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Abstract

The geometric Satake correspondence can be regarded as a geometric construction of the
rational representations of a complex connected reductive group G. In their study of this
correspondence, Mirković and Vilonen introduced algebraic cycles that provide a linear ba-
sis in each irreducible representation. Generalizing this construction, Goncharov and Shen
define a linear basis in each tensor product of irreducible representations. We investigate
these bases and show that they share many properties with the dual canonical bases of
Lusztig.

1 Introduction

Let G be a connected reductive group over the field of complex numbers, endowed with a Borel
subgroup and a maximal torus. Let Λ+ be the set of dominant weights relative to these data.
Given λ ∈ Λ+, denote by V (λ) the irreducible rational representation of G with highest weight
λ. Given a finite sequence λ = (λ1, . . . , λn) in Λ+, define

V (λ) = V (λ1)⊗ · · · ⊗ V (λn).

A construction due to Mirković and Vilonen [39] in the context of the geometric Satake corre-
spondence endows the spaces V (λ) with linear bases. Specifically, V (λ) is identified with the
intersection homology of a parabolic affine Schubert variety Grλ, while (after an ingenious use
of hyperbolic localization) the fundamental classes of the so-called “Mirković–Vilonen cycles”
contained in Grλ form a basis of this intersection homology. In [22], Goncharov and Shen
extend this construction to the tensor products V (λ). In the present paper, we investigate the
properties of these bases, which we call MV bases.

We show that the MV basis of a representation V (λ) is compatible with the isotypic filtration
of this representation. This basis is also compatible with the action of the Chevalley generators
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of the Lie algebra g of G, in the sense that the leading terms of the action define on the basis
the structure of a crystal in the sense of Kashiwara. (For n = 1, this fact is due to Braverman
and Gaitsgory [8].) Let us transport this crystal structure on the set Z (λ) of MV cycles,
which naturally indexes the MV basis of V (λ). Then, with the help of the path model [33], we
prove that there is a natural crystal isomorphism

Z (λ) ∼= Z (λ1)⊗ · · · ⊗ Z (λn).

(For n = 2, this isomorphism is again due to Braverman and Gaitsgory.)

We study the transition matrix between the MV basis of a tensor product V (λ) and the tensor
product of the MV bases of the different factors V (λ1), . . . , V (λn). Using the fusion product
in the sense of Beilinson and Drinfeld [5], we explain that the entries of this transition matrix
can be computed as intersection multiplicities. As a consequence, the transition matrix is
unitriangular with nonnegative integral entries.

The properties stated above are analogues of results obtained by Lusztig about the dual canon-
ical bases. To be specific, Lusztig [37] defines a notion of based module (module endowed with
a basis enjoying certain specific properties) over the quantized enveloping algebra Uv(g) and
shows the following facts:

• A simple module over Uv(g), endowed with its canonical basis, is a based module.

• The tensor product of finitely many based modules can be endowed with a basis that
makes it a based module. This basis is constructed from the tensor product of the bases
of the factors by adding corrective terms in an unitriangular fashion.

• The basis of a based module is compatible with the decreasing isotypic filtration of
the module. Each subquotient in this filtration, endowed with the induced basis, is
isomorphic as a based module to the direct sum of copies of a simple module endowed
with its canonical basis.

The dual canonical bases for the representations V (λ) (see [14]) can then be defined by dualizing
Lusztig’s construction and specializing the quantum parameter at v = 1.

Because of its compatibility with the isotypic filtration, the dual canonical basis of a tensor
product V (λ) yields a linear basis of the invariant subspace V (λ)G. Just as well, the MV basis
provides a linear basis (sometimes called the Satake basis) of V (λ)G. The Satake basis and
the dual canonical basis of V (λ)G generally differ (the paper [12] provides a counterexample);
nonetheless we show that the Satake basis enjoys the first two items in Khovanov and Kuper-
berg’s list of properties for the dual canonical basis [30]. In particular, after restriction to the
invariant subspaces, the signed permutation

V (λ1)⊗ V (λ2)⊗ · · · ⊗ V (λn)
≃−→ V (λ2)⊗ · · · ⊗ V (λn)⊗ V (λ1)
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maps the Satake basis of the domain to that of the codomain.

As explained in [2], the MV bases of the irreducible representations V (λ) can be glued together
to produce a basis of the algebra C[N ] of regular functions on the unipotent radical N of B.
Of particular interest would be any relation with the cluster algebra structure on C[N ] [6, 21].
The methods developed in the present paper allow for explicit computations. For instance we
show that the cluster monomials attached to certain seeds belong to the MV basis. However
C[N ] is not of finite cluster type in general, which means that cluster monomials do not span
the whole space. We compute in type D4 the MV basis element at a specific position not
covered by cluster monomials; at this spot, the MV basis, the dual canonical basis and the
dual semicanonical basis pairwise differ.
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2 Mirković–Vilonen cycles and bases

In the whole paper G is a connected reductive group over C, endowed with a Borel subgroup
B and a maximal torus T ⊆ B. We denote by Λ the character lattice of T , by Φ ⊆ Λ the
root system of (G,T ), by Φ∨ the coroot system, and by W the Weyl group. The datum of B
determines a set of positive roots in Φ. We denote the dominance order on Λ by ≤ and the
cone of dominant weights by Λ+. We denote the half-sum of the positive coroots by ρ and
regard it as a linear form ρ : Λ → Q; then ρ(α) = 1 for each simple root α. The Langlands
dual of G is the connected reductive group G∨ over C built from the dual torus T∨ = Λ⊗ZGm

and the root system Φ∨. The positive coroots define a Borel subgroup B∨ ⊆ G∨.

2.1 Recollection on the geometric Satake correspondence

The geometric Satake correspondence was devised by Lusztig [36] and given its definitive
shape by Beilinson and Drinfeld [5] and Mirković and Vilonen [39]. Additional references for
the material presented in this section are [46] and [3].
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As recalled in the introduction of [41], loop groups appear under several guises across mathe-
matics: there is the differential-geometric variant, the algebraic-geometric one, etc. We adopt
the framework of Lie theory and Kac–Moody groups [31]. For instance, though the affine Grass-
mannian is a (generally non-reduced) ind-scheme, we will only look at its complex ind-variety
structure.

Let O = C[[z]] be the ring of formal power series in z with complex coefficients and let K =
C((z)) be the fraction field of O. The affine Grassmannian of the Langlands dual G∨ is the
homogeneous space Gr = G∨(K)/G∨(O). This space, a partial flag variety for an affine Kac–
Moody group, is endowed with the structure of an ind-variety.

Each weight λ ∈ Λ gives a point zλ in T∨(K), whose image in Gr is denoted by Lλ. The G∨(O)-
orbit through Lλ in Gr, denoted by Grλ, is a smooth connected simply-connected variety of
dimension 2ρ(λ). The Cartan decomposition implies that

Gr =
⊔

λ∈Λ+

Grλ; moreover Grλ =
⊔

µ∈Λ+

µ≤λ

Grµ.

Let Perv(Gr) be the category of G∨(O)-equivariant perverse sheaves on Gr (for the middle
perversity) supported on finitely many G∨(O)-orbits, with coefficients in C. This is an abelian
semisimple category. The simple objects in Perv(Gr) are the intersection cohomology sheaves

Iλ = IC
(
Grλ, C

)
.

(By convention, IC sheaves are shifted so as to be perverse.)

Let θ ∈ Λ be a dominant and regular weight. The embedding

C× θ−→ T∨(C) → G∨(K)

gives rise to an action of C× on Gr. For each µ ∈ Λ, the point Lµ is fixed by this action; we
denote its stable and unstable sets by

Sµ =
{
x ∈ Gr

∣∣∣ lim
c→0

θ(c) · x = Lµ

}
and Tµ =

{
x ∈ Gr

∣∣∣ lim
c→∞

θ(c) · x = Lµ

}
and denote the inclusion maps by sµ : Sµ → Gr and tµ : Tµ → Gr.

Given µ ∈ Λ and A ∈ Perv(Gr), Mirković and Vilonen ([39], Theorem 3.5) identify the
homology groups

Hc

(
Sµ, (sµ)

∗A
)

and H
(
Tµ, (tµ)

!A
)
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via Braden’s hyperbolic localization, show that these groups are concentrated in degree 2ρ(µ),
and define

Fµ(A ) = H2ρ(µ)
(
Tµ, (tµ)

!A
)

and F (A ) =
⊕
µ∈Λ

Fµ(A ).

Then F is an exact and faithful functor from Perv(Gr) to the category of finite dimensional
Λ-graded C-vector spaces. Mirković and Vilonen prove that F induces an equivalence F from
Perv(Gr) to the category Rep(G) of finite dimensional rational representations of G, the Λ-
grading on F (A ) giving rise to the decomposition of F (A ) into weight subspaces. In the course
of the proof, it is shown that F maps Iλ to the irreducible highest weight representation V (λ).

The map G∨(K) → Gr is a principal G∨(O)-bundle. From the G∨(O)-space Gr, we form the
associated bundle

Gr2 = G∨(K) ×G∨(O) Gr.

This space is called the 2-fold convolution variety and has the structure of an ind-variety. The
action of G∨(K) on Gr defines a map m : Gr2 → Gr of ind-varieties. Let p : G∨(K) → Gr and
q : G∨(K)×Gr → Gr2 be the quotient maps. Given two equivariant perverse sheaves A1 and
A2 on Gr, there is a unique equivariant perverse sheaf A1 ⊠̃A2 on Gr2 such that

p∗A1 ⊠ A2 = q∗
(
A1 ⊠̃A2

)
in the equivariant derived category of constructible sheaves on G∨(K) × Gr. We then define
the convolution product of A1 and A2 to be

A1 ∗ A2 = m∗
(
A1 ⊠̃A2

)
.

Using Beilinson and Drinfeld’s fusion product, one defines associativity and commutativity
constraints and obtains a monoidal structure on Perv(Gr). Then F is a tensor functor; in
particular, the fusion product imparts an explicit identification of Λ-graded vector spaces

F (A1 ∗ A2) ∼= F (A1)⊗ F (A2)

for any (A1,A2) ∈ Perv(Gr)2.

2.2 Mirković–Vilonen cycles

In this paper we study tensor products V (λ) = V (λ1) ⊗ · · · ⊗ V (λn), where λ = (λ1, . . . , λn)
is a sequence of dominant weights. Accordingly, we want to consider convolution products

Iλ = Iλ1 ∗ · · · ∗ Iλn
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and therefore need the n-fold convolution variety

Grn = G∨(K) ×G∨(O) · · · ×G∨(O) G∨(K)︸ ︷︷ ︸
n factors G∨(K)

/G∨(O).

As customary, we denote elements in Grn as classes [g1, . . . , gn] of tuples of elements in G∨(K).
Plainly Gr1 = Gr; in consequence, we write the quotient map G∨(K) → Gr as g 7→ [g]. We
define a map mn : Grn → Gr by setting mn([g1, . . . , gn]) = [g1 . . . gn].

Given G∨(O)-stable subsets K1, . . . , Kn of Gr, we define

K1 ×̃ · · · ×̃Kn =
{
[g1, . . . , gn] ∈ Grn

∣∣ [g1] ∈ K1, . . . , [gn] ∈ Kn

}
.

Alternatively, K1 ×̃ · · · ×̃Kn can be defined as

K̂1 ×G∨(O) · · · ×G∨(O) K̂n /G
∨(O)

where each K̂j is the preimage of Kj under the quotient map G∨(K) → Gr.

For λ = (λ1, . . . , λn) in (Λ+)n, we set

Grλn = Grλ1 ×̃ · · · ×̃Grλn .

Viewing Grλn as an iterated fibration with base Grλ1 and successive fibers Grλ2 , . . . , Grλn , we
infer that it is a smooth connected simply-connected variety of dimension 2ρ(|λ|), where

|λ| = λ1 + · · ·+ λn.

