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Abstract

The purpose of this paper is to apply the theory of MV polytopes to the study of com-
ponents of Lusztig’s nilpotent varieties. Along the way, we introduce reflection functors
for modules over the non-deformed preprojective algebra of a quiver.

1 Introduction

Let g be a simply-laced semisimple finite dimensional complex Lie algebra. Part of the repre-
sentation theory of g is described by Kashiwara’s combinatorics of crystals [15]. On the alge-
braic side, crystals are implemented by special bases in representations, for instance Lusztig’s
canonical and semicanonical bases [18, 20, 23]. On the combinatorial side, a crystal can be
realized by several models, each of which provides a concrete access to it; as an example,
Anderson [1] and the second author’s [12, 13] MV (Mirković, Vilonen) polytopes form a model
for the crystal B(−∞) of the positive part U(n) of U(g).

The purpose of this paper is to apply the theory of MV polytopes to the study of the sem-
icanonical basis. This basis arises through a geometric realisation of U(n) by means of con-
structible functions on certain varieties Λ(ν), called Lusztig’s nilpotent varieties. Concretely,
these varieties parameterize representations of the preprojective algebra constructed using the
Dynkin graph of g. We are thus led to investigate the relations between these varieties Λ(ν)
and MV polytopes.

Our method is the following. For each chamber weight γ, we construct a module N(γ) over the
preprojective algebra. Then we define a constructible function Dγ on the nilpotent varieties
whose value at a point T ∈ Λ(ν) is dim Hom(N(γ), T ). On an irreducible component Z
of a nilpotent variety, the functions Dγ admit generic values. We prove that these generic
values form the BZ (Berenstein, Zelevinsky) datum of an MV polytope, denoted Pol(Z). The
resulting bijection Z 7→ Pol(Z) defines a labelling of the semicanonical basis by MV polytopes,
and hence by the crystal B(−∞).

This indexation of the semicanonical basis by B(−∞) is not new; indeed it was proved by
Kashiwara and Saito [16] (and we use their result). However an important property here is
the fact that the MV polytope of an element b ∈ B(−∞) geometrically packs together all the
Lusztig parameterizations of b. Therefore our result can be seen as the combinatorial facet of
the relation between the semicanonical basis and the PBW (Poincaré, Birkhoff, Witt) bases
of U(n). A remarkable fact is that this relation holds even when the reduced decomposition
used to define the PBW basis is not adapted to any orientation of the graph of g.
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To construct the modules N(γ) and study the functions Dγ , a key tool is reflection functors
for modules over the preprojective algebra. These functors extend the usual BGP (Bernstein,
Gelfand, Ponomarev) reflection functors [5] to the preprojective framework; they are different
from Crawley-Boevey and Holland’s reflection functors [8] for the deformed preprojective
algebra. Our initial motivation to define them was to understand the meaning of Kashiwara
and Saito’s crystal reflections in terms of the semicanonical basis.

The combinatorics of MV polytopes was originally developed by Anderson and the second
author in order to describe the Mirković-Vilonen cycles in affine Grassmannians. Affine Grass-
mannians and quiver varieties are two geometric constructions of representations of g and they
each give their own basis for representations. One motivation for the current paper was to
relate the geometry of affine Grassmannians and nilpotent varieties. We may note here that
the functions Dγ are the direct analogs of functions introduced by the second author in [13]
for the study of MV cycles. In fact, they can be used to define a stratification of the varieties
Λ(ν), and the strata are indexed by the same pseudo-Weyl polytopes that index the GGMS
(Gelfand, Goresky, MacPherson, Serganova) strata of the affine Grassmannian.

Geiß, Leclerc and Schröer explained to us that their work on the cluster properties of the
semicanonical basis also relies on the modules N(γ), which they introduce differently. This
connection will be further explored in [3].

In a related work [14], the second author and C. Sadanand analyzed explicity the case of
g = sln and compared the results of the current paper with a previous description of the
components of nilpotent varieties obtained by Savage [32]. In particular, Theorem 4.3 of [14]
can be obtained from the results of this paper by applying a well-known recipe for producing
semistandard Young tableaux from MV polytopes for sln.

We heartily thank A. Braverman, C. Geiß, B. Keller, B. Leclerc, C. Sadanand, A. Savage,
J. Schröer and P. Tingley for useful conversations. We also thank the referee for his careful
reading of this paper.

The first author acknowledges support from ANR project RepRed, ANR-09-JCJC-0102-01 and
the second author acknowledges support from NSERC and AIM. This work began when both
authors were participating in the Combinatorial Representation Theory program at MSRI in
2008. We thank the MSRI and the organizers of this program for their hospitality and good
working environment.

2 Reflection functors

We begin this section by reviewing the definition of the preprojective algebra Π(Q) of a
quiver Q. Then we define and study reflection functors for Π(Q)-modules.

2.1 Recall on preprojective algebras

Let K be a field, fixed for the whole paper. Let Q = (I, E) be a quiver with vertex set I and
arrow set E. We denote by s and t the source and target maps from E to I. We denote the
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path algebra of Q over K by KQ. Then a KQ-module M is the data of an I-graded vector
space

⊕
i∈IMi and of linear maps Ma : Ms(a) →Mt(a) for each arrow a ∈ E.

To each arrow a : i→ j in E, we associate an arrow a∗ : j → i going in the opposite direction.
We let H = E t E∗ and we extend ∗ to H by setting (a∗)∗ = a. We extend the source and
target maps to H and we set ε(a) = 1 if a ∈ E and ε(a) = −1 if a ∈ E∗.

The quotient of the path algebra of (I,H) by the ideal generated by∑
a∈H

ε(a)aa∗

is called the preprojective algebra of Q and is denoted by Π(Q). Thus a Π(Q)-module M is
the data of an I-graded vector space

⊕
i∈IMi and of linear mapsMa : Ms(a) →Mt(a) for each

arrow a ∈ H, which satisfy ∑
a∈H
t(a)=i

ε(a)MaMa∗ = 0

for each i ∈ I. In this paper, we will only consider finite-dimensional modules.

Example 2.1. When Q has no loops nor multiple arrows, one may depict Π(Q)-modules in
a simple way, by using a symbol i to represent vectors from a basis for Mi and by drawing
arrows to indicate the action of the linear maps. For instance, let Q be the quiver

1
a←− 2

b−→ 3

of type A3. The Π(Q)-module M represented by the diagram

2
�� ��

3

−1��

1
��
2

has dimension-vector (dimM1,dimM2,dimM3) = (1, 2, 1); the map Ma sends the top basis
vector in M2 to the basis vector in M1 and the map Mb∗ sends the basis vector in M3 to the
negative of the bottom basis vector in M2.

The dual of a Π(Q)-module M is the Π(Q)-module M∗ defined by taking the dual spaces and
maps as follows:

(M∗)i = (Mi)
∗ and (M∗)a = (Ma∗)

∗

for all i ∈ I and a ∈ H. This duality is an involutive antiautoequivalence ∗ on the category
of Π(Q)-modules.

To any Π(Q)-module M , one associates the tuple dimM = (dimMi) in NI , called the
dimension-vector of M . Conversely, given a dimension-vector ν ∈ NI , we set Mi = Kνi

and denote by Λ(ν) the variety of all matrices

(Ma) ∈
∏
a∈H

HomK(Ms(a),Mt(a))
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that satisfy the preprojective relations∑
a∈H
t(a)=i

ε(a)MaMa∗ = 0

at each vertex i ∈ I. Thus a point in Λ(ν) is a representation of Π(Q) on the vector space⊕
i∈IMi. The group

G(ν) =
∏
i∈I

Aut(Mi)

acts on Λ(ν) by conjugation. The orbits of this action are in canonical bijection with the
isomorphism classes of Π(Q)-modules of dimension-vector ν.

The lattice ZI is equipped with a symmetric bilinear form defined by

(µ, ν) = 2
∑
i∈I

µiνi −
∑
a∈H

νs(a)µt(a).

The following formula is due to Crawley-Boevey ([7], Lemma 1): if M and N are two Π(Q)-
modules, then

( dimM, dimN) = dim HomΠ(Q)(M,N) + dim HomΠ(Q)(N,M)− dim Ext1
Π(Q)(M,N).

We denote the standard basis of ZI by (αi). Given a vertex i, we denote by Si the Π(Q)-
module of dimension one concentrated at i on which all arrows act as zero; thus dimSi = αi.
Given a Π(Q)-module M , the i-socle of M , denoted sociM , is the Si-isotypic component of
the socle of M ; likewise, the i-head of M , denoted hdiM , is the Si-isotypic component of the
head of M . Thus soci and hdi are endofunctors on the category of Π(Q)-modules.

Remark 2.2. Usually, one restricts attention to representations that satisfies a nilpotency con-
dition (see [19], section 8.2). This amounts to investigate the full subcategory of Π(Q)-mod
formed by the modules whose composition factors all belong to the set {Si | i ∈ I}. It can
however be shown that these nilpotency conditions are automatically satisfied in the case
where Q is of type ADE (see Satz 1 in [26] or Proposition 14.2 (a) in [20]). In this case,
{Si | i ∈ I} is a complete set of simple Π(Q)-modules, and thus a Π(Q)-module with trivial
i-socle for all i ∈ I is itself trivial.

2.2 Definition of the reflection functors

We fix a vertex i ∈ I at which Q has no loops. Our aim is to define a pair of adjoint
endofunctors (Σ∗i ,Σi) on the category of Π(Q)-modules.

We break the datum of a Π(Q)-module M in two parts. The first part consists of the vector
spaces Mj for j 6= i and of the linear maps between them; the second part consists of the
vector spaces and of the linear maps that appear in the diagram⊕

a∈H
t(a)=i

Ms(a)
(ε(a)Ma)−−−−−→Mi

(Ma∗ )−−−−−→
⊕
a∈H
t(a)=i

Ms(a).

4



For brevity, we will write this diagram as

M̃i

Min(i)−−−−→Mi

Mout(i)−−−−→ M̃i. (∗)

The preprojective relation at i is Min(i)Mout(i) = 0.

We now construct a new Π(Q)-module by replacing (∗) with

M̃i

Mout(i)Min(i)−−−−−−−−→ kerMin(i) ↪→ M̃i,

where the map Mout(i) : Mi → kerMin(i) is induced by Mout(i). We glue this new datum
with the remaining part of M . The preprojective relations are still satisfied, because the
replacement does not change the endomorphism Mout(i)Min(i) of M̃i. We thus end up with a
new Π(Q)-module, which we denote by ΣiM .

Likewise, we may replace (∗) with

M̃i � cokerMout(i)
Mout(i)M in(i)−−−−−−−−→ M̃i,

where the map M in(i) : cokerMout(i) →Mi is induced by Min(i). We again end up with a new
Π(Q)-module, which we denote by Σ∗iM .

One checks without difficulty that these constructions define covariant additive functors Σi

and Σ∗i , that Σi is left-exact and that Σ∗i is right-exact.

Example 2.3. Let Q be a quiver of type A3. The diagram below presents the action of Σ2 and
Σ∗2 on several Π(Q)-modules.

2
↙ ↘

1 3

Σ∗2

&&

Σ2

��

2
↙ ↘

1 3
↘ ↙

2

Σ∗2 //
Σ2oo

1 3
↘ ↙

2

Σ2

ff

Σ∗2

��
2

↙
1

⊕
2
↘

3

Σ2

__

Σ∗2 //
1 ⊕ 3

Σ2

oo

Σ∗2 // 1
↘

2
⊕

3
↙

2

Σ∗2

__Σ2

oo

Remark 2.4. (i) We could as well distribute the signs ε(a) differently in (∗), but that would
just change Σi by an isomorphism. Indeed, write M ′in(i) and M ′out(i) for the two maps that
appear in ⊕

a∈H
t(a)=i

Ms(a)
(Ma)−−−−→Mi

(ε(a)Ma∗ )−−−−−−→
⊕
a∈H
t(a)=i

Ms(a).
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Then the module ΣiM defined above fits in a commutative diagram

(̃ΣiM)i
(ΣiM)in(i)

// (ΣiM)i

'
��

(ΣiM)out(i)
// (̃ΣiM)i

M̃i
M ′out(i)M

′
in(i)

// kerM ′in(i)
� � // M̃i,

where the middle vertical arrow is the map (xa) 7→ (ε(a)xa), both spaces (ΣiM)i and kerM ′in(i)
being viewed as subspaces of

M̃i =
⊕
a∈H
t(a)=i

Ms(a).

A similar remark can be stated about Σ∗i . As a consequence, we see that Σ∗i
∼= ∗Σi∗.

(ii) The commutative diagram

M̃i
// // cokerMout(i)

M in(i)
��

Mout(i)M in(i)
// M̃i

M̃i

Min(i)
//Mi

Mout(i)
��

Mout(i)
// M̃i

M̃i
Mout(i)Min(i)

// kerMin(i)
� � // M̃i

shows the existence of canonical morphisms Σ∗iM →M → ΣiM .

