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Abstract

To an abelian category A of homological dimension one satisfying certain finiteness

conditions, one can associate an algebra, called the Hall algebra. Kapranov studied

this algebra when A is the category of coherent sheaves over a smooth projective curve

defined over a finite field, and observed analogies with quantum affine algebras. We

recover here in an elementary way his results in the case when the curve is the projec-

tive line.

Résumé

A toute catégorie abélienne A de dimension homologique égale à un vérifiant cer-

taines conditions de finitude, on peut associer une algèbre appelée l’algèbre de Hall.

Kapranov a étudié cette algèbre lorsque A est la catégorie des faisceaux cohérents sur

une courbe projective lisse définie sur un corps fini et a observé des analogies entre

l’algèbre de Hall et les algèbres affines quantiques. Nous redémontrons de manière

élémentaire ses résultats dans le cas où la courbe est la droite projective.

Introduction

The combinatorial lattice structure of objects in an abelian category A of homological dimen-
sion one satisfying certain finiteness conditions may be encoded in an algebraic structure,
called the Hall algebra of A. Hall’s original results, as described in Chapters II and III
of Macdonald’s book [14], concern the category of modules of finite length over a discrete
valuation ring with finite residue field.

A decade ago Ringel studied the Hall algebra of the category of finite-dimensional repre-
sentations over a finite field Fq of a quiver whose underlying graph Γ is a Dynkin diagram of
type A, D, or E. He showed that a suitable modification of this Hall algebra yields an alge-
bra isomorphic to the “positive part” of Drinfeld and Jimbo’s quantized enveloping algebra
associated to Γ and specialized at the value q of the parameter (see [9] or Section 2 of [17]
for an introduction to Ringel’s results).

More recently, Kapranov investigated the case when A is the category of coherent sheaves
over a smooth projective curve X defined over Fq. In a remarkable paper [13], he used
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unramified automorphic forms, Eisenstein series, and L-functions to carry the geometrical
properties of X into the algebraic structure of the Hall algebra of A. This allowed him to
observe some striking similarities between such a Hall algebra and Drinfeld’s loop realization
of the quantum affine algebras [7]. In the case when X is the projective line P1(Fq), Kapranov
deduced from his general constructions an isomorphism between a certain subalgebra of the
Hall algebra and a certain “positive part” of the (untwisted) quantum affine algebra Uq(ŝl2).

The main objective of this article is to recover Kapranov’s isomorphism for the projective
line in a more elementary way. Avoiding any use of adelic theory or of automorphic forms,
we compute directly the structure constants of the Hall algebra of the category of coherent
sheaves over P1(Fq). As is well known (see the references given in Remark 5.2.7 of [13]), this
category has the same derived category as the category of modules over a tame hereditary
algebra; this may be the reason why our computations are feasible. Our approach moves
us away from the analogy that motivated Kapranov, but hopefully makes his results more
accessible and concrete. We also observe that Kapranov’s isomorphism yields a natural
definition for the vectors of the Poincaré-Birkhoff-Witt basis of Uq(ŝl2) that Beck, Chari,
and Pressley introduced in [2].

The paper is organized as follows. In Section 1 we give the definitions of the Hall algebra
and of its Ringel variant associated to an abelian category satisfying adequate conditions.
In Section 2 we recall basic facts on the category A of coherent sheaves on the projective
line P1(k) over an arbitrary field k and we carefully analyse the extensions between certain
“elementary” objects. This leads in Section 3.1 to Theorem 10, which provides many structure
constants of the Hall algebra of A when k = Fq. Now every coherent sheaf can be written
as the direct sum of its torsion subsheaf and of a locally free subsheaf. The existence of
such decompositions gives rise to a factorization of the Hall algebra as a semidirect product
of two subalgebras, denoted below by B1 and H(Ator), and related to locally free coherent
sheaves and torsion sheaves, respectively. By an averaging process which takes into account
all closed points of P1(Fq), we define in Sections 3.2 and 3.3 a subalgebra B0 of H(Ator).

In the final Section 4, we recall the definition of the quantum affine algebra Uq(ŝl2) and we
relate it to the subalgebra of the Hall algebra generated by B0 and B1.

Our interest in this subject grew out of a seminar held in Strasbourg in 1996–97 and
aimed at understanding Kapranov’s paper [13]. We are grateful to Henri Carayol, Flo-
rence Lecomte, Louise Nyssen, Georges Papadopoulo, and Marc Rosso for their enlightening
lectures. The first author acknowledges the financial support of the French Ministère de
l’Education Nationale, de la Recherche et de la Technologie and of the CNRS.

1 Hall algebras

1.1 Initial data

Let k be a field. Recall that an abelian category A is said to be k-linear if the homomorphism
groups in A are endowed with the structure of k-vector spaces, the composition of morphisms
being a k-bilinear operation. The extension groups in A, which can be defined even if A does
not have enough injectives or projectives (see [3], § 7, n◦ 5), are then automatically k-vector
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spaces. In the sequel, we will consider abelian k-linear categories A satisfying the following
finiteness conditions (H1)–(H3):

(H1) The isomorphism classes of objects in A form a set Iso(A).

(H2) For all objects V , W in A, the k-vector spaces HomA(V,W ) and Ext1
A
(V,W ) are

finite-dimensional.

(H3) The second extension group Ext2
A
(V,W ) vanishes for all objects V , W in A.

The isomorphism class of an object V in A will be denoted by [V ] ∈ Iso(A), and the
isomorphism class of the zero object by [0]. It will be convenient to choose a preferred object
M(α) in each isomorphism class α ∈ Iso(A). Condition (H2) implies that A satisfies the
Krull-Schmidt property: each object V in A can be written as a direct sum W1 ⊕· · ·⊕Wℓ of
indecomposable objects, the isomorphism classes of the objects Wi and their multiplicities
in the decomposition being uniquely determined. Condition (H3) ensures that short exact
sequences in A give rise to 6-term exact sequences of k-vector spaces involving the bifunctors
HomA(−,−) and Ext1

A
(−,−).

The Grothendieck group of the category A is, by definition, the abelian group K(A)
presented by the generators d(α), where α ∈ Iso(A), together with the relations d(β) =
d(α) + d(γ) whenever there is a short exact sequence

0 −→ M(γ) −→ M(β) −→ M(α) −→ 0.

If V is an object in A, we will write d(V ) instead of d([V ]) to denote the image of its class
in the Grothendieck group. There exists a unique biadditive form 〈·, ·〉 on K(A), called the
Euler form, such that for all objects V , W of A,

〈d(V ), d(W )〉 = dim HomA(V,W ) − dim Ext1
A
(V,W ).

Among the categories A that we will consider, certain enjoy an additional finiteness
condition (H4), namely:

(H4) Each object in A has a finite filtration with simple quotients (Jordan-Hölder series).

If A satisfies Condition (H4), then K(A) is the free abelian group on the symbols d(α), for
all isomorphism classes α ∈ Iso(A) of simple objects.

1.2 Hall numbers

In the remainder of Section 1, the field k will be the finite field Fq with q elements.
Given an isomorphism class α ∈ Iso(A), we denote the order of the automorphism group

AutA(M(α)) by gα.
Given three isomorphism classes α, β, γ ∈ Iso(A), we denote by φβ

αγ the number of sub-
objects X ⊆ M(β) such that X ∈ γ and M(β)/X ∈ α. To be more precise, let S(α, β, γ) be
the set of pairs

(f, g) ∈ HomA(M(γ),M(β)) × HomA(M(β),M(α))
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such that the sequence

0 −→ M(γ)
f

−→M(β)
g

−→M(α) −→ 0

is exact. The group AutA(M(α)) × AutA(M(γ)) acts freely on S(α, β, γ), and φβ
αγ is by

definition the cardinality of the quotient space S(α, β, γ)/(AutA(M(α)) × AutA(M(γ))).
The integer φβ

αγ is called a Hall number. It is zero if d(β) 6= d(α) + d(γ). Hall numbers
have the following properties.

Proposition 1 If α, β, γ, δ ∈ Iso(A) are isomorphism classes, then

(i) there are only finitely many isomorphism classes λ such that φλ
αγ 6= 0;

(ii) if (H4) holds, there are only finitely many pairs (ρ, σ) ∈ Iso(A)2 such that φβ
ρσ 6= 0;

(iii) φβ
α[0] = δαβ and φβ

[0]γ = δβγ (Kronecker symbols);

(iv)
∑

λ∈Iso(A)

φλ
αβφδ

λγ =
∑

λ∈Iso(A)

φδ
αλφ

λ
βγ;

(v) the number qdimHomA(M(α),M(γ)) φβ
αγ gαgγ/gβ is an integer;

(vi)
∑

λ∈Iso(A)

φλ
αγ gαgγ/gλ = q−〈d(α),d(γ)〉;

(vii) if M(α) and M(γ) are indecomposable objects and M(β) is a decomposable object, then
q − 1 divides φβ

αγ − φβ
γα;

(viii) the following formula holds:

gαgβgγgδ

∑

λ∈Iso(A)

φλ
αβ φλ

γδ/gλ =
∑

ρ,σ,τ,υ∈Iso(A)

q−〈d(ρ),d(υ)〉 φα
ρσ φβ

τυ φγ
ρτ φδ

συ gρgσgτgυ.