Also
Grn =

⊔
λ∈(Λ+)n

Grλn and Grλn = Grλ1 ×̃ · · · ×̃Grλn =
⊔

µ∈(Λ+)n

µ1≤λ1, ..., µn≤λn

Grµn .

Proposition 2.1 Let λ ∈ (Λ+)n. Then Iλ is the direct image by mn of the intersection
cohomology sheaf of Grλn with trivial local system, to wit

Iλ = (mn)∗ IC
(
Grλn , C

)
,

and the cohomology sheaves H k IC
(
Grλn , C

)
vanish unless k and 2ρ(|λ|) have the same parity.
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Proof. We content ourselves with the case n = 2; the proof is the same in the general case but
requires more notation. Working out the technicalities explained in [3], §1.16.4, we get

IC
(
Gr

(λ1,λ2)
2 , C

)
= IC

(
Grλ1 , C

)
⊠̃ IC

(
Grλ2 , C

)
.

Applying (m2)∗ then gives the desired equality, while the parity property follows from [36],
sect. 11. □

A key argument in Mirković and Vilonen’s proof of the geometric Satake correspondence is the
fact that for any λ ∈ Λ+ and µ ∈ Λ, all the irreducible components of Grλ ∩ Sµ (respectively,
Grλ ∩ Tµ) have dimension ρ(λ + µ) (respectively, ρ(λ − µ)) ([39], Theorem 3.2). We need a
similar result for the intersections Grλn ∩ (mn)

−1(Sµ) and Grλn ∩ (mn)
−1(Tµ) inside the n-fold

convolution variety.

Let N∨ be the unipotent radical of B∨. Then Sµ is the N∨(K)-orbit through Lµ; this well-
known fact follows from the easily proved inclusion N∨(K)Lµ ⊆ Sµ and the Iwasawa decom-
position

G∨(K) =
⊔
µ∈Λ

N∨(K) zµG∨(O). (1)

We record that

Sµ = N∨(K)Lµ = (N∨(K) zµN∨(O)) /N∨(O) = (N∨(K) zµ) /N∨(O)

and that for each λ ∈ Λ+, the action of the connected subgroup N∨(O) leaves stable the
intersection Grλ ∩ Sµ, hence leaves stable each irreducible component of this intersection.

The construction of the n-fold convolution variety is functorial in the group G∨. Applied to
the inclusion B∨ → G∨, this remark provides a natural map

Ψ :
⊔

(µ1,...,µn)∈Λn

(
N∨(K) zµ1

)
×N∨(O) · · · ×N∨(O)

(
N∨(K) zµn

)
/N∨(O) → Grn.

Using (1), we easily see that Ψ is bijective.

Given weights µ1, . . . , µn and N∨(O)-stable subsets Z1 ⊆ Sµ1 , . . . , Zn ⊆ Sµn , we define

Z1 ⋉ · · ·⋉ Zn = Z̃1 ×N∨(O) · · · ×N∨(O) Z̃n /N
∨(O)

where each Z̃j is the preimage of Zj under the quotient map N∨(K) zµj → Sµj . If Z1, . . . , Zn

are varieties, then Z1 ⋉ · · ·⋉Zn is an iterated fibration with base Z1 and successive fibers Z2,
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. . . , Zn and Ψ induces an homeomorphism from Z1 ⋉ · · ·⋉ Zn onto its image. The bijectivity
of Ψ implies that

Grn =
⊔

(µ1,...,µn)∈Λn

Ψ
(
Sµ1 ⋉ · · ·⋉ Sµn

)
.

We use the symbol Irr(−) to designate the set of irreducible components of its argument. For
λ ∈ Λ+, λ ∈ (Λ+)n, and µ ∈ Λ, we define

∗Z (λ)µ = Irr
(
Grλ ∩ Sµ

)
and ∗Z (λ)µ = Irr

(
Grλn ∩ (mn)

−1(Sµ)
)
.

Proposition 2.2 Let λ = (λ1, . . . , λn) in (Λ+)n and let µ ∈ Λ.

(i) All the irreducible components of Grλn ∩ (mn)
−1(Sµ) have dimension ρ(|λ|+ µ).

(ii) The map (Z1, . . . , Zn) 7→ Ψ(Z1 ⋉ · · ·⋉ Zn) induces a bijection⊔
(µ1,...,µn)∈Λn

µ1+···+µn=µ

∗Z (λ1)µ1 × · · · × ∗Z (λn)µn

≃−→ ∗Z (λ)µ.

(The bar above Ψ(Z1 ⋉ · · ·⋉ Zn) means closure in (mn)
−1(Sµ).)

Proof. One easily checks that (mn ◦Ψ)
(
Sµ1 ⋉ · · ·⋉ Sµn

)
⊆ Sµ1+···+µn , whence

(mn)
−1(Sµ) =

⊔
(µ1,...,µn)∈Λn

µ1+···+µn=µ

Ψ
(
Sµ1 ⋉ · · ·⋉ Sµn

)

for any µ ∈ Λ. Adding λ = (λ1, . . . , λn) to the mix, we see that

Grλn ∩ (mn)
−1(Sµ) =

⊔
(µ1,...,µn)∈Λn

µ1+···+µn=µ

Ψ
((

Grλ1 ∩ Sµ1

)
⋉ · · ·⋉

(
Grλn ∩ Sµn

))

is the disjoint union over (µ1, . . . , µn) of an iterated fibration with base Grλ1∩Sµ1 and successive
fibers Grλ2 ∩ Sµ2 , . . . , Grλn ∩ Sµn . The proposition then follows from Mirković and Vilonen’s
dimension estimates. □
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For λ ∈ Λ+, λ ∈ (Λ+)n, and µ ∈ Λ, we similarly define

Z (λ)µ = Irr
(
Grλ ∩ Tµ

)
and Z (λ)µ = Irr

(
Grλn ∩ (mn)

−1(Tµ)
)
.

Then all cycles in Z (λ)µ have dimension ρ(|λ| − µ) and there is a natural bijection⊔
(µ1,...,µn)∈Λn

µ1+···+µn=µ

Z (λ1)µ1 × · · · × Z (λn)µn

≃−→ Z (λ)µ. (2)

Elements in ∗Z (λ)µ, Z (λ)µ, ∗Z (λ)µ or Z (λ)µ are called Mirković–Vilonen (MV) cycles. For
future use, we note that the map Z 7→ Z∩Grλn provides a bijection from Z (λ)µ onto the set of
irreducible components of Grλn ∩ (mn)

−1(Tµ). (Each Z ∈ Z (λ)µ meets the open subset Grλn of
Grλn , because the dimension of

(
Grλn \Grλn

)
∩ (mn)

−1(Tµ) is smaller than the dimension of Z.)

2.3 Mirković–Vilonen bases

Following Goncharov and Shen ([22], sect. 2.4), we now define the MV basis of the tensor
product representations

V (λ) = F (Iλ) =
⊕
µ∈Λ

Fµ(Iλ).

Let λ ∈ (Λ+)n and let µ ∈ Λ. By base change in the Cartesian square

Grλn ∩ (mn)
−1(Tµ)

f
//

mn

��

Grλn

mn

��

Tµ
tµ

// Gr

we compute

Fµ(Iλ) = H2ρ(µ)
(
Tµ, (tµ)

!(mn)∗ IC
(
Grλn , C

))
= H2ρ(µ)

(
Grλn ∩ (mn)

−1(Tµ), f
! IC
(
Grλn ,C

))
.

Let j : Grλn → Grλn and g : Grλn ∩ (mn)
−1(Tµ) → Grλn be the inclusion maps. We can then look

at the sequence of maps

Fµ(Iλ) → H2ρ(µ)
(
Grλn ∩ (mn)

−1(Tµ), f
!j∗j

∗ IC
(
Grλn ,C

))
= H2ρ(µ)

(
Grλn ∩ (mn)

−1(Tµ), g
!CGrλn

[
dimGrλn

])
∩[Grλn ]−−−−→ HBM

2ρ(|λ|−µ)

(
Grλn ∩ (mn)

−1(Tµ)
)
.
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Here the first two maps carry out the restriction to Grλn (technically, an adjunction followed
by a base change) and the last map is the Alexander duality∗.

We claim that these maps are isomorphisms. For the Alexander duality, this comes from
the smoothness of Grλn . For the restriction, consider a stratum Grηn ⊆ Grλn with η ̸= λ;
denoting the inclusion map by i and using the perversity condition, the parity property in
Proposition 2.1, and the dimension estimate for Grηn ∩ (mn)

−1(Tµ), one checks that

Hk
(
Grλn ∩ (mn)

−1(Tµ), f
!i∗i

! IC
(
Grλn ,C

))
vanishes if k < 2ρ(µ) + 2; therefore the stratum Grηn does not contribute to Fµ(Iλ).

To sum up there is a natural isomorphism

Fµ(Iλ)
≃−→ HBM

2ρ(|λ|−µ)

(
Grλn ∩ (mn)

−1(Tµ)
)
. (3)

The irreducible components Grλn ∩ (mn)
−1(Tµ) have all dimension ρ(|λ| − µ) and their fun-

damental classes provide a basis of the Borel–Moore homology group above. Gathering these
bases for all weights µ ∈ Λ produces what we call the MV basis of V (λ).

3 L-perfect bases

In this section we consider a general setup, which captures properties shared by both the
MV bases and the dual canonical bases. As before, G is a connected reductive group over C
endowed with a Borel subgroup B and a maximal torus T ⊆ B, Λ is the character lattice of
T , and Φ and Φ∨ are the root and coroot systems of (G,T ). We denote by {αi | i ∈ I} the
set of simple roots defined by B and by {α∨

i | i ∈ I} the set of simple coroots. Again, ≤ is the
dominance order on Λ and Λ+ is the cone of dominant weights. We regard the Weyl group W
as a subgroup of Aut(Λ); for i ∈ I, we denote by si the simple reflection along the root αi.
When needed, we choose simple root vectors ei and fi of weights ±αi in the Lie algebra of G
in such a way that [ei, fi] = −α∨

i .

3.1 Semi-normal crystals

We start by recalling the following definitions due to Kashiwara [28]. A semi-normal crystal is
a set B endowed with a map wt : B → Λ and, for each “color” i ∈ I, with a partition into a
collection of finite oriented strings. This latter structure is recorded by the datum of operators

ẽi : B → B ⊔ {0} and f̃i : B → B ⊔ {0}
∗Specifically, the generalization presented in [15], sect. 19.1, equation (3) or in [24], Theorem IX.4.7.
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which move an element of b ∈ B upwards and downwards, respectively, along the string of
color i to which b belongs. The special value 0 is assigned to ẽi(b) or f̃i(b) when b is at the upper
or lower end of a string of color i. For convenience one usually further sets ẽi(0) = f̃i(0) = 0.
The position of b in its string of color i is recorded by functions εi and φi which are defined as
follows:

εi(b) = max
{
n ≥ 0

∣∣ ẽi(b) ̸= 0
}
, φi(b) = max

{
n ≥ 0

∣∣ f̃i(b) ̸= 0
}
.

Two compatibility conditions between the weight map wt and the datum of the partitions into
oriented strings are required: first, wt(b) increases by αi when b moves upwards the string of
color i to which it belongs; second, φi(b) − εi(b) = ⟨α∨

i ,wt(b)⟩ for any b ∈ B and any i ∈ I.
These conditions imply that the image of a string of color i by the map wt is stable under the
action of the simple reflection si. As a consequence, the set {wt(b) | b ∈ B} is stable under the
action of the Weyl group W .

The direct sum of two semi-normal crystals B1 and B2 is defined to be just the disjoint union
of the underlying sets. The tensor product B1 ⊗ B2 is defined to be the Cartesian product
of the sets endowed with the maps given in [28], §7.3. Notably, for each color, the strings in
B1 ⊗ B2 are created from the strings contained in B1 and in B2 by the process illustrated by
the picture below.