(iii) Let Ii be the annihilator of the module Si. This two-sided ideal in Π(Q) has been studied
at length by Iyama, Reiten and al., see for instance [6]. It allows to represent our reflection
functors as Σi = HomΠ(Q)(Ii, ?) and Σ∗i = Ii⊗Π(Q)?. We owe this observation to Amiot; the
proof will be given in our forthcoming paper [3]. In view of this fact, our functors Σi and Σ∗i
are not new.

Proposition 2.5 (i) The pair (Σ∗i ,Σi) is a pair of adjoint functors.

(ii) The adjunction morphisms id→ ΣiΣ
∗
i and Σ∗iΣi → id can be inserted in functorial short

exact sequences

0→ soci → id→ ΣiΣ
∗
i → 0 and 0→ Σ∗iΣi → id→ hdi → 0.

Proof. To establish (i), it is enough to define a pair of converse bijections

HomΠ(Q)(M,ΣiN) ∼= HomΠ(Q)(Σ
∗
iM,N)

for any modules M and N , which are natural in M and N . The construction is as follows.
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Consider a morphism f : M → ΣiN . By definition, this is a collection of linear maps
fj : Mj → (ΣiN)j , for all j ∈ I, which intertwine the action of the arrows in H. Set

f̃i =
⊕
a∈H
t(a)=i

fs(a) : M̃i → Ñi.

In the diagram

M̃i

Min(i)
//

f̃i
��

Mi

Mout(i)
//

fi

��

M̃i
// //

f̃i
��

cokerMout(i)
Mout(i)M in(i)

//

gi

��

M̃i

f̃i
��

Ñi
Nout(i)Nin(i)

// kerNin(i)
� � // Ñi

Nin(i)

// Ni
Nout(i)

// Ñi,

the two left squares commute. There is thus a unique map gi making the third square com-
mutative. The fourth square then also commutes, so that if we set gj = fj for all the vertices
j 6= i, we get a morphism g : Σ∗iM → N .

Conversely, consider a morphism g : Σ∗iM → N and set

g̃i =
⊕
a∈H
t(a)=i

gs(a) : M̃i → Ñi.

In the diagram

M̃i

Min(i)
//

g̃i
��

Mi

Mout(i)
//

fi

��

M̃i
// //

g̃i
��

cokerMout(i)
Mout(i)M in(i)

//

gi

��

M̃i

g̃i
��

Ñi
Nout(i)Nin(i)

// kerNin(i)
� � // Ñi

Nin(i)

// Ni
Nout(i)

// Ñi,

the two right squares commute. There is thus a unique map fi making the second square
commutative. The first square then also commutes, so that if we set fj = gj for all the
vertices j 6= i, we get a morphism f : M → ΣiN .

To establish (ii), one checks that Σ∗iΣiM is the Π(Q)-module obtained by replacing in M the
part summed up by (∗) with

M̃i

Min(i)−−−−→ imMin(i)

Mout(i)−−−−→ M̃i

and that ΣiΣ
∗
iM is the Π(Q)-module obtained by replacing in M the part summed up by (∗)

with
M̃i

Mout(i)Min(i)−−−−−−−−→ imMout(i) ↪→ M̃i.

It remains to observe that as vector spaces, hdiM ∼= cokerMin(i) and sociM ∼= kerMout(i). �

Proposition 2.5 (ii) implies readily that Σi and Σ∗i define inverse equivalence of categories{
Π(Q)-modules

with trivial i-head

}
Σi //

Σ∗i

oo

{
Π(Q)-modules

with trivial i-socle

}
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and that there are natural isomorphisms

ΣiΣ
∗
iΣi
∼= Σi and Σ∗iΣiΣ

∗
i
∼= Σ∗i .

Let si be the reflection µ 7→ µ− (αi, µ)αi on the lattice ZI . Routine arguments show that

hdiM = 0 =⇒ dim ΣiM = si( dimM).

We leave as an exercise for the reader to prove that

hdiM = 0 ⇐⇒ dim ΣiM = si( dimM) ⇐⇒ M ∼= Σ∗iΣiM

and
sociM = 0 ⇐⇒ dim Σ∗iM = si( dimM) ⇐⇒ M ∼= ΣiΣ

∗
iM ;

we will however not use this more complete result.

2.3 Further properties

We begin this section with an easy lemma, which is used in the proof of Proposition 3.5.

Lemma 2.6 If the Π(Q)-module M has trivial i-socle, then the canonical morphism M →
ΣiM is a monomorphism which induces isomorphisms ΣiM ∼= Σ2

iM and socM ∼= soc(ΣiM).

Proof. The i-socle of M is the kernel of the map Mout(i). Assume that it is trivial. Then
Mout(i) is injective. The canonical morphism f : M → ΣiM is thus a monomorphism, and
the equality kerMin(i) = ker

(
Mout(i)Min(i)

)
holds, which implies ΣiM ∼= Σ2

iM .

The module soc ΣiM cannot map non-trivially to the cokernel of f , for the latter is a direct
sum of copies of Si while ΣiM has trivial i-socle. Applying the functor HomΠ(Q)(soc ΣiM, ?)
to the short exact sequence

0→M
f−→ ΣiM → coker f → 0,

we deduce that the canonical inclusion soc(ΣiM) ↪→ ΣiM factorizes through f . Therefore f
maps socM onto soc(ΣiM). �

In [8], Crawley-Boevey and Holland define reflection functors on the category of modules over
the deformed preprojective algebra. Their functors define an action of the Weyl group. Our
functors do not enjoy the property Σ2

i = id, but it is nevertheless reassuring to see that they
satisfy the braid relations.

Proposition 2.7 Let i and j be two vertices that are linked by a single edge in Q. Then the
functors ΣiΣjΣi and ΣjΣiΣj are isomorphic.
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Proof. We only sketch the proof, since we will not use this property later on. Let (c, c∗) be
the pair of arrows in H between the vertices i and j. Let M be a Π(Q)-module. Abbreviate
the part ⊕

a∈H
t(a)=i
a6=c∗

Ms(a)

(ε(a)Ma)
//Mi

(Ma∗ )
oo

Mc //Mj
Mc∗

oo

(Mb∗ )
//
⊕
b∈H
t(b)=j
b6=c

Ms(b)
(ε(b)Mb)

oo

of the datum of M by the notation

R
k // V
l

oo

f
//W

g
oo

m // S.
n
oo

The preprojective relations at i and j then read

kl + ε(c∗)gf = 0 and nm+ ε(c)fg = 0.

Explicit computations show that applying ΣiΣjΣi or ΣjΣiΣj to M both amount to replacing
this part of the datum of M with

R

(
lk
mfk

)
// V ′

( 1 0 )
oo

(
0 1

ε(c)lk 0

)
//W ′

( 1 0 )
//(

0 1
ε(c∗)mn 0

)oo S,
(mnlgn )

oo

where V ′ ⊆ R⊕ S and W ′ ⊆ S ⊕R are the kernels of the linear maps

R⊕ S ( fk n )−−−−−→W and S ⊕R ( gn k )−−−−−→ V.

�

3 The modules N(γ)

From now on, we fix a Dynkin diagram Γ of type ADE. Orienting the edges of this diagram
yields a quiver Q = (I, E). The datum of the diagram Γ is equivalent to that of the isomor-
phism class of a simply-laced semisimple complex Lie algebra g. The set I of vertices of Γ
indexes the simple roots αi of g. The root lattice Q is then the lattice ZI with basis (αi)i∈I ;
we write Q+ for the image of NI in this identification. (We are here using the same notation
Q for the quiver and for the root lattice. These notations are traditional and we are convinced
that our choice will not be a source of confusion for the reader.) Since we are in the simply
laced case, there is no need to distinguish between roots and coroots. The weight lattice is
thus the dual P of this lattice Q; it is endowed with the basis (ωi)i∈I of fundamental weights.
By duality, the reflections si defined at the end of section 2.2 act on P and generate the Weyl
groupW ⊆ Aut(P ). Then (W, (si)i∈I) is a finite Coxeter system; we denote its length function
by ` and its longest element by w0. Finally, the bilinear form ( , ) from section 2.1 is the
standardly normalised W -invariant scalar product on Q; it embeds Q as a sublattice of P .

Our aim in this section is to define a family of Π(Q)-modules N(γ) indexed by weights γ ∈ P .
These modules are completely described by the following statement.
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Theorem 3.1 (i) If γ is antidominant, then N(γ) = 0.

(ii) Let i ∈ I and let γ be a W -conjugate of −ωi, with γ 6= −ωi. Then

dimN(γ) = γ + ωi and socN(γ) ∼= Si.

Moreover any Π(Q)-module with dimension-vector γ +ωi and socle Si is isomorphic to N(γ).

(iii) If γ and δ belong to the same Weyl chamber, then N(γ + δ) ∼= N(γ)⊕N(δ).

This theorem will be proved in section 3.4.

3.1 Nakajima’s quiver

The easiest way to define the modules N(γ) uses Nakajima’s trick (see [24]) of expanding Q
by adding an extra vertex i′ and an extra arrow di : i→ i′ for each vertex i ∈ I. Playing the
same game as in section 2.1, we double all arrows in this extended quiver, obtaining thereby
a set of arrows Ĥ = H t {di, d∗i | i ∈ I} with an involution ∗. Here is an example depicting
the situation for the type A3.

1

d1
��

a∗
// 2

d2
��

aoo b // 3

d3
��

b∗
oo

1′

d∗1

OO

2′

d∗2

OO

3′.

d∗3

OO

We then construct the preprojective algebra of the extended quiver, which we denote by Π(Q̂).
Hence a Π(Q̂)-module consists of two I-graded vector spaces

⊕
i∈IMi and

⊕
i∈IMi′ along

with linear maps Ma : Ms(a) → Mt(a), for a ∈ H, and Mdi : Mi → Mi′ and Md∗i
: Mi′ → Mi,

for i ∈ I, which satisfy the preprojective relations∑
a∈H
t(a)=i

ε(a)MaMa∗ = Md∗i
Mdi and MdiMd∗i

= 0

at each vertex i ∈ I. The dimension-vector of M is defined as the pair dimM = [ν, λ] in
NI × NI′ , where νi = dimMi and λi′ = dimMi′ .

Given a dimension-vector [ν, λ] ∈ NI × NI′ for Π(Q̂), it is customary to view λ = (λi′) as the
antidominant weight−

∑
i∈I λi′ωi in P . The main justification for this identification is that the

pairing between P and Q coincides with the restriction to ZI′ and ZI of the symmetric bilinear
form of the extended quiver. This fact will be exploited below when we write expressions like

([ν, λ], [αi, 0]) = 〈ν + λ, αi〉;

here the left-hand side is the symmetric bilinear form from section 2.1 and the right-hand side
is the duality pairing between P and Q.
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3.2 Stable Π(Q̂)-modules

We say that a Π(Q̂)-module M is stable if for each i ∈ I, the linear map

Mi

(
(Ma)
Mdi

)
−−−−−→

 ⊕
a∈H
s(a)=i

Mt(a)

⊕Mi′

is injective. In other words, we ask that sociM = 0 at each non-primed vertex.

This notion of stability was introduced by Nakajima. Indeed using Remark 2.2, one can
easily see that this definition is equivalent to Definition 3.9 in [25]. We now study the stable
Π(Q̂)-modules following ideas of Nakajima and Saito.

Lemma 3.2 LetM be a stable Π(Q̂)-module of dimension-vector [ν, λ]. Let c be the dimension
of the i-head of M . Then

dim Hom
Π(Q̂)

(M,Si) = c and dim Ext1
Π(Q̂)

(M,Si) = c− 〈ν + λ, αi〉.

In particular, c ≥ max(0, 〈ν + λ, αi〉).

Proof. The first equality is equivalent to the assertion dim hdiM = c. On the other hand,
the stability condition means that Hom

Π(Q̂)
(Si,M) = 0. Now the dimension-vector of Si is

[αi, 0], hence the result follows from Crawley-Boevey’s formula (see section 2.1). �

Let M be a stable Π(Q̂)-module of dimension-vector [ν, λ]. By Lemma 3.2, the i-head of M
has dimension at least max(0, 〈ν + λ, αi〉). If there is equality here, then we say that M has
a small i-head.

Lemma 3.3 (i) Let M be a stable Π(Q̂)-module of dimension-vector [ν, λ] whose i-head has
dimension c. Then for any integer k such that −c ≤ k ≤ c− 〈ν + λ, αi〉, there exists a stable
Π(Q̂)-module of dimension-vector [ν + kαi, λ].

(ii) Assume that 〈ν + λ, αi〉 ≤ 0. Then the functors Σi and Σ∗i restrict to equivalences of
categories

stable Π(Q̂)-modules of
dimension-vector [ν, λ]

with small i-head


Σi //

Σ∗i

oo


stable Π(Q̂)-modules of

dimension-vector [ν − 〈ν + λ, αi〉αi, λ]

with small i-head

 .

