the

fact that the map Φi separates the points of B(−∞), provided i has been chosen long enough
(see the proof of Theorem 2.4). Assertion (i) is proved.

Assertion (ii) follows from arguments similar to those used in the proof of Proposition 2.3, the
key observation being that given two bases of canonical type B′ and B′′, for any (b′, c′) ∈ (B′)2

and (b′′, c′′) ∈ (B′′)2,

(b′, b′′) ≈ (c′, c′′) =⇒ 〈(b′′)∗, b′〉 = 〈(c′′)∗, c′〉.

�

Examples 2.7. (i) If the Cartan matrix A is of type A3, then the order ≤str is trivial: for
any b′ and b′′ in B(−∞), the condition b′ ≤str b

′′ implies b′ = b′′. This readily follows
from Lemma 10.2 in [8] by induction on the weight.

Combining this result with Proposition 2.6 (ii), we see that in type A3, f has only one
basis of canonical type. (A similar uniqueness assertion had been obtained by Berenstein
and Zelevinsky for string bases, see [8], Theorem 9.1.)

Similar results hold in type A1 or A2.

(ii) Consider now the type A4 with the usual numbering of the vertices of the Dynkin
diagram. One can check that for the elements

b′ = ẽ4
3ẽ

4
2ẽ

4
1ẽ

4
4ẽ

4
3ẽ

4
21 and b′′ = ẽ2ẽ

3
1ẽ4ẽ

7
3ẽ

7
2ẽ1ẽ

3
4ẽ31,

one has ϕi(b′) < ϕi(b
′′) and ϕi(σ(b′)) < ϕi(σ(b′′)) for each i ∈ I; it follows that b′ <str b

′′.
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(iii) As a last example, we consider the type Ar. The word

i = (1, 2, 1, 3, 2, 1, . . . , r, r − 1, . . . , 2, 1)

is a reduced decomposition of the longest element in the Weyl group of g. The algebra
Q[N ] is a cluster algebra, and from the datum of i, one can construct a seed in Q[N ] by
the process described in [17], Theorem 13.2. The cluster monomials built from this seed
belong to the dual semicanonical basis ([17], Theorem 16.1), so are naturally indexed
by a subset C ⊆ B(−∞). One can show that any element b ∈ C is minimal w.r.t. the
order ≤str. By Proposition 2.6 (ii), this minimality implies that the element indexed by
b in the dual of a basis of canonical type is independent of the choice of this basis. In
other words, the cluster monomials attached to our seed belong to the dual of any basis
of canonical type. (Reineke had shown that they belong to the dual of the canonical
basis, see Theorem 6.1 in [42].)

3 Inclusion of MV polytopes

In this section, the Cartan matrix A is supposed to be of finite type.

3.1 Lusztig data

LetW be the Weyl group of g; it acts on h and on h∗ and is generated by the simple reflections
si, for i ∈ I. We denote by (ω∨i )i∈I the basis of h dual to the basis (αi)i∈I of h∗. A coweight
γ ∈ h is said to be a chamber coweight if it is W -conjugated to a ω∨i ; we denote by Γ the set
of all chamber coweights.

Let N be the number of positive roots; this is also the length of the longest element w0 in
W . We denote by X the set of all sequences i = (i1, . . . , iN ) such that w0 = si1 · · · siN .
An element i ∈ X defines a sequence (βk) of positive roots and a sequence (γk) of chamber
coweights, for 1 ≤ k ≤ N , as follows:

βk = si1 · · · sik−1
αik , γk = −si1 · · · sikω

∨
ik
.

It is well known that (βk) is an enumeration of the positive roots. One easily checks that
〈γk, β`〉 is nonnegative if k ≥ `, nonpositive if k < `, and is 1 if k = `.

Let v be an indeterminate. Let (di) be a family of positive integers such that the matrix
(diai,j) is symmetric. For n ∈ N and i ∈ I, we set [n]i = (vdin − v−din)/(vdi − v−di) and
[n]i! = [1]i · · · [n]i. Let Uq(g) be the quantized enveloping algebra of g; it is a Q(v)-algebra
generated by elements Ei, Fi and Ki, for i ∈ I, see for instance [9], Section 3.1. We define the
divided powers of Ei by E

(n)
i = Eni /[n]i!. Let Uq(n+) be the subalgebra of Uq(g) generated

by the elements Ei, and let x 7→ x be the automorphism of Q-algebra of Uq(n+) such that
v = v−1 and Ei = Ei.

Let Ti be the automorphism of Uq(g) constructed by Lusztig and denoted by T ′i,−1 in [36]. For
a fixed i ∈X , it is known that when n = (n1, . . . , nN ) runs over NN , the monomials

E
(n)
i = E

(n1)
i1

Ti1
(
E

(n2)
i2

)
· · · (Ti1 · · ·TiN−1)

(
E

(nN )
iN

)
9



form a PBW basis of Uq(n+). In addition, for each n ∈ NN , there is a unique bar-invariant
element

bi(n) =
∑

m∈NN

ζnmE
(m)
i , (2)

with ζnn = 1 and ζnm ∈ v−1Z[v−1] for m 6= n. These elements bi(n) form the canonical basis
of Uq(n+), which does not depend on the choice of i [35].

After specialization at v = 1 and under the isomorphism f ∼= U(n+), this construction gives a
basis of canonical type of f . The map n 7→ bi(n) can thus be regarded as a parameterization
of B(−∞) by NN . The inverse bijection B(−∞)→ NN is called Lusztig datum in direction i;
we denote it by b 7→ ni(b).

3.2 MV polytopes

To each b ∈ B(−∞), one associates its MV polytope Pol(b); this is a convex polytope in h∗,
whose vertices belong to Q+ ∩ (wt(b)−Q+). Moreover, the map b 7→ Pol(b) is injective.

The polytope Pol(b) can be constructed in several ways: as the image by a moment map of a
certain projective variety, called a Mirković-Vilonen cycle (whence the name ‘MV polytope’) [1,
21, 22], or as the Harder-Narasimhan polytope of a general representation of the preprojective
algebra built from the Dynkin diagram of g [4].

For our purpose however, the most relevant definition of Pol(b) uses the notion of Lusztig
datum. Let i ∈ X . As before, we associate to i an enumeration (βk) of the positive roots of
g. Let (n1, . . . , nN ) = ni(b) be the Lusztig datum of b in direction i. At first sight, the weight

wt(b)−
k∑
t=1

ntβt

depends on i and k. One can however show that it depends only on w = si1 · · · sik , so it is
legitimate to denote it by µw(b). Then Pol(b) can be defined as the convex hull of the weights
µw(b), for all w ∈W .

By [22], the normal fan of Pol(b) is a coarsening of the Weyl fan in h. The weight µw(b) is a
vertex of Pol(b) and the normal cone to Pol(b) at µw(b) is wC0, where

C0 = {θ ∈ h | ∀i ∈ I, 〈θ, αi〉 > 0}

is the dominant chamber. In particular, the datum of Pol(b) determines the weights µw(b).

The polytope Pol(b) can also be described by its facets. Specifically, one defines Mγ(b) for
each chamber coweight γ ∈ Γ by the formula

Mwω∨i
(b) = 〈wω∨i , µw(b)〉

(one can check that the right-hand side depends only wω∨i ), and one has

Mwω∨i
(b) = sup(wω∨i )(Pol(b)) and Pol(b) = {x ∈ h∗ | ∀γ ∈ Γ, 〈γ, x〉 ≤Mγ(b)}.

The collection (Mγ(b)) is called the BZ datum of b.
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3.3 The polytope order on B(−∞)

Given (b′, b′′) ∈ B(−∞)2, we write b′ ≤pol b
′′ if b′ and b′′ have the same weight and if Pol(b′) ⊆

Pol(b′′). Obviously, the inclusion between the polytopes is equivalent to the set of equations
Mγ(b′) ≤ Mγ(b′′), for all γ ∈ Γ. The relation ≤pol is an order on B(−∞), because the map
b 7→ Pol(b) is injective.

This order can also be directly expressed in terms of Lusztig data. Specifically, let i ∈ X
and define the sequences of positive roots (βk) and chamber coweights (γk) as in Section 3.1.
For n = (n1, . . . , nN ) in NN , we set |n| = n1β1 + · · · + nNβN ; this is the weight of the
PBW monomial E(n)

i . Given another element m = (m1, . . . ,mN ) in NN , we write n ≤i m if
|m| = |n| and if

k∑
t=1

〈γk, βt〉nt ≤
k∑
t=1

〈γk, βt〉mt

for each k ∈ {1, . . . , N}. The relation ≤i is an order on NN , less fine than the lexicographic
order.

Proposition 3.1 Let (b′, b′′) ∈ B(−∞)2. Then b′ ≤pol b
′′ if and only if ni(b

′) ≤i ni(b
′′) for

all i ∈X .

Proof. Let b ∈ B(−∞) and let i ∈X . As in Section 3.1, the word i defines a sequence (βk) of
positive roots and a sequence (γk) of chamber coweights. Write (n1, . . . , nN ) = ni(b). Then
for each k ∈ {1, . . . , N}, we have

k∑
t=1

〈γk, βt〉nt − 〈γk,wt(b)〉 = 〈wω∨ik , µw(b)〉 = Mwω∨ik
(b),

where w = si1 · · · sik .

Given (b′, b′′) ∈ B(−∞)2, the inequality ni(b
′) ≤i ni(b

′′) is thus equivalent to wt(b′) = wt(b′′)
and Mγ(b′) ≤ Mγ(b′′) for all γ ∈ {si1 · · · sikω∨ik | 1 ≤ k ≤ N}. The lemma now follows from
the fact that every chamber coweight can be written as si1 · · · sikω∨ik for suitable i and k. �

Example 3.2. In type A3, consider the elements b′ = (ẽ1ẽ3)ẽ2
2(ẽ1ẽ3)1 and b′′ = ẽ2(ẽ1ẽ3)2ẽ21.

Both elements are fixed by the involution σ. The polytope Pol(b′) is the convex hull of

{0, α1, α3, α1 + α2, α1 + α3, α2 + α3, 2α1 + α2 + α3, α1 + 2α2 + α3,

α1 + α2 + 2α3, 2α1 + 2α2 + α3, α1 + 2α2 + 2α3, 2α1 + 2α2 + 2α3}.

The polytope Pol(b′′) is the convex hull of

{0, α1, α2, α3, α1 + α3, 2α1 + α2, α2 + 2α3, α1 + 2α2 + α3,

2α1 + 2α2 + α3, 2α1 + α2 + 2α3, α1 + 2α2 + 2α3, 2α1 + 2α2 + 2α3}.

From there, one easily checks that Pol(b′) ⊂ Pol(b′′). Since b′ and b′′ have the same weight,
we conclude that b′ ≤pol b

′′. This example seems to have been first observed by Kamnitzer.

11



Remark 3.3. For any b ∈ B(−∞), the MV polytope Pol(σ(b)) is the image of Pol(b) by the
involution x 7→ wt(b) − x ([21], Theorem 6.2). In addition, ϕi(b) is the first component of
ni(b) whenever i begins by i.

It follows that b′ ≤pol b
′′ if and only if σ(b′) ≤pol σ(b′′), and that if b′ ≤pol b

′′, then ϕi(b′) ≤
ϕi(b

′′) for all i ∈ I. The order ≤pol has thus some remote parentage with ≤str.