B1 ⊇

⊆ B2

A morphism f : B → C between two semi-normal crystals is a map that preserves the weight
and that commutes with all the operators ẽi and f̃i. (In contrast with the more general
definition given in [27], morphisms between semi-normal crystals are necessarily strict.)

3.2 L-perfect bases

To a subset J ⊆ I we attach the standard Levi subgroup MJ of G, the cone

Λ+
J =

{
λ ∈ Λ

∣∣ ∀j ∈ J, ⟨α∨
j , λ⟩ ≥ 0

}
of dominant weights for MJ , and the J-dominance order ≤J on Λ defined by

µ ≤J λ ⇐⇒ λ− µ ∈ spanN{αj | j ∈ J}.
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Given λ ∈ Λ+
J we denote by VJ(λ) the irreducible rational representation of MJ with highest

weight λ. Given a finite sequence λ = (λ1, . . . , λn) in Λ+
J we define

VJ(λ) = VJ(λ1)⊗ · · · ⊗ VJ(λn).

For J = I we recover the conventions previously used by dropping the decoration J in the
notation Λ+

J , ≤J or VJ(λ).

Let V be a rational representation of G. With respect to the action of MJ the space V can be
uniquely written as a direct sum of isotypic components

V =
⊕
µ∈Λ+

J

VJ,µ

where VJ,µ is the sum of all subrepresentations of resGMJ
(V ) isomorphic to VJ(µ). We define

VJ,≤Jµ
=
⊕
ν∈Λ+

J

ν≤Jµ

VJ,ν .

We say that a linear basis B of V is L-perfect† if for each J ⊆ I and each µ ∈ Λ+
J :

(P1) The subspace VJ,≤Jµ
is spanned by a subset of B.

(P2) The induced basis on the quotient VJ,≤Jµ
/VJ,<Jµ

∼= VJ,µ is compatible with a decompo-
sition of the isotypic component as a direct sum of irreducible representations.

Taking J = ∅, we see that an L-perfect basis of V consists of weight vectors (note that ≤∅ is
the trivial order on Λ). Now let i ∈ I, and for each nonnegative integer ℓ, define

V{i},≤ℓ =
⊕
µ∈Λ

0≤⟨α∨
i ,µ⟩≤ℓ

V{i},µ,

the sum of all irreducible subrepresentations of resGM{i}
(V ) of dimension at most ℓ + 1. If B

satisfies the conditions (P1) and (P2) for J = {i}, then V{i},≤ℓ is spanned by B ∩ V{i},≤ℓ and
the induced basis on the quotient V{i},≤ℓ/V{i},≤ℓ−1 is compatible with a decomposition as a
direct sum of irreducible representations. Therefore (B ∩ V{i},≤ℓ) \ (B ∩ V{i},≤ℓ−1) decomposes

†L stands for Levi. This notion of L-perfect basis appears unnamed (and in a dual form) in Braverman and
Gaitsgory’s paper ([8], sect. 4.3).
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as the disjoint union of oriented strings of length ℓ, in such a way that the simple root vector
ei or fi acts on a basis vector of V{i},≤ℓ/V{i},≤ℓ−1 by moving it upwards or downwards along
the string that contains it, up to a scalar.

We can sum up the discussion in the previous paragraph as follows: if B satisfies (P1) and
(P2) for all J of cardinality ≤ 1, then B is endowed with the structure of crystal and is perfect
in the sense of Berenstein and Kazhdan ([7], Definition 5.30).

Lemma 3.1 Let B be an L-perfect basis of a rational representation V of G and let B′ ⊆ B.
Assume that the linear space V ′ spanned by B′ is a subrepresentation of V . Then B′ is an
L-perfect basis of V ′ and (the image of) B \B′ is an L-perfect basis of the quotient V/V ′.

Proof. Let J ⊆ I and µ ∈ Λ+
J . Then V ′

J,µ = V ′ ∩ VJ,µ and V ′
J,≤Jµ

= V ′ ∩ VJ,≤Jµ
. Now both

spaces V ′ and VJ,≤Jµ
are spanned by a subset of the basis B, so their intersection V ′

J,≤Jµ
is

spanned by a subset of B, namely B′ ∩ VJ,≤Jµ
.

Let C be the image of (B ∩ VJ,≤Jµ
) \ (B ∩ VJ,<Jµ

) in the quotient VJ,≤Jµ
/VJ,<Jµ

∼= VJ,µ. Then
C can be viewed as a basis of VJ,µ and it can be partitioned into disjoint subsets C1, . . . , Cn

so that each Ck spans an irreducible subrepresentation. By construction, the subspace V ′
J,µ

is spanned by a subset C ′ ⊆ C. Each subset Ck can be either contained in C ′ or disjoint
from C ′, depending whether the subrepresentation that it spans is contained in V ′

J,µ or meets
V ′
J,µ trivially. Therefore C ′ is the disjoint union of some Ck, which means that C ′ is compatible

with a decomposition of V ′
J,µ as a direct sum of irreducible subrepresentations.

Thus, B′ satisfies both conditions (P1) and (P2), and is therefore an L-perfect basis of V ′. The
proof that B \B′ yields an L-perfect basis of the quotient V/V ′ rests on similar arguments and
is left to the reader. □

Under the assumptions of Lemma 3.1, the subset B′ is a subcrystal of B. In other words, the
crystal structure on B is the direct sum of the crystal structures on B′ and B \B′.

Proposition 3.2 Let V be a rational representation of G. Up to isomorphism, the crystal of
an L-perfect basis of V depends only on V , and not on the basis.

Proof. Let B be an L-perfect basis of V . The conditions imposed on B with the choice J = I
imply the existence in V of a composition series compatible with B. By Lemma 3.1, the crystal
B is the direct sum of the crystals of the L-perfect bases induced by B on the subquotients.
It thus suffices to prove the desired uniqueness property in the particular case where V is an
irreducible representation, which in fact is just Theorem 5.37 in [7]. □

13



In particular, the crystal of an L-perfect basis of an irreducible representation V (λ) is unique.
We use henceforth the notation B(λ) for the associated crystal.

Remark 3.3. The crystal B(λ) of an irreducible representation V (λ) was introduced by Kashi-
wara in the context of representations of quantum groups. The definition via crystallization at
q = 0 and the definition via the combinatorics of L-perfect bases yield the same crystal; this
follows from [26], sect. 5.

Fortunately this nice little theory is not empty. As mentioned in the introduction, any tensor
product of irreducible representations has an L-perfect basis, namely its dual canonical basis.
Another example for a L-perfect basis: it can be shown, in the case where G is simply laced,
that the dual semicanonical basis of an irreducible representation is L-perfect.

Theorem 3.4 The MV basis of a tensor product of irreducible representations is L-perfect.

The end of sect. 3 is devoted to the proof of this result. The case of an irreducible representation
is Proposition 4.1 in [8]. The proof for an arbitrary tensor product follows the same lines. It
is only sketched in loc. cit., and we add quite a few details to Braverman and Gaitsgory’s
exposition.

3.3 Geometric Satake and restriction to a standard Levi subgroup

Consider a subset J ⊆ I. In this section we recall Beilinson and Drinfeld’s geometric construc-
tion of the restriction functor resGMJ

([5], sect. 5.3). Additional details can be found in [38],
sect. 8.6 and [3], sect. 1.15.

Define the root and coroot systems

ΦJ = Φ ∩ spanZ{αj | j ∈ J} and Φ∨
J = Φ∨ ∩ spanZ{α∨

j | j ∈ J}

and denote by ρJ : Λ → Q the half-sum of the positive coroots in Φ∨
J . Then ρ − ρJ vanishes

on ZΦJ so induces a linear form ρI,J : Λ/ZΦJ → Q.

To J we also attach the standard Levi subgroup M∨
J of G∨. Choose a dominant θJ ∈ Λ such

that ⟨α∨
j , θJ⟩ = 0 for each j ∈ J and ⟨α∨

i , θJ⟩ > 0 for each i ∈ I \ J . The embedding

C× θJ−→ T∨(C) → G∨(K)
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gives rise to an action of C× on Gr. Then the set GrJ of fixed points under this action can
be identified with the affine Grassmannian for M∨

J . We denote by Perv(GrJ) the category of
M∨

J (O)-equivariant sheaves on GrJ supported on finitely many M∨
J (O)-orbits.

Let ζ ∈ Λ/ZΦJ be a coset. All the points Lµ for µ ∈ ζ belong to the same connected component
of GrJ , which we denote by GrJ,ζ . The map ζ 7→ GrJ,ζ is a bijection from Λ/ZΦJ onto π0(GrJ).
We denote the stable and unstable sets of GrJ,ζ with respect to the C×-action by Gr+J,ζ and
Gr−J,ζ and form the diagram

Gr

Gr+J,ζ

sJζ
>>

pJ,ζ
  

Gr−J,ζ

tJζ
``

qJ,ζ
~~

GrJ,ζ

(4)

where sJζ and tJζ are the inclusion maps and the maps pJ,ζ and qJ,ζ are defined by

pJ,ζ(x) = lim
c→0

θJ(c) · x and qJ,ζ(x) = lim
c→∞

θJ(c) · x.

Given ζ ∈ Λ/ZΦJ and A ∈ Perv(Gr), Beilinson and Drinfeld identify the two sheaves

(qJ,ζ)∗ (t
J
ζ )

! A and (pJ,ζ)! (s
J
ζ )

∗ A

on GrJ,ζ via Braden’s hyperbolic localization and show that they live in perverse degree
2ρI,J(ζ). Then they define a functor rIJ : Perv(Gr) → Perv(GrJ) by

rIJ(A ) =
⊕

ζ∈Λ/ZΦJ

(qJ,ζ)∗ (t
J
ζ )

! A [2ρI,J(ζ)].

For µ ∈ Λ, let TJ,µ be the analog of the unstable subset Tµ for the affine Grassmannian GrJ .
Let ζ be the coset of µ modulo ZΦJ and let tJ,µ : TJ,µ → GrJ,ζ be the inclusion map. Using
the Iwasawa decomposition, one checks that Tµ ⊆ Gr−J,ζ and

Tµ = (qJ,ζ)
−1(TJ,µ). (5)

Performing base change as indicated in the following diagram

Tµ
////

tµ

((

��

Gr−J,ζ tJζ

//

qJ,ζ

��

Gr

TJ,µ tJ,µ
// GrJ,ζ
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we obtain, for any sheaf A ∈ Perv(Gr), a canonical isomorphism

H2ρ(µ)
(
Tµ, (tµ)

!A
) ∼= H2ρJ (µ)

(
TJ,µ, (tJ,µ)

! rIJ(A )
)
. (6)

For B ∈ Perv(GrJ), define

FJ,µ(B) = H2ρJ (µ)
(
TJ,µ, (tJ,µ)

!B
)

and FJ(B) =
⊕
µ∈Λ

FJ,µ(B).

Then (6) can be rewritten as Fµ = FJ,µ ◦ rIJ . This equality can be refined in the following
statement: the functor FJ induces an equivalence FJ from Perv(GrJ) to the category Rep(MJ)
of finite dimensional rational representations of MJ and the following diagram commutes.

Perv(Gr)
F //

rIJ

��

Rep(G)

resGMJ

��

Perv(GrJ)
FJ // Rep(MJ)

3.4 The J-decomposition of an MV cycle

We fix a subset J ⊆ I. We denote by P−,∨
J the parabolic subgroup of G∨ containing M∨

J and
the negative root subgroups.