(iii) If there exists a stable Π(Q̂)-module of dimension-vector [ν, λ], then

ν + λ ∈
⋂
w∈W

w(λ+Q+).
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Proof. Items (i) and (ii) are Lemma 4.2.1 and a special case of Lemma 4.2.2 in [30]. Item (iii)
is a consequence of Corollary 10.8 in [25]. We nevertheless recall the proof of all these facts
for the convenience of the reader.

Let M be a stable Π(Q̂)-module of dimension-vector [ν, λ]. We analyze the situation locally
around the vertex i. For brevity, let us introduce the notation M̃i, Min(i) and Mout(i) for the
objects in the diagram⊕

a∈H
t(a)=i

Ms(a)

⊕Mi′
( (ε(a)Ma) −Md∗

i )
−−−−−−−−−−−−→Mi

(
(Ma∗ )
Mdi

)
−−−−−−−−−−→

⊕
a∈H
t(a)=i

Ms(a)

⊕Mi′ ,

as we did in section 2.2. The stability condition means that Mout(i) is injective.

Consider the endomorphism u = Mout(i)Min(i) of M̃i. Note that

imu ⊆ imMout(i) ⊆ keru,

that
dim imMout(i) − dim imu = dim cokerMin(i) = c,

and that

dim keru− dim imMout(i) = dim M̃i − dim imu− dim imMout(i)

= c+ dim M̃i − 2 dimMi

= c− 〈ν + λ, αi〉.

Thus for any k satisfying −c ≤ k ≤ c − 〈ν + λ, αi〉, we can find a subspace V ⊆ M̃i of
dimension k + dimMi satisfying imu ⊆ V ⊆ keru. We can then construct a new Π(Q̂)-
module by replacing

M̃i

Min(i)−−−−→Mi

Mout(i)−−−−→ M̃i with M̃i
u−→ V ↪→ M̃i

inM . We thus get a stable Π(Q̂)-module of dimension-vector [ν+kαi, λ], which establishes (i).

Keeping the same notation, we now observe that M has a small i-head if and only if either c
or c−〈ν+λ, αi〉 equals zero. In other words, M has a small i-head if and only if imMout(i) is
either imu or keru. Hence keeping M̃i and u the same and flippingMi between imu and keru
yields equivalences. Routine verifications show that this flipping is indeed what the functors
Σi and Σ∗i do, which establishes (ii).

Looking now at (iii), we fix λ and allow ν to vary. Assertion (i) implies that the set{
ν + λ ∈ P

∣∣ there exists a stable Π(Q̂)-module of dimension-vector [ν, λ]
}

is W -invariant. Since it is a subset of λ + Q+, it is contained in
⋂
w∈W w(λ + Q+). This

establishes (iii). �
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3.3 The modules N̂(γ)

Lemma 3.3 allows us to quickly prove the following theorem, which can be seen as a corollary
to the work of Nakajima [25] and Lusztig [22].

Theorem 3.4 Let λ be an antidominant weight and let w ∈ W . Then there exists a unique
(up to isomorphism) stable Π(Q̂)-module of dimension-vector [wλ− λ, λ]. This module has a
small i-head, for all i ∈ I.

Proof. Let λ and w be as in the statement of the theorem.

We first prove the second assertion. Let M be a stable Π(Q̂)-module M of dimension-vector
[wλ− λ, λ] and let i ∈ I. We set c = dim hdiM and distinguish two cases.

If `(siw) > `(w), then we take k = −c in Lemma 3.3 (i) and get the existence of a stable
Π(Q̂)-module of dimension-vector [wλ−λ−cαi, λ]. Lemma 3.3 (iii) then says that wλ−cαi ∈
w(λ+Q+), and therefore −cw−1(αi) ∈ Q+. Since w−1(αi) is a positive root here, we conclude
that c = 0. Moreover 〈wλ, αi〉 ≤ 0 by the antidominance of λ.

If `(siw) < `(w), then we take k = c − 〈wλ, αi〉 in Lemma 3.3 (i) and get the existence of
a stable Π(Q̂)-module of dimension-vector [wλ − λ + kαi, λ]. Lemma 3.3 (iii) then says that
wλ + kαi ∈ w(λ + Q+). Since w−1(αi) is a negative root here, we obtain k ≤ 0. But also
k ≥ 0, by Lemma 3.2, and therefore c = 〈wλ, αi〉.

So in both cases, c = max(0, 〈wλ, αi〉), as claimed.

We now turn to the existence and uniqueness. The result is obvious for w = 1. If w 6= 1, we
pick i ∈ I such that `(siw) < `(w). Then Lemma 3.3 (ii) ensures that{

stable Π(Q̂)-modules of
dimension-vector [siwλ− λ, λ]

}
Σi //

Σ∗i

oo

{
stable Π(Q̂)-modules of

dimension-vector [wλ− λ, λ]

}

is an equivalence of categories, for the condition about the smallness of the i-head is automat-
ically fulfilled, by the first part of the reasoning. Thus the existence and uniqueness result for
w is equivalent to that for siw. At this point, an induction concludes the proof. �

Since the datum of wλ allows to recover λ, we may denote by N̂(wλ) the Π(Q̂)-module whose
existence and uniqueness is asserted by Theorem 3.4. The following easy proposition study
the behaviour of these modules under the reflection functors.

Proposition 3.5 Let γ be a weight and let i ∈ I. If 〈γ, αi〉 ≤ 0, then

ΣiN̂(γ) ∼= N̂(siγ), ΣiN̂(siγ) ∼= N̂(siγ) and Σ∗i N̂(siγ) ∼= N̂(γ).

Proof. The first relation is a direct consequence of the proof of Theorem 3.4; to see it, it
suffices to write γ = siwλ with λ antidominant and w ∈W such that `(siw) < `(w).
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Lemma 2.6 then gives the second relation:

ΣiN̂(siγ) ∼= Σ2
i N̂(γ) ∼= ΣiN̂(γ) ∼= N̂(siγ).

Finally the third relation comes from Proposition 2.5 and from the fact that N̂(γ) has trivial
i-head:

Σ∗i N̂(siγ) ∼= Σ∗iΣiN̂(γ) ∼= N̂(γ).

�

To conclude this section, we record the following consequence of Theorem 3.4 and Lemma 3.2:
for any weight γ and any i ∈ I, dim Hom

Π(Q̂)

(
N̂(γ), Si

)
= max(0, 〈γ, αi〉),

dim Ext1
Π(Q̂)

(
N̂(γ), Si

)
= max(0,−〈γ, αi〉).

(1)

3.4 The modules N(γ)

Let λ be an antidominant weight and let w ∈W . Looking at the proofs of Lemma 3.3 (ii) and
Theorem 3.4, one easily proves that if `(siw) > `(w), then there is a canonical monomorphism
N̂(wλ) ↪→ N̂(siwλ). (Alternatively, one can use Lemma 2.6 and Proposition 3.5.) In particu-
lar, N̂(λ) is contained in each N̂(wλ). Examining the dimension-vectors, one sees that N̂(λ)
is supported at the prime vertices and that the inclusion N̂(λ) ↪→ N̂(wλ) is an isomorphism
at the prime vertices. Therefore the arrows d∗i act as the zero map on the module N̂(wλ). We
set N(wλ) = N̂(wλ)/N̂(λ).

Now a Π(Q)-module T can be viewed as a Π(Q̂)-module by setting Ti′ = 0 for all i ∈ I.
Conversely, the Π(Q̂)-module N(wλ) can be viewed as a Π(Q)-module, because it is supported
only on non-primed vertices. In this context, there are natural isomorphisms

Hom
Π(Q̂)

(
N̂(wλ), T

) ∼= Hom
Π(Q̂)

(
N(wλ), T

) ∼= HomΠ(Q)

(
N(wλ), T

)
.

We are now in a position to prove Theorem 3.1.

Proof of Theorem 3.1. Assertion (i) is trivial.

Consider now the assertion (ii) and write γ = −wωi, with i ∈ I and w ∈ W . Set M = N̂(γ);
this is a stable Π(Q̂)-module of dimension-vector [γ+ωi,−ωi]. Then the vector space

⊕
j∈IMj′

has dimension one and is concentrated at vertex i′. On the other hand, the Π(Q)-module N(γ)
identifies with the vector space

⊕
i∈IMi, so its dimension-vector is γ+ωi. For each j ∈ I, the

j-socle ofM is the intersection of the j-socle ofN(γ) with kerMdj . The stability ofM therefore
implies that the socle of N(γ) is concentrated at vertex i and at most one-dimensional. Since
N(γ) 6= 0, this socle cannot be zero, and we conclude that socN(γ) ∼= Si. The module N(γ)
thus enjoys the properties stated in assertion (ii). Conversely, let N be a Π(Q)-module with
dimension-vector γ + ωi and socle Si. One can then construct a stable Π(Q̂)-module N̂ of
dimension-vector [γ + ωi,−ωi] as follows: N̂j = Nj for all j ∈ I, N̂h = Nh for all h ∈ H,
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N̂i′ = sociN , N̂di : Ni → sociN is any linear map which extends the identity of sociN , and
the remaining spaces and arrows are zero. By the uniqueness in Theorem 3.4, N̂ is isomorphic
to N̂(γ), and we conclude that N is isomorphic to N(γ). Assertion (ii) is proved.

Finally, let λ and µ be two antidominant weights and let w ∈W . Then we have an isomorphism
N̂(wλ) ⊕ N̂(wµ) ∼= N̂(w(λ + µ)), again by the uniqueness in Theorem 3.4. From there, it
follows easily that N(wλ)⊕N(wµ) ∼= N(w(λ+ µ)), which is the content of (iii). �

The modules N(γ) have already been studied at great length by Geiß, Leclerc and Schröer,
who have shown their relevance to the theory of cluster algebras. More precisely, the reflection
functors Σi can be seen as partial inverses to the functors Ei defined in section 5 of [9]. The
key to this interpretation is Proposition 3.5 and the following result.

Proposition 3.6 The projective cover of Si in Π(Q)-mod is N(ωi).

Proof. Consider a simple Π(Q)-module Sj , with j ∈ I. In the exact sequence

Hom
Π(Q̂)

(
N̂(w0ωi), Sj

)
→ Ext1

Π(Q̂)

(
N(ωi), Sj

)
→ Ext1

Π(Q̂)

(
N̂(ωi), Sj

)
,

the two extreme terms are zero, thanks to the equations (1). Hence the middle term is
also zero. Observing that a non-split extension of N(ωi) by Sj in the category Π(Q)-mod
would also be non-split in Π(Q̂)-mod, we see that Ext1

Π(Q)(N(ωi), Sj) = 0. We conclude that
Ext1

Π(Q)(N(ωi), T ) = 0 for any object T in the category Π(Q)-mod, because such a T has
always a finite filtration with subquotients Sj .

Thus N(ωi) is a projective Π(Q)-module, that is, is the projective cover of its head. On the
other hand, the equality

dim HomΠ(Q)(N(ωi), Sj) = dim Hom
Π(Q̂)

(N̂(ωi), Sj) = 〈αj , ωi〉

shows that the head of N(ωi) is Si. �

We conclude this section by noting that in [14], Sadanand and the second author present a
complete and explicit description of the modules N(γ) in type A.

4 Pseudo-Weyl polytopes

For any weight γ and any Π(Q)-module T , we set Dγ(T ) = dim HomΠ(Q)(N(γ), T ). Thus
Dγ(T ) is always non-negative and Dγ(T ) = 0 if γ is antidominant.

In this section, we study these functions Dγ . We first note the following consequence of
Theorem 3.1 (iii): Dγ+δ = Dγ +Dδ whenever γ and δ belong to the same Weyl chamber. This
observation prompts us to pay a particular attention to the so-called chamber weights, that
is, weights of the form γ = wωi, with w ∈W and i ∈ I.
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4.1 Edge and other relations

Proposition 4.1 Let γ be a weight, let i ∈ I and let T be a Π(Q)-module. If 〈γ, αi〉 ≤ 0,
then

Dγ(T ) = Dsiγ(ΣiT ), (2)
Dsiγ(T ) = Dγ(Σ∗iT )− 〈γ, dim soci T 〉, (3)
Dγ(T ) = Dγ(Σ∗iΣiT ). (4)

Proof. We can regard T as a module over either Π(Q) or Π(Q̂); this does not affect the
formation of ΣiT . Having noticed this, equation (2) follows from the isomorphisms

Hom
Π(Q̂)

(
N̂(γ), T

) ∼= Hom
Π(Q̂)

(
Σ∗i N̂(siγ), T

) ∼= Hom
Π(Q̂)

(
N̂(siγ),ΣiT

)
provided by Propositions 3.5 and 2.5.

Replacing T by Σ∗iT in this equality (2) yields

Dγ(Σ∗iT ) = Dsiγ(ΣiΣ
∗
iT ).

Now the equations (1) say that

dim Hom
Π(Q̂)

(
N̂(siγ), Si

)
= −〈γ, αi〉 and Ext1

Π(Q̂)

(
N̂(siγ), Si

)
= 0.

Equation (3) then follows by applying the functor Hom
Π(Q̂)

(
N̂(siγ), ?