One can in fact define another order, weaker than ≤str and ≤pol, in the following way: b′ ≤ b′′
if b′ and b′′ have the same weight and if for any finite sequence of elementary moves

(b′, b′′) = (b′0, b
′′
0) ≈ (b′1, b

′′
1) ≈ · · · ≈ (b′`, b

′′
` ),

one has b′` ≤pol b
′′
` . We believe that the order ≤ is trivial in type A4; indeed, with the help of a

computer running GAP [15, 13], we checked that in type A4, the order ≤ is trivial in weights
up to 10α1 + 16α2 + 16α3 + 10α4.

3.4 Comparison between the canonical basis and PBW bases

We come back to the equation (2) that defines the coefficients of the transition matrix between
the canonical basis and a PBW basis. Our aim in this section is to obtain a necessary
condition so that ζnm 6= 0. Our result (Corollary 3.6) generalizes Theorem 9.13 (a) in [35] to
arbitrary words i ∈ X , not necessarily compatible with a quiver orientation; it complements
Proposition 5.1 in [12] and Theorem 3.13 (ii) in [6].

We choose i ∈ X . Then the PBW monomials E(n)
i form a basis of f . We can also consider

the partial order ≤i on NN .

Lemma 3.4 Let m1, m2 and n in NN be such that |m1| + |m2| = |n|. Let p ∈ NN be such
that E(p)

i appears with a nonzero coefficient in the expansion of E(m1)
i E

(m2)
i on the PBW basis.

Let 0 ≤ k ≤ N and define n1 ∈ Nk × {0}N−k and n2 ∈ {0}k × NN−k so that n = n1 + n2.
Then (

m1 ≥i n1 and m2 ≥i n2

)
=⇒ p ≥i n.

In addition, if one of the inequalities m1 ≥i n1 and m2 ≥i n2 is strict, then p >i n.

Proof. We have to check the inequality

∑̀
t=1

〈γ`, βt〉nt ≤
∑̀
t=1

〈γ`, βt〉pt (3)

for all ` ∈ {1, . . . , N}. We decompose each element q ∈ NN as a sum q′ + q′′, with
q′ ∈ N` × {0}N−` and q′′ ∈ {0}` × NN−`; we then have E(q)

i = E
(q′)
i E

(q′′)
i . With this

convention, E(p)
i appears in the expansion of E(m′1)

i E
(m′′1 )
i E

(m′2)
i E

(m′′2 )
i . There is thus q ∈ NN

such that E(q)
i appears in the expansion of E(m′′1 )

i E
(m′2)
i and E(p)

i appears in the expansion of
E

(m′1)
i E

(q′)
i E

(q′′)
i E

(m′′2 )
i . The convexity property of PBW bases (Lemma 1 in [33], Proposition 7

in [5], or Theorem 2.3 in [51]) imply then that |p′| = |m′1|+ |q′| and |p′′| = |q′′|+ |m′′2|.
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Assume first that ` ≤ k. Since n1 ≤i m1, we have〈
γ`, |n′1|

〉
≤
〈
γ`, |m′1|

〉
.

A fortiori, 〈
γ`, |n′|

〉
=
〈
γ`, |n′1|

〉
≤
〈
γ`, |m′1|+ |q′|

〉
=
〈
γ`, |p′|

〉
,

which is exactly (3).

Now assume that ` > k. Since n2 ≤i m2, we have〈
γ`, |n′2|

〉
≤
〈
γ`, |m′2|

〉
.

Using |m2| = |n2| and |p′′| = |q′′|+ |m′′2|, we get〈
γ`, |n′′|

〉
=
〈
γ`, |n′′2|

〉
≥
〈
γ`, |m′′2|

〉
≥
〈
γ`, |p′′|

〉
.

This last relation is equivalent to (3), because |n| = |p|. �

We define coefficients ωn
m ∈ Q(q) by the expansion

E
(n)
i =

∑
m∈NN

ωn
mE

(m)
i

on the PBW basis. It is known that these coefficients actually belong to Z[v, v−1]. The
following proposition generalizes equations 9.12 (a) and (b) in [35].

Proposition 3.5 We have ωn
n = 1; moreover, ωn

m 6= 0 implies m ≥i n.

Proof. Let n ∈ NN . Suppose first that n has several nonzero entries. We can then find
k ∈ {1, . . . , N − 1} such that one of the first k entries and one of the last N − k entries of
n is nonzero. Writing n = n1 + n2 with n1 ∈ Nk × {0}N−k and n2 ∈ {0}k × NN−k, we

obviously have E(n)
i = E

(n1)
i E

(n2)
i and E

(n)
i = E

(n1)
i E

(n2)
i . Using Lemma 3.4, we can then

easily conclude by induction on |n|.

Now suppose that n has a single nonzero entry. Then n is the smallest element of its weight
in NN . We can thus write

bi(n) = E
(n)
i +

∑
m>in

ζnmE
(m)
i ,

and therefore
E

(n)
i = E

(n)
i +

∑
m>in

(
ζnmE

(m)
i − ζnmE

(m)
i

)
.

The first case of our reasoning shows that only monomials E(p)
i with p ≥i m >i n appear in

the expansion of E(m)
i , which concludes the proof. �

The transition matrix (ζnm) between the PBW basis and the canonical basis can be computed
from the matrix (ωn

m) by the Kazhdan-Lusztig algorithm ([35], Section 7.11). Proposition 3.5
then implies:

Corollary 3.6 The coefficients of the transition matrix between the PBW basis and the canon-
ical basis satisfy

ζnm 6= 0 =⇒ m ≥i n.

13



4 Further examples

We now consider the case where the generalized Cartan matrix A is symmetric. Using rep-
resentations of quivers, Lusztig constructed two bases of canonical type of f , which he called
the canonical and the semicanonical bases. In this section, we study what information the
orders ≤str and ≤pol convey about these constructions. Our main results are Proposition 4.1
and Theorem 4.4.

4.1 Background on Lusztig’s constructions

We adopt the notation of [36]. The Dynkin diagram is a graph with vertex set I; between two
vertices i and j, there are −ai,j edges. Since the graph is without loops, each edge has two
endpoints. Orienting an edge is recognizing one of these endpoints as the tail and the other
one as the head. We denote by H the set of oriented edges; the tail of h ∈ H is denoted by h′

and its head by h′′. In addition, there is a fixed point free involution h 7→ h that exchanges
tails and heads. An orientation of our graph is a subset Ω ⊆ H such that (Ω,Ω) is a partition
of H.

A dimension-vector is a function ν ∈ NI ; we identify such a ν with the weight
∑

i∈I ν(i)αi in
Q+. Given a dimension-vector ν, we denote by Sν the set of all pairs consisting of a sequence
i = (i1, . . . , im) of elements of I and a sequence a = (a1, . . . am) of natural numbers such that
ν =

∑m
k=1 akαik . Each (i,a) ∈ Sν defines an element Θ

(a)
i = θ

(a1)
i1
· · · θ(am)

im
in fν .

Let k be an algebraically closed field. To an I-graded k-vector space V =
⊕

i∈I Vi, we
associate its dimension-vector ν : i 7→ dimVi. Given V, let GV =

∏
i∈I GL(Vi) and let

EV =
⊕
h∈H

Hom(Vh′ ,Vh′′).

The group GV acts on the vector space EV in a natural fashion. An element x = (xh) in EV

is said to be nilpotent if there exists an N ≥ 1 such that the composition xhN · · ·xh1 : Vh′1
→

Vh′′N
is zero for each path (h1, . . . , hN ) in the oriented graph. Lastly, given an orientation

Ω, let EV,Ω be the subspace of EV consisting of all vectors (xh) such that xh = 0 whenever
h ∈ H \ Ω.

Fix an I-graded k-vector space V of dimension-vector ν and an orientation Ω. Let (i,a) ∈ Sν .
By definition, a flag of type (i,a) is a decreasing filtration V = V0 ⊇ V1 ⊇ · · · ⊇ Vm = 0 of
I-graded vector spaces such that Vk−1/Vk has dimension vector akαik . Let Fi,a be the set
of all flags of type (i,a) and let F̃i,a be the set of all pairs (x,V•) ∈ EV,Ω × Fi,a such that
each Vk is stable by the action of x. Let πi,a : F̃i,a → EV,Ω be the first projection and set
Li,a;Ω = (πi,a)!1, where 1 is the trivial local system on F̃i,a. By the Decomposition Theorem,
Li,a;Ω is a semisimple complex.

Let PV,Ω be the set of isomorphism classes of simple perverse sheaves L such that L[d] appears
as a direct summand of the sheaf Li,a;Ω, for some (i,a) ∈ Sν and some d ∈ Z. Let QV,Ω be
the smallest full subcategory of the category of bounded complexes of constructible sheaves
on EV,Ω that contains the sheaves Li,a;Ω and that is stable by direct sums, direct summands,
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and shifts. Lastly, let KV,Ω be the abelian group with one generator (L) for each isomorphism
class of object in QV,Ω, and with relations (L[1]) = (L) and (L) = (L′) + (L′′) whenever L is
isomorphic to L′ ⊕ L′′. (Thus our KV,Ω is the specialization at v = 1 of the KV,Ω defined in
Section 10.1 of [36].)

Given ν ∈ Q+, the groups KV,Ω, for V of dimension-vector ν, can be canonically identified.
We thus obtain an abelian group Kν,Ω equipped with isomorphisms Kν,Ω ∼= KV,Ω for any V of
dimension-vector ν. With this notation, PV,Ω gives rise to a Z-basis of Kν,Ω which does not
depend on V. We set KΩ =

⊕
ν∈Q+

Kν,Ω; this is a free Z-module endowed with a canonical
basis.

We endow KΩ with the structure of an associative Q+-graded algebra and we define an isomor-
phism of algebras λΩ : f → KΩ as in Sections 10.2 and 10.16 of [36]. Then λΩ

(
Θ

(a)
i

)
= (Li,a;Ω)

for each (i,a) ∈ Sν .

By Theorem 10.17 in [36], the inverse image of the canonical basis of KΩ by λΩ does not
depend on Ω. This inverse image is called the canonical basis of f ; it is a basis of canonical
type. By Section 2.4, there is thus a unique isomorphism of crystals from B(−∞) onto the
canonical basis; following Kashiwara, we denote this isomorphism by G. In the sequel, given
b ∈ B(−∞) and V of dimension-vector wt(b), we denote by Lb,Ω the element in PV,Ω such
that (Lb,Ω) = λΩ(G(b)) in KV,Ω.

For an orientation Ω and for h ∈ H, we set εΩ(h) = 1 if h ∈ Ω and εΩ(h) = −1 otherwise.
Given an I-graded k-vector space V, let ΛV,Ω be the set of all nilpotent elements x = (xh) in
EV such that for each i ∈ I, ∑

h∈H
h′′=i

εΩ(h)xhxh = 0.

This set ΛV,Ω is called the nilpotent variety.

Up to a canonical bijection, the set of irreducible components of ΛV,Ω depends only on the
dimension-vector ν of V, and not on V or Ω ([36], Sections 12.14 and 12.15). We denote this
set by Zν and we set Z =

⊔
ν∈Q+

Zν . Then Z can be endowed with the structure of a crystal
isomorphic to B(−∞) ([28], Theorem 5.3.2). Given b ∈ B(−∞) and V of dimension-vector
wt(b), we denote by Λb,Ω the irreducible component of ΛV,Ω that corresponds to b.