In the above statement, the sums in Items (iv), (vi), and (viii) involve a finite number of
non-zero terms.

Proof. Assertion (i) holds because the extension group Ext1
A
(M(α),M(γ)) is a finite set.

Conditions (H2) and (H4) imply that the map d : Iso(A) → K(A) has finite fibers; Asser-
tion (ii) follows from this fact. Assertion (iii) is trivial. Assertion (iv) is Proposition 1 in [16].
Items (v) and (vi) are consequences of the proposition in Section II.4 of [19] (see also [14],
p. 221). To prove (vii), it suffices to follow the proof of Proposition 1 in [17]. Finally, to
prove (viii), one can adapt the proof of Theorem 2 in [8] to the present framework. ¤
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1.3 The Hall algebra and the Ringel-Green bialgebra

We will use Z̃ = Z[v, v−1]/(v2 − q) as the ground ring. Let H(A) be the free Z̃-module on
the symbols α, where α runs over Iso(A). Items (i), (iii), and (iv) of Proposition 1 show that
the multiplication

α · γ =
∑

β∈Iso(A)

φβ
αγ β

endows H(A) with the structure of an associative Z̃-algebra with unit given by [0]. This
algebra is called the Hall algebra of the category A; it is graded by the group K(A), the
symbol α being homogeneous of degree d(α).

Using the Euler form on K(A) and following [15], one can twist this product and get a
new multiplication ∗ on H(A), by setting on the basis vectors

α ∗ γ = v〈d(α),d(γ)〉 α · γ.

The associative Z̃-algebra with unit that one obtains in this way is called the Ringel algebra.
If Condition (H4) holds, then one can define a coproduct ∆ : H(A) → H(A) ⊗eZ H(A)

and a coünit ε : H(A) → Z̃ by

∆(β) =
∑

α,γ∈Iso(A)

v〈d(α),d(γ)〉 gαgγ

gβ

φβ
αγ (α ⊗ γ) and ε(β) = δβ[0],

for all β ∈ Iso(A). In this way, H(A) becomes a Z̃-coalgebra in view of Properties (ii)–(v)
of Proposition 1. Property (viii) of Proposition 1 implies that ∆ is an homomorphism of
algebras when one equips H(A) ⊗eZ H(A) with the following twisted product:

(α ⊗ β) ∗ (γ ⊗ δ) = v〈d(β),d(γ)〉+〈d(γ),d(β)〉 (α ∗ γ) ⊗ (β ∗ δ),

where α, β, γ, δ ∈ Iso(A). Endowed with the Ringel product ∗, the coproduct ∆, and the

coünit ε, the Z̃-module H(A) is called the twisted Ringel-Green bialgebra.

2 Coherent sheaves over the projective line

Let k be a field. In this section, we investigate the category A of coherent sheaves over the
projective line P1(k). We recall what the indecomposable objects of A are and study certain
extensions between them. This information will be used in Section 3 to determine structure
constants of the Hall algebra H(A) when k is a finite field.

2.1 Generalities on coherent sheaves on P1(k)

We put homogeneous coordinates (t : u) on P1(k). The two affine open subsets

U ′ = {(t : u) | t 6= 0} and U ′′ = {(t : u) | u 6= 0}
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cover P1(k), and the formulae z = u/t and z−1 = t/u define coordinates on U ′ and U ′′

respectively. The rings k[z] and k[z−1] are the respective rings of regular functions on U ′

and U ′′.
We will use the following convention: if A is a commutative ring, M an A-module and z

an element of A, then Mz denotes the localized A-module obtained from M by inverting z.
An analogous notation will be used for morphisms.

An object of the category A of coherent sheaves on P1(k) is a triple (M ′,M ′′, ϕ), where M ′

is a finitely generated k[z]-module, M ′′ is a finitely generated k[z−1]-module, and ϕ : M ′
z →

M ′′
z−1 is an isomorphism of k[z, z−1]-modules. A morphism in A from the coherent sheaf

(M ′,M ′′, ϕ) to the coherent sheaf (N ′, N ′′, ψ) is a pair of maps (f ′, f ′′), where f ′ : M ′ → N ′

is a k[z]-linear map and f ′′ : M ′′ → N ′′ is a k[z−1]-linear map such that ψ ◦ f ′
z = f ′′

z−1 ◦ ϕ.
One also defines in an obvious way the notions of direct sums and exact sequences in A,
so that A becomes an abelian k-linear category. This definition of A is equivalent to the
standard geometric definition that can be found, for instance, in Section II.5 of [11].

The study of coherent sheaves over a curve splits into the study of locally free sheaves
and the study of torsion coherent sheaves. In our case, a coherent sheaf F = (M ′,M ′′, ϕ)
is said to be locally free if M ′ and M ′′ are free modules over k[z] and k[z−1] respectively;
the sheaf F is said to be a torsion sheaf if M ′ is a torsion k[z]-module, which is equivalent
to a similar requirement for M ′

z, M ′′
z−1 , or M ′′. The full subcategory of A consisting of all

locally free sheaves will be denoted by Alf . The full subcategory of A consisting of all torsion
sheaves will be denoted by Ator.

The study of coherent torsion sheaves splits further into the study of torsion sheaves
whose support is a point. Let us first recall the notion of closed point.

A closed point x of P1(k) is the zero locus of an irreducible homogeneous polynomial
P ∈ k[T, U ]. If P is proportional to the polynomial T (respectively, U), then the closed
point is the point at infinity ∞ ∈ U ′′ (respectively, is the origin 0 ∈ U ′). Otherwise, x can
be viewed as the zero locus in U ′ of the irreducible polynomial P (1, z) ∈ k[z] and as the zero
locus in U ′′ of the irreducible polynomial P (z−1, 1) ∈ k[z−1]. In any case, x determines P
up to a non-zero scalar, and the degree deg x of x is defined as the degree of P .

If x belongs to the affine open set U ′ (respectively, to U ′′), one defines the local ring
OP1(k),x of rational functions regular near x as the localization of k[z] at the prime ideal
generated by P (1, z) (respectively, as the localization of k[z−1] at the prime ideal generated
by P (z−1, 1)). If x belongs to U ′ and to U ′′, then both definitions of OP1(k),x yield isomorphic
rings. We choose a generator πx of the maximal ideal of OP1(k),x (“uniformizer”), and denote
by OP1(k),x-modf the category of OP1(k),x-modules of finite length, that is, of modules that
are finitely generated and annihilated by some power of πx.

Let F = (M ′,M ′′, ϕ) be a coherent sheaf and x be a closed point, determined by the
irreducible homogeneous polynomial P , and belonging to U ′ (respectively, U ′′). The stalk
Fx of the sheaf F at x is the OP1(k),x-module obtained by localizing the k[z]-module M ′ at
the prime ideal generated by P (1, z) (respectively, the k[z−1]-module M ′′ at the prime ideal
generated by P (z−1, 1)). If x belongs to U ′ and U ′′, then both definitions are equivalent.
One says that the point x belongs to the support of F if the stalk Fx does not vanish. The
support of a torsion coherent sheaf if always a finite set of points. Given a closed point x,
we denote by A{x} the full subcategory of A consisting of all torsion sheaves with support
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included in {x}.

Proposition 2 (i) The category A is k-linear, abelian, and satisfies Conditions (H1)–(H3)
of Section 1.1. The subcategories Alf , Ator, and A{x} of A are closed under extensions.
The categories Ator and A{x} are k-linear, abelian, and satisfy Conditions (H1)–(H4) of
Section 1.1.

(ii) If F is a locally free sheaf and G is a torsion sheaf, then HomA(G,F) = Ext1
A
(F,G) = 0.

(iii) If F and G are torsion sheaves with disjoint supports, then HomA(F,G) = Ext1
A
(F,G) =

0.

(iv) Every coherent sheaf F can be written as a direct sum of a torsion sheaf and a locally
free sheaf. Every torsion sheaf can be written as a finite direct sum of sheaves whose supports
are closed points.

(v) The category Ator is the direct sum of the subcategories A{x}, where x runs over the set
of all closed points of P1(k).

(vi) Going from a sheaf to its stalk at a closed point x gives an isomorphism of categories
from A{x} to OP1(k),x-modf.