)
to the short exact

sequence
0→ soci T → T → ΣiΣ

∗
iT → 0.

Finally, (4) is obtained by writing (3) for the Π(Q)-module ΣiT , which has trivial i-socle. �

Let aij = (αi, αj) be the entries of the Cartan matrix of the Dynkin diagram Γ.

Proposition 4.2 (Edge relations) Let T be a Π(Q)-module. Then for each i ∈ I and each
w ∈W , one has

D−wωi(T ) +D−wsiωi(T ) +
∑
j∈I
j 6=i

aijD−wωj (T ) ≥ 0.

Proof. We fix i ∈ I. The equality siωi = ωi − αi can be rewritten as

ωi + siωi +
∑
j∈I
j 6=i

aijωj = 0. (5)

Let us call Lw(T ) the left-hand side of our desired edge relation. We want to show that
Lw(T ) ≥ 0 for all w ∈ W . Since Lw(T ) = Lwsi(T ), we may restrict our attention to the
elements w such that `(wsi) > `(w).
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Take such a w, assume that it has positive length, and write w = skv with k ∈ I and
`(v) = `(w) − 1. Observing that `(skv) > `(v) and `(skvsi) > `(w) = `(v) + 1 ≥ `(vsi), a
straightforward computation based on equations (3) and (5) shows that

Lw(T ) = Lv(Σ
∗
kT ).

By induction, we thus see that if sk1 · · · skr is a reduced decomposition of w, then

Lw(T ) = L1(Σ∗kr · · ·Σ
∗
k1T ).

Since Dγ(M) = 0 for all antidominant weight γ and all Π(Q)-modules M , we finally obtain

Lw(T ) = D−siωi(Σ
∗
kr · · ·Σ

∗
k1T ) ≥ 0.

�

Proposition 4.3 Let γ be a weight and T be a Π(Q)-module. Then

Dγ(T )−D−γ(T ∗) = 〈γ, dimT 〉.

Proof. Let i ∈ I. By Proposition 3.6, Dωi(T ) is equal to the Jordan-Hölder multiplicity of Si
in T , and therefore to 〈ωi, dimT 〉. This fact implies the desired equality in the case γ = −ωi.
The case where γ is antidominant then follows from Theorem 3.1 (iii).

Fix an antidominant weight λ. For w ∈W , call Ew(T ) the desired equality for γ = wλ. Thus
the first part of the proof establishes E1(T ) for any T .

Take w ∈W and i ∈ I such that `(siw) > `(w). The third equality in Proposition 3.5 gives

Σ∗i N̂(−wλ) ∼= N̂(−siwλ).

By Proposition 2.5 and Remark 2.4 (i), it follows that

Hom
Π(Q̂)

(
N̂(−siwλ), T ∗

) ∼= Hom
Π(Q̂)

(
N̂(−wλ),ΣiT

∗) ∼= Hom
Π(Q̂)

(
N̂(−wλ), (Σ∗iT )∗

)
,

whence
D−siwλ(T ∗) = D−wλ

(
(Σ∗iT )∗

)
.

A straightforward computation based on equation (3) and on

dimT = dim ΣiΣ
∗
iT + dim soci T = si

(
dim Σ∗iT

)
+ dim soci T

shows then that Esiw(T ) is equivalent to Ew(Σ∗iT ).

We conclude the proof by an immediate induction on `(w). �

Remark 4.4. (i) It is worthwhile to record the starting point for the induction in the proof of
Proposition 4.3: if γ is dominant, then

dim HomΠ(Q)(N(γ), T ) = Dγ(T ) = 〈γ, dimT 〉.
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(ii) Let γ be a non-antidominant chamber weight. Recall that N(γ) is characterized by having
dimension-vector γ+ωi and socle Si. Hence N(γ)∗ is characterized by having dimension vector
γ + ωi and head Si. Note also that

Hom(N(γ), T ) = Hom(T ∗, N(γ)∗).

Thus, we could have defined Dγ in terms of morphisms into modules with one-dimensional
head, rather than out of modules with one-dimensional socle.

(iii) Let γ be a non-antidominant chamber weight. We can write γ as the difference γ0 − γ1

of two dominant weights with disjoint “supports”: a fundamental weight ωi may appear in
γ0 or in γ1, but not in both. Let us set P0 = N(γ0) and P1 = N(γ1). Proposition 3.6 and
Theorem 3.1 (iii) imply that P0 and P1 are projective modules. Using Theorem 3.1 (ii), equa-
tion (1) and Crawley-Boevey’s formula, one can show that the minimal projective resolution
of N(γ) starts with

· · · → P1 → P0 → N(γ)→ 0.

For any Π(Q)-module T , Corollary IV.4.3 in [2], Remark 4.4 (i) above and Proposition 4.3
then give

dim HomΠ(Q)(N(γ), T )− dim HomΠ(Q)(T,DTrN(γ))

= dim HomΠ(Q)(P0, T )− dim HomΠ(Q)(P1, T )

= 〈γ0, dimT 〉 − 〈γ1, dimT 〉
= 〈γ, dimT 〉
= Dγ(T )−D−γ(T ∗),

where DTr denotes the Auslander-Reiten translation. Remark 4.4 (ii) says that D−γ(T ∗) =
Hom(T,N(−γ)∗), so

dim HomΠ(Q)(T,DTrN(γ)) = dim HomΠ(Q)(T,N(−γ)∗)

holds for any T . We conjecture that in fact N(−γ)∗ ∼= DTrN(γ).

4.2 Pseudo-Weyl polytopes

Following Appendix A in [13], we recall the notion of pseudo-Weyl polytope.

Let V be a R-vector space and let V ∗ be its dual. To a non-empty compact convex subset P
of V , we associate its support function ψP : V ∗ → R: it maps a linear form α ∈ V ∗ to the
maximal value α takes on P . Then ψP is a sublinear function on V ∗. One can recover P from
the datum of ψP by the Hahn-Banach theorem

P = {v ∈ V | ∀α ∈ V ∗, 〈v, α〉 ≤ ψP (α)},

and the map P 7→ ψP is a bijection from the set of all non-empty compact convex subsets of
V onto the set of all sublinear functions on V ∗ (see for instance Chapter C in [11]). If P is a
polytope, then its support function is piecewise linear. More precisely, the maximal regions
of linearity of ψP are exactly the maximal cones of the dual fan of P : for each vertex v of P ,
the support function ψP is linear on {α ∈ V ∗ | ψP (α) = 〈v, α〉}.
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We now specialize to the case V = Q⊗Z R, the real vector space spanned by the root system
of g. We say that a polytope P ⊆ V is a pseudo-Weyl polytope if its support function is linear
on each Weyl chamber. Then to each Weyl chamber C ⊆ V ∗ corresponds a vertex vC of P ,
defined by the condition

∀γ ∈ C, ψP (γ) = 〈γ, vC〉.

One gets all the vertices of P in this way (possibly with repetitions, since the Weyl fan can be
finer than the dual fan of P ). For w ∈W , we denote by µw the vertex that corresponds to the
chamber formed by the elements wλ with λ antidominant. This indexed collection (µw)w∈W
is called the vertex datum of P .

Let Γ = {wωi | i ∈ I, w ∈W} denote the set of chamber weights. Then each Weyl chamber is
spanned by a subset of Γ, which implies that the support function of a pseudo-Weyl polytope
is entirely characterized by its values on Γ. A pseudo-Weyl polytope P is thus characterized
by the collection of real numbers

(
ψP (γ)

)
γ∈Γ

; concretely, these numbers describe the position
of the facets of P :

P = {v ∈ V | ∀γ ∈ Γ, 〈γ, v〉 ≤ ψP (γ)}.

This collection of real numbers is called the hyperplane datum of P .

Conversely, we can start from a collection of numbers (Aγ)γ∈Γ and ask ourselves whether there
exists a sublinear function ψ : V ∗ → R, linear on each Weyl chamber, such that ψ(γ) = Aγ
for each γ ∈ Γ; in other words, whether (Aγ)γ∈Γ is the hyperplane datum of a pseudo-Weyl
polytope. The answer is given in Lemma A.5 in [13]: a necessary and sufficient condition is
that (Aγ)γ∈Γ satisfy the edge inequalities

A−wωi +A−wsiωi +
∑
j∈I
j 6=i

aijA−wωj ≥ 0 (6)

for all i ∈ I and w ∈ W . When this condition is fulfilled, the vertex datum (µw)w∈W of the
corresponding pseudo-Weyl polytope is characterized by the set of equations

〈−wωi, µw〉 = A−wωi , (7)

and the left-hand side of (6) is equal to the length c of the edge between the vertices µw and
µwsi , defined by the equation µwsi −µw = cwαi, by formula (8) in [13]. From (7), we see that
all the weights µw belong to Q if and only if all the numbers Aγ are integers.

Note that in this paper, we use a different labelling of the vertices by Weyl group elements,
as compared to [13]. To translate between the two notions, set νw = µww0 , where (νw)w∈W
denotes a vertex datum from [13].

4.3 GGMS strata

We keep the conventions of the previous section. For each Π(Q)-module T , we have the
collection of integers

(
Dγ(T )

)
γ∈Γ

. Proposition 4.2 shows that this collection satisfies the edge
inequalities. It is thus the hyperplane datum of a pseudo-Weyl polytope, namely

Pol(T ) = {v ∈ V | ∀γ ∈ Γ, 〈γ, v〉 ≤ Dγ(T )}.
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Thus Dγ(T ) is the value ψPol(T )(γ) of the support function, for each γ ∈ Γ, and indeed for each
γ ∈ P , thanks to Theorem 3.1 (iii). The vertex datum

(
µw(T )

)
w∈W of Pol(T ) can be obtained

from the numbers Dγ(T ) by the formula (7), with Dγ(T ) instead of Aγ . Using Remark 4.4 (i),
we note that µ1(T ) = 0 and µw0(T ) = dimT .

Remark 4.5. Proposition 4.3 implies that for any submodule U ⊆ T , the inequality

〈γ, dimU〉 = Dγ(U)−D−γ(U∗) ≤ Dγ(U) ≤ Dγ(T )

holds for each γ ∈ Γ; it follows that dimU ∈ Pol(T ). In [3], we will show that in fact, Pol(T )
is the convex hull of the dimension-vectors of all submodules of T ; moreover we will describe
precisely the submodules U such that dimU is an extremal point of Pol(T ).

Conversely, for each dimension-vector ν and each pseudo-Weyl polytope P whose vertex datum
satisfies µ1 = 0 and µw0 = ν, we may consider the set of all points in Λ(ν) whose polytope is
P . We obtain in this way a stratification of Λ(ν) whose strata are labelled by pseudo-Weyl
polytopes of weight ν. In analogy with the situation for the affine Grassmannian (see section
2.4 of [13]), we call these the GGMS strata of Λ(ν). Later in this paper, we will see that the
strata of biggest dimension (whose closures are the components) are those labelled by MV
polytopes — exactly as in the case of the affine Grassmannian. On the other hand, we do
not know how to analyse the other GGMS strata and compare them with the corresponding
GGMS strata in the affine Grassmannian.

To conclude, let us emphasize the meaning of Proposition 4.3: for any Π(Q)-module T , the
pseudo-Weyl polytope Pol(T ∗) is the image of Pol(T ) under the involution x 7→ dimT − x.

5 Crystal structure

The combinatorics of representations of complex semi-simple Lie algebras is in part controlled
by Kashiwara crystals; see [15] for a survey of this theory. The crystals B(λ) of the finite-
dimensional representations of g are “contained” in a big crystal B(−∞), which is the crystal of
the positive part U(n) of U(g). In [16], Kashiwara and Saito gave a characterization of B(−∞)
as the unique highest weight crystal having an involution with certain specific properties.

Let us denote by IrrX the set of irreducible components of an algebraic variety X. The
set B =

⊔
ν∈Q+

Irr Λ(ν) can be endowed with the structure of a crystal with an involution,
which turns out to be isomorphic to B(−∞). Thus to an element b ∈ B(−∞), of weight
ν, corresponds Λb ∈ Irr Λ(ν). Our aim in this section is to show that the reflection functor
Σi has a crystal counterpart, namely the map denoted by Si in [16]. (We will adopt this
notation Si, though it brings some confusion with our previous notation for the simple quiver
representations.)

5.1 The crystal structure

We begin by recalling the crystal structure on B, first defined by Lusztig in [19], section 8.
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Let ν ∈ Q+. As in section 2.1, we set Mi = Kνi for each i ∈ I. Any point (Ma) ∈ Λ(ν)
then defines a Π(Q)-module with dimension-vector ν. An element Z ∈ Irr Λ(ν) is said to have
weight wt(Z) = ν.

The usual isomorphism between the vector spaces Mi and their duals allows to view the
involution ∗ on Π(Q)-modules as an operation on Λ(ν) (it just amounts to the transposition
and subsequent relabelling of the matrices Ma). This operation induces an involution on
Irr Λ(ν). We thus obtain a weight preserving involution on B, which we denote again by ∗.