Up to a canonical isomorphism, the space of Q-valued, GV-invariant, constructible fonctions
on ΛV,Ω depends only on the dimension-vector ν of V; we denote it by M̃(ν). In Section 12
of [36], Lusztig endows M̃ =

⊕
ν∈Q+

M̃(ν) with the structure of an algebra and constructs an
injective homomorphism κ : f → M̃ (this morphism is denoted by γ in [36] and by κ in [39]).
The map κ is defined so that for each (i,a) ∈ Sν , the value of κ

(
Θ

(a)
i

)
at a point x ∈ ΛV,Ω is

the Euler characteristic of the set of all x-stable flags of type (i,a) in V.

Each irreducible componentX of ΛV,Ω contains a dense open subsetX0 such that any function
in κ(fν) is constant on X0. We denote by δX : fν → Q the linear form obtained by composing
κ with the evaluation at a point of X0. By Section 12.14 in [36] or by Theorem 2.7 in [39],
the elements δX , for X ∈ Zν , form a basis of the dual of fν . Gathering the corresponding
dual bases in fν for all ν ∈ Q+, we get a basis of f . This is the semicanonical basis, and it
is of canonical type. There is thus a unique isomorphism of crystals from B(−∞) onto the

15



semicanonical basis; we denote this isomorphism by S. Comparing the constructions in [28]
and in [39], one checks that for any b ∈ B(−∞), the dual vector to S(b) is the δX with
X = Λb,Ω. In other words, the indexations of the semicanonical basis and of Z by B(−∞)
agree.

4.2 Condition for singular supports

In the context of Section 4.1, the trace duality allows us to regard EV as the cotangent space
of EV,Ω. Lusztig proved ([36], Corollary 13.6) that the singular support of a complex in QV,Ω

is the union of irreducible components of ΛV,Ω. In this context, Kashiwara and Saito ([28],
Lemma 8.2.1) proved that

Λb′′,Ω ⊆ SS(Lb′,Ω) =⇒ b′ ≤str b
′′.

4.3 Degeneracy order between quiver representations

We continue with the case where A is a symmetric Cartan matrix and assume in addition
that A is of finite type. We fix ν ∈ Q+ and an I-graded k-vector space V of dimension-vector
ν. For each orientation Ω and each element b ∈ B(−∞) of weight ν, there is a GV-orbit
Ob,Ω ⊆ EV,Ω such that the perverse sheaf Lb,Ω is the intersection cohomology sheaf on Ob,Ω

w.r.t. the trivial local system on Ob,Ω.

Proposition 4.1 Let b′ and b′′ be two elements of weight ν in B(−∞). If b′ ≤pol b
′′, then

Ob′,Ω ⊇ Ob′′,Ω for all orientations Ω.

Proof. Fix an orientation Ω. For µ and ν in Q+, define

〈µ, ν〉Ω =
∑
i∈I

µiνi −
∑
h∈Ω

µh′νh′′ .

The oriented graph Q = (I,Ω) is a Dynkin quiver. Given a positive root α, we denote by
M(α) the indecomposable kQ-module of dimension-vector α. Ringel ([45], p. 59) has shown
that

dim HomkQ(M(α),M(β)) = max
(
0, 〈α, β〉Ω

)
,

dim Ext1
kQ(M(α),M(β)) = max

(
0,−〈α, β〉Ω

)
.

(4)

Choose i ∈ X adapted to Ω ([35], Section 4.7 and Proposition 4.12 (b)). As in Section 3.1,
the word i defines a sequence (βk) of positive roots and a sequence (γk) of chamber coweights.
By Proposition 7.4 in [3], we have, for any k ∈ {1, . . . , N},

〈γk, ?〉 = 〈βk, ?〉Ω = 〈?, βk〉Ω.

It follows that for any k and ` in {1, . . . , N}, we have

dim HomkQ(M(β`),M(βk)) = max
(
0, 〈γk, β`〉

)
=

{
〈γk, βl〉 if k ≥ `,
0 if k < `.
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For b ∈ B(−∞) of weight ν, the GV-orbit Ob,Ω is the set of all x ∈ EV,Ω such that

(V, x) ∼= M(β1)⊕n1 ⊕ · · · ⊕M(βN )⊕nN

as kQ-modules, where (n1, . . . , nN ) is the Lusztig datum of b in direction i ([35], Sections 4.15–
4.16).

Assume that b′ ≤pol b
′′. We then have ni(b

′) ≤i ni(b
′′). This inequality is equivalent to the

fact that for each k ∈ {1, . . . , N},

dim HomkQ((V, x′),M(βk)) ≤ dim HomkQ((V, x′′),M(βk)),

where x′ ∈ Ob′,Ω and x′′ ∈ Ob′′,Ω. The inclusion Ob′,Ω ⊇ Ob′′,Ω now follows from Riedtmann’s
criterion [44, 10]. �

Remark 4.2. (i) The converse statement to Proposition 4.1 is true in type A. This comes
from the fact that in this case, any chamber coweight can be written as si1 · · · sikω∨ik ,
where i ∈X is compatible with an orientation (see the proof of Proposition A.2 in [4]).

(ii) Let us go back to the problem studied in Section 4.2. Let b′ and b′′ in B(−∞) have
the same weight. Given an orientation Ω, it is known that Λb′′,Ω is the closure of
the conormal bundle to Ob′′,Ω (see [29], Section 5.3 or [3], Section 7.3). Therefore, in
order that Λb′′,Ω ⊆ SS(Lb′,Ω), it is necessary that Ob′′,Ω ⊆ Ob′,Ω. Since the condition
Λb′′,Ω ⊆ SS(Lb′,Ω) does not depend on Ω ([28], Theorem 6.2.1), we must in fact have
Ob′,Ω ⊇ Ob′′,Ω for all orientations Ω. In type A, this means that b′ ≤pol b

′′ by the
previous remark. We do not know if this result extends to the other types.

4.4 Comparison between the canonical and the semicanonical bases

We continue to assume that the Cartan matrix A is symmetric and of finite type. As both the
canonical and the semicanonical bases are of canonical type, the transition matrix between
them is lower unitriangular w.r.t. the order ≤str (see Proposition 2.6). Our aim now is to
compare these bases w.r.t. the order ≤pol.

Our method is to use a PBW basis as an intermediary. Conditions on the transition matrix
between the canonical basis and a PBW basis were obtained in Corollary 3.6. We now focus
on the transition matrix between the semicanonical basis and a PBW basis.

Lemma 4.3 Let i ∈X , n ∈ NN and b ∈ B(−∞). If S(b) appears with a nonzero coefficient
in the expansion of E(n)

i on the semicanonical basis, then ni(b) ≥i n.

Proof. We can of course assume that E(n)
i and b have the same weight; call it ν. As before, i

defines a sequence (βk) of positive roots and a sequence (γk) of chamber coweights.

The coefficient of S(b) in the expansion of an element u ∈ fν on the semicanonical basis is
equal to δx(u) = κ(u)(x), where x is a general point in Λb,Ω. By definition of the algebra
structure on M̃ , if this number is nonzero for u = E

(n)
i , then there is a filtration

V = V0 ⊇ V1 ⊇ · · · ⊇ VN−1 ⊇ VN = 0
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by x-stable I-graded vector spaces such that the dimension-vector of Vk−1/Vk is nkβk.

Theorem 6.3 in [3] tells us how to extract the BZ datum of b from the pair (V, x), viewed as
a representation of the preprojective algebra Π. Specifically, if we introduce the Π-modules
N(γ) as in Section 3.4 of [3], then Mγ(b) = dim HomΠ(N(γ), (V, x)).

Let k ∈ {1, . . . , N} and set w = si1 · · · sik . Observing that (Vk, x) is a Π-submodule of (V, x)
and using Proposition 4.3 in [3], we get

〈wω∨ik , µw(b)〉 = Mwω∨ik
(b) ≥ dim HomΠ(N(wω∨ik), (Vk, x)) ≥ 〈wω∨ik , νk〉,

where νk is the dimension-vector of Vk. Substituting νk = wt(b)−
∑k

t=1 ntβt and wω
∨
ik

= −γk,
we get exactly the inequality asked for in the definition of ni(b) ≥i n. �

Theorem 4.4 The transition matrix between the canonical and the semicanonical bases is
lower unitriangular w.r.t. the order ≤pol.

Proof. Proposition 3.1, Corollary 3.6 and Lemma 4.3 readily imply that the transition matrix
is lower triangular w.r.t. the order ≤pol. In addition, Proposition 2.6 (ii) guarantees that the
diagonal coefficients are equal to 1. �

Remark 4.5. The proof of Proposition 2.6 relies on the observation that the moves ≈ preserve
the coefficients of the transition matrix between two bases of canonical type. Using Theo-
rem 4.4, we then see that the transition matrix between the canonical and the semicanonical
bases is also lower triangular w.r.t. the order ≤ defined in Remark 3.3, and obtained by “sta-
bilizing” ≤pol under the moves ≈. In addition, this transition matrix is also invariant under
Saito’s crystal reflections (see [2], equation (3)); we can thus weaken again our order by in-
troducing a further move. (The author borrowed this idea from Kashiwara and Saito, see
Lemma 8.2.2 in [28].)

5 A study in types A5 and D4

In [28], Kashiwara and Saito discovered a situation where Λb′′,Ω ⊆ SS(Lb′,Ω) for two elements
b′ 6= b′′ of B(−∞), in the notation of Section 4.2. In [16], Geiss, Leclerc and Schröer made a
more detailed investigation of this situation, and observed that for these elements, the element
S(b′′) do occur in the expansion of the canonical basis elementG(b′) on the semicanonical basis.
By Proposition 2.6 (ii) and Theorem 4.4, it follows that b′ ≤str b

′′ and b′ ≤pol b
′′.

Geiss, Leclerc and Schröer explain that these phenomena are related to the fact that the
algebra Q[N ] has a tame cluster type, namely E(1,1)

8 , and that the counterexample is located
precisely at one of the imaginary indecomposable roots of this elliptic root system. Leclerc
explained to the author that the other imaginary root gives rise to a similar counterexample,
and that the story can be repeated word for word in type D4.

Our aim here is to add a small piece to the almost complete description of the situation given
in [16]: we will compute explicitly the elements G(b′) and G(b′′) above, in a way that will
allow us in the next section to compute the image of G(b′) by the quantum Frobenius map
and the quantum Frobenius splitting.
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5.1 Statement of the results

Our results can be stated in an uniform way for four situations, numbered (I)–(IV). In each
case, and for each p ≥ 1, we define a product Ẽp of crystal operators and elements ξp and
ηp in f , as in the following table. The first two cases are in type A5, with the vertices of the
Dynkin diagram sequentially numbered. The last two cases are in type D4, where the index
of the central node is 2.