The group P−,∨
J (K) certainly acts on Gr; it also acts on GrJ via the quotient morphism

P−,∨
J (K) → M∨

J (K). Given µ ∈ Λ+
J , we denote by GrµJ the orbit of Lµ under the action of

M∨
J (O) (or P−,∨

J (O)) on GrJ . Noting that

lim
a→∞

θJ(a) g θJ(a)
−1 = 1

for all g in the unipotent radical of P−,∨
J , we see that for any ζ ∈ Λ/ZΦJ , the connected

component GrJ,ζ of GrJ and the unstable subset Gr−J,ζ in Gr are stable under the action of
P−,∨
J (O) and that the map qJ,ζ is equivariant.

Let λ ∈ (Λ+)n, let µ ∈ Λ+
J and let ζ be the coset of µ modulo ZΦJ . We consider the following

diagram.

(mn)
−1
(
Gr−J,ζ

) mn //
� _

��

Gr−J,ζ
qJ,ζ

//

tJζ
��

GrJ,ζ

Grn
mn // Gr
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The group G∨(K) acts on Grn by left multiplication on the first factor and the action of the
subgroup G∨(O) leaves Grλn stable. Let H be the stabilizer of Lµ with respect to the action of
P−,∨
J (O) on GrJ . It acts on E = Grλn ∩ (qJ,ζ ◦mn)

−1(Lµ). Since qJ,ζ ◦mn is equivariant under
the action of P−,∨

J (O), we can make the identification

P−,∨
J (O)×H E

∼= //

��

Grλn ∩ (qJ,ζ ◦mn)
−1(GrµJ)

qJ,ζ◦mn

��

P−,∨
J (O)/H

∼= // GrµJ

where the left vertical arrow is the projection along the first factor. We thereby see that the
right vertical arrow is a locally trivial fibration.

In particular, all the fibers Grλn ∩ (qJ,ζ ◦ mn)
−1(x) with x ∈ GrµJ are isomorphic varieties.

Recalling that (qJ,ζ)
−1(Lµ) ⊆ Tµ, we find the following bound for their dimension:

dim
(
Grλn ∩ (qJ,ζ ◦mn)

−1(x)
)
= dimE ≤ dim

(
Grλn ∩ (mn)

−1(Tµ)
)
= ρ(|λ| − µ).

Therefore

dim
(
Grλn ∩ (qJ,ζ ◦mn)

−1(GrµJ)
)
≤ dimGrµJ + ρ(|λ| − µ) = 2ρJ(µ) + ρ(|λ| − µ). (7)

Since GrµJ is connected and simply-connected, the fibration induces a bijection between the set
of irreducible components of Grλn ∩ (qJ,ζ ◦mn)

−1(GrµJ) and the set of irreducible components
of any fiber Grλn ∩ (qJ,ζ ◦mn)

−1(x).

We define

Z J(λ)µ =
{
Z ∈ Irr

(
Grλn ∩ (qJ,ζ ◦mn)

−1(GrµJ)
) ∣∣∣ dimZ = 2ρJ(µ) + ρ(|λ| − µ)

}
.

For ν ∈ Λ, we define
ZJ(µ)ν = Irr

(
GrµJ ∩ TJ,ν

)
.

As we saw in sect. 2.2, the map Z 7→ Z ∩ GrµJ is a bijection from ZJ(µ)ν onto the set of
irreducible components of GrµJ ∩ TJ,ν .

Fix now λ ∈ (Λ+)n and ν ∈ Λ. Following Braverman and Gaitsgory’s method, we define a
bijection

Z (λ)ν ∼=
⊔

µ∈Λ+
J

Z J(λ)µ × ZJ(µ)ν .
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The union above can be restricted to those weights µ such that µ − ν ∈ ZΦJ , for otherwise
ZJ(µ)ν is empty. Let ζ denote the coset of ν modulo ZΦJ .

First choose µ ∈ Λ+
J ∩ ζ and a pair (ZJ , ZJ) ∈ Z J(λ)µ ×ZJ(µ)ν . Using (5) and the fibration

above, we see that ZJ ∩ (qJ,ζ ◦mn)
−1(ZJ ∩GrµJ) is an irreducible subset of

Grλn ∩ (qJ,ζ ◦mn)
−1(TJ,ν) = Grλn ∩ (mn)

−1(Tν)

of dimension

dimZJ − dimGrµJ + dimZJ = ρ(|λ| − µ) + ρJ(µ− ν) = ρ(|λ| − ν).

Therefore there is a unique Z ∈ Z (λ)ν that contains ZJ ∩ (qJ,ζ ◦mn)
−1(ZJ ∩GrµJ) as a dense

subset.

Conversely, start from Z ∈ Z (λ)ν . Then Z ⊆ Tν ⊆ Gr−J,ζ . We can thus partition Z into
locally closed subsets as follows:

Z =
⊔

µ∈Λ+
J ∩ζ

(
Z ∩ (qJ,ζ ◦mn)

−1(GrµJ)
)
.

Since Z is irreducible, there is a unique µ ∈ Λ+
J ∩ ζ such that Z ∩ (qJ,ζ ◦mn)

−1(GrµJ) is open
dense in Z. That subset is certainly irreducible, hence contained in an irreducible component
ZJ of Grλn ∩ (qJ,ζ ◦mn)

−1(GrµJ). Also, qJ,ζ ◦mn maps Z ∩ (qJ,ζ ◦mn)
−1(GrµJ) to an irreducible

subset of GrµJ ∩ TJ,ν , which in turn is contained in an irreducible component ZJ ∈ ZJ(µ)ν .
Then

Z ∩ (qJ,ζ ◦mn)
−1(GrµJ) ⊆ ZJ ∩ (qJ,ζ ◦mn)

−1(ZJ).

The left-hand side has dimension ρ(|λ| − ν) and the right-hand side has dimension

dimZJ − 2ρJ(µ) + dimZJ = dimZJ − 2ρJ(µ) + ρ(µ− ν).

Combining with the bound (7) we get

dimZJ = ρ(|λ| − µ) + 2ρJ(µ)

and therefore ZJ ∈ Z J(λ)µ.

These two constructions define mutually inverse bijections; in particular,

ZJ ∩ (qJ,ζ ◦mn)
−1(ZJ ∩GrµJ) = Z ∩ (qJ,ζ ◦mn)

−1(GrµJ).

We record that to each MV cycle Z ∈ Z (λ)ν is assigned a weight µ ∈ Λ+
J characterized by

the conditions
(qJ,ζ ◦mn)(Z) ⊆ GrµJ and (qJ,ζ ◦mn)(Z) ∩GrµJ ̸= ∅.

In the sequel this weight will be denoted by µJ(Z).
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3.5 MV bases are L-perfect

We now give the proof of Theorem 3.4, properly speaking. We fix a positive integer n and a
tuple λ ∈ (Λ+)n. We need two ingredients besides the constructions explained in sects. 2.3
and 3.3.

(A) Take A ∈ Perv(Gr) and write the sheaf

B = rIJ(A ) =
⊕

ζ∈Λ/ZΦJ

(qJ,ζ)∗ (t
J
ζ )

! A [2ρI,J(ζ)]

in Perv(GrJ) as a direct sum of isotypic components

B =
⊕
µ∈Λ+

J

IC
(
GrµJ , Lµ

)
. (8)

The local systems Lµ on GrµJ that appear in (8) can be expressed as Lµ = H kh!B where
h : GrµJ → GrJ is the inclusion map and k = −dimGrµJ = −2ρJ(µ). With e : {x} → GrµJ the
inclusion of a point and ζ the coset of µ modulo ZΦJ , the fiber of Lµ is

(Lµ)x ∼= e!Lµ

[
2 dimGrµJ

] ∼= H2ρJ (µ)
(
{x}, e!h!B

)
.

For the specific case
A = Iλ = (mn)∗ IC

(
Grλn , C

)
,

noting the equality ρJ(µ) + ρI,J(ζ) = ρ(µ), we get

(Lµ)x ∼= H2ρ(µ)
(
(qJ,ζ ◦mn)

−1(x), f ! IC
(
Grλn , C

))
where f is the injection map depicted in the Cartesian diagram below.

(qJ,ζ ◦mn)
−1(x)

f
//

��

Grn

mn

��

(qJ,ζ)
−1(x) //

��

Gr−J,ζ
tJζ

//

qJ,ζ

��

Gr

{x} e // GrµJ
h // GrJ,ζ
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The same reasoning as in sect. 2.3 proves that only the stratum Grλn contributes to this co-
homology group. Denoting by g : Grλn ∩ (qJ,ζ ◦ mn)

−1(x) → Grλn the inclusion map, this
observation leads to an isomorphism

(Lµ)x = H2ρ(µ)
(
Grλn ∩ (qJ,ζ ◦mn)

−1(x), g!CGrλn

[
dimGrλn

])
∩[Grλn ]−−−−→ HBM

2ρ(|λ|−µ)

(
Grλn ∩ (qJ,ζ ◦mn)

−1(x)
)
.

Thus the local systems Lµ appearing in (8) have a natural basis, namely the set Z J(λ)µ.

We record the following consequence of this discussion: given (λ, µ, ν) ∈ (Λ+)n ×Λ+
J ×Λ such

that µ− ν ∈ ZΦJ , we have

dimH2ρJ (ν)
(
TJ,ν , (tJ,ν)

! IC
(
GrµJ ,Lµ

))
= rankLµ × dimH2ρJ (ν)

(
TJ,ν , (tJ,ν)

! IC
(
GrµJ ,C

))
= CardZ J(λ)µ × CardZJ(µ)ν

= Card
{
Z ∈ Z (λ)ν

∣∣ µJ(Z) = µ
}
. (9)

(B) Now let us start with a sheaf B in Perv(GrJ) and a weight µ ∈ Λ+
J . Let us denote by

i : GrµJ → GrJ the inclusion map. By [4], Amplification 1.4.17.1, the largest subobject of B in
Perv(GrJ) supported on GrµJ is B≤Jµ

= pτ≤0 i∗i
! B, where pτ≤0 is the truncation functor for

the perverse t-structure. From the distinguished triangle

pτ≤0 i∗i
! B → i∗i

! B → pτ>0 i∗i
! B

+−→

in the bounded derived category of constructible sheaves on GrJ , we deduce the long exact
sequence

H2ρJ (ν)−1
(
TJ,ν , (tJ,ν)

! pτ>0 i∗i
! B
)
→ H2ρJ (ν)

(
TJ,ν , (tJ,ν)

! pτ≤0 i∗i
! B
)

→ H2ρJ (ν)
(
TJ,ν , (tJ,ν)

! i∗i
! B
)
→ H2ρJ (ν)

(
TJ,ν , (tJ,ν)

! pτ>0 i∗i
! B
)
.

Theorem 3.5 in [39] implies that the two extrem terms vanish, and therefore

FJ,ν

(
B≤Jµ

)
= H2ρJ (ν)

(
TJ,ν , (tJ,ν)

! i∗i
! B
)
.

Let us patch all these pieces together. We take (λ, µ, ν) ∈ (Λ+)n × Λ+
J × Λ such that µ and ν

belong to the same coset ζ ∈ Z/ZΦJ and we consider

Iλ = (mn)∗ IC
(
Grλn ,C

)
and B = rIJ(Iλ).
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Composing the isomorphisms given in (6) and (3), we get

H2ρJ (ν)
(
TJ,ν , (tJ,ν)

! B
) ∼= H2ρ(ν)

(
Tν , (tν)

!Iλ

) ∼= HBM
2ρ(|λ|−ν)

(
Grλn ∩ (mn)

−1(Tν)
)
. (10)

To save space we set S = (qJ,ζ)
−1
(
GrµJ

)
∩ Tν and denote by s : S → Tν the inclusion map.