For i ∈ I and c ∈ N, let
Λ(ν)i,c =

{
(Ma)

∣∣ dim hdiM = c
}
.

These sets form a partition of Λ(ν) into locally closed subsets. For any irreducible component
Z of Λ(ν), there is thus one value of c such that Z ∩Λ(ν)i,c is open and dense in Z. We then
write ϕi(Z) = c and εi(Z) = c− (αi, ν).

In this context, we note that Λ(ν) and each subset Λ(ν)i,c have pure dimension equal to
dimG(ν) − (ν, ν)/2; see Theorem 8.7 in [19]. Therefore the map Z 7→ Z ∩ Λ(ν)i,c gives a
bijection

{Z ∈ Irr Λ(ν) | ϕi(Z) = c} → Irr Λ(ν)i,c.

Let again i ∈ I. Given c ∈ N, let us denote by Ω(ν, i, c) the set of triples ((Ma), (Na), g)
such that (Ma) ∈ Λ(ν)i,0, (Na) ∈ Λ(ν + cαi)i,c and g : M → N is an injective morphism of
Π(Q)-modules. We can then form the diagram

Λ(ν)i,0
p←− Ω(ν, i, c)

q−→ Λ(ν + cαi)i,c, (8)

where p and q are the first and second projection. Then p is a locally trivial fibration, with a
smooth and connected fiber, and q is a principal G(ν)-bundle. Thus p and q define bijections

Irr Λ(ν)i,0 ←→ Irr Ω(ν, i, c)←→ Irr Λ(ν + cαi)i,c.

We therefore obtain mutually inverse bijections

{Z ∈ Irr Λ(ν) | ϕi(Z) = 0}
ẽci // {Z ∈ Irr Λ(ν + cαi) | ϕi(Z) = c},

f̃max
i

oo

whose data is equivalent to the data of the usual structure maps for a crystal

{Z ∈ Irr Λ(ν + cαi) | ϕi(Z) = c}
ẽi // {Z ∈ Irr Λ(ν + (c+ 1)αi) | ϕi(Z) = c+ 1}.
f̃i

oo

It is known that the maps wt, εi, ϕi, ẽi and f̃i endow B with the structure of a crystal. Using
the involution ∗, Kashiwara and Saito proved the existence of an isomorphism b 7→ Λb from
B(−∞) onto B (Theorem 5.3.2 in [16]). This isomorphism is unique since B(−∞) has no
automorphism. As usual, one writes ẽ∗i = ∗ẽi∗ and f̃∗i = ∗f̃i∗.

For ν ∈ Q+, i ∈ I and c ∈ N, let us set Λ(ν)×i,c = Λ(ν)i,c ∩ (Λ(ν)i,0)∗. Assuming moreover
that 0 ≤ c ≤ −(αi, ν), let us denote by Ω(ν, i, c)× the set of triples ((Ma), (Na), g) such
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that (Ma) ∈ Λ(ν)×i,0, (Na) ∈ Λ(ν + cαi)
×
i,c and g : M → N is an injective morphism of

Π(Q)-modules. By restriction, the diagram (8) yields

Λ(ν)×i,0
p×←−− Ω(ν, i, c)×

q×−→ Λ(ν + cαi)
×
i,c. (9)

Lemma 5.1 In the context above, p× is a locally trivial fibration, with a smooth and connected
fiber, and q× is a principal G(ν)-bundle.

Proof. Let us set Mi = Kνi , Ni = Kνi+c, and Mj = Nj = Kνj for j 6= i.

Let us first study the fibers of p×. We thus fix a point (Ma) ∈ Λ(ν)×i,0 and look at the set of
pairs ((Na), g), where (Na) ∈ Λ(ν + cαi)

×
i,c and g : M → N is an injective morphism. The

isomorphisms of vector spaces gj : Mj → Nj with j 6= i can be freely chosen, and their datum
determines the maps Na for all a ∈ H such that i /∈ {s(a), t(a)}. It thus remains to study the
local situation around i.

We adopt the notations set up in section 2.2. The situation can be summarized by a commu-
tative diagram

M̃i

g̃i
��

Min(i)
// //Mi� _

gi

��

� �
Mout(i)

// M̃i

g̃i
��

Ñi
Nin(i)

// Ni
� �

Nout(i)

// Ñi,

where g̃i is an isomorphism of vector spaces. The injectivity of Mout(i) and Nout(i) follows
from the fact that (Ma) ∈ (Λ(ν)i,0)∗ and (Na) ∈ (Λ(ν + cαi)i,0)∗.

The image of the map u = Mout(i)Min(i) has the same dimension asMi, namely νi. The image
of (g̃i)

−1Nout(i) is a subspace V of M̃i with dimension νi + c and such that imu ⊆ V ⊆ keru.
In other words, V/ imu can be chosen freely in the Grassmannian of c-dimensional subspaces
of keru/ imu (note that since dim imu = dimMi and dim keru = dim M̃i − dimMi, we have
dim keru/ imu = −(αi, ν) ≥ c). The choice of such a V and of an isomorphism of vector
spaces Nout(i) : Ni → g̃i(V ) determines the remaining data gi, Nin(i) and Nout(i). We conclude
that the fiber of p above (Ma) has the structure of a principal G(ν + cαi)-bundle over a
Grassmannian. This Grassmannian depends smoothly on (Ma), so we can conclude that p×

is a locally trivial fibration, with a smooth and connected fiber.

The proof of the assertion about q× is similar, even simpler. �

We can now write a commutative diagram

Irr Λ(ν)×i,0� _

��

oo // Irr Ω(ν, i, c)×� _

��

oo // Irr Λ(ν + cαi)
×
i,c� _

��

Irr Λ(ν)i,0 oo // Irr Ω(ν, i, c) oo // Irr Λ(ν + cαi)i,c,
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where the horizontal arrows are the bijections defined by the maps in the diagrams (9) and
(8) and the vertical arrows are given by the open inclusions

Λ(ν)×i,0 ⊆ Λ(ν)i,0, Ω(ν, i, c)× ⊆ Ω(ν, i, c) and Λ(ν + cαi)
×
i,c ⊆ Λ(ν + cαi)i,c.

In particular, we see that if 0 ≤ c ≤ −(αi, ν), then ẽci and f̃
max
i restrict to bijections

{Z ∈ Irr Λ(ν) | ϕi(Z) = ϕi(Z
∗) = 0}

ẽci // {Z ∈ Irr Λ(ν + cαi) | ϕi(Z) = c and ϕi(Z∗) = 0}.
f̃max
i

oo

Remark 5.2. Taking into account the crystal isomorphism B ∼= B(−∞), we conclude that for
any b ∈ B(−∞) and c ∈ N,(

ϕi(b) = ϕi(b
∗) = 0 and 0 ≤ c ≤ −(αi,wt(b))

)
=⇒ ϕi( (ẽcib)

∗ ) = 0.

This result is indeed contained in Proposition 5.3.1 (1) in [16], which says that

ϕi(b) = max
(
ϕi
(
(f̃∗i )maxb

)
, (wt(b), αi)− ϕi(b∗)

)
for each b ∈ B(−∞). A particular case of the latter formula is that for each b ∈ B(−∞) that
satisfies ϕi(b) = 0, the number εi(b∗) = ϕi(b

∗)− (αi,wt(b)) is non-negative.

5.2 Reflection functors and crystal operations

Let us fix i ∈ I for this whole section. In Corollary 3.4.8 in [29] (see also section 8.2 in [16]),
Saito defines a bijection

Si : {b ∈ B(−∞) | ϕi(b) = 0} → {b ∈ B(−∞) | ϕi(b∗) = 0}

by the rule Si(b) = ẽi
εi(b
∗)(f̃∗i )maxb. This operation plays the role of the simple reflection si,

but at the crystal level. One can indeed check that

wt(Sib) = wt(b) + (εi(b
∗)− ϕi(b∗))αi = wt(b)− (αi,wt(b∗))αi = si(wt(b)).

A deeper property is that Si implements at the crystal level the action of Lusztig’s braid group
automorphism Ti = T ′i,−1 on the canonical basis; see [21] and Proposition 3.4.7 in [29]. We
now relate this operation Si to the reflection functor Σi.

To do that, let us fix ν ∈ Q+ and let us denote by Θ(ν, i) the set of all triples ((Ma), (Na), h)
such that (Ma) ∈ Λ(ν)i,0, (Na) ∈ (Λ(siν)i,0)∗ and h : N → ΣiM is an isomorphism. We can
then form the diagram

Λ(ν)i,0
r←− Θ(ν, i)

s−→ (Λ(siν)i,0)∗, (10)

where r and s are the first and second projection.

There is an obvious action of G(siν) on Θ(ν, i), whose orbits are the fibers of r. In addition,
the linear map Min(i) has always full rank when (Ma) ∈ Λ(ν)i,0, so (Ma) 7→ kerMin(i) is a
continuous map from Λ(ν)i,0 to the relevant Grassmannian of the vector space M̃i. With
the help of local charts of the Grassmannian, we can then construct local homeomorphisms
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tα : r−1(Uα) ∼= Uα ×G(siν), where (Uα) is an open covering of Λ(ν)i,0, and prove that r is a
principal G(siν) bundle.

A similar argument proves that s is a principal G(ν)-bundle; in fact, the remark after Proposi-
tion 2.5 shows that M and N play symmetric roles. Thus r and s are locally trivial fibrations
with a smooth and connected fiber; therefore they define bijections

Irr Λ(ν)i,0 ←→ Irr Θ(ν, i)←→ Irr
(
(Λ(siν)i,0)∗

)
.

Theorem 5.3 Let b ∈ B(−∞) of weight ν and such that ϕi(b) = 0. In the notation above,

r−1
(
Λb ∩ Λ(ν)i,0

)
= s−1

(
ΛSib ∩ (Λ(siν)i,0)∗

)
.

Proof. A direct calculation shows that for any Π(Q)-modules M and N such that hdiM = 0,
sociN = 0 and N ∼= ΣiM , one has

dimMi − dim sociM = dimNi − dim hdiN.

Now let µ ∈ Q+ and let c, d ∈ N be such that c + d = −(αi, µ). Set ν = µ + cαi; thus
siν = µ+ dαi. Two Π(Q)-modules M and N such that

dimM = ν, hdiM = 0, dimN = siν, sociN = 0, ΣiM ∼= N

are then related by
dim sociM = c ⇐⇒ dim hdiN = d.

The diagram (10) thus restricts to

Λ(ν)i,0 ∩ (Λ(ν)i,c)
∗ ← Θ(ν, i)c,d → (Λ(siν)i,0)∗ ∩ Λ(siν)i,d, (11)

for a suitable locally closed subset Θ(ν, i)c,d ⊆ Θ(ν, i).

Now let Ξ be the set of all tuples ((La), (Ma), (Na), f, g, h) such that

(La) ∈ Λ(µ)×i,0, (Ma) ∈ (Λ(ν)×i,c)
∗, (Na) ∈ Λ(siν)×i,d,

and that f : M � L, g : L ↪→ N and h : N
'−→ ΣiM are morphisms of Π(Q)-modules,

subject to the condition that hgf : M → ΣiM is the canonical map from Remark 2.4 (ii).

We inscribe (11) as the right column in

(Λ(µ)×i,0)∗ (Ω(µ, i, c)×)∗
∗ p×∗

oo
∗ q×∗

// (Λ(ν)×i,c)
∗

Ξ

OO

//

��

Θ(ν, i)c,d

r

OO

s

��

Λ(µ)×i,0 Ω(µ, i, d)×
p×

oo

q×
// Λ(siν)×i,d.
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In this commutative diagram, the arrows are the relevant projections and the top and bottom
rows are diagrams of the form (9). Routine arguments show that the three arrows starting
from Ξ are principal bundles, with structural groups G(siν), G(µ) and G(ν). Therefore all the
maps on this diagram are locally trivial fibrations with a smooth and connected fiber. They
thus induce bijections between the sets of irreducible components.

Now take b ∈ B(−∞) as in the statement of the theorem. Let c = ϕi(b
∗), d = εi(b

∗) and
µ = wt

(
(f̃∗i )maxb

)
; then the weight of b is ν = µ+ cαi. The remark at the end of section 5.1

says that d = c− (αi, ν) is non-negative and that ϕi
(
(f̃∗i )maxb

)
= 0, which implies

d = ϕi(Sib) and c+ d = 2c− (αi, µ+ cαi) = −(αi, µ).

This remark also says that ϕi
(
(Sib)

∗) = 0. The commutativity of our big diagram implies that
Λb ∩ (Λ(ν)×i,c)

∗ and ΛSib ∩ Λ(siν)×i,d correspond in the bijection defined by (11). We conclude
by taking closures in Λ(ν)i,0 and (Λ(siν)i,0)∗. �

5.3 Reformulations

In this subsection, we rewrite in a more direct way the constructions presented in sections 5.1
and 5.2.