I Type A5

Ẽp = (ẽ2ẽ4)p (ẽ1ẽ
2
3ẽ5)p (ẽ2ẽ4)p

ξp =
(
θ

(p)
2 θ

(p)
4

) (
θ

(p)
1 θ

(2p)
3 θ

(p)
5

) (
θ

(p)
2 θ

(p)
4

)
ηp =

(
θ

(p)
2 θ

(p)
4

) (
θ

(p)
1 θ

(2p)
3 θ

(p)
5

) (
θ

(2p)
2 θ

(2p)
4

) (
θ

(p)
1 θ

(2p)
3 θ

(p)
5

) (
θ

(p)
2 θ

(p)
4

)
II Type A5

Ẽp = (ẽ1ẽ
2
3ẽ5)p (ẽ2ẽ4)3p (ẽ1ẽ

2
3ẽ5)p

ξp =
(
θ

(p)
1 θ

(2p)
3 θ

(p)
5

) (
θ

(3p)
2 θ

(3p)
4

) (
θ

(p)
1 θ

(2p)
3 θ

(p)
5

)
ηp =

(
θ

(p)
1 θ

(2p)
3 θ

(p)
5

) (
θ

(3p)
2 θ

(3p)
4

) (
θ

(2p)
1 θ

(4p)
3 θ

(2p)
5

) (
θ

(3p)
2 θ

(3p)
4

) (
θ

(p)
1 θ

(2p)
3 θ

(p)
5

)
III Type D4

Ẽp = ẽp2 (ẽ1ẽ3ẽ4)p ẽp2

ξp = θ
(p)
2

(
θ

(p)
1 θ

(p)
3 θ

(p)
4

)
θ

(p)
2

ηp = θ
(p)
2

(
θ

(p)
1 θ

(p)
3 θ

(p)
4

)
θ

(2p)
2

(
θ

(p)
1 θ

(p)
3 θ

(p)
4

)
θ

(p)
2

IV Type D4

Ẽp = (ẽ1ẽ3ẽ4)p ẽ3p
2 (ẽ1ẽ3ẽ4)p

ξp =
(
θ

(p)
1 θ

(p)
3 θ

(p)
4

)
θ

(3p)
2

(
θ

(p)
1 θ

(p)
3 θ

(p)
4

)
ηp =

(
θ

(p)
1 θ

(p)
3 θ

(p)
4

)
θ

(3p)
2

(
θ

(2p)
1 θ

(2p)
3 θ

(2p)
4

)
θ

(3p)
2

(
θ

(p)
1 θ

(p)
3 θ

(p)
4

)
For each (r, s) ∈ N2, we set br,s = Ẽr+sẼs1; this is an element in B(−∞).

Proposition 5.1 Let r ∈ N. Then br,0 is maximal in B(−∞) w.r.t. the order ≤str. Further,
if B is a basis of canonical type of f , then ξr is the element of B indexed by br,0 in the bijection
B(−∞) ∼= B.

Proposition 5.1 is proved in Section 5.2.

Recall that G(br,s) and S(br,s) denote the elements indexed by br,s in the canonical and
semicanonical bases of f . Proposition 5.1 tells us that ξp = G(bp,0) = S(bp,0). We now
look for similar expansions of ηp on the two bases, canonical and semicanonical.
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Theorem 5.2 (i) Let (r′, s′, r′′, s′′) ∈ N4. Then

br′,s′ ≤str br′′,s′′ ⇐⇒ br′,s′ ≤pol br′′,s′′ ⇐⇒
(
r′ + 2s′ = r′′ + 2s′′ and r′ ≤ r′′

)
.

(ii) For each p ∈ N,

ηp = G(b0,p) +G(b2,p−1) +G(b4,p−2) + · · ·+G(b2p,0).

(iii) For each (r, s) ∈ N2,

〈S(b2r,s)
∗, ηr+s〉 =

(
2r

r

)
.

The proof of Theorem 5.2 occupies Sections 5.3–5.6.

Remark 5.3. Recall the notation of Section 4.1. Let ν ∈ Q+, let Ω be an orientation, let V
be an I-graded k-vector space of dimension-vector ν, and let (i,a) ∈ Sν . By Theorem 2.2
in [46], the characteristic cycle of Li,a;Ω is the projection on T ∗EV,Ω of the intersection in the
ambient space T ∗(Fi,a × EV,Ω) of Fi,a × T ∗EV,Ω with the conormal bundle of F̃i,a. (In this
recipe, Fi,a is identified to the zero section of T ∗Fi,a and intersection means the intersection
product in homology or in algebraic geometry.)

Let p ∈ N and take (i,a) such that Θ
(a)
i = ηp. Looking over a general point of Λb2r,s , where

r + s = p, the intersection is transversal and consists of
(

2r
r

)
points. (These are the same

points as those occurring in the proof of Theorem 5.2 (iii).) The multiplicity of [Λb2r,s ] in the
characteristic cycle of Li,a;Ω is therefore equal to this binomial coefficient, up to a sign.

Take p = 1. The multiplicity of [Λb2,0 ] in the characteristic cycle of Li,a;Ω is thus ±2. A similar
calculation shows that the multiplicity of [Λb2,0 ] in the characteristic cycle of Lb2,0,Ω is equal
to ±1. In addition, the proof of Theorem 5.2 (ii) gives Li,a;Ω = Lb0,1,Ω ⊕Lb2,0,Ω. We conclude
that Λb2,0 is contained in the singular support of Lb0,1,Ω.

The elements b and b′ of Kashiwara and Saito ([28], Section 7.2) are our elements b0,1 and b2,0
in case I. The arguments above thus provide a new proof of Theorem 7.2.1 in [28].

5.2 Proof of Proposition 5.1

Though each case requires its own set of calculations, we will content ourselves with treating
the case I.

We fix r ∈ N. Standard tools for crystal combinatorics allow to compute the Lusztig data of
br,0 w.r.t. the reduced words

i = (2, 4, 1, 3, 5, 2, 4, 1, 3, 5, 2, 4, 1, 3, 5),

j = (1, 3, 5, 2, 4, 1, 3, 5, 2, 4, 1, 3, 5, 2, 4).

One finds

ni(br,0) = (r, r, 0, 0, 0, 0, 0, 0, 0, 0, r, r, 0, 0, 0),

nj(br,0) = (0, 0, 0, r, r, 0, 0, 0, 0, 0, 0, 0, 0, r, r).
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One deduces that

ϕi(br,0) = ϕi(σ(br,0)) =

{
r if i ∈ {2, 4},
0 if i ∈ {1, 3, 5}.

We claim that an element b ∈ B(−∞) such that wt(b) = wt(br,0) and such that

ϕi(b) ≥ ϕi(br,0) and ϕi(σ(b)) ≥ ϕi(σ(br,0)) (5)

for each i ∈ {1, . . . , 5} is necessarily equal to br,0.

To prove this claim, pick such a b and set t = ϕ2(b), u = ϕ2(σ(b)), b′ = σ
(
f̃max

2 σ(b)
)
. By

Proposition 5.3.1 (1) in [28], we have

t = max
(
ϕ2(b′), u+ 〈α∨2 ,wt(b′)〉

)
= max

(
ϕ2(b′), r − u

)
.

Since t ≥ r and u ≥ r, this forces ϕ2(b′) = t. Therefore, in its expansion on the basis of simple
roots, the α2-coordinate of wt(b′) is thus at least t, so 2r − u ≥ t. This forces t = u = r.
By symmetry, we have ϕ4(b) = ϕ4(σ(b)) = r. Further, the crystal operations at vertex 2
commute with the crystal operations at vertex 4, so the element b′′ = σ

(
f̃ r4σ(b′)

)
satisfies

ϕ2(b′′) = ϕ4(b′′) = r.

Now b′′′ = f̃ r1 f̃
2r
3 f̃ r5 1 is the unique element in B(−∞) with weight r(α1 + 2α3 + α5). We thus

necessarily have b′′′ = f̃ r2 f̃
r
4 b
′′, and we conclude that b = σ ◦

(
f̃ r2 f̃

r
4

)
◦ σ ◦

(
f̃ r2 f̃

r
4

)
(b′′′). This

reasoning holds in particular for br,0, whence our claim that b = br,0.

From this, it immediately follows that br,0 is maximal in B(−∞) w.r.t. the order ≤str. There-
fore, all bases of canonical type share the same element at this spot, by Proposition 2.6 (ii).
It remains to prove that this element is ξr.

Let us adopt the setup of the definition of the semicanonical basis. Pick an orientation of
the Dynkin diagram and an I-graded k-vector space V of dimension-vector wt(br,0). Let
b ∈ B(−∞). By construction (see Section 4.1), the value of the constructible function κ(ξr) at
the general point x of Λb,Ω is nonzero only if V contains x-stable subspaces W′ and W′′ such
that W′ and V/W′′ have dimension-vector r(α2 + α4). This latter condition is equivalent
to (5), hence to b = br,0; when it is fulfilled, W′ and W′′ are unique and satisfy W′ ⊆W′′,
which leads to κ(ξr)(x) = 1.

To sum up, 〈S(b)∗, ξr〉 is equal to 1 if b = br,0 and to 0 otherwise. We conclude that ξr = S(br,0),
as announced.

5.3 Proof of Theorem 5.2 (i)

Again, we restrict our attention to the case I.

We set ν = α1 + 2α2 + 2α3 + 2α4 + α5.

We fix (r, s) ∈ N2. The weight of br,s is (r + 2s)ν. As in Section 5.2, a direct computation
gives the Lusztig data of br,s w.r.t. the reduced word i:

ni(br,s) = (r + s, r + s, 0, 0, 0, s, s, 0, 0, 0, r + s, r + s, 0, 0, 0).
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Let Ω be the orientation
1 2 3 4 5

of the Dynkin diagram and let ΛΩ be the preprojective algebra it defines. A ΛΩ-module is the
datum of a pair (V, x), where V is an I-graded k-vector space and x ∈ ΛV,Ω.

The category of ΛΩ-modules is tame and is described in full details in [16]. We refer to this
paper for more information. As usual, we denote by Si the simple ΛΩ-module of dimension-
vector αi. Let P and Qλ be the following ΛΩ-modules, where λ is a parameter in k \ {0, 1}.

2 4

1 33 5

22 44

1 33 5

2 4
−1

( 1
0 ) ( 0

1 )
1

( 1
0 )

I2 −I2 ( 0
1 )

( 0 1 )
I2 I2

( 1 0 )

−1
( 0 1 ) ( 1 0 )

−1

P

2 4

1 33 5

2 4
1

( 1
0 ) ( 0

1 )
1

−λ
( λ 1 ) ( 1 1 )

−1

Qλ

In these pictures, as customary, a digit i denotes a basis vector in the vector space Vi, and
the small matrices that adorn the arrows indicate the action of the arrows h. The module P is
projective and injective. Each module Qλ lies at the mouth of an homogeneous tube, whence
Ext1(Qλ, Qµ) = 0 for λ 6= µ.

We fix an I-graded k-vector space W of dimension-vector ν. Since the module P is projective,
it is rigid: the closure of the orbit {x ∈ ΛW2,Ω | (W2, x) ∼= P} is an irreducible component
of ΛW2,Ω. The orbit of each module Qλ has codimension 1 in ΛW,Ω; therefore, the closure of
the union of these orbits is an irreducible component of ΛW,Ω.

Let (r, s) ∈ N2. By Section 2.6 in [16], the closure of the set of all points x ∈ ΛWr+2s,Ω such
that (Wr+2s, x) is isomorphic to a module of the form

Mr,s = Qλ1 ⊕ · · · ⊕Qλr ⊕ P ⊕ · · · ⊕ P︸ ︷︷ ︸
s times

is an irreducible component Λb,Ω of ΛWr+2s,Ω.

Observing that the word i is adapted to the orientation Ω, we can determine the Lusztig datum
of b in direction i by looking at the multiplicities in a Krull-Remak-Schmidt decomposition of
the restriction of Mr,s to the quiver (I,Ω) (see Section 7.3 in [3] for the full justification of
this procedure). We find

ni(b) = (r + s, r + s, 0, 0, 0, s, s, 0, 0, 0, r + s, r + s, 0, 0, 0) = ni(br,s),

from where we conclude that b = br,s.
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Using the definition of the crystal structure on irreducible components of the nilpotent vari-
eties, one then deduces that

br,s = σ(br,s) and ϕi(br,s) =

{
r + s if i ∈ {2, 4},
0 if i ∈ {1, 3, 5}.