Chasing in the three-dimensional figure

Gr Grn
mnoo Grλnoo

GrJ,ζ Gr−J,ζ
qJ,ζ

oo

tJζ

OO

Grλn ∩ (mn)
−1
(
Gr−J,ζ

)
oo

OO

GrµJ

i
77

(qJ,ζ)
−1
(
GrµJ

)
oo

77

Grλn ∩ (qJ,ζ ◦mn)
−1
(
GrµJ

)
oo

77

TJ,ν

OO

Tν
oo

OO

Grλn ∩ (mn)
−1(Tν)oo

OO

GrµJ ∩ TJ,ν

OO

77

Soo

OO

s

77

Grλn ∩ (mn)
−1(S)oo

OO

77

(11)

we complete (10) in the following commutative diagram.

H2ρJ (ν)
(
TJ,ν , (tJ,ν)

! i∗i
! B
) ≃ //

��

H2ρ(ν)
(
S, (tνs)

!Iλ

) ≃ //

��

HBM
2ρ(|λ|−ν)

(
Grλn ∩ (mn)

−1(S)
)

��

H2ρJ (ν)
(
TJ,ν , (tJ,ν)

! B
) ≃ // H2ρ(ν)

(
Tν , (tν)

!Iλ

) ≃ // HBM
2ρ(|λ|−ν)

(
Grλn ∩ (mn)

−1(Tν)
)

As explained in (B), the left vertical arrow of this diagram is the inclusion map

FJ,ν(B≤Jµ
) → FJ,ν(B).

If an MV cycle Z ∈ Z (λ)ν satisfies µJ(Z) ≤J µ, then it is contained in (mn)
−1(S), so the

fundamental class of Z ∩ Grλn belongs to FJ,ν(B≤Jµ
). Looking at equation (9), we see that

there are just enough such MV cycles to span this subspace. Going through the geometric
Satake correspondence, we conclude that the MV basis of V (λ) satisfies the condition (P1) for
being L-perfect.
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Eying now to the condition (P2), we consider the diagram below, consisting of inclusion maps.

GrµJ \GrµJ
f
// GrµJ

i

��

GrµJ
g

oo

h
||

GrJ,ζ

For any sheaf F ∈ Perv(GrJ) supported on GrµJ \GrµJ , we have

Hom
(
F , pτ≤0

(
h∗h

! B
))

= Hom
(
F , h∗h

! B
)
= Hom

(
h∗ F , h! B

)
= 0

in the bounded derived category of constructible sheaves over GrJ (the first two equalities
by adjunction, the last one because h∗F = 0). Since h∗h

! B is concentrated in nonnegative
perverse degrees ([4], Proposition 1.4.16), the sheaf pτ≤0

(
h∗h

!B
)

is perverse, and from the
semisimplicity of Perv(GrJ) we conclude that

Hom
(
pτ≤0

(
h∗h

! B
)
,F
)
= 0.

Again, in the distinguished triangle

i∗f∗f
!i! B → i∗i

! B → i∗g∗g
!i! B

+−→

all sheaves are concentrated in nonnegative perverse degrees. Denoting by pH1 the first ho-
mology group for the perverse t-structure, we obtain the exact sequence

0 → pτ≤0

(
i∗f∗f

!i! B
)
→ pτ≤0

(
i∗i

! B
)
→ pτ≤0

(
h∗h

! B
)
→ pH1

(
i∗f∗f

!i! B
)
.

The perverse sheaf on the right is supported on GrµJ \ GrµJ , so the right arrow is zero by the
previous step. The resulting short exact sequence can be identified with

0 → B<Jµ
→ B≤Jµ

→ B≤Jµ
/B<Jµ

→ 0.

With the same arguments as in the point (B) above, we deduce that

FJ,ν

(
B≤Jµ

/B<Jµ

)
= FJ,ν

(
pτ≤0 h∗h

! B
)
= H2ρJ (ν)

(
TJ,ν , (tJ,ν)

! h∗h
! B
)
.

In (11), we replace GrµJ by GrµJ ; the same chasing as before now leads to the isomorphism

H2ρJ (ν)
(
TJ,ν , (tJ,ν)

! h∗h
! B
) ≃−→ HBM

2ρ(|λ|−ν)

(
Grλn ∩ (qJ,ζ ◦mn)

−1(GrµJ) ∩ (mn)
−1(Tν)

)
. (12)

Now the point (A) at the beginning of this section explains that H kh! B, where k = −2ρJ(µ),
is the local system Lµ and that it comes with a natural basis, namely Z J(λ)µ. This basis
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induces a decomposition of B≤Jµ
/B<Jµ

into a sum of simple objects in Perv(GrJ). On the
one hand, this decomposition can be followed through the geometric Satake correspondence,
where it gives a decomposition of the subquotient of the isotypic filtration of resGMJ

V (λ) into
a direct sum of irreducible representations. On the other hand, it can also be tracked through
the isomorphism (12):

FJ,ν

(
B≤Jµ

/B<Jµ

) ∼= ⊕
Y ∈Z J (λ)µ

HBM
2ρ(|λ|−ν)

(
Grλn ∩ Y ∩ (mn)

−1(Tν)
)
. (13)

From sect. 3.4, we see that the irreducible components of

Grλn ∩ (qJ,ζ ◦mn)
−1(GrµJ) ∩ (mn)

−1(Tν)

of dimension ρ(|λ|−ν) are the cycles ZJ ∩ (qJ,ζ ◦mn)
−1(ZJ ∩GrµJ), with (ZJ , ZJ) ∈ Z J(λ)µ×

ZJ(µ)ν . The basis of the right-hand side of (12) afforded by the fundamental classes of these
irreducible components is thus compatible with the decomposition (13). Therefore, the MV
basis of V (λ) satisfies the condition (P2) for being L-perfect.

The proof of Theorem 3.4 is now complete.

Remark 3.5. The proof establishes that the MV basis of V (λ) satisfies a stronger property
than (P2): there exists an isomorphism of the isotypic component V (λ)J,µ with a direct sum
of copies of the irreducible representation VJ(µ) such that the induced basis on V (λ)J,µ matches
the direct sum of the MV bases of the summands.

3.6 Crystal structure on MV cycles

Let λ ∈ (Λ+)n. The MV basis of V (λ) defined in sect. 2.3 is indexed by

Z (λ) =
⊔
ν∈Λ

Z (λ)ν

and is L-perfect. Thus, the set Z (λ) is endowed with the structure of a crystal, as explained
in sect. 3.2. Obviously the weight of an MV cycle Z ∈ Z (λ)ν is simply wt(Z) = ν. The aim
of this section is to characterize the action on Z (λ) of the operators ẽi and f̃i.

In semisimple rank 1, one can give an explicit analytical description of the MV cycles, as
follows.

Proposition 3.6 Assume that G has semisimple rank 1 and denote by α and α∨ the positive
root and coroot. Let y : Ga → G∨ be the additive one-parameter subgroup for the root −α∨.
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Let (µ, ν) ∈ Λ+ × Λ and set r = ⟨α∨, µ⟩. Then Grµ ∩ Tν is nonempty if and only if there
exists p ∈ {0, 1, . . . , r} such that ν = µ − pα; in this case, the map a 7→ y(azp−r)Lν induces
an isomorphism of algebraic varieties

O/zpO ≃−→ Grµ ∩ Tν

so Grµ ∩ Tν is an affine space of dimension p and Z (µ)ν is a singleton.

We skip the proof since this proposition is well-known; compare for instance with [1], Propo-
sition 3.10. We can now describe the crystal structure on Z (λ), which extends [1], Proposi-
tion 4.2.

Proposition 3.7 Let (λ, ν) ∈ (Λ+)n × Λ, let i ∈ I and let Z ∈ Z (λ)ν .

(i) We have wt(Z) = ν, εi(Z) = 1
2

〈
α∨
i , µ{i}(Z)− ν

〉
and φi(Z) = 1

2

〈
α∨
i , µ{i}(Z) + ν

〉
.

(ii) Let Y ∈ Z (λ)ν+αi . Then Y = ẽiZ if and only if Y ⊆ Z and µ{i}(Y ) = µ{i}(Z).

Proof. Let λ, ν, i, Z as in the statement and set µ = µ{i}(Z). By definition, the MV cycles
ẽiZ and f̃iZ (if nonzero) are obtained by letting the Chevalley generators ei and fi act on
(the basis element indexed by) Z in the appropriate subquotient of the isotypic filtration of
resGM{i}

V (λ). According to (13), this entails that

µ{i}(Z) = µ{i}(ẽiZ) = µ{i}(f̃iZ) and Z{i} = (ẽiZ){i} = (f̃iZ){i}.

In addition, Z{i}(µ)ν+αi and Z{i}(µ)ν−αi are empty or singletons, and the MV cycles (ẽiZ){i}
and (f̃iZ){i} in the affine Grassmannian Gr{i} are uniquely determined by weight considera-
tions.

The statements can be deduced from these facts by using the explicit description provided by
Proposition 3.6 and the construction of the map (ZJ , ZJ) 7→ Z in sect. 3.4. □

4 The path model and MV cycles

In the previous section, we defined the structure of a crystal on the set Z (λ). In this section,
we turn to Littelmann’s path model [33] to study this structure. This combinatorial device
can be used to effectively assemble MV cycles. Our construction is inspired by the results
presented in [17] but is more flexible, for it relaxes the restriction to minimal galleries.

In this paper, piecewise linear means continuous piecewise linear. We keep the notation set up
in the opening of sect. 3.
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4.1 Recollections on the path model

Let ΛR = Λ ⊗Z R be the real vector space spanned by the weight lattice and let Λ+
R be the

dominant cone inside ΛR.

A path is a piecewise linear map π : [0, 1] → ΛR such that π(0) = 0 and π(1) ∈ Λ. We denote
by Π̃ the set of all paths. The concatenation π ∗ η of two paths is defined in the usual way:
π ∗ η(t) = π(2t) for 0 ≤ t ≤ 1

2 , and π ∗ η(t) = η(2t− 1) + π(1) for 1
2 ≤ t ≤ 1.

In [33], the third author associates to each simple root α of Φ a pair (eα, fα) of “root operators”
from Π̃ to Π̃ ⊔ {0} and shows that the construction yields a semi-normal crystal structure on
Π̃. Here the weight map is given by wt(π) = π(1). To agree with the notation in sect. 3.1, we
will write ẽi and f̃i instead of eαi and fαi for each i ∈ I.

Let ℓ : [0, 1] → R be a piecewise linear function. We say that p ∈ R is a local absolute minimum
of ℓ if there exists a compact interval [a, b] ⊆ [0, 1] over which ℓ takes the value p, and there
exists an ϵ > 0 such that ℓ(x) > p for all x ∈ (a− ϵ, a) ∩ [0, 1] and all x ∈ (b, b+ ϵ) ∩ [0, 1].

Given π ∈ Π̃, we denote by Aπ the set of all paths η ∈ Π̃ that can be obtained from π by
applying a finite sequence of root operators ẽi or f̃i. We say that a path π ∈ Π̃ is integral if
for each η ∈ Aπ and each i ∈ I, all local absolute minima of the function t 7→ ⟨α∨

i , η(t)⟩ are
integers.

We denote the set of all integral paths by Π. Obviously, Π is a subcrystal of Π̃. Moreover, the
general definition of the root operators ([33], sect. 1) simplifies in the case of integral paths,
which only need to be cut into three parts: the initial part is left invariant, the second part
is reflected, and the third part is translated. Specifically, given (π, η) ∈ Π2 and i ∈ I, we
have η = ẽiπ if and only if there exist a negative integer p ∈ Z and two reals a and b with
0 ≤ a < b ≤ 1, such that the function t 7→ ⟨α∨

i , π(t)⟩ is weakly decreasing on [a, b], and for
each t ∈ [0, 1]:

• if t ≤ a, then ⟨α∨
i , π(t)⟩ ≥ p+ 1 and η(t) = π(t);

• if t = a, then ⟨α∨
i , π(t)⟩ = p+ 1;

• if a < t < b, then p ≤ ⟨α∨
i , π(t)⟩ < p+ 1 and η(t) = π(t)− (⟨α∨

i , π(t)⟩ − p− 1)αi;

• if t = b, then ⟨α∨
i , π(t)⟩ = p;

• if t ≥ b, then ⟨α∨
i , π(t)⟩ ≥ p and η(t) = π(t) + αi.