Proof. (i) The assertion about A is a standard result of algebraic geometry. It is immedi-
ate from the definitions that Alf , Ator, and A{x} are closed under extensions in A. Since
subobjects and quotients of torsion sheaves are torsion sheaves, Ator is an abelian subcate-
gory of A, and the Ext spaces between two objects in Ator are the same when computed in
A or in Ator. Therefore Ator satisfies Conditions (H1)–(H3). Finally, the simple fact that
finitely generated torsion modules over principal ideal domains have Jordan-Hölder series
implies that Ator satisfies Condition (H4). A similar argument shows that A{x} is an abelian
subcategory of A which satisfies Conditions (H1)–(H4).

(ii) Given a locally free sheaf F and a torsion sheaf G, the vanishing of HomA(G,F) is a
direct consequence of the definitions, while that of Ext1

A
(F,G) follows from Serre’s vanishing

theorem (Theorem III.5.2 (b) in [11]).

(iii) and (vi) These assertions follow from standard properties of finitely generated torsion
modules over the principal ideal domains k[z] and k[z−1].

(iv) Let F be a coherent sheaf. One can define in an obvious way the torsion subsheaf
tor(F) of F, and the quotient sheaf F/tor(F) is locally free. By Assertion (ii), the group
Ext1

A
(F/tor(F), tor(F)) vanishes. Thus the short exact sequence

0 −→ tor(F) −→ F −→ F/tor(F) −→ 0

splits and one gets the decomposition F ≃ tor(F) ⊕ (F/tor(F)), as desired in the first
assertion. The second assertion follows from the primary decomposition of finitely generated
torsion modules over the principal ideal domains k[z] and k[z−1].

(v) This follows from Assertions (iii) and (iv).
¤
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2.2 Indecomposable coherent sheaves over P1(k)

By Assertion (iv) of Proposition 2, indecomposable objects of A are either locally free or
have support in some closed point {x}.

For any n ∈ Z, we construct a locally free coherent sheaf (M ′,M ′′, ϕ) by letting M ′ = k[z],
M ′′ = k[z−1], and ϕ : k[z, z−1] → k[z, z−1] be the multiplication by z−n. As usual, this sheaf
will be denoted by O(n). A theorem of Grothendieck [10] asserts that any locally free coherent
sheaf is isomorphic to a direct sum O(n1) ⊕ · · · ⊕ O(nr) for some sequence n1 ≤ · · · ≤ nr

of uniquely determined integers. Thus the sheaves O(n) are the indecomposable locally free
coherent sheaves.

For any m,n ∈ Z, the space of homogeneous polynomials F ∈ k[T, U ] of degree n − m
is naturally isomorphic to the homomorphism space HomA(O(m),O(n)): one associates to
F the pair of maps (f ′, f ′′), where f ′ : k[z] → k[z] is the multiplication by F (1, z) and
f ′′ : k[z−1] → k[z−1] is the multiplication by F (z−1, 1).

In particular, given an irreducible homogeneous polynomial P ∈ k[T, U ] of degree d
and an integer r ≥ 1, the r-th power polynomial P r defines a morphism from O(−rd) to
O(0). The cokernel is the torsion sheaf (M ′,M ′′, ϕ), where M ′ = k[z]/(P (1, z)r), M ′′ =
k[z−1]/(P (z−1, 1)r) and ϕ is induced by the identity of k[z, z−1]. Calling x the closed point
defined by P , we denote this torsion sheaf by Or[x]; its support is {x}. Through the iso-
morphism of categories of Proposition 2 (vi), this sheaf corresponds to the OP1(k),x-module
OP1(k),x/(π

r
x). Consequently, these sheaves Or[x] are the indecomposable objects of the cate-

gory A{x}.
To deal with torsion sheaves more conveniently in the sequel, we introduce some further

notation. According to standard terminology, a partition is a non-increasing sequence of
non-negative integers with only finitely many non-zero terms: λ = (λ1 ≥ λ2 ≥ · · · ) with
λi = 0 for i big enough. The length of λ is the smallest integer ℓ ≥ 0 such that λℓ+1 = 0, and
the weight |λ| of λ is the sum of the non-zero integers λi. We also put n(λ) =

∑
i≥1(i− 1)λi,

as in [14]. The empty partition is the partition with no non-zero part; the partition with r
non-zero parts, all equal to 1, is denoted by (1r); the partition with one non-zero part, equal
to r, is denoted by (r). Finally, given a closed point x and a partition λ = (λ1 ≥ λ2 ≥ · · · )
of length ℓ, we define the torsion sheaf

Oλ[x] = Oλ1[x] ⊕ · · · ⊕ Oλℓ[x].

For instance, O(1r)[x] =
(
O[x]

)⊕r
and O(r)[x] = Or[x].

2.3 The Grothendieck group and the Euler form

We define the rank and the degree of an indecomposable sheaf by

rk O(n) = 1, deg O(n) = n, rk Or[x] = 0, and deg Or[x] = r deg x.

Since every coherent sheaf can be written in an essentially unique way as a sum of inde-
composable sheaves, we may extend additively the notions of rank and degree to arbitrary
coherent sheaves. It is well-known from algebraic geometry that the rank and degree maps
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factor through the Grothendieck group K(A), defining a isomorphism of abelian groups
K(A) → Z2 by

d(F) 7→ (rk F, deg F).

Proposition 3 The Euler form on K(A) is given for all coherent sheaves F and G by

〈d(F), d(G)〉 = rk F rk G + rk F deg G − deg F rk G. (1)

Proof. Using the Riemann-Roch formula (Theorem IV.1.3 in [11]) and standard results of
sheaf cohomology (Propositions II.5.12, III.6.3 (c), and III.6.7 in [11]), we obtain

〈d(O(m)), d(O(n))〉 = dim HomA(O(m),O(n)) − dim Ext1
A
(O(m),O(n))

= dim HomA(OP1(k),O(n − m)) − dim Ext1
A
(OP1(k),O(n − m))

= dim H0(P1(k),O(n − m)) − dim H1(P1(k),O(n − m))

= 1 + deg(O(n − m))

= 1 + n − m

= rk O(m) rk O(n) + rk O(m) deg O(n) − deg O(m) rk O(n)

for all m,n ∈ Z. This proves (1) when F and G are locally free sheaves of rank 1. Since the
classes of such sheaves generate K(A), the general case follows by the biadditivity of both
sides of (1). ¤

2.4 Some extensions of sheaves

In this section, we study in detail certain extensions in the category A. Beforehand, let us
record the following lemma, whose proof is immediate from the definitions in Section 2.2.

Lemma 4 For all m,n ∈ Z,

(i) any non-zero element in HomA(O(m),O(n)) is a monomorphism;

(ii) as a k-algebra, EndA(O(n)) ≃ k;

(iii) the k-vector space HomA(O(m),O(n)) has dimension max(0, n − m + 1);

(iv) for any closed point x and any partition λ, the k-vector space HomA(O(n),Oλ[x]) has
dimension |λ| deg x.

Our first result describes the extensions between the indecomposable locally free sheaves.
In a short exact sequence of the form

0 −→ O(m)
f

−→F
g

−→O(n) −→ 0,

the coherent sheaf F is necessarily locally free of rank 2, and so there are integers p and
q ∈ Z such that F is isomorphic to the sheaf O(p) ⊕ O(q).
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Proposition 5 Let m, n, p, q be integers, and consider a sequence of the form

0 −→ O(m)
f

−→O(p) ⊕ O(q)
g

−→O(n) −→ 0.

Let

h ∈ HomA(O(m),O(p)), j ∈ HomA(O(p),O(n)),

i ∈ HomA(O(m),O(q)), ℓ ∈ HomA(O(q),O(n)),

be defined by f = h ⊕ i and g = j ⊕ ℓ, and call H, I, J , L the homogeneous polynomials
in k[T, U ] representing h, i, j, ℓ, respectively. Then the sequence is a non-split short exact
sequence if and only if the following three conditions are satisfied:

(a) m < min(p, q), max(p, q) < n, and p + q = m + n.

(b) J and L are coprime polynomials.

(c) There is a non-zero scalar E such that H = EL and I = −EJ .

Proof. We first prove that Conditions (a), (b), and (c) are necessary. Suppose that the
sequence is exact and non-split. If one of the homomorphism h or i was the zero arrow, then
the other one would be an isomorphism since the cokernel of f is indecomposable, and the
sequence would split. Similarly, neither j nor ℓ can vanish. The four maps h, i, j, and ℓ
are thus non-zero. The fact that the sequence does not split also implies that none of these
maps is an isomorphism. In view of Lemma 4 (ii) and (iii), it follows that m < min(p, q)
and max(p, q) < n. For degree reasons we also have m + n = p + q. Therefore Condition (a)
holds.