Given a dimension vector ν ∈ Q+, any point (Ma) ∈ Λ(ν) can be viewed as a Π(Q)-module
of dimension-vector ν. Conversely, if M is a Π(Q)-module of dimension-vector ν, then its
isomorphism class can be viewed as a G(ν)-orbit in Λ(ν); this orbit will be denoted by [M ].

We now fix ν ∈ Q+ and i ∈ I. Our first reformulation deals with the operation f̃max
i .

Proposition 5.4 Let Z be an irreducible component of Λ(ν) and set c = ϕi(Z) and ν ′ =
ν − cαi. Let V be a dense, open, and G(ν ′)-invariant subset of f̃max

i Z. Then {M ∈ Z |
[Σ∗iΣiM ] ⊆ V } contains a dense open subset in Z.

Proof. Let c ∈ N and set ν ′ = ν − cαi. The proof of Proposition 2.5 (ii) tells us that if
M is a Π(Q)-module of dimension-vector ν with an i-head of dimension c, then Σ∗iΣiM
identifies canonically with the unique submodule of M of dimension-vector ν ′. With the
notation of section 5.1, this means that Ω(ν ′, i, c) is the set of triples ((Na), (Ma), g) such that
(Na) ∈ Λ(ν ′)i,0, (Ma) ∈ Λ(ν)i,c and g : N → Σ∗iΣiM is an isomorphism of Π(Q)-modules.
Looking at the diagram (8), we thus see that for each (Ma) ∈ Λ(ν)i,c, the set p(q−1(M)) is
the orbit [Σ∗iΣiM ].

Now let Z be an irreducible component of Λ(ν). Put c = ϕi(Z) in the discussion just above;
thus U = Z ∩ Λ(ν)i,c is a dense open subset of Z. By definition of the operation f̃max

i , the
diagram (8) restricts to

U ′
p←− Ω′

q−→ U,

where Ω′ is an irreducible component of Ω(ν ′, i, c) and U ′ =
(
f̃max
i Z

)
∩ Λ(ν ′)i,0 is dense open

in f̃max
i Z. From the fact that U ′ ∩ V is open dense in U ′, it follows that q(p−1(U ′ ∩ V )) is

open dense in U .
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To conclude the proof, it now suffices to observe that

{M ∈ Z | [Σ∗iΣiM ] ⊆ V } = {M ∈ Z | [Σ∗iΣiM ] meets V }
⊇ {M ∈ U | p(q−1(M)) meets U ′ ∩ V }
= q(p−1(U ′ ∩ V ));

in this computation, the first equality comes from the G(ν ′)-invariance of V . �

Our second reformulation concerns the operation Si.

Proposition 5.5 Let b ∈ B(−∞) and set

ν = wt(b), c = ϕi(b), U = Λb ∩ Λ(ν)i,c, b′ = Si
(
f̃max
i b

)
and ν ′ = wt(b′).

Let V be an open, dense and G(ν ′)-invariant subset of Λb′. Then {(Ma) ∈ U | [ΣiM ] ⊆ V }
contains a dense open subset of U .

Proof. The proof of the particular case c = 0 is completely analogous to the proof of Proposi-
tion 5.4. Indeed we first note that b′ = Sib, hence ν ′ = siν, and then we let the diagram (10)
play the role of the diagram (8) in our previous discussion, using Theorem 5.3 to identify the
bijection between the sets of irreducible components.

The general case is a combination of this particular case c = 0 with the situation studied in
Proposition 5.4. This is obvious on the crystal side; on the side of Π(Q)-modules, one uses
the equality ΣiM ∼= Σi(Σ

∗
iΣiM) noticed in section 2.2. �

6 MV polytopes

In section 4.3, to each Π(Q)-module T , we associated the pseudo-Weyl polytope Pol(T ) with
hyperplane datum

(
Dγ(T )

)
γ∈Γ

. MV polytopes are special pseudo-Weyl polytopes, defined by
certain rank 2 conditions. The work of Anderson [1] and the second author [13] establishes
a link between these MV polytopes and the combinatorics of representations. In particular,
MV polytopes form a model for the crystal B(−∞).

Our goal in this section is to show that if T is a general point in a component Z ⊆ Λ(ν), then
the polytope Pol(T ) constructed in section 4.3 is an MV polytope. Moreover, we show that
this construction provides an isomorphism of crystals between B and the set of MV polytopes.

6.1 Tropical Plücker relations

We call hexagon a triple (w, i, j) ∈ W × I2 such that aij = −1, `(wsi) > `(w) and `(wsj) >
`(w). (This terminology comes from the fact that such a triple corresponds to an hexagonal
2-face of any pseudo-Weyl polytope.)
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We say that a collection of real numbers (Aγ)γ∈Γ satisfies the tropical Plücker relation at the
hexagon (w, i, j) if

A−wsiωi +A−wsjωj = max(A−wωi +A−wsisjωj , A−wsjsiωi +A−wωj ).

(The minus signs here are not essential, for they can be removed by replacing w by ww0. They
have been inserted to simplify the statement of Lemma 6.2.)

We say that a collection (Aγ)γ∈Γ is a BZ datum if the following three conditions hold:

(BZ1) Each Aγ is an integer and each A−ωi is zero.

(BZ2) All edge inequalities (6) are satisfied.

(BZ3) All possible tropical Plücker relations are satisfied.

We say that a pseudo-Weyl polytope is an MV polytope if its hyperplane datum is a BZ
datum. Thus there is a canonical bijection between the set of MV polytopes and the set of
BZ data.

For any Π(Q)-module T , the collection
(
Dγ(T )

)
γ∈Γ

obviously satisfies (BZ1). Proposition 4.2
says that it also satisfies (BZ2); this fact was indeed used in section 4.3 to associate to T
its pseudo-Weyl polytope Pol(T ). We will now prove that when T is the general point in a
component of a variety Λ(ν), then

(
Dγ(T )

)
γ∈Γ

satisfies (BZ3); in other words, Pol(T ) is an
MV polytope.

More precisely, note that Dγ is a constructible function on Λ(ν). Hence any irreducible
component Z of Λ(ν) contains a dense open subset on which Dγ takes a constant value: we
denote this value by Dγ(Z). There is thus an open and dense subset ΩZ ⊆ Z such that each
point T ∈ ΩZ satisfies Dγ(T ) = Dγ(Z) for each γ ∈ Γ (and hence for each γ ∈ P ); and one
may even demand that ΩZ be G(ν)-invariant, for each function Dγ is G(ν)-invariant.

Theorem 6.1 Let ν ∈ NI be a dimension-vector. Then for any irreducible component Z of
Λ(ν), the collection

(
Dγ(Z)

)
γ∈Γ

satisfies the tropical Plücker relations.

We have to prove a relation at each hexagon (w, i, j). We will proceed by induction on `(w).
We begin by checking the base case w = 1.

Lemma 6.2 Let (i, j) be a pair of vertices in the Dynkin diagram, connected to each other. Let
ν be a dimension-vector and Z be an irreducible component of Λ(ν). Then

(
Dγ(Z)

)
satisfies

the tropical Plücker relation at (1, i, j).

Proof. Let i, j and Z be as in the statement of the lemma. Theorem 3.1 (ii) implies that
N(−siωi) ∼= Si and N(−sjωj) ∼= Sj . Let us set Ti = N(−sjsiωi) and Tj = N(−sisjωj). We
have socTi ∼= Si and socTj ∼= Sj , and both Ti and Tj have dimension-vector αi +αj , so these
modules are represented by

Ti :
i

j
�� and Tj :

i
��

j.
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We want to show that for a general point M in Z,

dim Hom(Si,M) + dim Hom(Sj ,M) = max
(
dim Hom(Ti,M),dim Hom(Tj ,M)

)
.

So let us take a point M in ΩZ , and let us adopt the same local representation for M as the
one used in the proof of Proposition 2.7: we abbreviate the part

⊕
a∈H
t(a)=i
a6=c∗

Ms(a)

(ε(a)Ma)
//Mi

(Ma∗ )
oo

Mc //Mj
Mc∗

oo

(Mb∗ )
//
⊕
b∈H
t(b)=j
b6=c

Ms(b)
(ε(b)Mb)

oo

of the datum of M by the notation

R
k // V
l

oo

f
//W

g
oo

m // S.
n
oo

The preprojective relations at i and j then read

kl + ε(c∗)gf = 0 and nm+ ε(c)fg = 0.

We are interested in the dimension of the spaces

Hom(Si,M) ∼= sociM = ker f ∩ ker l,

Hom(Sj ,M) ∼= socjM = ker g ∩ kerm,

Hom(Ti,M) ∼= kerm ∩ g−1(sociM) = kerm ∩ g−1(ker f ∩ ker l),

Hom(Tj ,M) ∼= ker l ∩ f−1(socjM) = ker l ∩ f−1(ker g ∩ kerm).

By the preprojective relations, kerm ⊆ g−1(ker f), so Hom(Ti,M) ∼= kerm∩g−1(ker l). Hence

Hom(Ti,M)

Hom(Sj ,M)
∼=

kerm ∩ g−1(ker l)

kerm ∩ ker g
∼= g(kerm) ∩ ker l ⊆ ker f ∩ ker l ∼= Hom(Si,M),

and so we see that

dim Hom(Si,M) + dim Hom(Sj ,M) ≥ dim Hom(Ti,M)

with equality if and only if the inclusion

g(kerm) ∩ ker l ⊆ ker f ∩ ker l (†)

is an equality. Likewise,

dim Hom(Si,M) + dim Hom(Sj ,M) ≥ dim Hom(Tj ,M)

with equality if and only if the inclusion

f(ker l) ∩ kerm ⊆ ker g ∩ kerm (‡)

is an equality.
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At this point, it remains to show that the inclusions (†) and (‡) cannot be both strict. We
proceed by way of contradiction and assume the existence of

v ∈
(
ker f ∩ ker l

)
\
(
g(kerm) ∩ ker l

)
and w ∈

(
ker g ∩ kerm

)
\
(
f(ker l) ∩ kerm

)
.

We will construct a one-dimensional family (Mt) of points in Λ(ν) such that M0 = M and

D−sjωj (Mt) = dim Hom(Sj ,Mt) 6= dim Hom(Sj ,M) = D−sjωj (M) = D−sjωj (Z)

for all t 6= 0. Thus Mt cannot be in ΩZ for t 6= 0, which contradicts the fact that M was
chosen in the open set ΩZ .

We distinguish two cases. Suppose first that w /∈ im f . Then we can choose W1 ⊆ W
complementary to spanK(w) and such that im f ⊆ W1. For each t ∈ K, we define Mt to be
the same as M except that the linear map g is deformed to gt defined as follows:

gt
∣∣
W1

= g
∣∣
W1
, gt(w) = tv.

The preprojective relations are still satisfied, so that Mt ∈ Λ(ν). On the other hand, for all
t 6= 0,

ker gt ∩ kerm ( ker g ∩ kerm, hence dim Hom(Sj ,Mt) < dim Hom(Sj ,M).

Now suppose that w ∈ im f and choose u ∈ f−1(w). Choose a complement W1 to spanK(w)
inside W such that f(ker l) ⊆ W1. Since w ∈ ker g, we have gf(u) = 0 and so kl(u) = 0.
Let x = l(u) ∈ R. Note that x /∈ l(f−1(W1)) since w /∈ W1 + f(ker l). Hence we can find
a complementary subspace R1 to spanK(x) inside R such that l(f−1(W1)) ⊆ R1. For each
t ∈ K, we define a point Mt by setting

gt
∣∣
W1

= g
∣∣
W1
, gt(w) = tv, kt

∣∣
R1

= k
∣∣
R1
, kt(x) = ε(c)tv

and leaving all the other arrows unchanged. It is easy to verify the preprojective relations for
Mt and to check that again, for all t 6= 0,

ker gt ∩ kerm ( ker g ∩ kerm, hence dim Hom(Sj ,Mt) < dim Hom(Sj ,M).

�

And now we complete the induction.

Proof of Theorem 6.1. We fix a pair (i, j) of connected vertices and show, by induction on
`(w), that the tropical Plücker relation holds at the hexagon (w, i, j) for any Z.

The case w = 1 was taken care of in Lemma 6.2, so let w 6= 1, let ν be a dimension-vector,
and let Z be an irreducible component of Λ(ν).

We can find k ∈ I such that `(skw) < `(w). We can find b ∈ B(−∞) such that Z = Λb. Set

c = ϕk(b
∗), b′ =

(
Sk
(
f̃max
k b∗

))∗ and Z ′ = Λb′ .
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By Proposition 5.5, the set
{

(Ma) ∈ Z ∩ (Λ(ν)k,c)
∗ ∣∣ [Σ∗kM ] ⊆ ΩZ′

}
contains a dense open

subset of Z. We can thus find M that belongs to both this set and ΩZ . In particular, we have
Dskγ(M) = Dskγ(Z) and Dγ(Σ∗kM) = Dγ(Z ′) for each chamber weight γ. Combining this
with equation (3), we obtain

Dskγ(Z) = Dγ(Z ′)− c 〈γ, αk〉 (12)

whenever 〈γ, αk〉 ≤ 0.