We say that an integral path π ∈ Π is dominant if its image is contained in Λ+
R .
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Remark 4.1. Let Γ be the group of all strictly increasing piecewise linear maps from [0, 1] onto
itself, the product being the composition of functions. This group acts on the set of all paths
by right composition: π 7→ π ◦ γ for a path π and γ ∈ Γ. We say that π ◦ γ is obtained
from π by a piecewise linear reparameterization. Visibly, the set Π of integral paths is stable
under this action, the weight map wt is invariant, and the root operators are equivariant. We
can thus safely consider all our previous constructions modulo this action. In the sequel we
sometimes implicitly assume that this quotient has been performed, i.e. among the possible
parameterizations we choose one which is appropriate for the application in view.

The first two items in the following proposition ensure that there is an abundance of integral
paths.

Proposition 4.2 (i) A dominant path π is integral as soon as for each i ∈ I, the function
t 7→ ⟨α∨

i , π(t)⟩ is weakly increasing.

(ii) The set Π is stable under concatenation of paths and the map π⊗η 7→ π∗η is a morphism
of crystals from Π⊗Π to Π.

(iii) Let π ∈ Π. Then Aπ contains a unique dominant path η and is isomorphic as a crystal
to B(wt(η)).

Proposition 4.2 follows from the results in [35]. Two lemmas will help us bridge the gap.

We fix a scalar product (·, ·) on ΛR and let d(·, ·) be the corresponding distance function. We
fix a basis B of Λ and let L1 ⊂ ΛR be the associated unit cube, i.e. the set of points in ΛR
which can be written as a linear combination of B with coefficients in the interval [0, 1]. Let
M be the maximal distance between two points in L1. Let P ∈ Λ+

Q be a dominant rational
point and let S(P, 1) be the sphere with center P and radius 1. Let g be a ray starting at P
and let g1 be the intersection point of this ray with the sphere S(P, 1).

Lemma 4.3 One can find for any ϵ > 0 a ray f starting at P such that (f \ {P}) ∩ Λ ̸= ∅,
and for {f1} = f ∩ S(P, 1) we have d(g1, f1) < ϵ.

Proof. Parametrize g by g(t) = P + t(g1 − P ) for t ≥ 0. Choose t2 ≫ 0 and pick λ ∈ Λ such
that g(t2) ∈ λ+L1. Let f be the ray starting at P passing through λ. Let f1 be the intersection
point of this ray with S(P, 1); then f(t) = P + t(f1 − P ) for t ≥ 0 is a parameterization of f .
Set g2 = g(t2) and f2 = f(t2). Noting that d(P, f2) = t2 = d(P, g2) and using the triangular
inequality, we get

d(f2, λ) = |d(P, f2)− d(P, λ)| = |d(P, g2)− d(P, λ)| ≤ d(g2, λ) ≤ M
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whence d(g2, f2) ≤ 2M . By the intercept theorem d(f1, g1)/d(g2, f2) = 1/t2, and hence
d(f1, g1) ≤ (2M)/t2. For t2 large enough we obtain d(g1, f1) < ϵ. □

In [35], a seemingly complicated definition of locally integral concatenation is introduced, it is
a generalization of the concept of LS-paths [33]. This notion provides a sufficient condition for
a path to be integral. Let us review it in the case of a rather special class of paths for which
the property of being a locally integral concatenation reduces to the condition (∗) below.

We extend the concatenation operation ∗ to paths that do not necessarily end at an integral
weight. For µ ∈ ΛR, let πµ be the map [0, 1] → ΛR, t 7→ tµ. A path π ∈ Π̃ is said to be dominant
rational if it is of the form π = πµ1 ∗· · ·∗πµs , where (µ1, . . . , µs) ∈

(
Λ+
Q
)s and µ1+· · ·+µs ∈ Λ+.

For such a path, being a locally integral concatenation (loc. cit., Definition 5.3) means:

(∗) For each j ∈ {1, . . . , s} such that µj ̸= 0, the affine line passing through µ1 + · · ·+ µj−1

and µ1 + · · ·+ µj meets at least two lattice points.

An equivalent formulation: the affine line meets at least one rational point and one lattice
point.

Lemma 4.4 A dominant rational path can be approximated by a locally integral concatenation.

Proof. Let π = πµ1 ∗ · · · ∗ πµs be a dominant rational path ending in µ ∈ Λ+. We define the
support of an element µ ∈ ΛR as the set of indices i ∈ I such that ⟨α∨

i , µ⟩ ≠ 0. We can
assume that the support of each µj is the same as the support of µ; otherwise we approximate
π by a path we get by slightly perturbing µ1, . . . , µs, for instance by replacing each µj by
µj + ϵ(µ/s − µj) for some rational 0 < ϵ ≪ 1. We can also assume the support of µ is I,
otherwise we work within the subspace

⋂
i∈I\supp(µ)(kerα

∨
i ).

Under these assumptions, each weight µj is regular dominant. Then small perturbations µ′
1,

. . . , µ′
s−1 of the directions µ1, . . . , µs−1 remain dominant, and so does µ′

s = µ−(µ′
1+· · ·+µ′

s−1).
By Lemma 4.3, one can perturb in such a way that the new path η := πµ′

1
∗· · ·∗πµ′

s
is a dominant

rational path and the first s − 1 line segments of η satisfy the affine line condition (∗). The
last line segment of η meets the lattice point µ and a rational point, and thus satisfies the
affine line condition (∗) too. Hence η is a locally integral concatenation, approximating the
dominant rational path π. □

Proof of Proposition 4.2. A path in statement (i) is of the form π = πµ1 ∗ . . . ∗ πµs , where
(µ1, . . . , µs) ∈

(
Λ+
R
)s are dominant. Such a path can be approximated by a dominant rational

path without altering µ1+ · · ·+µs. In turn, a rational dominant path can be approximated by
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a locally integral concatenation by Lemma 4.4. Lastly, a locally integral concatenation is an
integral path by [35], Lemma 5.6 and Proposition 5.9. The integrality property in (i) follows
now by the continuity of the root operators loc. cit., property (v) continuity.

It remains to prove the other two statements. The endpoint of a path is by definition an
element of the lattice, so the concatenation of integral paths is an integral path. Moreover,
by Lemma 6.12 in loc. cit., concatenation defines a morphism of crystals Π ⊗ Π → Π. This
shows (ii). Statement (iii) follows by Lemma 6.11 in loc. cit. □

4.2 From paths to MV cycles

We need additional terminology before we proceed to the main construction of this section.

To each coroot α∨ ∈ Φ∨ corresponds an additive one-parameter subgroup xα∨ : Ga → G∨.
Given additionally an integer p ∈ Z, we define a map

x(α∨, p) : C → G∨(K), a 7→ xα∨(azp).

An affine coroot is a pair (α∨, p) consisting of a coroot α∨ ∈ Φ∨ and an integer p ∈ Z. The
direction of an affine coroot (α∨, p) is α∨. An affine coroot is said to be positive if its direction
is so. We denote the set of affine coroots by Φ∨

a and the set of positive affine coroots by Φ∨,+
a .

To an affine coroot β, besides the map xβ defined above, we attach a hyperplane Hβ and a
negative closed half-space H−

β in ΛR as follows:

H(α∨, p) =
{
x ∈ ΛR

∣∣ ⟨α∨, x⟩ = p
}
, H−

(α∨, p) =
{
x ∈ ΛR

∣∣ ⟨α∨, x⟩ ≤ p
}
.

Let sβ be the reflection across the hyperplane Hβ ; concretely

s(α∨, p)(x) = x− (⟨α∨, x⟩ − p)α

for any x ∈ ΛR. In addition, we denote by τλ the translation x 7→ x + λ by the element
λ ∈ Λ. The subgroup of Aut(ΛR) generated by all the reflections sβ is the affine Weyl group
Wa. When we add the translations τλ, we obtain the extended affine Weyl group W̃a. Then
τλ ∈ Wa if and only if λ ∈ ZΦ.

The group W̃a acts on the set Φ∨
a of affine roots: one demands that w(H−

β ) = H−
wβ for each

element w ∈ W̃a and each affine coroot β ∈ Φ∨
a . Then for each β ∈ Φ∨

a and each λ ∈ Λ, we
have xτλβ(a) = zλ xβ(a) z

−λ for all a ∈ C.

We denote by H the arrangement formed by the hyperplanes Hβ , where β ∈ Φ∨
a . It divides

the vector space ΛR into faces. The closure of a face is the disjoint union of faces of smaller
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dimension. Endowed with the set of all faces, ΛR becomes a polysimplicial complex, called the
affine Coxeter complex.

For each face f of the affine Coxeter complex, we denote by N∨(f) the subgroup of N∨(K)
generated by the elements xα∨(azp), where a ∈ O and (α∨, p) is a positive affine coroot such
that f ⊆ H−

(α∨, p). We note that N∨(τλf) = zλN∨(f) z−λ for each face f and each λ ∈ Λ and
that N∨(f) ⊆ N∨(O) if f ⊆ Λ+

R .

For x ∈ ΛR, we denote by fx the face in the affine Coxeter complex that contains the point
x. We use the symbol

∏′ to denote the restricted product of groups, consisting of families
involving only finitely many nontrivial terms.

Using these conventions and the notation introduced in sect. 2.2, given (π1, . . . , πn) ∈ Πn, we
define Z̊(π1 ⊗ · · · ⊗ πn) as the subset of Grn of all elements ∏

t1∈[0,1]

v1,t1

 zwt(π1), . . . ,

 ∏
tn∈[0,1]

vn,tn

 zwt(πn)


with

((v1,t1), . . . , (vn,tn)) ∈
∏′

t1∈[0,1]

N∨(fπ1(t1)

)
× · · · ×

∏′

tn∈[0,1]

N∨(fπn(tn)

)
.

Proposition 4.5 Let (π1, . . . , πn) ∈ Πn.

(i) The set Z̊(π1 ⊗ · · · ⊗ πn) is stable under left multiplication by N∨(O).

(ii) Let µ = wt(π1)+· · ·+wt(πn). Then the set Z̊(π1⊗· · ·⊗πn) is an irreducible constructible
subset of (mn)

−1(Sµ).

(iii) We have
Z̊(π1 ⊗ · · · ⊗ πn) = Ψ

(
Z̊(π1)⋉ · · ·⋉ Z̊(πn)

)
and

Z̊(π1 ∗ · · · ∗ πn) = mn

(
Z̊(π1 ⊗ · · · ⊗ πn)

)
.

(iv) Let i ∈ I and compute η1⊗· · ·⊗ηn = ẽi(π1⊗· · ·⊗πn) in the crystal Π⊗n, provided that this
operation is defined. Then Z̊(π1⊗· · ·⊗πn) is contained in the closure of Z̊(η1⊗· · ·⊗ηn)
in Grn.
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Proof. Assertion (i) is a direct consequence of the equality N∨(fπ1(0)

)
= N∨(f0) = N∨(O).

Assertion (ii) comes from general principles once we have replaced the restricted infinite product
by a finite one.

The first equation in (iii) is tautological. In the second one, we view the concatenation π =
π1 ∗ · · · ∗ πn as a map from [0, n] to ΛR, each path π1, . . . , πn being travelled at nominal
speed. We set ν0 = 0, and for j ∈ {2, . . . , n} we set νj−1 = wt(π1) + · · · + wt(πj−1). Then
for j ∈ {1, . . . , n} and t ∈ [0, 1], we have π(t + (j − 1)) = νj−1 + πj(t), and accordingly
N∨(fπ(t+(j−1))

)
= zνj−1 N∨(fπj(t)

)
z−νj−1 . A banal calculation then yields the desired result.