Let us turn to Condition (b). In the unique factorization domain k[T, U ], one may con-
sider a g.c.d. D of the polynomials J and L. Since every irreducible factor of a homogeneous
polynomial is itself homogeneous (by uniqueness of the factorization), the polynomial D
is homogeneous and defines a homomorphism d ∈ HomA(O(n − deg D),O(n)). We get a
factorization

O(p) ⊕ O(q)
g

−−−−−−−→ O(n)

ց ր d

O(n − deg D)

.

Since g is surjective, so must be d. The non-zero morphism d being injective by Lemma 4 (i),
it is an isomorphism, which implies that deg D = 0. Thus J and L are coprime, and
Condition (b) holds.

Finally, the equality g ◦ f = 0 implies that HJ + IL = 0. Condition (b) and Gauss’s
lemma then imply the existence of a non-zero homogeneous polynomial E ∈ k[T, U ] such
that H = EL and I = −EJ . Since

2 deg E = deg H + deg I − deg L − deg J = (p − m) + (q − m) − (n − q) − (n − p) = 0,

E is a constant polynomial, which proves Condition (c).
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In order to prove the converse statement, we now assume that Conditions (a), (b), and
(c) are fulfilled. Over the affine subset U ′, our sequence of sheaves reads

0 −→ O(m)(U ′)
fU′=hU′⊕iU′
−−−−−−−→ O(p)(U ′) ⊕ O(q)(U ′)

gU′=jU′⊕ℓU′
−−−−−−−→ O(n)(U ′) −→ 0,

‖ ‖ ‖
k[z] k[z] ⊕ k[z] k[z]

where the maps hU ′ , iU ′ , . . . are the multiplications by H(1, z), I(1, z), . . . respectively. Con-
dition (b) implies that the polynomials J(1, z) and L(1, z) are coprime, which ensures by
Bezout’s lemma that the k[z]-linear map gU ′ is surjective. An analogous simple reasoning
based on Gauss’s lemma shows that Conditions (b) and (c) imply that ker gU ′ = im fU ′ .
Thus our sequence of sheaves is exact over the open subset U ′. A similar argument can be
used over U ′′, and we conclude that our sequence of sheaves is exact. ¤

Corollary 6 If m,n ∈ Z are integers satisfying n ≤ m + 1, then the extension group
Ext1

A
(O(n),O(m)) vanishes.

We now investigate the extensions of certain torsion sheaves by indecomposable locally
free sheaves. We begin with the following lemma.

Lemma 7 Let x be a closed point of P1(k), corresponding to an irreducible homogeneous
polynomial P ∈ k[T, U ]. Let m,n ∈ Z, let F ∈ k[T, U ] be a non-zero homogeneous polynomial
of degree n−m, and let f ∈ HomA(O(m),O(n)) be the morphism defined by F . If the support
of the cokernel of f is included in {x}, then there exists an integer r ≥ 1 such that F = P r,
up to a non-zero scalar, and one has coker f ≃ Or[x].

Proof. The polynomial F defines a morphism f̃ : O(m−n) → O(0). By unique factorization,
and up to a non-zero scalar, we can write F = P r1

1 · · ·P rt

t , for some positive integers r1, . . . , rt

and some pairwise non-proportional irreducible homogeneous polynomials P1, . . . , Pt. For
each 1 ≤ i ≤ t, let xi be the closed point of P1(k) corresponding to Pi. The homogeneous
polynomial P ri

i defines an element of HomA(O(−ri deg Pi),O(0)) whose cokernel is Ori[xi],
whence a canonical morphism gi : O(0) → Ori[xi]. A direct application of the Chinese
remainder theorem implies that the sequence

0 −→ O(m − n)
ef

−→O(0)
⊕gi
−→ ⊕t

i=1 Ori[xi] −→ 0

is exact over the affine subsets U ′ and U ′′, hence is exact. Taking the tensor product with
the locally free sheaf O(n), we get an exact sequence

0 −→ O(m)
f

−→O(n) −→ ⊕t
i=1Ori[xi] −→ 0.

Therefore, the cokernel of f is isomorphic to Or1[x1] ⊕ · · · ⊕ Ort[xt]. If the support of coker f
is included in {x}, then t = 1 and P1 = P , up to a non-zero scalar, which entails the lemma.
¤
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Proposition 8 Given a closed point x and an integer r ≥ 1, let

0 −→ O(m)
f

−→F
g

−→O(1r)[x] −→ 0

be a non-split short exact sequence of coherent sheaves. Then the middle term F is isomorphic
to O(1r−1)[x] ⊕ O(m + deg x). If we write f = h ⊕ i in this decomposition, then h = 0 and
coker i ≃ O[x].

Proof. We can write F as the direct sum of a torsion sheaf F0 and a locally free sheaf F1 of
rank 1. Write the maps f and g as h ⊕ i and j ⊕ ℓ in the decomposition F = F0 ⊕ F1. The
morphism h cannot be injective, so i cannot be zero, so i is injective (Lemma 4 (i)), and it
follows that j is injective. Thus F0 must be isomorphic to a subobject of O(1r)[x].

Under the isomorphism of categories described in Proposition 2 (vi), the sheaf O(1r)[x]

corresponds to the elementary OP1(k),x-module
(
OP1(k),x/(πx)

)⊕r
, hence to a vector space of

dimension r over the residue field OP1(k),x/(πx). This shows that F0 is isomorphic to O(1s)[x]

for some s ≤ r. In the same way, and using Lemma 7, we see that the image of ℓ is either 0
or isomorphic to O[x].

Now if the sequence is not split, then j is not an isomorphism, which rules out the case
s = r. The surjectivity of g then requires that s = r − 1, that im ℓ ≃ O[x], and that
O(1r)[x] = im j ⊕ im ℓ. The equality g ◦ f = 0 then splits into the two equalities j ◦ h = 0 and
ℓ ◦ i = 0. Since j is injective, we get h = 0 and thus coker i ≃ O[x]. Finally we compute

deg F1 = deg O(m) + deg O(1r)[x] − deg F0 = m + r deg x − s deg x = m + deg x,

which shows that F1 ≃ O(m + deg x). ¤

3 The Hall algebra of Coh(P1(Fq))

From now on, k is the finite field Fq with q elements, and A stands for the category of
coherent sheaves over P1(k). In this section, we describe the Ringel algebra H(A). Relying
on results of Section 2, we first compute some Hall numbers. Using results explained in
Chapters II and III of [14], we next investigate more closely the Ringel algebras H(A{x})
and H(Ator), which will be viewed as subalgebras of H(A). This allows us eventually to
define a certain subalgebra B of H(A), which will turn out in Section 4 to be related to the

quantum affine algebra Uq(ŝl2).

3.1 Some Hall numbers for A

We start with the following elementary combinatorial lemma.

Lemma 9 The number ϕ(a, b) of pairs (J, L) consisting of coprime homogeneous polynomi-
als in Fq[T, U ] of degrees a and b, respectively, is given by

ϕ(a, b) =

{
(q − 1)(qa+b+1 − 1) if a = 0 or b = 0,

(q − 1)(q2 − 1)qa+b−1 if a ≥ 1 and b ≥ 1.
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Proof. Let S be the set of pairs (J, L) ∈ Fq[T, U ] consisting of non-zero homogeneous poly-
nomials of degree a and b respectively. The cardinality of S is (qa+1 − 1)(qb+1 − 1). One can
also count the number of elements in S by factoring out a g.c.d. D of J and L. For a fixed
degree d ≤ min(a, b), there are (qd+1 − 1)/(q − 1) possibilities for D up to a non-zero scalar,
and we thus get the relation

(qa+1 − 1)(qb+1 − 1) =

min(a,b)∑

d=0

qd+1 − 1

q − 1
ϕ(a − d, b − d).

The lemma then follows by induction on min(a, b). ¤

For any closed point x of P1(Fq), let qx = qdeg x be the cardinal of the residue field of
the local ring OP1(Fq),x. We denote the greatest integer less than or equal to a real number
a by ⌊a⌋. The following theorem provides Hall numbers for the category A.

Theorem 10 In the Hall algebra H(A), one has the following relations:

(i) [O(m)⊕a][O(m)⊕b] =
(∏a

c=1
qb+c−1
qc−1

)
[O(m)⊕(a+b)] for every m ∈ Z and a, b ∈ N.

(ii) If F = O(n1) ⊕ · · · ⊕ O(nr) is a locally free sheaf, if m ∈ Z is strictly greater than
n1, . . . , nr, and if a is a non-negative integer, then [F][O(m)⊕a] = [F ⊕ O(m)⊕a].

(iii) If m < n, then

[O(n)][O(m)] = qn−m+1[O(m) ⊕ O(n)] +

⌊(n−m)/2⌋∑

a=1

(q2 − 1) qn−m−1 [O(m + a) ⊕ O(n − a)].

(iv) If F is a locally free sheaf and G is a torsion sheaf, then [F][G] = [F ⊕ G].

(v) If F and G are torsion sheaves with disjoint supports, then [F][G] = [F ⊕ G].