We have `(skwsi) ≤ `(skw) + 1 ≤ `(w) and `(skwsi) ≥ `(wsi) − 1 ≥ `(w), so `(skwsi) =
`(w) = `(skw) + 1. Combined with a similar analysis for skwsj , we see that (skw, i, j) is an
hexagon. The chamber weights involved in the tropical Plücker relation for (w, i, j) are of the
form skγ, where γ is a weight involved in the tropical Plücker relation for (skw, i, j). Such a
weight γ is an element in the list

−skwωi, −skwωj , −skwsiωi, −skwsjωj , −skwsjsiωi, −skwsisjωj ,

so has the form −skuωl with `(sku) < `(u); it follows that 〈γ, αk〉 ≤ 0, and thus (12) holds.
From this observation, a simple computation shows that the tropical Plücker relation for Z
at the hexagon (w, i, j) is equivalent to the tropical relation for Z ′ at the hexagon (skw, i, j).
By the inductive hypothesis, the latter holds, hence the former also holds. This concludes the
proof. �

6.2 MV polytopes and crystal operations

Let MV be the set of all MV polytopes. Theorem 7.2 in [13] provides a natural bijection
b 7→ P (b) from B(−∞) onto MV. Despite appearences, the proof does not fundamentally
relies on constructions in the affine Grassmannian; a short recapitulation of the arguments is
presented below in Remark 7.7. By transport under this bijection,MV inherits from B(−∞)
a crystal structure. This structure is described in section 3.6 in [12]; we now recall how it
works.

Let P ∈ MV with vertex datum (µw)w∈W and hyperplane datum (Aγ)γ∈Γ. Then the weight
of P is wt(P ) = µw0 . Fix now i ∈ I. As explained in section 4.2, the length of the edge
between the vertices µw0 and µsiw0 , that is, the number c such that µw0 − µsiw0 = cαi, is the
integer

c = Aωi +Asiωi +
∑
j∈I
j 6=i

aijAωj .

It turns out that ϕi(P ) = c and εi(P ) = c− (αi,wt(P )).

The key to understand the operators ẽi and f̃i is the observation that when the Aγ are known
for all γ in

{ωi | i ∈ I} ∪ {γ ∈ Γ | 〈γ, αi〉 ≤ 0},

then the tropical Plücker relations determine the remaining Aγ . Therefore the demand that
the operators ẽi and f̃i do not change the Aγ such that 〈γ, αi〉 ≤ 0 and the conditions

wt
(
ẽiP ) = wt(P ) + αi and wt

(
f̃iP ) = wt(P )− αi
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fully specify ẽiP and f̃iP . Since the crystalMV is isomorphic to B(−∞), the polytope ẽiP
always exists, and the polytope f̃iP exists if and only if ϕi(P ) > 0.

By Theorem 6.1, to each component Z ∈ Irr Λ(ν) is associated an MV polytope Pol(Z),
defined by the BZ datum (Dγ(Z))γ∈Γ. So we have a map Pol from B =

⊔
ν∈Q+

Irr Λ(ν)
toMV.

Theorem 6.3 In the triangle

B(−∞)

b 7→Λb

��

b7→P (b)

!!

B
Pol

//MV,

each arrow is an isomorphism of crystals. The triangle commutes.

Proof. It is enough to prove that the horizontal arrow is a morphism of crystals, since the
two diagonal arrows are isomorphism of crystals and the identity is the only endomorphism
of the crystal B(−∞). By definition, a map of sets is a morphism of crystals if it preserves
the five operations wt, εi, ϕi, ẽi, f̃i. The verification for εi is however unnecessary, since
εi = ϕi − (αi,wt(?)). Noting that

b′ = f̃ib ⇐⇒ b = ẽib
′ ⇐⇒

(
wt(b) = wt(b′) + αi and f̃max

i b = f̃max
i b′

)
,

we are reduced to show that Pol preserves the weight map wt, the functions ϕi and the
operators f̃max

i . Let Z be an element of B.

We have seen in section 4.3 that for any Π(Q)-module T , the vertex µw0(T ) of Pol(T ) is equal
to the dimension-vector of T . Taking T in ΩZ , we see that Pol preserves the weight map.

Let i ∈ I. For any Π(Q)-module T , we compute, using Proposition 4.3 at the fourth step and
Remark 4.4 (i) at the fifth:

dim hdi T = dim HomΠ(Q)(T, Si)

= dim HomΠ(Q)(Si, T
∗)

= D−siωi(T
∗)

= Dsiωi(T )− 〈siωi, dimT 〉

= Dsiωi(T ) +Dωi(T ) +
∑
j∈I
j 6=i

aijDωj (T ).

Hence the function T 7→ dim hdi T is constant on ΩZ , with value

Dsiωi(Z) +Dωi(Z) +
∑
j∈I
j 6=i

aijDωj (Z).

This number is the general value on Z of T 7→ dim hdi T , so is equal to ϕi(Z), by definition
of the crystal structure of B. On the other hand, this expression is precisely ϕi(Pol(Z)), by
definition of the crystal structure onMV. Therefore Pol preserves the function ϕi.
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Let again i ∈ I, and set Z ′ = f̃max
i Z. Since Pol preserves the weight and ϕi, the equation

wt(Z ′) = wt(Z)− ϕi(Z)αi translates to

wt(Pol(Z ′)) = wt(Pol(Z))− ϕi(Pol(Z))αi = wt(f̃max
i Pol(Z)).

By Proposition 5.4, the set {(Ma) ∈ Z | [Σ∗iΣiM ] ⊆ ΩZ′} is open and dense in Z. We can thus
find M that belongs to both this set and ΩZ . In particular, we have Dγ(M) = Dγ(Z) and
Dγ(Σ∗iΣiM) = Dγ(Z ′) for each chamber weight γ. Equation (4) then tells us that Dγ(Z) =
Dγ(Z ′) whenever 〈γ, αi〉 ≤ 0. This condition, together with wt(Pol(Z ′)) = wt(f̃max

i Pol(Z)),
gives Pol(Z ′) = f̃max

i Pol(Z). Thus Pol preserves the operation f̃max
i . �

7 From KQ to Π(Q) and return

In this section, we investigate the relations between KQ-modules and Π(Q)-modules. This
theme admits several variations: we relate our reflection functors with the classical version
for KQ-modules due to Bernstein, Gelfand, Ponomarev; we show that (some of) the Π(Q)-
modules N(−wωj) are (very close to being) induced from an indecomposableKQ-module; and
we determine combinatorially the bijection from the set of G(ν)-orbits in the representation
space Rep(KQ, ν) to Irr Λ(ν) that maps an orbit O to the closure T ∗O of its conormal bundle.

7.1 Recall on quivers

In this section, Q = (I, E) is an arbitrary quiver, not necessarily of Dynkin type.

The lattice ZI is then endowed with a nonsymmetric bilinear form defined by

〈µ, ν〉Q =
∑
i∈I

µiνi −
∑
a∈E

µs(h)νt(h)

and called the Euler form. Then the symmetric bilinear form defined in section 2.1 is

(µ, ν) = 〈µ, ν〉Q + 〈ν, µ〉Q.

The following formula is well-known: if M and N are two KQ-modules, then

〈 dimM, dimN〉Q = dim HomKQ(M,N)− dim Ext1
KQ(M,N). (13)

Assume that i is a source of Q and let σiQ denote the quiver obtained from Q by replacing
any arrow a ∈ E that terminates at i by the arrow a∗ with the opposite orientation. In
this context, we have at our disposal the traditional Bernstein-Gelfand-Ponomarev reflection
functors defined in [5]:

KQ-mod
Φ−i // K(σiQ)-mod.
Φ+

i

oo

They enjoy properties similar to the ones stated in Proposition 2.5 for the functors Σi and Σ∗i .
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Certainly KQ can be viewed as a subalgebra of Π(Q). Thus by restriction, a Π(Q)-module T
gives rise to a KQ-module, which we denote by T

∣∣
Q
; in other words, we forget the action of

the arrows a ∈ E∗. Now suppose that i is a source in Q. The quiver σiQ also gives rise to a
preprojective algebra Π(σiQ); it has the same set H of arrows as Π(Q), but with a different
function ε. There is an isomorphism Υi : Π(σiQ) → Π(Q), which changes any arrow b that
terminates at i into −b and which fixes all the other arrows in H. We can then pull-back a
Π(Q)-module T by Υi and restrict the Π(σiQ)-module Υ∗iT thus obtained to the path algebra
K(σiQ).

Proposition 7.1 Let T be a Π(Q)-module. Then

Φ+
i

(
(Υ∗iT )

∣∣
σiQ

)
∼= (ΣiT )

∣∣
Q

and Φ−i

(
T
∣∣
Q

)
∼= (Υ∗iΣ

∗
iT )
∣∣
σiQ

.

Proof. The definition of the functors Σi and Σ∗i obviously extends Bernstein, Gelfand and
Ponomarev’s construction. �

To conclude this section, we present a lemma also related to reflection functors for the single
quiver.

Lemma 7.2 Assume that i is a source in Q. Then 〈siµ, siν〉Q = 〈µ, ν〉σiQ for all µ, ν ∈ ZI .

Proof. Using the definition of the Euler form and that i is a source in Q, one finds that

〈µ− µiαi, ν〉Q =
∑
j∈I
j 6=i

µjνj −
∑
a∈E

i/∈{s(a),t(a)}

µs(a)νt(a) = 〈µ, ν − νiαi〉σiQ.

One then computes

〈siµ, ν〉Q = 〈µ, ν〉Q − (αi, µ) 〈αi, ν〉Q
= 〈µ, ν〉Q −

(
〈µ, αi〉Q + 〈αi, µ〉Q

)
〈αi, ν〉Q

= 〈µ− µiαi, ν〉Q − 〈αi, µ〉Q 〈αi, ν〉Q
= 〈µ, ν − νiαi〉σiQ − 〈µ, αi〉σiQ 〈ν, αi〉σiQ
= 〈µ, ν〉σiQ −

(
〈αi, ν〉σiQ + 〈ν, αi〉σiQ

)
〈µ, αi〉σiQ

= 〈µ, ν〉σiQ − (αi, ν) 〈µ, αi〉σiQ
= 〈µ, siν〉σiQ.

This formula is of course equivalent to the one written in the statement. �

Remark 7.3. There is a more conceptual proof of this lemma. The dimension-vector defines an
isomorphism between ZI and the Grothendieck group of the derived category Db(KQ-mod),
and one has ∑

n∈Z
(−1)n dim ExtnDb(K(Q))(M,N) = 〈 dimM, dimN〉Q
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for any two objects M and N in this category. A similar statement applies to the derived
category Db(K(σiQ)-mod). Now the right-exact functor Φ+

i induces an equivalence of derived
categories

RΦ+
i : Db(K(σiQ)-mod)→ Db(KQ-mod)

and one has
dimRΦ+

i M = si ( dimM) .

7.2 Modules N(γ) and induction

We now go back to our set-up where Q is obtained by choosing an orientation of the Dynkin
diagram Γ.

We denote the quiver opposite to Q by Q∗. Recall that a sequence (i1, . . . , in) of vertices is
called adapted to Q∗ if i1 is a source of Q, i2 is a source of σi1Q, i3 is a source of σi2σi1Q,
and so on (see section 4.7 in [18]).

We first prove a combinatorial version of our induction result.

Proposition 7.4 Assume that the sequence (i1, . . . , in) is adapted to Q∗ and that si1 · · · sin is
a reduced expression of an element w ∈ W . Then 〈−wαin , ?〉Q = 〈−wωin , ?〉 as linear forms
on Q.

Proof. For each j ∈ I different from i1,

〈αi1 − ωi1 , αj〉 = (αi1 , αj) = 〈αi1 , αj〉Q + 〈αj , αi1〉Q = 〈αi1 , αj〉Q,

because i1 is a source in Q. The equality 〈αi1 −ωi1 , αj〉 = 〈αi1 , αj〉Q also holds for j = i1. We
deduce by linearity that

〈αi1 − ωi1 , ?〉 = 〈αi1 , ?〉Q,

which is the case n = 1.

For higher value of n, we proceed by induction, using Lemma 7.2. �

We will use the notation Si for the simple KQ-module attached to the vertex i and we will
also speak of i-socle for KQ-modules.

Given a positive root α, we denote byM(α) the (unique up to isomorphism) KQ-module with
dimension-vector α. Ringel has observed (see section 4 in [27]) that if α and β are two positive
roots, then at least one of the two spaces HomKQ(M(α),M(β)) or Ext1

KQ(M(α),M(β)) is
zero. Thus equation (13) gives{

dim HomKQ(M(α),M(β)) = max(0, 〈α, β〉Q),

dim Ext1
KQ(M(α),M(β)) = max(0,−〈α, β〉Q).