The proof of assertion (iv) is much more involved. We defer its presentation to sect. 4.5. □

For (π1, . . . , πn) ∈ Πn, we denote by Z(π1 ⊗ · · · ⊗ πn) the closure of Z̊(π1 ⊗ · · · ⊗ πn) in
(mn)

−1(Sµ), where µ = wt(π1) + · · ·+wt(πn).

Theorem 4.6 Let (π1, . . . , πn) ∈ Πn, set µ = wt(π1)+ · · ·+wt(πn) and for j ∈ {1, . . . , n}, let
λj be the weight of the unique dominant path in Aπj. Then Z(π1 ⊗ · · · ⊗ πn) is an MV cycle;
specifically Z(π1 ⊗ · · · ⊗ πn) ∈ ∗Z (λ1, . . . , λn)µ.

Proof. We start with the particular case n = 1. Let π ∈ Π, let η be the unique dominant path in
Aπ, set λ = wt(η) and µ = wt(π), and set p = 2ρ(λ) and k = ρ(λ+µ). By Proposition 4.2 (iii),
the crystal Aπ is isomorphic to B(λ), so it contains a unique lowest weight element ξ. Then π
can be reached by applying a sequence of root operators f̃i to η or by applying a sequence of
root operators ẽi to ξ. Thus, there exists a finite sequence (π0, . . . , πp) of elements in Aπ such
that π0 = ξ, πk = π, πp = η and such that each πj+1 is obtained from πj by applying a root
operator ẽi.

Since η is dominant, each face fη(t) is contained in Λ+
R , so each group N∨(fη(t)) is contained in

N∨(O). Then by construction Z̊(η) ⊆ N∨(O)Lλ, and therefore Z(η) (the closure of Z(η) in
Gr) is contained in Grλ. Also, Proposition 4.5 (iv) implies that

Z(π0) ⊆ Z(π1) ⊆ · · · ⊆ Z(πp). (14)

These inclusions are strict because Z(πj) is contained in the closure of Grλ ∩ Swt(πj), which is
disjoint from Swt(πj+1) by [39], Proposition 3.1 (a), while Z(πj+1) is contained in Swt(πj+1). Thus

(14) is a strictly increasing chain of closed irreducible subsets of Grλ. As Grλ has dimension
p, we see that each Z(πj) has dimension j.

In particular, Z(π) has dimension k. But Z(π) is locally closed, because it is a closed subset
of Sµ which is locally closed. So Z(π) has dimension k. At this point, we know that Z(π) is
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a closed irreducible subset of Grλ ∩ Sµ of dimension k = ρ(λ + µ). Therefore Z(π) belongs
to Z (λ)µ.

The reasoning above establishes the case n = 1 of the Theorem. The general case then follows
from Propositions 2.2 (ii) and 4.5 (iii). □

4.3 A more economical definition

For the proofs in the following sections, it will be convenient to have a more economical
presentation of the sets Z̊(π1 ⊗ · · · ⊗ πn). We need a few additional pieces of notation.

When f and f′ are two faces of the affine Coxeter complex such that f is contained in the closure
f′ of f′, we denote by Φ∨,+

a (f, f′) the set of all positive affine coroots β such that f ⊆ Hβ and
f′ ̸⊆ H−

β . We denote by N ∨(f, f′) the subgroup of N∨(K) generated by the elements xβ(a)

with β ∈ Φ∨,+
a (f, f′) and a ∈ C.

We recall that a group Γ is the (internal) Zappa–Szép product of two subgroups Γ′ and Γ′′ if
the product in Γ induces a bijection Γ′×Γ′′ → Γ. We indicate this situation with the notation
Γ = Γ′ ▷◁ Γ′′.

The following result is Proposition 19 (ii) in [1].

Lemma 4.7 Let f and f′ be two faces of the affine Coxeter complex such that f ⊆ f′. Then
N∨(f) = N ∨(f, f′) ▷◁ N∨(f′), and the map

CΦ∨,+
a (f,f′) → N ∨(f, f′), (aβ) 7→

∏
β∈Φ∨,+

a (f,f′)

xβ(aβ)

is bijective, whichever order on Φ∨,+
a (f, f′) is used to compute the product.

Given π ∈ Π and t ∈ [0, 1[, we denote by fπ(t+0) the face in the affine Coxeter complex that con-
tains the points π(t+h) for all small enough h > 0. Obviously, its closure meets, hence contains,
the face fπ(t). We set Φ∨,+

a (π, t) = Φ∨,+
a

(
fπ(t), fπ(t+0)

)
and N ∨(π, t) = N ∨(fπ(t), fπ(t+0)

)
.

Concretely, Φ∨,+
a (π, t) is the set of all β ∈ Φ∨,+

a such that π quits the half-space H−
β at time t

and N ∨(π, t) is the subgroup of N∨(K) generated by the elements xβ(a) with β ∈ Φ∨,+
a (π, t)

and a ∈ C. Note that Φ∨,+
a (π, t) is empty save for finitely many t.
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Proposition 4.8 Let (π1, . . . , πn) ∈ Πn. Then Z̊(π1 ⊗ · · · ⊗ πn) is the set of all elements ∏
t1∈[0,1[

v1,t1

 zwt(π1), . . . ,

 ∏
tn∈[0,1[

vn,tn

 zwt(πn)


with

((v1,t1), . . . , (vn,tn)) ∈
∏

t1∈[0,1[

N ∨(π1, t1)× · · · ×
∏

tn∈[0,1[

N ∨(πn, tn).

Proof. Let π ∈ Π. Let (t1, . . . , tm) be the ordered list of all elements t ∈ [0, 1[ such that
Φ∨,+
a (π, t) ̸= ∅ and set tm+1 = 1.

Pick ℓ ∈ {1, . . . ,m}; between the times tℓ and tℓ+1, the path π never quits the half-space H−
β

of a positive affine coroot β; as a consequence, the map t 7→ N∨(fπ(t)) is non-decreasing on
the interval ]tℓ, tℓ+1]. This map is also non-decreasing on the interval [0, t1] if t1 > 0. However
when t goes past the point tℓ, the group N∨(fπ(t)) loses the first factor of the Zappa–Szép
product N∨(fπ(tℓ)) = N ∨(π, tℓ) ▷◁ N∨(fπ(tℓ+0)

)
.

It follows that for any family (ut) in
∏′

t∈[tℓ,tℓ+1]
N∨(fπ(t)), there exists (v, u) ∈ N ∨(π, tℓ) ×

N∨(fπ(tℓ+1)

)
such that

∏
t∈[tℓ,tℓ+1]

ut = vu. To see this, one decomposes utℓ as vu′ according to
the Zappa–Szép product and one defines u as the product of u′ and of the ut for t ∈]tℓ, tℓ+1].
Assembling these pieces (and an analogous statement over the interval [0, t1] if t1 > 0) from
left to right, and noting that N∨(fπ(1)) stabilizes Lwt(π), we deduce that Z̊(π) is the image of
the map ∏

t∈[0,1[

N ∨(π, t) → Gr, (vt) 7→

 ∏
t∈[0,1[

vt

 Lwt(π).

This proves our statement in the case of just one path. The general case then follows from
Proposition 4.5 (iii). □

4.4 Isomorphisms of crystals

In the previous section we explained how to build elements in ∗Z (λ)µ, while in sect. 3 we were
dealing with MV cycles in Z (λ). This clumsiness is due to a mismatch between the definition
of the path model and the conventions in [39] and [2]. To mitigate the disagreement, we define
a crystal structure on

∗Z (λ) =
⊔
µ∈Λ

∗Z (λ)µ.
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Recall the setup of sect. 3.3: we consider a subset J ⊆ I, define an action of C× on Gr given
by a special dominant weight θJ , and get the diagram (4). Now let (λ, ν) ∈ (Λ+)n × Λ, let ζ
be the coset of ν modulo ZΦJ , and let Z ∈ ∗Z (λ)ν . Then mn(Z) ⊆ Sν ⊆ Gr+J,ζ and there is
a unique weight µ ∈ Λ+

J characterized by the conditions

(pJ,ζ ◦mn)(Z) ⊆ GrµJ and (pJ,ζ ◦mn)(Z) ∩GrµJ ̸= ∅.

We denote this weight by µJ(Z).

By analogy with Proposition 3.7, we can then claim the existence of a crystal structure on
∗Z (λ) such that for all ν ∈ Λ, i ∈ I and Z ∈ Z (λ)ν :

• We have wt(Z) = ν, εi(Z) = 1
2

〈
α∨
i , µ{i}(Z)− ν

〉
and φi(Z) = 1

2

〈
α∨
i , µ{i}(Z) + ν

〉
.

• Let Y ∈ ∗Z (λ)ν+αi . Then Y = ẽiZ if and only if Y ⊇ Z and µ{i}(Y ) = µ{i}(Z).

Theorem 4.9 Let (λ1, . . . , λn) ∈ (Λ+)n, and for each j ∈ {1, . . . , n} choose a subcrystal Πj

of Π isomorphic to B(λj). Then the map (π1, . . . , πn) 7→ Z(π1 ⊗ · · · ⊗ πn) is an isomorphism
of crystals

Π1 ⊗ · · · ⊗Πn
≃−→ ∗Z (λ1, . . . , λn).

Proof. Let i ∈ I and let (π1, . . . , πn) ∈ Π1 × · · · ×Πn. Set ν = wt(π1) + · · ·+wt(πn), let ζ be
the coset of ν modulo Zαi, and set π = π1 ∗ · · · ∗ πn,

p = min
{
⟨α∨

i , π(t)⟩
∣∣ t ∈ [0, 1]

}
and q = ⟨α∨

i , ν⟩ = ⟨α∨
i , π(1)⟩.

For any a ∈ C[z, z−1] and any positive coroot α∨, we have

lim
c→0

θ{i}(c) xα∨(a) θ{i}(c)
−1 =

{
xα∨(a) if α∨ = α∨

i ,
1 otherwise.

Using Proposition 4.8, we see that p{i},ζ

(
Z̊(π)

)
is the set of all elements of the form

lim
c→0

∏
t∈[0,1[

 ∏
β∈Φ∨,+

a (π,t)

θ{i}(c) xβ(at,β) θ{i}(c)
−1

 Lν

where at,β are complex numbers. All factors in the product disappear in the limit c → 0,
except those for the affine roots β of direction α∨

i . Let (α∨
i , p1), . . . , (α∨

i , ps) be these affine
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roots. Since the function t 7→ ⟨α∨
i , π(t)⟩ assumes the value p and thereafter reaches the value

q, the path π must, at some point, quit each half-space H−
(α∨

i , p)
, H−

(α∨
i , p+1)

, . . . , H−
(α∨

i , q−1)
, so

{p, p+ 1, . . . , q − 1} ⊆ {p1, . . . , ps} ⊆ {p, p+ 1, . . .}.

We conclude that
p{i},ζ

(
Z̊(π)

)
=
{
xα∨

i
(azp)Lν

∣∣ a ∈ O/zq−pO
}
.

Proposition 4.5 (iii) and a variant of Proposition 3.6 then jointly imply

(p{i},ζ ◦mn)
(
Z̊(π1 ⊗ · · · ⊗ πn)

)
= p{i},ζ

(
Z̊(π)

)
= Grµ{i} ∩ S{i},ν

where µ = ν − pαi. Thus,
µ{i}(Z(π1 ⊗ · · · ⊗ πn)) = ν − pαi (15)

and
εi(Z(π1 ⊗ · · · ⊗ πn)) = −p and φi(Z(π1 ⊗ · · · ⊗ πn)) = q − p.