(vi) If x is a closed point, r is a positive integer, and n ∈ Z, then

[O(1r)[x]][O(n)] = [O(n + deg x) ⊕ O(1r−1)[x]] + qr
x [O(n) ⊕ O(1r)[x]].

Proof. (i) Since the extension group Ext1
A
(O(m),O(m)) vanishes by Corollary 6, any short

exact sequence of the form

0 −→ O(m)⊕b −→ F −→ O(m)⊕a −→ 0

necessarily splits, and the product [O(m)⊕a][O(m)⊕b] in H(A) is a scalar multiple of
[O(m)⊕(a+b)]. It remains to compute the corresponding Hall number. Since EndA(O(m)) ≃
Fq by Lemma 4 (ii), this Hall number is equal to the number of vector subspaces of dimension

b in a vector space of dimension a + b over Fq, namely to
(∏a

c=1
qb+c−1
qc−1

)
.
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(ii) By Corollary 6, the extension groups Ext1
A
(O(ni),O(m)) vanish. Thus any short exact

sequence of the form

0 −→ O(m)⊕a f
−→G −→ F −→ 0

splits, and the product [F][O(m)⊕a] in H(A) is a scalar multiple of [F⊕O(m)⊕a]. Let us put
G = F ⊕ O(m)⊕a in the above short exact sequence, and write f = h ⊕ i according to this
decomposition. Then h = 0, because all spaces HomA(O(m),O(ni)) vanish by Lemma 4 (iii).
It follows that i is an automorphism. The number of suitable embeddings f : O(m)⊕a → G

is therefore equal to |AutA(O(m)⊕a)|, and the Hall number we are looking for is equal to 1.

(iii) By Proposition 5, any short exact sequence of the form

0 −→ O(m)
f

−→F
g

−→O(n) −→ 0

either splits, in which case F ≃ O(m)⊕O(n), or there exists 1 ≤ a ≤ ⌊(n−m)/2⌋ such that
F ≃ O(m + a) ⊕ O(n − a).

In the first case, we write f = h ⊕ i and g = j ⊕ ℓ, where h ∈ EndA(O(m)), i, j ∈
HomA(O(m),O(n)), and ℓ ∈ EndA(O(n)). Since HomA(O(n),O(m)) = 0 by Lemma 4 (iii),
the existence of a left inverse of f requires that h should be an automorphism. Similarly,
ℓ is an automorphism. The map i may be arbitrarily chosen and then the map j should
be equal to −ℓ ◦ i ◦ h−1. Thus the set of suitable pairs (f, g) is in one-to-one correspon-
dence with AutA(O(m)) × AutA(O(n)) × HomA(O(m),O(n)), and the desired Hall number
is |HomA(O(m),O(n))| = qn−m+1. This yields the term qn−m+1[O(m) ⊕ O(n)] in the Hall
product.

In the second case, the number of epimorphisms g : F → O(n) such that ker g ≃ O(m) is
(q − 1)(q2 − 1)qn−m−1 by Proposition 5 and Lemma 9. Since |AutA(O(n))| = q − 1, the Hall

number φ
[F]
[O(n)],[O(m)] is (q2−1)qn−m−1, whence the term (q2−1) qn−m−1 [O(m+a)⊕O(n−a)]

in the Hall product.

(iv) and (v) These items follow from the vanishing of both Ext1
A
(F,G) and HomA(G,F) (see

Proposition 2 (ii) and (iii)), as in the reasoning used to prove (ii).

(vi) This follows from Proposition 2 (ii), Lemma 4 (iv), Lemma 7, and Proposition 8, with
the same reasoning as for (iii).
¤

Application 11. Let x be a closed point of P1(Fq) and let n ∈ Z. Using the relations in
Theorem 10 and the associativity of the Hall product, one obtains after some calculations

[O[x]][O(n)⊕2] = qx[O(n) ⊕ O(n + deg x)]

+ qx

(
1 −

1

q

) ⌊(deg x)/2⌋∑

a=1

[O(n + a) ⊕ O(n + deg x − a)] + qx[O(n)⊕2 ⊕ O[x]].

In particular, if deg x ≥ 2, then the Hall number φ
[O(n+a)⊕O(n+deg x−a)]

[O[x]],[O(n)⊕2] is equal to qdeg x−1(q−1)

for each 1 ≤ a ≤ deg x− 1. By an analysis similar to those of Propositions 5 and 8, one may
deduce from this the following fact, which we found not easy to prove directly:

14



If P ∈ Fq[T ] is an irreducible polynomial of degree d ≥ 2 and if 1 ≤ a ≤ d − 1, then there
are exactly qd−1(q − 1)2 quadruples (H, I, J, L) ∈ Fq[T ]4 consisting of polynomials of degree
a, d − a, a − 1, d − a − 1, respectively, such that HI − JL = P .

3.2 The Hall subalgebras H(A{x}) and H(Ator)

The information provided by Theorem 10 is not sufficient to compute all products in H(A).
For instance, the elements [Or[x]] do not appear in its statement. More generally, it remains
to understand how one can express the elements [Oλ[x]] in terms of the elements [O(1r)[x]].

Let us fix a closed point x of P1(Fq). The subcategory A{x} of A is k-linear, abelian, and
satisfies Conditions (H1)–(H3) of Section 1.1. We can therefore consider the Hall algebra
H(A{x}). Since the category A{x} is closed under extensions in A, the algebra H(A{x}) can

be viewed as the subalgebra of H(A) spanned over Z̃ by the isomorphism classes of objects
in A{x}. Note that there is no difference between the Hall product · and the Ringel product
∗ on H(A{x}) since the Euler form vanishes on K(A{x}) by Proposition 3.

To simplify the notation, we will set ĥr,x =
∑

|λ|=r[Oλ[x]], where the sum runs over

all partitions of weight r. The ring of symmetric polynomials over the ground ring Z̃ =
Z[v, v−1]/(v2 − q) in a countable infinite set of indeterminates will be denoted by Λ. We
will follow the notations of [14] and denote the complete symmetric functions, the elemen-
tary symmetric functions, and the Hall-Littlewood polynomials by hr ∈ Λ, er ∈ Λ, and
Pλ(t) ∈ Λ[t], respectively (see Sections I.2 and III.2 in op. cit.). The next statement shows
in particular that the algebra H(A{x}) is commutative.

Proposition 12 ([13], Proposition 2.3.5)

(i) There is a ring isomorphism Ψx : H(A{x}) → Λ that sends the elements ĥr,x, [O(1r)[x]],

and [Oλ[x]] of H(A{x}), respectively, to the elements hr, q
−r(r−1)/2
x er and q

−n(λ)
x Pλ(q

−1
x ) of Λ,

respectively, for any integer r ≥ 1 and any partition λ.

(ii) The Z̃-algebra H(A{x}) is a polynomial algebra on the set {ĥr,x | r ≥ 1}, as well as
on the set {[O(1r)[x]] | r ≥ 1}. The family ([Or[x]])r≥1 consists of algebraically independent
elements and generates the Q[v]/(v2 − q)-algebra H(A{x}) ⊗Z Q.

Proof. The isomorphism between the category A{x} and the category of OP1(Fq),x-modules
of finite length gives rise to an isomorphism between their Hall algebras. Thus H(A{x}) is
isomorphic to the Hall algebra studied in Chapters II and III of [14]. Assertion (i) therefore
follows from Paragraphs III (3.4), III.3 Example 1 (2), III.4 Example 1, and III (2.8) in
op. cit.

It is well-known that Λ is the Z̃-algebra of polynomials either in the complete symmetric
functions hr or in the elementary symmetric functions er, for r ≥ 1 (see Statements I (2.4)
and I (2.8) in op. cit.). This fact implies the first assertion in Statement (ii). The second
one follows from Statement III (2.16) in op. cit. and its proof. ¤
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We now define three generating functions in H(A{x})[[s]] by

Ĥx(s) = 1 +
∑

r≥1

ĥr,x sr =
∑

β∈Iso(A{x})

β sdeg β/ deg x,

Êx(s) = 1 +
∑

r≥1

qr(r−1)/2
x [O(1r)[x]] sr,

Q̂x(s) = 1 +
∑

r≥1

(1 − q−1
x ) vr deg x [Or[x]] sr.

Lemma 13 (i) The following relations hold in H(A{x})[[s]]:

Ĥx(s) Êx(−s) = 1 and Q̂x(s) =
Ĥx(s vdeg x)

Ĥx(s/vdeg x)
.

(ii) In H(A{x})[[s]], one has

Q̂x(s) =
∑

r≥0

∣∣AutA(Or[x])
∣∣ v−r deg x [Or[x]] sr.

Proof. Following Paragraphs I (2.2) and I (2.5) of [14], we define generating series in Λ[[s]]
by

H(s) = 1 +
∑

r≥1

hr sr and E(s) = 1 +
∑

r≥1

er sr.