The following proposition is the analogue for the single quiver Q of equation (3).
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Proposition 7.5 Assume that i is a source in Q and let β be a positive root, different from
αi. Let T be a KQ-module. Then

dim HomKQ(M(siβ), T ) = dim HomK(σiQ)(M(β),Φ−i T )− 〈β, dim soci T 〉σiQ.

(In this equality, it is implicitly understood thatM(siβ) is the indecomposable KQ-module with
dimension-vector siβ, and that M(β) is the indecomposable K(σiQ)-module with dimension-
vector β.)

Proof. We first notice that 〈siβ, αi〉Q ≥ 0, for i is a source in Q and siβ ∈ Q+. Thus

Ext1
KQ(M(siβ), Si) = 0 and dim HomKQ(M(siβ), Si) = 〈siβ, αi〉Q.

Lemma 7.2 moreover says that 〈siβ, αi〉Q = −〈β, αi〉σiQ.

On the other hand, the functor Φ−i maps M(siβ) to M(β); by adjunction, we thus get

HomK(σiQ)(M(β),Φ−i T ) ∼= HomK(σiQ)(Φ
−
i M(siβ),Φ−i T )) ∼= HomKQ(M(siβ),Φ+

i Φ−i T ).

It remains to apply the functor HomKQ(M(siβ), ?) to the (split) short exact sequence

0→ soci T → T → Φ+
i Φ−i T → 0

and to take dimensions. �

We now have all the ingredients to prove the following result.

Theorem 7.6 Assume that the sequence (i1, . . . , in) is adapted to Q∗ and that si1 · · · sin is a
reduced expression of an element w ∈W . Then for any Π(Q)-module T ,

dim HomKQ(M(−wαin), T
∣∣
Q

) = dim HomΠ(Q)(N(−wωin), T ).

Proof. We first observe that since i1 is a source of Q, the i1-socles of the Π(Q)-module T and
of the KQ-module T

∣∣
Q
coincide. In particular, they have the same dimension (-vector).

The case n = 1 is then obvious, because then both M(−wαin) and N(−wωin) are the simple
module Si1 .

In the case n > 1, we proceed by induction on n. More precisely, we assume that the equality
holds for the sequence (i2, . . . , in), the quiver σi1Q and the Π(σi1Q)-module Υ∗i1Σ∗i1T . A
straightforward computation based on Propositions 4.1, 7.1, 7.4 and 7.5 then leads to the
equality for the sequence (i1, . . . , in), the quiver Q and the Π(Q)-module T . �

Theorem 7.6 shows the existence of an isomorphism

HomKQ(M(−wαin), T
∣∣
Q

) ∼= HomΠ(Q)(N(−wωin), T ).

We believe that this isomorphism can be made functorial in T ∈ Π(Q)-mod; in other words,
we believe that N(−wωin) is isomorphic to Π(Q)⊗KQM(−wαin). This fact can probably be
deduced from the work of Geiß, Leclerc and Schröer [10]. Anyway, this would generally not
give a description of all the modules N(γ) with γ a chamber weight; indeed only in type A
can one always write γ = −si1 · · · sinωin for a sequence (i1, . . . , in) adapted to an orientation
of the graph Γ.
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7.3 Irreducible components and conormal bundles

Let ν ∈ Q+ be a dimension-vector. The isomorphism classes of representations of the quiver Q
in dimension-vector ν are the orbits of the groupG(ν) on the representation space Rep(KQ, ν).
In Proposition 14.2 of [20], Lusztig shows that the irreducible components of Λ(ν) are precisely
the closures of the conormal bundles to these orbits. More precisely, he observes (loc. cit.,
12.8 (a)) that under the trace duality∏

a∈H
HomK(Kνs(a) ,Kνt(a)) ∼= Rep(KQ, ν)× Rep(KQ, ν)∗,

a point
(Ma) ∈

∏
a∈H

HomK(Ms(a),Mt(a))

belongs to Λ(ν) if and only if it belongs to the conormal bundle T ∗O , where O is the G(ν)-orbit
in Rep(KQ, ν) that corresponds to the isomorphism class of the KQ-module M

∣∣
Q
.

Lusztig’s interest in the varieties Λ(ν) arose in connection with its study of the canonical
basis B of the quantum group Uq(n), the positive part of Uq(g). Geometrically, an element
b in the canonical basis is represented by a simple G(ν)-equivariant perverse sheaf Lb,Q on
Rep(KQ, ν), where ν is the weight of b, and such a sheaf is always the intersection cohomology
sheaf IC

(
Ob,Q

)
(suitably shifted) of the closure of a G(ν)-orbit (with coefficients in the trivial

local system). The singular support SS(Lb,Q) then contains T ∗Ob,Q
.

The canonical basis B has the structure of a crystal, which identifies it with B(−∞). We can
thus change slightly the notation and suppose that the letter b in Lb,Q and Ob,Q denotes an
element of B(−∞). In [16], Kashiwara and Saito proved that the labelling of the canonical
and semicanonical bases are compatible in the sense that Λb = T ∗Ob,Q

.

Unfortunately, Kashiwara and Saito’s proof contains a small gap, that was later filled by
Kimura [17]. More precisely, the heart of the proof is the fact that the only weight-preserving
permutation s of B(−∞) such that Λs(b) ⊆ SS(Lb,Ω) for each b ∈ B(−∞) is the identity ([16],
p. 27, l. 6). This fact holds in full generality (not only in the finite ADE case), but to prove
it, one should not rely on the erroneous equation (6.2), but rather on the Lemma 8.2.1. We
thank Yoshihisa Saito for detailed explanations on that matter [31].

Our aim in this final section is to apply our results to obtain an alternative proof of the
equality Λb = T ∗Ob,Q

. In other words, we will prove that the map b 7→ T ∗Ob,Q
from B(−∞) to

B is a morphism of crystal. One difficulty is that this map a priori depends on the choice of
the orientation Q.

We first need to recall some facts concerning parameterizations of B(−∞). As before, w0

is the longest element in W . We denote its length by N and call X the set of all tuples
i = (i1, . . . , iN ) such that si1 · · · siN is a reduced expression of w0. As explained by Lusztig
[18], to each i ∈X corresponds a bijection n(?, i) : B(−∞)→ NN , which is the combinatorial
counterpart of the transition matrix between the canonical basis B and the PBW basis of
Uq(n) defined by i. These bijections can be collectively characterized by the properties (L1),
(L2a) and (L2b) below. In these statements, (b, i) ∈ B(−∞) ×X and (n1, . . . , nN ) is the
tuple n(b, i).
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(L1) One has

n1 = ϕi1(b), n(ẽi1b, i) = (n1 + 1, n2, . . . , nN ), n(f̃max
i1 b, i) = (0, n2, . . . , nN ).

(L2a) Let (i, j) ∈ I2 and k ∈ {1, . . . , N − 1} be such that aij = 0 and (ik, ik+1) = (i, j). Set
j = (i1, . . . , ik−1, j, i, ik+2, . . . , iN ). Then

n(b, j) = (n1, . . . , nk−1, nk+1, nk, nk+2, . . . , nN ).

(L2b) Let (i, j) ∈ I2 and k ∈ {2, . . . , N − 1} be such that aij = −1 and (ik−1, ik, ik+1) =
(i, j, i). Let (p, q, r) = (nk−1, nk, nk+1) and set j = (i1, . . . , ik−2, j, i, j, ik+2, . . . , iN ), q′ =
min(p, r) and (p′, r′) = (r + q − q′, p+ q − q′). Then

n(b, j) = (n1, . . . , nk−2, p
′, q′, r′, nk+2, . . . , nN ).

(L3) Let i∗1 ∈ I be the element such that w0αi1 = −αi∗1 . Suppose n1 = 0 and set j =
(i2, i3, . . . , iN , i

∗
1). Then

n(Si1(b), j) = (n2, n3, . . . , nN , 0).

Property (L3) is due to Saito (Proposition 3.4.7 in [29]). The interesting point here is that
with the help of (L1) and (L3), one can determine n(b, i) by applying to b the operations ϕi,
f̃max
i and Si, with i running over the successive terms of the sequence i. This procedure is
convenient for us, for these three crystal operations have a clear meaning in the preprojective
model, thanks to Propositions 5.4 and 5.5.

Remark 7.7. In this remark, we explain the origin of the bijection B(−∞) ∼=MV we used in
section 6.2.

(i) For i, j ∈X , we can define a permutation Rj
i of N

N by the condition Rj
i ◦n(?, i) = n(?, j).

Then b 7→ n(b, ?) is a bijection from B(−∞) onto

X̂ =
{
σ : X → NN

∣∣ ∀(i, j) ∈X 2, σ(j) = Rj
i(σ(i))

}
.

The permutations Rj
i extends in a natural fashion to ZN , for it is given by a piecewise linear

formula which also makes sense for signed integers. Let X̃ be the set defined similarly as X̂ ,
but with ZN instead of NN .

(ii) To σ ∈ X̃ , we associate a vertex datum (µw)w∈W as follows: for each w ∈ W , we can
find i ∈X and k ∈ {0, . . . , N} such that ww0 = si1 · · · sik , and we set

µw =

N∑
r=k+1

nrβr, where σ(i) = (n1, . . . , nN ) and βr = si1 · · · sir−1αir .

(This weight µw depends solely on σ and w and not on the choice of i.) We then associate an
hyperplane datum (Aγ)γ∈Γ by the equation (7). Then the map σ 7→ (Aγ)γ∈Γ is a bijection from
X̃ onto the set of all families that satisfies the conditions (BZ1) and (BZ3) from section 6.1.
This fact is proved by specializing Theorem 4.3 in [4] to the tropical semifield.
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(iii) The numbers that appear in the left-hand side of the edge inequalities (6) are precisely the
components of the tuples σ(i). Thus (Aγ)γ∈Γ satisfies (BZ2) if and only if each σ(i) belongs
to NN . By restriction, we therefore get a bijection from X̂ onto the set of all BZ data. In the
end, we obtain a bijection B(−∞) ∼=MV. To sum up, the MV polytope P (b) associated to
an element b ∈ B(−∞) packs together in a geometrical way the numerical data n(b, i) for all
possible i.

(iv) Keeping the same notation, we now turn to the crystal structure defined on MV by
transport from B(−∞). For each w ∈ W such that `(siww0) < `(ww0), we can choose an
i ∈X that starts with i in the construction of (ii) above and we have k > 0; thus n1 does not
enter in the equation that expresses µw, and Property (L1) tells us that the crystal operations
ẽi and f̃i do not change µw. In terms of the BZ data (Aγ)γ∈Γ, this translates into the fact
that the operators ẽi and f̃i do not change the Aγ such that 〈γ, αi〉 ≤ 0. We thus recover the
criterion we used in section 6.2.

(v) Theorem 6.3 makes possible a new proof of Property (L3), independent of the theory of
quantum groups. In more detail, equations (2) and (7) together imply the relation

µw(T ) = siµsiw(ΣiT )

for each Π(Q)-module T and each w ∈ W such that `(siw) > `(w). Then (L3) is a direct
translation of Proposition 5.5.

We are now ready to prove our result.

Proposition 7.8 The equality Λb = T ∗Ob,Q
holds for each b ∈ B(−∞).

Proof. Let i ∈ X be adapted to the quiver Q: i1 is a sink of Q, i2 is a sink of σ−1
i1
Q, and so

on. (Such a sequence i always exists, thanks to Proposition 4.12 (b) in [18]).

It is enough to show that two elements b, b′ ∈ B(−∞) such that Λb = T ∗Ob′,Q
have necessarily

the same image under the map n(?, i). So let us take two such elements and set

(n1, . . . , nN ) = n(b, i) and (n′1, . . . , n
′
N ) = n(b′, i).

Let T be a general point in Λb. In view of Property (L3) above, successive applications of
Proposition 5.5 show that

nk = dim hdik
(
Σik−1

· · ·Σi1T
)
.

We can here substitute(
Σik−1

(Υ−1
ik−1

)∗
)
· · ·
(
Σi1(Υ−1

i1
)∗
) ∼= ((Υik−1

· · ·Υi1)−1)∗(Σik−1
· · ·Σi1)

to Σik−1
· · ·Σi1 without changing the ik-head.

On the other hand, for each positive root β, let M(β) be the indecomposable KQ-module of
dimension-vector β, and let β1, . . . , βN be the indexation of the positive roots defined by i.
By sections 4.15–4.16 in [18], the fact that T

∣∣
Q
∈ Ob′,Q means

T
∣∣
Q
∼= M(β1)⊕n

′
1 ⊕ · · · ⊕M(βN )⊕n

′
N .
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It follows that
n′k = dim hdik

(
Φ+
ik−1
· · ·Φ+

i1

(
T
∣∣
Q

))
.

An appeal to Proposition 7.1 now concludes the proof; one has just to observe that since ik is
a sink of the quiver Q′ = σ−1

ik−1
· · ·σ−1

i1
Q, the ik-head of the Π(Q′)-module(

Σik−1
(Υ−1

ik−1
)∗
)
· · ·
(
Σi1(Υ−1

i1
)∗
)(
T
)

is the same as its head as a KQ′-module. �
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