Similarly, for (t1, t3, t5) ∈ N3 and b = ẽt11 ẽ
t3
3 ẽ

t5
5 br,s, a general point in Λb,Ω is the datum of the

structural maps of a ΛΩ-module isomorphic to something of the form

Qλ1 ⊕ · · · ⊕Qλr ⊕ P⊕s ⊕ S
⊕t1
1 ⊕ S⊕t33 ⊕ S⊕t55 ,

whence

ẽt11 ẽ
t3
3 ẽ

t5
5 br,s = σ

(
ẽt11 ẽ

t3
3 ẽ

t5
5 br,s

)
and ϕi

(
ẽt11 ẽ

t3
3 ẽ

t5
5 br,s

)
=

{
r + s if i ∈ {2, 4},
ti if i ∈ {1, 3, 5}.

Given (r′, s′, r′′, s′′) ∈ N4, the equivalence

br′,s′ ≤str br′′,s′′ ⇐⇒
(
r′ + 2s′ = r′′ + 2s′′ and r′ ≤ r′′

)
now follows from the definition of ≤str.

If br′,s′ ≤pol br′′,s′′ , then br′,s′ and br′′,s′′ have the same weight, whence r′+ 2s′ = r′′+ 2s′′, and
ϕi(br′,s′) ≤ ϕi(br′′,s′′) for all i, whence r′ ≤ r′′. The converse implication(

r′ + 2s′ = r′′ + 2s′′ and r′ ≤ r′′
)

=⇒ br′,s′ ≤pol br′′,s′′

follows from the two following facts: first, Pol(b0,1) ⊂ Pol(b2,0); second, for any (r, s) ∈ N2,
Pol(br,s) = rPol(b1,0)+sPol(b0,1), where the sum is the Minkowski sum of convex bodies. The
first fact can be shown either by a direct computation, or as a consequence of Theorem 4.4,
once noticed that

〈S(b2,0)∗, G(b0,1)〉 = 〈S(b2,0)∗, η1〉 − 〈S(b2,0)∗, G(b2,0)〉 =

(
2

1

)
− 1 6= 0.

The second fact follows from the construction of Pol(b) given in [3] or from Remark 3.5 (ii)
in [4].

5.4 Proof of Theorem 5.2 (iii)

We keep the notation of the previous section. We label the oriented edges in H as follows.

1 2 3 4 5

h1 h2 h3 h4

h1 h2 h3 h4

From the datum (V, x) of a ΛΩ-module, we will define four maps

y : V1 ⊕V5

xh1⊕xh4−−−−−→ V2 ⊕V4, z : V3

(xh2
xh3

)
−−−−→ V2 ⊕V4,

y : V2 ⊕V4

xh1
⊕xh4−−−−−→ V1 ⊕V5, z : V2 ⊕V4

(xh2
xh3 )−−−−−−→ V3.
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In the case of P , both maps y and z are injective and both maps y and z are surjective. The
subspace im y∩ im z has dimension-vector α2 +α4 (it is linearly spanned by the 2 and the 4 on
the fifth line of the picture of P ). The subspace ker y+ ker z has dimension-vector 3(α2 +α4)
(it is spanned by the 2 and the 4 on the third and fifth lines of the picture of P ). In addition,
(yy)(ker y + ker z) = im y ∩ im z and (yy)−1(im y ∩ im z) = ker y + ker z.

In the case of Qλ, both maps y and z are injective and both maps y and z are surjective. We
have im y ∩ im z = ker y + ker z; this subspace has dimension-vector α2 + α4 (it is linearly
spanned by the 2 and the 4 on the third line of the picture of Qλ). This subspace is also the
kernel as well as the image of yy.

Let (r, s) ∈ N2. Set p = r + s and V = Wp. Let (j,a) ∈ Spν be so that ηp = Θ
(a)
j . A flag of

type (j,a) in V is the datum of subspaces Xi ⊆ Vi for i ∈ {1, 3, 5} and of 2-steps filtrations
0 ⊆ X′i ⊆ X′′i ⊆ Vi for i ∈ {2, 4} of suitable dimension, namely

dimX1 = dimX′2 = dimX′4 = dimX5 = p, dimX3 = 2p, dimX′′2 = dimX′′4 = 3p.

Let x be a general point in Λb2r,s,Ω. Thus, (V, x) is isomorphic to a ΛΩ-module of the form

Qλ1 ⊕ · · · ⊕Qλ2r ⊕ P ⊕ · · · ⊕ P︸ ︷︷ ︸
s times

where λ1, . . . , λ2r are distinct. In agreement with this decomposition, we write V as a direct
sum V(Q) ⊕V(P ).

We look for x-stable flags of type (j,a) in V. Since the maps y and z are injective, we must
have y(X1 ⊕X5) = z(X3) = X′2 ⊕X′4, for dimension reasons. Likewise, the surjectivity of y
and z implies that y−1(X1⊕X5) = z−1(X3) = X′′2⊕X′′4. Noticing that yy must map X′′2⊕X′′4
to X′2 ⊕X′4, we get

(yy)(ker y + ker z) ⊆ X′2 ⊕X′4 ⊆ im y ∩ im z,

ker y + ker z ⊆ X′′2 ⊕X′′4 ⊆ (yy)−1(im y ∩ im z).

These conditions imply that X′2, X′′2, X′4 and X′′4 are compatible with the decomposition
V = V(Q)⊕V(P ) and determine the intersections of these four subspaces with V(P ). For our
problem of finding the x-stable flags of type (j,a), we can thus neglect V(P ). Consequently,
we now focus on V(Q) and implicitly restrict the maps xh, y, z, y and z to this subspace.
We also simplify the notation by writing X′2 instead of X′2 ∩V(Q), and similarly for X′′2, X′4
and X′′4.

After this renaming, dimX′2 = dimX′4 = r and dimX′′2 = dimX′′4 = 3r. Let Y2 ⊕Y4 denote
the subspace im y ∩ im z in V(Q). Then dimY2 = dimY4 = 2r. We must have

X′2 ⊆ Y2 ⊆ X′′2,

X′4 ⊆ Y4 ⊆ X′′4,

(yy)(X′′2 ⊕X′′4) ⊆ X′2 ⊕X′4,

(zz)(X′′2 ⊕X′′4) ⊆ X′2 ⊕X′4.
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Recalling the preprojective relations xh1xh1 + xh2xh2 = 0 and xh3xh3 + xh4xh4 = 0, we can
rephrase this in terms of representations of a tame quiver:

X′′2/Y2
//

##

X′2

X′′4/Y4
//

;;

X′4

is a subrepresentation of

V
(Q)
2 /Y2

xh2xh2 //

xh3xh2

$$

Y2

V
(Q)
4 /Y4 xh3xh3

//

xh2xh3

::

Y4.

Choosing adequate bases in V
(Q)
2 and V

(Q)
4 , the linear maps on the right diagram are given

by the identity matrix of size 2r, except for the top horizontal arrow, which is represented by
a diagonal matrix with coefficients λ1, . . . , λ2r. Subrepresentations of the required dimension
are obtained by taking r among the 2r eigenspaces of the composed map

(xh3xh2)−1(xh3xh3)(xh2xh3)−1(xh2xh2).

All in all, we have
(

2r
r

)
x-stable flags of type (j,a) in V. The Euler characteristic of this set

of flags is thus equal to
(

2r
r

)
, and also to κ

(
Θ

(a)
j

)
(x) = 〈S(b2r,s)

∗, ηp〉 (see Section 4.1).

5.5 Analysis of extensions of quiver representations

Again, we consider the Dynkin diagram of type A5. The reduced word

i = (2, 4, 1, 3, 5, 2, 4, 1, 3, 5, 2, 4, 1, 3, 5)

is adapted to the following orientation Ω, in the sense of [35], Section 4.7.

1 2 3 4 5

Our interest lies in the representation theory over k of the quiver Q = (I,Ω). The dimension-
vector map induces a bijection from the set of isomorphism classes of indecomposable repre-
sentations of Q onto the set of positive roots (Gabriel’s theorem). For each positive root β,
we pick an indecomposable kQ-module M(β) of dimension-vector β. These modules can be
organized in an Auslander-Reiten quiver, as follows.

M(α2)

M(α4)

M(α1,2)

M(α2,4)

M(α4,5)

M(α1,4)

M(α2,5)

M(α3,4)

M(α1,5)

M(α2,3)

M(α3,5)

M(α1,3)

M(α5)

M(α3)

M(α1)
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Here, we wrote αi,j for αi + αi+1 + · · · + αj . The enumeration (β1, . . . , β15) of the positive
roots defined by i, namely

(α2, α4, α1,2, α2,4, α4,5, α1,4, α2,5, α3,4, α1,5, α2,3, α3,5, α1,3, α5, α3, α1 ),

can be read from this Auslander-Reiten quiver, proceeding columnwise from the top left corner
to the bottom right corner. The simple kQ-modules are of course the modules M(αi), for
i ∈ I; as customary, we denote them by Si.

Consider the following lists of kQ-modules.

t Mt Nt

1 M(α2) 0

2 M(α1,2) M(α1)

3 M(α1,2)⊕M(α2,4) M(α1,4)

4 M(α1,2)⊕M(α2,5) M(α1,5)

5 M(α1,2)⊕M(α2,3) M(α1,3)

6 M(α2,4) M(α3,4)

7 M(α1,4) M(α1)⊕M(α3,4)

8 M(α1,4)⊕M(α2,5) M(α1,5)⊕M(α3,4)

9 M(α1,4)⊕M(α2,3) M(α1,3)⊕M(α3,4)

10 M(α2,5) M(α3,5)

11 M(α1,5) M(α1)⊕M(α3,5)

12 M(α1,5)⊕M(α2,3) M(α1,3)⊕M(α3,5)

13 M(α2,3) M(α3)

14 M(α1,3) M(α1)⊕M(α3)

Proposition 5.4 Let 0 → S2
f−→ M → N → 0 be a short exact sequence of kQ-modules.

Then there exists t ∈ {1, . . . , 14} and a kQ-module L such that M ∼= Mt⊕L and N ∼= Nt⊕L.

Proof. Let K = {1, 3, 4, 6, 7, 9, 10, 12}. In the kQ-module M(βk), the vector space attached
to the vertex 2 is nonzero if and only if k ∈ K. In this case, it is one dimensional, spanned by
a vector ek.

We endow K with an order by saying that k � ` is there is a path of positive length from
M(βk) toM(β`) in the Auslander-Reiten quiver. Thus for instance α2,4 � α1,3 but α1,2 6� α2,3.

Writing M as a direct sum of indecomposable modules, we find an isomorphism

g : M
'−→

15⊕
k=1

M(βk)⊗Wk,

where the vector spaces Wk account for the multiplicities. Then (g ◦ f)(e1) has the form∑
k∈K ek ⊗ wk, where wk ∈Wk.
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Using the explicit form of the modules M(βk), one sees by a case-by-case analysis that it is
possible to modify g so as to cancel the elements w` each time there is a k � ` such that
wk 6= 0. After this modification, the elements in the set K ′ = {k ∈ K | wk 6= 0} are pairwise
incomparable. This leaves a list of fourteen possibilities forK ′ (note thatK ′ cannot be empty).

For k ∈ K ′, choose a complementary subspace W ′k in Wk to the line kwk, and for k /∈ K ′, set
W ′k = Wk. Let

L =
15⊕
k=1

M(βk)⊗W ′k.