By Formulae I (2.6) and III (2.10) in op. cit., we have in Λ[[s]]

H(s)E(−s) = 1 and 1 +
∑

r≥1

(1 − q−1
x ) (s vdeg x)r P(r)(q

−1
x ) =

H(s vdeg x)

H(s vdeg x/qx)
.

Taking the inverse images by Ψx, one obtains the relations in Assertion (i). As for Asser-
tion (ii), it follows from the equality

∣∣AutA(Or[x])
∣∣ = qr

x(1 − q−1
x ), valid for any r ≥ 1 (use

Formula II (1.6) of [14]). ¤

Remark 14. The category A{x} satisfying Condition (H4), the algebra H(A{x}) has the struc-
ture of a twisted Ringel-Green bialgebra. Since the Euler form on K(A{x}) vanishes, the twist

in the multiplication law on H(A{x})⊗eZ H(A{x}) is trivial, so that H(A{x}) is a Z̃-bialgebra
in the usual sense. (This fact is due to Zelevinsky, see [8], p. 362; moreover, H(A{x}) has an

antipode.) Now, Λ is also a Z̃-bialgebra (see Example 25 in Section I.5 of [14]). We claim
that the isomorphism Ψx defined in Proposition 12 preserves the coalgebra structures. To
prove this, it suffices to compare the behaviour of the coproduct of H(A{x}) on the genera-

tors ĥr,x with the behaviour of the coproduct of Λ on their images Ψx(ĥr,x) = hr. Using the
definition of the coproduct in Section 1.3 and Proposition 1 (vi), we perform the following
computation in (H(A{x}) ⊗eZ H(A{x}))[[s

deg x]]:
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∆(Ĥx(s
deg x)) =

∑

β∈Iso(A{x})

sdeg β ∆(β)

=
∑

α,β,γ∈Iso(A{x})

sdeg β gαgγ

gβ

φβ
αγ (α ⊗ γ)

=
∑

α,γ∈Iso(A{x})

(
∑

β

gαgγ

gβ

φβ
αγ

)
(sdeg αα) ⊗ (sdeg γγ)

=
∑

α,γ∈Iso(A{x})

(sdeg αα) ⊗ (sdeg γγ)

= Ĥx(s
deg x) ⊗ Ĥx(s

deg x). (2)

Therefore ∆(ĥr,x) =
∑r

s=0 ĥs,x ⊗ ĥr−s,x in H(A{x}) ⊗eZ H(A{x}). A similar formula holds for
the images of the complete symmetric functions hr by the coproduct of Λ (see loc. cit.), and
our claim follows.

We now turn to the subcategory Ator of A consisting of all torsion sheaves. The Hall
algebra H(Ator) may be viewed as the subspace of H(A) spanned by the isomorphism classes
of objects in Ator. By Proposition 2 (v) the category Ator is the direct sum of the categories

A{x}, so the Hall algebra H(Ator) is canonically isomorphic to the tensor product over Z̃ of
the Hall algebras H(A{x}) (this is Proposition 2.3.5 (a) in [13]). We also note that the Hall
product · and the Ringel product ∗ coincide on H(Ator) because the Euler form vanishes on
K(Ator) by Proposition 3.

We define elements ĥr, êr, and q̂r of H(Ator) for r ≥ 1 by means of the generating
functions

Ĥ(s) = 1 +
∑

r≥1

ĥrs
r =

∏

x∈P1(Fq)

Ĥx(s
deg x), (3)

Ê(s) = 1 +
∑

r≥1

êrs
r =

∏

x∈P1(Fq)

Êx(−sdeg x),

Q̂(s) = 1 +
∑

r≥1

q̂rs
r =

∏

x∈P1(Fq)

Q̂x(s
deg x).

These equalities are meant to hold in H(Ator)[[s]]; in the right-hand side of the above equa-
tions, the products are over the set of all closed points of P1(Fq).

Lemma 15 (i) One has the relations

Ĥ(s) Ê(s) = 1 and Q̂(s) =
Ĥ(sv)

Ĥ(s/v)
,
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or equivalently, for each r ≥ 1,

ĥr +
r−1∑

s=1

ĥs êr−s + êr = 0,

(qr − 1) ĥr = vrq̂r +
r−1∑

s=1

vr−s ĥs q̂r−s.

(ii) The three families (ĥr)r≥1, (êr)r≥1, and (q̂r)r≥1 consist of algebraically independent ele-
ments.

Proof. Assertion (i) follows from Lemma 13 (i). Let Γ be the subalgebra of H(Ator) generated
by the subalgebras H(A{x}) with x 6= ∞. Then H(Ator) is the algebra of polynomials in

the indeterminates ĥr,∞ with coefficients in Γ. It is easy to see that ĥr − ĥr,∞ belongs

to Γ[ĥ1,∞, · · · , ĥr−1,∞], which proves the algebraic independence of the elements ĥr. The
algebraic independence of the other two families can then be deduced from Assertion (i),
which completes the proof of Assertion (ii). ¤

3.3 A subalgebra of H(A)

The Ringel algebra H(A) turns out to be made of two parts: the first one is the Ringel
algebra H(Ator) described in Section 3.2, while the second one is a certain subalgebra B1

related to locally free sheaves. In this section, we explain this decomposition and use it to
define a subalgebra B of H(A) which will be related in Section 4 to the quantum affine

algebra Uq(ŝl2).
It will be necessary for us to extend the ground ring of the Ringel algebra H(A) and

of certain Z̃-submodules B of it from Z̃ to a Z̃-algebra R. The R-module B ⊗eZ R will be
denoted by B(R).

We first define the q-numbers, setting as usual [a] = (va − v−a)/(v − v−1) for a ∈ Z. We
set [a]! =

∏a
i=1[i] for a ≥ 1, and agree that [0]! = 1. Remark that each [a] or [a]! is a product

of a non-zero integer by a power of v.
We next record the following consequence of Theorem 10 and of Proposition 3.

Lemma 16 (i) For all m,n ∈ Z, one has

[O(m + 1)] ∗ [O(n)] − v2 [O(n)] ∗ [O(m + 1)] =

v2 [O(m)] ∗ [O(n + 1)] − [O(n + 1)] ∗ [O(m)]. (4)

(ii) If n1 < · · · < nr is an increasing sequence of integers and if c1, . . . , cr is a sequence of
positive integers, then one has

[O(n1)]
∗c1 ∗ · · · ∗ [O(nr)]

∗cr =

(
r∏

i=1

qci(ci−1)/2[ci]!

)
v

P
1≤i<j≤r(nj−ni+1)cicj

[
r⊕

i=1

O(ni)
⊕ci

]
.
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Proof. Assertion (i) can be proved by a tedious case by case examination, using Relations (i)–
(iii) in Theorem 10 and Proposition 3. To prove Assertion (ii), one first computes

[O(ni)]
∗ci = vci(ci−1)/2 [O(ni)]

ci

= vci(ci−1)/2

(
ci∏

a=1

qa − 1

q − 1

)
[O(ni)

⊕ci ]

= qci(ci−1)/2 [ci]! [O(ni)
⊕ci ],

using Theorem 10 (i), and then

[O(n1)]
∗c1 ∗ · · · ∗ [O(nr)]

∗cr

= v
P

1≤i<j≤r(nj−ni+1)cicj [O(n1)]
∗c1 · · · [O(nr)]

∗cr

=

(
r∏

i=1

qci(ci−1)/2[ci]!

)
v

P
1≤i<j≤r(nj−ni+1)cicj [O(n1)

⊕c1 ] · · · [O(nr)
⊕cr ]

=

(
r∏

i=1

qci(ci−1)/2[ci]!

)
v

P
1≤i<j≤r(nj−ni+1)cicj

[
r⊕

i=1

O(ni)
⊕ci

]
,

using Theorem 10 (ii). ¤

We now need two other pieces of notation. We denote by C the set of all sequences
of non-negative integers c = (cn)n∈Z that have only finitely many non-zero terms, and for
c ∈ C, we set

Xc =
∏

n∈Z

[O(n)]∗cn ,

the products being computed using the multiplication ∗ and the ascending order on Z. We
denote the Z̃-submodule of H(A) spanned by the isomorphism classes of locally free sheaves
by B1.

Proposition 17 (i) B1 is a subalgebra of H(A).

(ii) If R is a Z̃-algebra containing Q, then the family (Xc)c∈C is a basis of the R-module
(B1)(R).

(iii) The multiplication in the Ringel algebra H(A) induces an isomorphism of Z̃-modules
from B1 ⊗eZ H(Ator) onto H(A).