Then M ∼= Mt ⊕ L for a certain t ∈ {1, . . . , 14}. In this isomorphism, the image of f is
contained in Mt, so the cokernel N of f is isomorphic to Nt ⊕ L. �

One can of course analyze in a similar fashion the extensions by S4, using for instance the
diagram automorphism.

To a kQ-module M , we associate the row vector n(M) = (n1, . . . , n15), where nk is the
multiplicity of M(βk) in a Krull-Remak-Schmidt decomposition of M . Then M 7→ n(M)
induces a bijection from the set of isomorphism classes of kQ-modules onto N15.

Consider the following elements in N15.

w1 = ( 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, −1, 0, 1, 1 )

w2 = ( 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, −1, 0, 1, 1, 0 )

w3 = ( 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, −1, 0, 1, 0 )

w4 = ( 0, 0, 1, 0, 0, 0, 1, 0, −1, 0, 0, −1, 0, 1, 1 )

w5 = ( 0, 0, 1, 1, 0, −1, 0, 0, 0, 0, 0, −1, 0, 1, 1 )

w6 = ( 0, 0, 0, 1, 0, 0, 0, −1, 0, 0, 0, −1, 0, 1, 1 )

w7 = ( 0, 0, 0, 0, 0, 1, 1, −1, −1, 0, 0, −1, 0, 1, 1 )

w8 = ( 0, 0, 0, 0, 0, 1, 1, 0, −1, −1, −1, 0, 1, 1, 0 )

w9 = ( 0, 0, 0, 1, 0, 0, 0, 0, 0, −1, −1, 0, 1, 1, 0 )

w10 = ( 0, 0, 0, 1, 1, 0, −1, 0, 0, 0, −1, 0, 1, 1, 0 )

w11 = ( 0, 0, 0, 0, 1, 1, 0, 0, −1, 0, −1, 0, 1, 1, 0 )

w12 = ( 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, −1, 0, 0, 1, 0 )

w13 = ( 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, −1, 0, 1, 0, 0 )

w14 = ( 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, −1, −1, 0, 1, 0 )

w15 = ( 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, −1, 0, 0, 1 )

w16 = ( 0, 0, 0, 0, 0, 1, 0, −1, 0, 0, 0, −1, 0, 1, 0 )

w17 = ( 0, 0, 0, 0, 0, 0, 1, 0, 0, −1, −1, 0, 0, 1, 0 )

x = ( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, −1, −2, −1 )

x′ = ( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, −1, −1 )

y = ( 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0 )

z = ( 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0 )

Corollary 5.5 Let p ∈ N and let M et N be two kQ-modules. If there is a short exact
sequence

0→ S⊕p2 ⊕ S⊕p4 →M → N → 0,
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then n(M)− n(N)− px belongs to the N-span of the vectors wk.

Proof. With the notation of Proposition 5.4, it suffices to check that each n(Mt)−n(Nt)−x′

can be written as a (possibly empty) sum of vectors wk. �

5.6 Proof of Theorem 5.2 (ii)

As before, we focus on the case I.

Let ν = α1 + 2α2 + 2α3 + 2α4 + α5 and let p ∈ N. Define (j,a) ∈ Spν so that ηp = Θ
(a)
j . Let

V be an I-graded k-vector space of dimension-vector 2pν and recall the notation set up in
Section 4.1. To show Theorem 5.2 (ii), it suffices to prove the equation

Lj,a;Ω = Lb0,p,Ω ⊕ Lb2,p−1,Ω ⊕ Lb4,p−2,Ω ⊕ · · · ⊕ Lb2p,0,Ω. (6)

To prove (6), we will show that the map πj,a is semismall with respect to the stratification
given by the GV-orbits on EV,Ω and identify the relevant strata. The precise statement is
given in Proposition 5.6 below.

We regard a flag of type (j,a) in V as a 5-step filtration

V = V0 ⊇ V1 ⊇ V2 ⊇ V3 ⊇ V4 ⊇ V5 = 0, (7)

such that the dimension-vector of Vk−1/Vk is p(α2 + α4), p(α1 + 2α3 + α5), or 2p(α2 + α4)
according to whether k ∈ {1, 5}, k ∈ {2, 4}, or k = 3.

To a row vector n = (n1, . . . , n15) in N15, we associate the weight |n| = n1β1 + · · · + n15β15.
This is the dimension-vector of any kQ-module M such that n(M) = n.

A point (x,V•) in F̃j,a yields kQ-modules Mk,` = (Vk/V`, x), for all k < `. Given u and v

in N15 such that |u| = 2pν and |v| = pν, we denote by F̃u,v the set of all (x,V•) ∈ F̃j,a such
that n(M1,3) = v and n(M0,5) = u.

Likewise, for u ∈ N15 such that |u| = 2pν, we denote by Ou the set of all x ∈ EV,Ω such that
n((V, x)) = u. This is a GV-orbit in EV,Ω. If b ∈ B(−∞) has Lusztig datum u in direction
i, then Lb,Ω is the intersection cohomology sheaf on Ou.

In this fashion, we partition F̃j,a and EV,Ω into locally closed pieces. The first projection
πj,a : F̃ → EV,Ω restricts to a map πu,v : F̃u,v → Ou.

Proposition 5.6 Assume that F̃u,v 6= ∅. Then the map πu,v is a locally trivial fibration with
a smooth and connected fiber. Moreover, for x ∈ Ou,

2 dim(πu,v)−1(x) + dim Ou ≤ dim F̃j,a, (8)

with equality if and only if u = 2(p− s)y + sz and v = u− py for some s ∈ {0, . . . , p}.
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The Lusztig datum in direction i of the element br,s is ry + sz (see Section 5.3), so for
u = 2(p − s)y + sz, the intersection cohomology sheaf on Ou with coefficients in the trivial
local system is Lb2(p−s),s,Ω. In view of Proposition 5.6, and since each stratum Ou is simply
connected, the Decomposition Theorem for semismall maps then implies equation (6).

The remainder of this section is devoted to the proof of Proposition 5.6. We have to compute
the difference ∆ between the right and left-hand sides of (8) and to show that ∆ ≥ 0. The
assertion about the smoothness and the connectedness of the fiber of πu,v will be proved on
the way.

Lemma 1.6 (c) in [36] gives dim F̃j,a = 40p2. In addition, dimEV,Ω = 48p2.

The formulas (4) (see Section 4.3) give a recipe to compute the matrices H and E with entries

hk,` = dim HomkQ(M(βk),M(β`)),

ek,` = dim Ext1
kQ(M(βk),M(β`)).

We can then find the dimension of any GV-orbit contained in EV,Ω: by Lemma 1 in [11], §3,
we have

dimEV,Ω − dim Ou = uE uT ,

where the superscript T denotes the matrix transposition.

Now we fix u and v in N15 such that |u| = 2pν and |v| = pν and we fix x ∈ Ou.

If there exists a flag V• such that (x,V•) ∈ F̃u,v, then we can consider the kQ-modules
Mk,` = (Vk/V`, x). They are related by

M0,5
∼= M1,5 ⊕

(
S⊕p2 ⊕ S⊕p4

)
and M0,4

∼= M1,3 ⊕
(
S⊕p1 ⊕ S⊕p2 ⊕ S⊕2p

3 ⊕ S⊕p4 ⊕ S⊕p5

)
,

because S2 and S4 are projective and S1, S3 and S5 are injective. Setting

s = ( 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ),
t = ( 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 1 ),

we thus have n(M1,5) = u − ps and n(M0,4) = v + pt. Further, Corollary 5.5 asserts that
u− n(M0,4)− px belongs to the N-span of the vectors wk. Denoting by W the matrix whose
lines are the vectors wk, we deduce the existence of a row vector τ = (τ1, . . . , τ17) in N17 such
that u− v − py = τ W .

The choice of a flag V• in the fiber (πu,v)−1(x) can be decomposed in three steps: first the
choice of V1, then the choice of V3, and finally the choice of V2 and V4.

We thus begin with V1. The vector space V1
2 has codimension p in V2 and contains the

image of xh1 and xh2 . To choose it therefore amounts to choose a codimension p subspace in
a space of dimension u1; in other words, to a point in a Grassmannian of dimension p(u1− p).
Likewise the choice of V1

4 amounts to the choice of a point in a Grassmannian of dimension
p(u2− p). (If p is larger than u1 or u2, then the fiber (πu,v)−1(x) is empty.) The choice of V1

therefore contributes a smooth connected variety of dimension p(u1 + u2)− 2p2 to the fiber.

Now suppose that V1 has been chosen, and pick a kQ-module N such that n(N) = v. An
x-stable I-graded k-vector subspace V3 defines a kQ-module M1,3 = (V1/V3, x). The datum
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of a V3 such that n(M1,3) = v is equivalent to the datum of a surjective morphismM1,5 → N ,
up to composition with an automorphism of N . Surjective morphisms form an open dense
subset in HomkQ(M1,5, N) (or do not exist at all, in which case the fiber (πu,v)−1(x) is empty).
Therefore the choice of V3 contributes a smooth connected variety of dimension

dim HomkQ(M1,5, N)− dim HomkQ(N,N) = (u− ps)H vT − vH vT

to the fiber.

Lastly, we notice that the choice of V1 and V3 fully determines V2 and V4:

V2
i =

{
V3
i if i ∈ {1, 3, 5},

V1
i if i ∈ {2, 4},

V4
i =

{
0 if i ∈ {1, 3, 5},
V3
i if i ∈ {2, 4}.

In other words, the third step does not contribute further to the fiber.

Taking every contribution into account, we find that the difference between the two sides
of (8) is equal to

∆ = −4p2 + uE uT − 2pu sT − 2(u− ps− v)H vT .

In this expression, we substitute u = v + py + τ W . Then ∆ is a polynomial of degree 2 in
the variables v, p, and τ . Our aim is to show that ∆ ≥ 0 under the assumptions that the
variables are nonnegative and that |v| = pν.

The equation |v| = pν is equivalent to the system

p− (v3 + v6 + v9 + v12 + v15) = 0,

2p− (v1 + v3 + v4 + v6 + v7 + v9 + v10 + v12) = 0,

2p− (v4 + v6 + v7 + v8 + v9 + v10 + v11 + v12 + v14) = 0,

2p− (v2 + v4 + v5 + v6 + v7 + v8 + v9 + v11) = 0,

p− (v5 + v7 + v9 + v11 + v13) = 0.

We denote the left-hand sides of these equations by L1, . . . , L5, from top to bottom.

Let us write ∆ = ∆0 + ∆1 + ∆2, where ∆d collects the terms of degree d in the variables τk.
Then

∆0 = vE vT + p
[
y (E + ET )− 2s− 2(y − s)H

]
vT + p2(−4 + yE yT − 2y sT ).

If we add

L1(L1−L2+v15)+L2(L2+v1+v12)+L3(L3−L2−L4+v14)+L4(L4+v2+v11)+L5(L5−L4+v13)

to ∆0, we get, after a lengthy but straightforward calculation

(p− v1)(v12 − p) + (p− v2)(v11 − p)
+ (v3 + v4 + v6)(v6 + v8 + v9) + (v4 + v5 + v7)(v7 + v9 + v10)

+ (v2
3 − v3v8 + v2

8) + (v2
4 − v4v9 + v2

9) + (v2
5 − v5v10 + v2

10).
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The first term is(
v12 − v1

2

)2

−
(
p− v1 + v12

2

)2

≡
(
v12 − v1

2

)2

−
(
v3 + v4 + v6

2
+
v7 + v9 + v10

2

)2

(mod L2)

and the second term is(
v11 − v2

2

)2

−
(
p− v2 + v11

2

)2

≡
(
v11 − v2

2

)2

−
(
v4 + v5 + v7

2
+
v6 + v8 + v9

2

)2

(mod L4).

Modulo the relations Li, ∆0 is thus congruent to

∆̃0 =

(
v12 − v1

2

)2

+

(
v11 − v2

2

)2

−
(
v3 + v4 + v6

2
+
v7 + v9 + v10

2

)2

−
(
v4 + v5 + v7

2
+
v6 + v8 + v9

2

)2

+ (v3 + v4 + v6)(v6 + v8 + v9) + (v4 + v5 + v7)(v7 + v9 + v10)

+

(
v3 − v8

2
+
v4 − v9

2

)2

+

(
v4 − v9

2
+
v5 − v10

2

)2

+

(
v3 − v8

2
− v5 − v10

2

)2

+

(
v3 − v8

2
− v4 − v9

2
+
v5 − v10

2

)2

+

(
v3 + v8

2

)2

+

(
v4 + v9

2

)2

+

(
v5 + v10

2

)2

.

A final transformation yields

∆̃0 =

(
v12 − v1

2

)2

+

(
v11 − v2

2

)2

+
1

2

(
v6 − v7 +

v3 − v5 + v8 − v10

2

)2

+
1

2

(
v3 − v8

2
− v5 − v10

2

)2

+

(
v3 − v8

2
− v4 − v9

2
+
v5 − v10

2

)2

+

(
v3 + v8

2

)2

+

(
v4 + v9

2

)2

+

(
v5 + v10

2

)2

.

We now turn to

∆1 = τ W (E + ET − 2H)vT + p τ W
[
(E + ET )yT − 2sT

]
.

We add

τ1(L1 − 2L2 + L3) + τ2(L3 − 2L4 + L5)− τ3L1 − (τ4 + τ5)L2

− (τ6 + τ7 + τ8 + τ9)L3 − (τ10 + τ11)L4 − τ12L5 − τ16(L3 + L4)/4− τ17(L2 + L3)/4
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to ∆1, and write the result ∆̃1 in the form τ dT . The components of d are given below.

d1 = v1 + v12 d4 = v1 + v4 + v8 + v11 + 2v12 + v14 + v15

d2 = v2 + v11 d5 = v1 + v8 + v9 + v11 + 2v12 + v14 + v15

d3 = v8 + v11 + v12 + v14 + v15 d6 = v8 + v9 + 2v11 + 2v12 + 2v14 + v15

d7 = v4 + v8 + 2v11 + 2v12 + 2v14 + v15

d12 = v10 + v11 + v12 + v13 + v14 d8 = v4 + v10 + 2v11 + 2v12 + v13 + 2v14

d13 = −v8 + v13 d9 = v9 + v10 + 2v11 + 2v12 + v13 + 2v14

d14 = −v9 + v14 d10 = v2 + v9 + v10 + 2v11 + v12 + v13 + v14

d15 = −v10 + v15 d11 = v2 + v4 + v10 + 2v11 + v12 + v13 + v14

d16 =
v2

4
+
v4

2
+
v5

4
− v6

2
+
v7

2
+
v8

2
− v9

2
+
v10

4
+

3v11

2
+
v12

4
+

5v14

4

d17 =
v1

4
+
v3

4
+
v4

2
+
v6

2
− v7

2
+
v8

4
− v9

2
+
v10

2
+
v11

4
+

3v12

2
+

5v14

4

We thus have

∆̃1 ≥
(
τ6 + τ7 + τ16

2
− τ13

)
v8 −

(
τ16 + τ17

2
+ τ14

)
v9 +

(
τ8 + τ9 + τ17

2
− τ15

)
v10

− τ16 − τ17

2

(
v6 − v7 +

v3 − v5 + v8 − v10

2

)
.

Last, ∆2 = τ W EW T τT is the quadratic form given by

∆2 = τ2
1 + τ2

2 + τ2
3 + τ2

4 + τ2
5 + τ2

6 + τ2
7 + τ2

8 + τ2
9 + τ2

10 + τ2
11 + τ2

12 + τ2
13 + τ2

14 + τ2
15

+ τ2
16 + τ2

17 + τ1τ3 + τ1τ4 + τ1τ5 + τ1τ6 + τ1τ7 + τ1τ14 + τ1τ15 + τ1τ16 + τ2τ8

+ τ2τ9 + τ2τ10 + τ2τ11 + τ2τ12 + τ2τ13 + τ2τ14 + τ2τ17 + τ3τ4 + τ3τ5 + τ3τ14

+ τ3τ16 + τ4τ5 + τ4τ7 − τ4τ9 − τ4τ10 + τ4τ15 + τ5τ6 − τ5τ8 − τ5τ11 + τ5τ14

+ τ5τ15 + τ6τ7 − τ6τ8 − τ6τ11 − τ6τ13 + τ6τ14 + τ6τ15 + τ6τ16 − τ7τ9 − τ7τ10

− τ7τ13 + τ7τ15 + τ7τ16 + τ8τ9 + τ8τ11 + τ8τ13 − τ8τ15 + τ8τ17 + τ9τ10 + τ9τ13

+ τ9τ14 − τ9τ15 + τ9τ17 + τ10τ11 + τ10τ12 + τ10τ13 + τ10τ14 + τ11τ12 + τ11τ13

+ τ12τ14 + τ12τ17 − τ13τ16 + τ14τ16 + τ14τ17 − τ15τ17,

and therefore

∆2 ≥ τ2
1 + τ2

2 + τ2
3 + τ2

4 + τ2
5 + τ2

6 + τ2
7 + τ2

8 + τ2
9 + τ2

10 + τ2
11 + τ2

12 + τ2
13 + τ2

14 + τ2
15

+ τ2
16 + τ2

17 − τ13(τ6 + τ7 + τ16)− τ15(τ8 + τ9 + τ17)− (τ4 + τ7)(τ9 + τ10)

− (τ5 + τ6)(τ8 + τ11) + τ16

(
τ14 +

τ6 + τ7

2

)
+ τ17

(
τ14 +

τ8 + τ9

2

)
+ (τ4τ5 + τ5τ6 + τ6τ7 + τ4τ7) + (τ8τ9 + τ9τ10 + τ10τ11 + τ8τ11).
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Modulo the relations Li, ∆ is congruent to ∆̃ = ∆̃0 + ∆̃1 + ∆2, and we have

∆̃ ≥
(
v12 − v1

2

)2

+

(
v11 − v2

2

)2

+
1

2

(
v6 − v7 +

v3 − v5 + v8 − v10

2
− τ16 − τ17

2

)2

+
1

2

(
v3 − v8

2
− v5 − v10

2

)2

+

(
v3 − v8

2
− v4 − v9

2
+
v5 − v10

2

)2

+
v2

3 + v2
4 + v2

5

4
+
v3v8 + v4v9 + v5v10

2
+

(
v8

2
+
τ6 + τ7 + τ16

2
− τ13

)2

+

(
v9

2
− τ16 + τ17

2
− τ14

)2

+

(
v10

2
+
τ8 + τ9 + τ17

2
− τ15

)2

+
(τ16 − τ17)2

8
+
τ2

16 + τ2
17

4
+ τ2

1 + τ2
2 + τ2

3 + τ2
12 +

(
τ6 + τ7

2

)2

+

(
τ8 + τ9

2

)2

+
1

2

(
(τ4 + τ5)2 + (τ10 + τ11)2 + (τ4 + τ7 − τ9 − τ10)2 + (τ5 + τ6 − τ8 − τ11)2

)
≥ 0.

This concludes the proof of equation (8).

To finish the proof of Proposition 5.6, it remains to study the case of equality. From the
minoration above, one easily sees that ∆̃ = 0 is possible only if all the τk vanish, except
perhaps τ13, τ14 and τ15, and if

v1 = v12, v2 = v11, v3 = v4 = v5 = 0, v6 = v7,

v8 = v9/2 = v10, v8 = 2τ13, v9 = 2τ14, v10 = 2τ15.

Substituting into Li = 0, we then get

v1 = v2 = v11 = v12, v8 = v9 = v10 = v13 = v14 = v15 = 0, p = v1 + v6, τ = 0.

Therefore v = (p− 2v6)y + v6z and u = v + py = 2(p− v6)y + v6z, as desired.

The proof of the converse (that is, if u and v have the required form, then F̃u,v 6= ∅ and (8)
in an equality) is easy and left to the reader.

6 The canonical basis and the quantum Frobenius morphism

In this section, we study the compatibility of the quantum Frobenius morphism and its split-
ting with bases of canonical type. These morphisms require the use of the quantum group,
so from now on, f denotes the quantum deformation of the algebra defined in Section 2.2. In
addition, we also need a basis that lifts to the quantum group and can be specialized to a
quantum root of unity. This invites us to restrict our attention to the canonical basis.
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6.1 Background on the quantum Frobenius morphism

We follow the notation set up in Lusztig’s book [38], and in particular assume that the con-
ditions (a) and (b) in Section 35.1.2 of that book hold true.

Let (di) be a family of positive integers such that the matrix (diai,j) is symmetric. Let v be
an indeterminate. For n ∈ N and i ∈ I, we define the Gaussian number [n]i and the Gaussian
factorial [n]i! as in Section 3.1. From these data, we define f as the Q(v)-algebra generated
by elements θi, for i ∈ I, submitted to the relations (1), in which the ordinary factorials p!
and q! are replaced by their Gaussian counterparts [p]i! and [q]i!.

We set A = Z[v, v−1]. It is known that the A-subalgebra of f generated by the divided powers
θ

(n)
i = θni /[n]i! is an A-form Af in f . We can then specialize the parameter v to any invertible
element in a commutative ring R by a base change R ⊗A Af ([38], Section 31.1). Thus for
instance, the algebra f from Section 2.2 is the specialization over Q at the value v = 1. The
canonical basis is in fact an A-basis of Af , so it induces an R-basis in each specialization Rf .

Let ` be a positive integer. For i ∈ I, let `i be the smallest positive integer such that
`idi ∈ `Z. We define a new symmetrizable Cartan matrix A∗ = (a∗i,j) by a∗i,j = ai,j`j/`i;
setting d∗i = di`

2
i , the matrix (d∗i a

∗
i,j) is symmetric. We then have a Q(v)-algebra f∗ and an

A-form Af
∗. The simple roots and coroots for the starred Cartan datum are chosen to be

α∗i = `iαi and (α∗i )
∨ = α∨i /`i.

Let Φ2` be the 2`-th cyclotomic polynomial, and let R = Q[ζ]/(Φ2`(ζ)). Let Rf and Rf
∗ be the

specializations of f and f∗ over R at the value v = ζ. There is then an algebra homomorphism
Fr` : Rf → Rf

∗ that maps the generator θ(n)
i to θ

(n/`i)
i if n is a multiple of `i and to 0

otherwise; this morphism is called the quantum Frobenius map. In the other direction, there
is an algebra homomorphism Fr′` : Rf

∗ → Rf that maps θ(n)
i to θ(n`i)

i ; this map is called the
quantum Frobenius splitting.