Proof. Assertion (i) comes from the fact that Alf is a subcategory of A closed under exten-
sions (Proposition 2 (i)) and from the definition of the product ∗ in H(A). Assertion (ii)
follows from Lemma 16 (ii). Proposition 2 (iv) says that any coherent sheaf F is isomorphic
to the direct sum of a torsion coherent sheaf F0 and a locally free sheaf F1, and since A sat-
isfies the Krull-Schmidt property, the isomorphism class of F determines those of F0 and F1.
Together with Theorem 10 (iv), this proves Assertion (iii). ¤
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Remark 18. As mentioned in Section 3.2, the subalgebra H(Ator) of H(A) is a Hopf algebra.
Let us adopt Sweedler’s notation and denote the image of an element a ∈ H(Ator) under the
coproduct by ∆(a) =

∑
(a) a(1) ⊗ a(2). The Hopf algebra H(Ator) acts on H(A) through the

adjoint representation, which is the homomorphism ad : H(Ator) → EndeZ(H(A)) defined by

a ∗ x =
∑

(a)

(
ad(a(1)) · x

)
∗ a(2),

for all a ∈ H(Ator) and x ∈ H(A). Relating the adjoint action to Hecke operators, Kapranov
has shown that B1 is a H(Ator)-submodule of H(A) (see Proposition 4.1.1 in [13]). Asser-
tion (iii) of Proposition 17 can then be interpreted, in the language of Hopf algebras, as
stating that H(A) is the smash product of the Hopf algebra H(Ator) by the H(Ator)-module
algebra B1.

The following result gives a commutation relation between certain elements of B1 and
certain elements of H(Ator).

Lemma 19 For n ∈ Z and r ≥ 1, one has

ĥr ∗ [O(n)] = [r + 1] [O(n + r)] +
r−1∑

s=0

[s + 1] [O(n + s)] ∗ ĥr−s. (5)

Proof. We will use the generating series Êx(s) and Ĥ(s). We set

X(t) =
∑

n∈Z

[O(n)] tn

and compute, using Relations (iv) and (vi) in Theorem 10:

Êx(−sdeg x) ∗ X(t) =
∑

n∈Z, r≥0

(−1)r sr deg x tn qr(r−1)/2
x [O(1r)[x]] ∗ [O(n)]

=
∑

n∈Z, r≥0

(−1)r sr deg x tn qr(r−1)/2
x

×
(
[O(n)] ∗ [O(1r)[x]] + v(1−2r) deg x [O(n + deg x)] ∗ [O(1r−1)[x]]

)

= X(t) ∗ Êx(−sdeg x)
(
1 − (s/tv)deg x

)
.

In view of Formula (3) and Lemma 13 (i), we therefore have

Ĥ(s) ∗ X(t) = X(t) ∗ Ĥ(s)
∏

x∈P1(Fq)

1

1 − (s/tv)deg x
,

after expansion of the rational functions 1/(1 − (s/tv)deg x) in powers of s/tv.
Now in the formal power series ring Z[[s]], one has

∏

x∈P1(Fq)

1

1 − sdeg x
=

1

(1 − s)(1 − qs)
,
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where the product in the left hand side runs over all closed points of P1(Fq). The previous
equality follows from the calculation of the zeta function of P1(Fq) (see Section C.1 of [11]
for a proof). Therefore,

Ĥ(s) ∗ X(t) = X(t) ∗ Ĥ(s)
1

(1 − s/tv)(1 − sv/t)
, (6)

which is equivalent to our assertion. ¤

Remark 20. Lemma 13 (ii) shows that the elements ψr ∈ H(Ator) defined in Formula (5.2)
of [13] satisfy

Q̂(s) = 1 +
∑

r≥1

v−r ψr sr.

On the other hand, using Relation (6) above and Lemma 15 (i), one obtains

Q̂(s) ∗ X(t) = X(t) ∗ Q̂(s)
1 − s/tq

1 − sq/t
.

We thus recover Formula (5.2.5) in [13].

Finally, let B0 be the subalgebra of H(Ator) generated by the family (ĥr)r≥1, and let B
be the subalgebra of the Ringel algebra H(A) generated by B0 and B1. Let also D be the set
of all sequences of non-negative integers d = (dr)r≥1 that have only finitely many non-zero
terms, and for d ∈ D, set

ĥd =
∏

r≥1

ĥdr

r , êd =
∏

r≥1

êdr

r , and q̂d =
∏

r≥1

q̂dr

r .

Proposition 21 Let R be a field of characteristic 0 which is also a Z̃-algebra.

(i) The algebra B(R) is generated by the elements [O(n)] for n ∈ Z and the elements ĥr

for r ≥ 1.

(ii) The families (Xc ∗ ĥd)(c,d)∈C×D, (Xc ∗ êd)(c,d)∈C×D, and (Xc ∗ q̂d)(c,d)∈C×D are three bases
of the R-module B(R).

Proof. Proposition 17 (iii) implies that the multiplication ∗ induces an isomorphism of Z̃-
modules from B1 ⊗eZ B0 onto B1 ∗B0. Lemma 19 implies that B1 ∗B0 is a subalgebra of the

Ringel algebra H(A), obviously equal to B. Since the Z̃-modules B0 and B1 are free (see
Lemma 15 (ii)), the multiplication ∗ in the Ringel algebra H(A)(R) induces an isomorphism
of R-modules from (B1)(R) ⊗R (B0)(R) to B(R).

Lemma 15 shows that (B0)(R) is a polynomial algebra on each of the three set of inde-

terminates: {ĥr | r ≥ 1}, {êr | r ≥ 1}, or {q̂r | r ≥ 1}. Thus the families (ĥd)d∈D, (êd)d∈D,
and (q̂d)d∈D are three bases of the R-vector space (B0)(R). Both assertions of our proposition
follow now from Proposition 17 (ii). ¤

Remark 22. In view of Remark 18, the fact that B is a subalgebra of H(A) should be consid-
ered as a consequence of the fact that B0 is a sub-bialgebra of H(Ator), itself a consequence
of Formulae (2) and (3).
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4 Link with the quantum affine algebra Uq(ŝl2)

Our aim now is to describe the relationship between the Hall algebra H(A) investigated in

Section 3 and the quantum affine algebra Uq(ŝl2). In the original definitions of the latter,
q is an indeterminate. It will however be more convenient for us to deal with a specialized
version of Uq(ŝl2), in which q is the number of elements of the finite field that we have chosen
at the beginning of Section 3. We therefore fix for the remainder of this paper a field R of
characteristic 0 together with a square root v of the number q.

In this section, we first recall the definition of the R-algebra Uq(ŝl2) in its loop-like
realization and define a certain subalgebra V + in it. We then present an elementary proof
of Kapranov’s result asserting that the R-algebra V + is isomorphic to the R-algebra B(R)

defined in Section 3.3. We end with several comments, observing that Kapranov’s approach
to Uq(ŝl2) sheds a new light on certain recent constructions by Beck, Chari, and Pressley [2].

4.1 Definition of Uq(ŝl2)

Following Drinfeld [7], we define Uq(ŝl2) as the R-algebra generated by elements K±1, C±1/2,
hr, where r ∈ Z \ {0}, and x±

n , where n ∈ Z, submitted to the relations

K K−1 = K−1 K = 1,

C1/2 C−1/2 = C−1/2 C1/2 = 1,

C1/2 is central,

[K,hr] = 0 for r ∈ Z \ {0},

K x±
n = v±2x±

n K for n ∈ Z,

[hr, hs] = δr,−s
[2r]

r

Cr − C−r

v − v−1
for r, s ∈ Z \ {0},

[hr, x
±
n ] = ±

[2r]

r
C∓|r|/2x±

n+r for n, r ∈ Z, r 6= 0,

x±
m+1 x±

n − v±2x±
n x±

m+1 = v±2x±
m x±

n+1 − x±
n+1 x±

m for m,n ∈ Z, (7)

[x+
m, x−

n ] =
C(m−n)/2ψ+

m+n − C(n−m)/2ψ−
m+n

v − v−1
for m,n ∈ Z,

where the elements ψ±
±r are defined by the generating functions

∑

r≥0

ψ±
±r s±r = K±1 exp

(
±(v − v−1)

∑

r≥1

h±r s±r

)

for r ≥ 0 and are defined to be zero for r ≤ −1.
Relying in part on previous work of Damiani [5], Beck [1] made precise the link between

this definition and Drinfeld and Jimbo’s original definition [6, 12] of Uq(ŝl2) as the quantized

enveloping algebra associated to the generalized Cartan matrix

(
2 −2

−2 2

)
of type A

(1)
1 .

22



Let V + be the subalgebra of Uq(ŝl2) generated by the elements x+
n and hr Cr/2, for n ∈ Z

and r ≥ 1. The aim of Section 4 is to prove the following result.

Theorem 23 ([13], Theorem 5.2.1) The R-algebras B(R) and V + are isomorphic.

4.2 Structure of Uq(ŝl2)

Following Section 1 of [2], we define elements ψ̃±
±r for r ≥ 1 by

1 ±
∑

r≥1

(v − v−1) ψ̃±
±r s±r = exp

(
±(v − v−1)

∑

r≥1

h±r C±r/2 s±r

)
. (8)

Let us denote by

• N± the subalgebra generated by the elements x±
n , where n ∈ Z;

• H the subalgebra generated by the elements K±1, C±1/2, and hr, where r ∈ Z \ {0};

• H± the subalgebra generated by the elements ψ̃±
±r, where r ≥ 1;

• H0 the subalgebra generated by the elements K±1 and C±1/2.

Proposition 24

(i) The multiplication induces a linear isomorphism N− ⊗R H ⊗R N+ → Uq(ŝl2).

(ii) The multiplication induces a linear isomorphism H− ⊗R H0 ⊗R H+ → H.

(iii) The generators ψ̃+
r (r ≥ 1) of the algebra H+ are algebraically independent.

(iv) The family of products
(∏

n∈Z
(x+

n )cn
)

c∈C
, performed in the ascending order of Z, is a

basis of N+.

Proof. It is asserted in Proposition 12.2.2 of [4] that the map N− ⊗R H ⊗R N+ → Uq(ŝl2)

induced by the multiplication of Uq(ŝl2) is surjective. The defining relations of Uq(ŝl2) imply

easily that the map H− ⊗R H0 ⊗R H+ → H induced by the multiplication of Uq(ŝl2) is also

surjective. The algebra H± is generated by the pairwise commuting elements ψ̃±
±r for r ≥ 1,

which shows that the monomials
(∏

r≥1(ψ̃
±
±r)

dr

)
, for d ∈ D, span the R-vector space H±.

Similarly, the family of elements (KaCb/2)(a,b)∈Z2 span the R-vector space H0. Finally, an

easy induction shows that the products
(∏

n∈Z
(x±

±n)cn
)
, performed in the ascending order of

Z and for c ∈ C, span the R-vector space N±. Consequently, the elements

M(a, b, c′, c′′, d′, d′′) =

(
∏

n∈Z

(x−
−n)c′n

) (
∏

r≥1

(ψ̃−
−r)

d′r

)
KaCb/2

(
∏

r≥1

(ψ̃+
r )d′′r

) (
∏

n∈Z

(x+
n )c′′n

)
,

where a, b ∈ Z, c′, c′′ ∈ C, and d′, d′′ ∈ D, span the R-vector space Uq(ŝl2).
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Now observe that the definition of Uq(ŝl2) implies the existence of an automorphism T

of the R-algebra Uq(ŝl2) such that

T (x±
n ) = x±

n∓1, T (K±1) = K±1C∓1, T (C±1/2) = C±1/2, T (hr) = hr,

for all n, r ∈ Z with r 6= 0. (Using Proposition 3.10.2 (b) and Definition 4.6 of [1], one

can easily see that T is the automorphism of Uq(ŝl2) that lifts the translation along the
fundamental weight to the braid group of the extended affine Weyl group of sl2.) On the

other hand, observe, as a consequence of the Poincaré-Birkhoff-Witt theorem for Uq(ŝl2)
(Proposition 6.1 in [1]), that the set of elements

{
M(a, b, c′, c′′, d′, d′′)

∣∣ a, b ∈ Z, c′, c′′ ∈ C, d′, d′′ ∈ D, n < 0 ⇒ c′n = c′′n = 0
}

is linearly independent over R. Using this and the automorphism T , one proves the linear
independence over R of the family of elements (M(a, b, c′, c′′, d′, d′′))(a,b,c′,c′′,d′,d′′)∈Z2×C2×D2 .

This family is therefore a basis of Uq(ŝl2), which entails simultaneously all the assertions
of the lemma. ¤

Let us remark that the algebra H+ is the subalgebra denoted by U+(0) in [2] (see Propo-
sition 1.3 (iii) of that paper for instance). Following Section 1 of [2], we now define elements

P̃r and Pr of H+, for r ≥ 1, by the following generating functions:

P̃ (s) = 1 +
∑

r≥1

P̃rs
r = exp

(
∑

r≥1

hr Cr/2

[r]
sr

)
, (9)

P (s) = 1 +
∑

r≥1

Prs
r = exp

(
−

∑

r≥1

hr Cr/2

[r]
sr

)
. (10)

For sequences c = (cn)n∈Z ∈ C and d = (dr)r≥1 ∈ D, we define

x+
c =

∏

n∈Z

(x+
n )cn , P̃d =

∏

r≥1

P̃ dr

r , Pd =
∏

r≥1

P dr

r , and ψ̃+
d =

∏

r≥1

(ψ̃+
r )dr .

Proposition 25 (i) The algebra V + is generated by the elements x+
n and P̃r, for n ∈ Z and

r ≥ 1.

(ii) The families (x+
c P̃d)(c,d)∈C×D, (x+

c Pd)(c,d)∈C×D, and (x+
c ψ̃+

d )(c,d)∈C×D are three bases of

the R-vector space V +.

Proof. By definition, V + is the subalgebra of Uq(ŝl2) generated by the elements x+
n and

hrC
r/2, for n ∈ Z and r ≥ 1. Assertion (i) follows therefore from the definition of the

elements P̃r (Formula (9)) and from the fact that the scalars [r] do not vanish in the field R
for any r ≥ 1.

Proposition 2.8 in [2] states that for all integers n ≥ 0 and r ≥ 1, one has

P̃r x+
n = [r + 1] x+

n+r +
r−1∑

s=0

[s + 1] x+
n+s P̃r−s. (11)
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Applying a well-chosen power of the automorphism T defined in the proof of Proposition 24,
one immediately sees that Formula (11) holds more generally for any n ∈ Z. Together with
Proposition 24 (i), this shows that the multiplication map induces a linear isomorphism from
N+ ⊗R H+ onto V +.

By Formulae (1.8) and (1.9) in [2], we have the following relations in H+[[s]]:

P̃ (s) P (s) = 1 and
P̃ (sv)

P̃ (s/v)
= 1 +

∑

r≥1

(v − v−1) ψ̃+
r sr,

or, equivalently, for each r ≥ 1:

P̃r +
r−1∑

s=1

P̃sPr−s + Pr = 0,

[r] P̃r = ψ̃+
r +

r−1∑

s=1

v−s P̃s ψ̃+
r−s.

Together with Assertion (iii) of Proposition 24, this implies that H+ is a polynomial algebra

on each of the three set of indeterminates: {ψ̃r | r ≥ 1}, {P̃r | r ≥ 1}, or {Pr | r ≥ 1}.

Thus the families (P̃d)d∈D, (Pd)d∈D, and (ψ̃+
d )d∈D are three bases of the R-vector space H+.

Assertion (ii) follows from this and from Proposition 24 (iv). ¤

Theorem 23 is now evident. The isomorphism sends [O(n)] to x+
n , ĥr to P̃r, êr to Pr, and

q̂r to (v − v−1)ψ̃+
r , respectively. Relations (4) and (5) correspond to Relations (7) and (11).

4.3 Concluding remarks

As mentioned in the introduction, Ringel was the first one to discover relations between
Hall algebras and quantized enveloping algebras. In [18] he noticed that, in his context,
the natural basis of the Hall algebra corresponds to a Poincaré-Birkhoff-Witt type basis
of Lusztig’s integral form of the positive part of the quantized enveloping algebra. Here a
similar phenomenon occurs:

• by Lemma 16 (ii), the element [O(n1)
⊕c1 ⊕· · ·⊕O(nr)

⊕cr ] of H(A) is equal, up to a power
of v, to the product of divided powers

(
1

[c1]!
[O(n1)]

∗c1

)
∗ · · · ∗

(
1

[cr]!
[O(nr)]

∗cr

)
;

• by Lemma 2.3 in [2], the monomials in the ĥr for r ≥ 1 correspond to the elements of a
Poincaré-Birkhoff-Witt basis of Lusztig’s integral form of H+.

These observations are likely to be part of a more complete statement for which one would
need a version of the Hall algebra H(A) (or at least of the algebra B) with a generic parameter
q as well as an integral version of Proposition 24.
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The elements Pr, P̃r, and ψ̃r play important rôles for Uq(ŝl2), namely in the classifica-

tion of the finite-dimensional simple Uq(ŝl2)-modules (see Theorem 12.2.6 in [4]) and in the

construction of a Poincaré-Birkhoff-Witt basis of Lusztig’s integral form of Uq(ŝl2) (see The-
orem 2 of [2]). The relations (8), (9), and (10) defining them, though explicit, look rather
artificial. Kapranov’s isomorphism B(R) → V + helps show where these elements come from:
they are the standard generators of the algebra of symmetric polynomials (elementary sym-
metric functions, complete symmetric functions, Hall-Littlewood polynomials) carried over
to the Hall algebras H(A{x}) and averaged over the closed points of P1(Fq).
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