Let B(−∞)∗ be the analogue of the crystal B(−∞) for the Cartan matrix A∗ and the algebra
f∗. By construction, the Frobenius splitting Fr′` has some kind of compatibility with the
conditions (i)–(iii) in the definition of a basis of canonical type. One may thus expect the
existence of a map S` : B(−∞)∗ → B(−∞) that reflects the action of Fr′` at the level of the
crystals. Such a map S` has been constructed by Kashiwara ([27], Theorems 3.2 and 5.1); it
satisfies

wt(S`(b)) = wt(b), εi(S`(b)) = `iεi(b), ϕi(S`(b)) = `iϕi(b),

S`(ẽib) = ẽ`ii S`(b), S`
(
f̃ib
)

= f̃ `ii S`(b).

These equations take into account the convention that the simple roots and coroots for the
starred root datum are given by α∗i = `iαi and (α∗i )

∨ = α∨i /`i.
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6.2 Compatibility up to a filtration

As promised, we now study the compatibility of Fr` and Fr′` with the canonical bases of Rf
and Rf

∗. The best compatibility we could hope for would be

Fr`(G(b′)) =

{
G(b′′) if b′ = S`(b

′′)

0 if b′ /∈ imS`
and Fr′`(G(b′′)) = G(S`(b

′′)), (9)

where G(b′) and G(b′′) denote the elements in the canonical bases of Rf and Rf
∗ that corre-

spond to b′ ∈ B(−∞) and b′′ ∈ B(−∞)∗.

This property holds true in types A1, A2, A3 and B2. I owe this nice observation to Littelmann,
who checked it using the explicit formulas for the canonical basis given by Lusztig ([35],
Section 3.4) and Xi [49, 50]. Alas, (9) fails in types A5 and D4, as we will see in Section 6.3.

One can however hope to restore the compatibility by working with filtrations, so as to be
able to neglect undesired terms in the expansion of Fr`(G(b′)) and Fr′`(G(b′′)). To this aim,
we must study how these terms compare with the expected one.

The next proposition is a crude result, whose proof relies solely on the property that the
canonical basis is of canonical type.

Proposition 6.1 Let ` ≥ 1 and let (b′, b′′) ∈ (B(−∞)∗)2.

(i) In order that G(b′′) actually occurs in the expansion of Fr`(G(S`(b
′))) on the canonical

basis of Rf∗, it is necessary that b′ ≤str b
′′. Moreover, G(b′) occurs with coefficient 1 in

the expansion of Fr`(G(S`(b
′))).

(ii) In order that G(S`(b
′)) actually occurs in the expansion of Fr′`(G(b′′)) on the canonical

basis of Rf , it is necessary that b′′ ≤str b
′. Moreover, G(S`(b

′′)) occurs with coefficient 1
in the expansion of Fr`(G(b′′)).

Proof. To avoid confusion with the star in the notation f∗, it will be convenient to denote
duality with a superscript ∨. Thus (Rf)

∨ = HomR(Rf , R) and (Rf
∗)∨ = HomR(Rf

∗, R). The
elements in the dual canonical bases of these algebras are denoted by G(b)∨, where b is in
B(−∞) or in B(−∞)∗, respectively.

Let ` ≥ 1 and let (b, b′′) ∈ B(−∞)×B(−∞)∗. Choose i ∈ I and set k = bϕi(b)/`ic, the largest
integer smaller than or equal to ϕi(b)/`i. By Theorem 14.3.2 in [38], there are elements xn ∈ Rf
such that

θ
(ϕi(b))
i G

(
f̃max
i b

)
= G(b) +

∑
n>ϕi(b)

θ
(n)
i xn.

Applying Fr` to this equation, we obtain that modulo θk+1
i Rf

∗,

Fr`(G(b)) ≡

{
θ

(k)
i Fr`

(
G
(
f̃max
i b

))
if ϕi(b) = k`i,

0 otherwise.
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Thus, if G(b′′) actually occurs in the expansion of Fr`(G(b)) on the canonical basis of Rf∗,
then either ϕi(b′′) ≥ k + 1, or ϕi(b) = k`i and ϕi(b

′′) = k; in any case, ϕi(b′′) ≥ ϕi(b)/`i.
Moreover, when ϕi(b′′) = ϕi(b)/`i,〈

G(b′′)∨, F r`(G(b))
〉

=
〈
G(b′′)∨, θ

(k)
i Fr`

(
G
(
f̃max
i b

))〉
=
〈
G
(
f̃max
i b′′

)∨
, F r`

(
G
(
f̃max
i b

))〉
.

Now let b′ ∈ B(−∞)∗. Applying the previous reasoning to b = S`(b
′) and using that σ

commutes with Fr` and with S`, we eventually obtain:

• If
〈
G(b′′)∨, F r`(G(S`(b

′)))
〉
6= 0, then ϕi(b′′) ≥ ϕi(b′) for each i ∈ I.

• If (c′, c′′) ∈ (B(−∞)∗)2 is such that (b′, b′′) ≈ (c′, c′′), then〈
G(b′′)∨, F r`(G(S`(b

′)))
〉

=
〈
G(c′′)∨, F r`(G(S`(c

′)))
〉
.

This proves (i).

The proof of (ii) is completely analogous. �

Suppose now that the Cartan matrix A is of finite type and adopt the notation of Section 3.1.
Observing that the Weyl group for the Cartan matrices A and A∗ are the same, we can use
the same i ∈ X to construct a PBW basis in f and in f∗. Abusing slightly the notation, we
denote the elements in these bases by E(n)

i and ∗E(n)
i , for n ∈ NN — the abuse is that in

Section 3.1, E(n)
i was a basis of Uq(n+), which we now transport to f . By Section 7.1 in [37],

these bases are in fact bases of Af and Af∗, so they can be specialized to Rf and Rf
∗. Lastly,

we define the map Si,` : (n1, . . . , nN ) 7→ (`i1n1, . . . , `iNnN ) from NN to itself, and we denote
by ≤i and ≤∗i the orders on NN relative to the Cartan matrices A and A∗, respectively.

Lemma 6.2 Let ` ≥ 1 and let i ∈X .

(i) The diagram

B(−∞)∗
S` //

ni

��

B(−∞)

ni

��

NN
Si,`

// NN

commutes.

(ii) Let m and n in NN . Then n ≤∗i m if and only if Si,`(n) ≤i Si,`(m).

(iii) Let n ∈ NN . If n does not belong to the image of Si,`, then Fr`
(
E

(n)
i

)
= 0. Otherwise,

Fr`
(
E

(n)
i

)
= ∗E

(m)
i , where m = S−1

i,` (n).

(iv) Let m and n in NN . If E(m)
i actually occurs in the expansion of Fr′`

(∗E(n)
i

)
on the

PBW basis of Rf , then m ≥i Si,`(n).
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Proof. Given (i, j) ∈ X 2, let Rj
i be the composition NN bi−→ B(−∞)

nj−→ NN and let ∗Rj
i be

the composition NN bi−→ B(−∞)∗
nj−→ NN . Using the explicit formulas for these piecewise

linear bijections Ri,j and ∗Ri,j (see Section 12.6 in [37] and Theorem 5.2 and Proposition 7.1
in [9]), one checks that the diagram

NN
Si,`

//

∗Rj
i
��

NN

Rj
i
��

NN
Sj,`

// NN

commutes. From there, one shows assertion (i) by induction on the weight, using the same
arguments as those used in [9], proof of Theorem 5.7 (see in particular p. 112, l. 5–12).

Assertion (ii) follows from the definitions by a straightforward computation.

Assertion (iii) comes from the fact that the quantum Frobenius morphism Fr` is compatible
with Lusztig symmetries T ′i,−1 ([38], Section 41.1.9), which are the main ingredient in the
construction of the PBW bases.

To prove (iv), one begins with the particular case where all entries of n but one vanish.
Certainly then S`(n) has the same property, so every m ∈ NN such that |m| = |Si,`(n)|
satisfies m ≥i Si,`(n). This obvioulsy implies the desired property. The general case then
follows by induction on the number of nonzero entries in n, using Lemma 3.4 and the fact
that Fr′` is a morphism of algebras. �

The next proposition states that the compatibility condition (9) can be restored by filtering f
and f∗ with the help of ≤pol. It thus tells us that S` is the crystal version of Fr′`.

Proposition 6.3 Let ` ≥ 1 and let (b′, b′′) ∈ B(−∞)×B(−∞)∗.

(i) If G(b′′) actually occurs in the expansion of Fr`(G(b′)) on the canonical basis of Rf∗,
then b′ ≤pol S`(b

′′).

(ii) If G(b′) actually occurs in the expansion of Fr′`(G(b′′)) on the canonical basis of Rf , then
S(b′′) ≤pol b

′.

Proof. This follows from Proposition 3.1, Corollary 3.6, and Lemma 6.2 by routine arguments.
�

Remark 6.4. In the Hall algebra model for quantum groups, the natural basis of the Hall
algebra corresponds to a PBW basis (see [45] for a survey). The compatibility of the quantum
Frobenius morphism with the PBW bases (Lemma 6.2 (iii)) then leads to an interpretation
of Fr` within the framework of Hall algebras, which can be used as an alternate definition of
Fr` [40]. Conversely, one can adopt this Hall algebra approach to show the compatibility of
Fr` with the automorphisms T ′i,−1, using Theorem 6 in [45] or Theorem 13.1 in [48].
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6.3 Counterexamples in type A5 and D4

As mentioned at the beginning of Section 6.2, counterexamples to (9) do exist in type A5

and D4.

Let us take di = 1 for each i, whence `i = ` and A∗ = A, and let us adopt the notation of
Section 5.1. Since

Fr`(ξp) =

{
ξp/` if ` divides p,
0 otherwise,

Fr`(ηp) =

{
ηp/` if ` divides p,
0 otherwise,

Fr′`(ξp) = ξ`p, F r′`(ηp) = η`p,

Proposition 5.1 and Theorem 5.2 (ii) lead to

Fr`(G(bp,0)) =

{
G(bp/`,0) if ` divides p,
0 otherwise,

Fr2(G(b0,1)) +G(b1,0) = 0,

F r2(G(b0,2)) + Fr2(G(b2,1)) = G(b0,1),

F r4(G(b0,2)) + Fr4(G(b2,1)) +G(b1,0) = 0,

and to

Fr′`(G(bp,0)) = G(b`p,0),

F r′`(G(b0,1)) = G(b0,`) +G(b2,`−1) +G(b4,`−2) + · · ·+G(b2`−2,1).

In addition, in the case (III), calculations made by a computer running GAP and its package
QuaGroup [15, 13] lead to further relations in Af . Since all di = 1, we may drop the subscript i
in the notation for the Gaussian numbers. Let us introduce a linear operator Ri,` : Af → Af by

Ri,`(x) = θ
(`−1)
i xθi − [`− 2] θ

(`)
i x,

where i ∈ {1, 3, 4} and ` ∈ N. Then

θ
(2)
2

(
R1,3 ◦R3,3 ◦R4,3

(
θ

(2)
2

))
θ

(2)
2 = G(b1,1) + [2]2G(b3,0),

θ
(3)
2

(
R1,4 ◦R3,4 ◦R4,4

(
θ

(2)
2

))
θ

(3)
2 = G(b2,1) + [3]2G(b4,0).

Using the congruences [3]2 ≡ 1 modulo Φ4 or Φ8 and [2]2 ≡ 1 (mod Φ6), we deduce

Fr2(G(b2,1)) +G(b2,0) = 0,

F r3(G(b1,1)) +G(b1,0) = 0,

F r4(G(b2,1)) +G(b1,0) = 0,

whence
Fr2(G(b0,2)) = G(b0,1) +G(b2,0).
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