These latter equations show that the map (π1, . . . , πn) 7→ Z(π1 ⊗ · · · ⊗ πn) is compatible with
the functions εi and φi.

Now compute
η1 ⊗ · · · ⊗ ηn = ẽi(π1 ⊗ · · · ⊗ πn)

in the crystal Π1 ⊗ · · · ⊗Πn, assuming this operation to be doable. By Proposition 4.5 (iv),

Z(η1 ⊗ · · · ⊗ ηn) ⊇ Z(π1 ⊗ · · · ⊗ πn). (16)

Let η = η1 ∗ · · · ∗ ηn. Then η = ẽiπ by Proposition 4.2 (ii), and therefore

wt(η) = ν + αi and min
{
⟨α∨

i , η(t)⟩
∣∣ t ∈ [0, 1]

}
= p+ 1.

Repeating the arguments above, we get

µ{i}(Z(η1 ⊗ · · · ⊗ ηn)) = (ν + αi)− (p+ 1)αi = ν − pαi.

Together with (15) and (16), this gives

Z(η1 ⊗ · · · ⊗ ηn) = ẽi Z(π1 ⊗ · · · ⊗ πn).

We conclude that the map (π1, . . . , πn) 7→ Z(π1⊗· · ·⊗πn) has the required compatibility with
the operations ẽi. □
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Corollary 4.10 Let (λ1, . . . , λn) ∈ (Λ+)n. Then the map (Z1, . . . , Zn) 7→ Ψ(Z1 ⋉ · · ·⋉ Zn)
from Proposition 2.2 (ii) is an isomorphism of crystals

∗Z (λ1)⊗ · · · ⊗ ∗Z (λn)
≃−→ ∗Z (λ1, . . . , λn).

The crystals Z (λ) enjoy a factorization property analogous to Corollary 4.10; one must
however use the opposite tensor product on crystals.

Remark 4.11. The plactic algebra [32] is an algebraic combinatorial tool invented by Lascoux
and Schützenberger long before the notion of a crystal basis of a representation was introduced.
Loosely speaking, for a complex reductive algebraic group, the plactic algebra is the algebra
having as basis the union

⋃
λ∈Λ+ B(λ) of the crystal bases B(λ) for all irreducible representa-

tions, the product being given by the tensor product of crystals. For G = SLn(C), Lascoux
and Schützenberger give a description of such an algebra in terms of the word algebra modulo
the Knuth relations, and it was shown later that this algebra is isomorphic to the one given
by the crystal basis. A combinatorial Lascoux–Schützenberger type description for the other
types was given in [34]; this description uses the path model.

It is natural to ask whether it is possible to do the same with MV cycles: endow the set of
all MV cycles for all dominant weights λ ∈ Λ+ with the structure of a crystal and define
(in a geometric way) a multiplication on the cycles which mimics the plactic algebra. For
G = SLn(C), a positive answer was given in [18]. This approach was adapted to the symplectic
case in [44].

The results in this section can be naturally viewed as a generalization of [18] to arbitrary
connected reductive groups. Using [34] and Proposition 4.2, one can use the set Π to construct
the plactic algebra so that it has as basis equivalence classes (generalized Knuth relations) of
elements in Π. The sets Z̊(π1 ⊗ · · · ⊗ πn) (Proposition 4.5) replace in the general setting the
Białynicki-Birula cells in [18]. By combining Proposition 4.5 (iii) and Theorem 4.9, we see that
the closure of mn

(
Z̊(π1 ⊗ · · · ⊗ πn)

)
is an MV cycle which depends only on the class of the

path π1 ∗ · · · ∗πn modulo the generalized Knuth relations. In particular, the main result of [18]
follows as a special case.

A different approach to this problem was taken by Xiao and Zhu [45]. They define a set of
‘elementary Littelmann paths’, modeled over minuscule or quasi-minuscule representations, use
the methods from [40] to assign an MV cycle to each concatenation of elementary Littelmann
paths, and show that the resulting map factorizes through the generalized Knuth relations.
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4.5 Proof of Proposition 4.5 (iv)

This section can be skipped without substantial loss of appreciation of our main storyline. We
follow the same method as in [1], proof of Proposition 5.11.

The group G∨(C) is generated by elements xα∨(a) and cλ, where (a, α∨) ∈ C × Φ∨ and
(c, λ) ∈ C× × Λ, which obey the following relations:

• For any (a, α∨) ∈ C× Φ∨ and any (c, λ) ∈ C× × Λ,

cλ xα∨(a) c−λ = xα∨
(
c⟨α

∨,λ⟩a
)
.

• Given two linearly independent elements α∨ and β∨ in Φ∨, there exist constants Ci,j

such that
xα∨(a) xβ∨(b) xα∨(a)−1 xβ∨(b)−1 =

∏
(i,j)

xiα∨+jβ∨
(
Ci,j a

ibj
)

(17)

for any (a, b) ∈ C2. The product on the right-hand side is taken over all pairs of positive
integers (i, j) for which iα∨ + jβ∨ ∈ Φ∨, in order of increasing i+ j.

Further, the one-parameter subgroups xα∨ can be normalized so that for any root α ∈ Φ:

• For any (a, b) ∈ C2 such that 1− ab ̸= 0,

xα∨(a) x−α∨(b) = x−α∨(b/(1− ab)) (1− ab)α xα∨(a/(1− ab)). (18)

• There exists an element sα ∈ G∨(C) such that for any a ∈ C×,

xα∨(a) x−α∨(a−1) xα∨(a) = x−α∨(a−1) xα∨(a) x−α∨(a−1) = aα sα = sα a−α. (19)

This element sα lifts in the normalizer of T∨(C) the reflection sα ∈ W along the root α. All
the above relations also hold for scalars b, c in K, provided of course that we regard them
in G∨(K).

The Chevalley commutation relation (17) implies the following easy lemma.

Lemma 4.12 Let f be a face of the affine Coxeter complex, let (α∨, p) and (β∨, q) be two
positive affine coroots, and let (a, b) ∈ O2. Assume that α∨ is simple, that α∨ ̸= β∨, and that

f ⊆ H−
(−α∨,−p) ∩H−

(β∨, q).

Then
x−α∨(az−p) xβ∨(bzq) x−α∨(−az−p) ∈ N∨(f).
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Proof. We consider the situation set forth in the statement of the lemma. Using (17), we write

x−α∨(az−p) xβ∨(bzq) x−α∨(−az−p) xβ∨(−bzq) =
∏
(i,j)

x−iα∨+jβ∨
(
Ci,j a

ibjz−ip+jq
)

(20)

where the product on the right-hand side is taken over all pairs of positive integers (i, j) for
which −iα∨ + jβ∨ is a coroot.

Consider such a pair (i, j). In view of our assumptions, the coroot −iα∨ + jβ∨ is necessarily
positive. Moreover for any x ∈ f we have

⟨−iα∨ + jβ∨, x⟩ = i⟨−α∨, x⟩+ j⟨β∨, x⟩ ≤ i(−p) + jq,

so f ⊆ H−
(−iα∨+jβ∨,−ip+jq). It follows that the right-hand side of (20) lies in N ∨(f), which

readily implies the statement. □

Given g ∈ N∨(K), there is a unique tuple (ai) ∈ KI such that

g ≡
∏
i∈I

xα∨
i
(ai) mod (N∨(K), N∨(K));

looking at a specific i ∈ I, we denote by ai,p(g) the coefficient of zp in the Laurent series ai.
This procedure defines a morphism of groups ai,p : N

∨(K) → C for each pair (i, p) ∈ I × Z.

Lemma 4.13 Let π ∈ Π and let (t1, . . . , tm) be the ordered list of all elements t ∈ [0, 1[ such
that Φ∨,+

a (π, t) ̸= ∅. Set tm+1 = 1. Let i ∈ I and set

p = min
{
⟨α∨

i , π(t)⟩
∣∣ t ∈ [0, 1]

}
.

Let r ∈ {1, . . . ,m+ 1} and let (vℓ) ∈
∏m

ℓ=r N ∨(π, tℓ).

(i) Let r+ be the smallest element in{
ℓ ∈ {r, . . . ,m}

∣∣ (α∨
i , p) ∈ Φ∨,+

a (π, tℓ)
}
,

assuming that this set is nonempty. Then for any u ∈ N∨(fπ(tr)) there exists (v′ℓ) ∈∏m
ℓ=r N ∨(π, tℓ) such that

v′r · · · v′m Lwt(π) = u vr · · · vm Lwt(π)

and

ai,p(v
′
ℓ) =

{
ai,p(u) + ai,p(vℓ) if ℓ = r+,
ai,p(vℓ) for all other ℓ ∈ {r, . . . ,m}.

37



(ii) For any c ∈ 1 + zO and any λ ∈ Λ, there exists (v′ℓ) ∈
∏m

ℓ=r N ∨(π, tℓ) such that

v′r · · · v′m Lwt(π) = cλ vr · · · vm Lwt(π)

and ai,p(v
′
ℓ) = ai,p(vℓ) for all ℓ ∈ {r, . . . ,m}.

(iii) For any b ∈ C not in{
0
}
∪
{
ai,p(vr) + · · ·+ ai,p(vℓ)

∣∣ ℓ ∈ {r, . . . ,m}
}
,

there exists (v′ℓ) ∈
∏m

ℓ=r N ∨(π, tℓ) such that

v′r · · · v′m Lwt(π) = x(−α∨
i ,−p)(1/b) vr · · · vm Lwt(π).

Proof. The lemma is trivial for r = m + 1. Proceeding by decreasing induction, we choose
r ∈ {1, . . . ,m}, assume that statements (i), (ii) and (iii) hold for r + 1, and show that they
also hold for r. We recall (see the proof of Proposition 4.8) that

N∨(fπ(tr)) = N ∨(π, tr) ▷◁ N∨(fπ(tr+0)

)
and N∨(fπ(tr+0)

)
⊆ N∨(fπ(tr+1)

)
.

Let (vℓ) ∈
∏m

ℓ=r N ∨(π, tℓ).

We start with (i). Let u ∈ N∨(fπ(tr)). We can write uvr ∈ N∨(fπ(tr)) as a product v′ru
′ with

(v′r, u
′) ∈ N ∨(π, tr)×N∨(fπ(tr+0)

)
. Then

ai,p(u) + ai,p(vr) = ai,p(v
′
r) + ai,p(u

′).

Noting that u′ ∈ N∨(fπ(tr+1)

)
, we make use of the inductive assumption: there exists (v′ℓ) ∈∏m

ℓ=r+1 N ∨(π, tℓ) such that

v′r+1 · · · v′m Lwt(π) = u′ vr+1 · · · vm Lwt(π)

and

ai,p(v
′
ℓ) =

{
ai,p(u

′) + ai,p(vℓ) if ℓ = (r + 1)+,
ai,p(vℓ) for all other ℓ ∈ {r + 1, . . . ,m}.

We distinguish two cases. If (α∨
i , p) ∈ Φ∨,+

a (π, tr), then fπ(tr+0) ̸⊆ H−
(α∨

i , p)
, whence ai,p(u

′) =

0; also r+ = r in this case. If (α∨
i , p) /∈ Φ∨,+

a (π, tr), then ai,p(vr) = ai,p(v
′
r) = 0; here

r+ = (r + 1)+. In both cases, routine checks conclude the proof of (i).

We now turn to statement (ii). Let c ∈ 1 + zO and let λ ∈ Λ. One easily checks that
any subgroup of the form N∨(f), in particular N∨(fπ(tr)), is stable under conjugation by cλ.
Additionally, for any v ∈ N∨(fπ(tr)), when we write

v ≡
∏
i∈I

xα∨
i
(ai) mod (N∨(K), N∨(K)),
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the Laurent series ai has valuation at least p. This series is multiplied by c⟨α
∨
i ,λ⟩ when one

conjugates v by cλ. Looking at the coefficient of zp then gives ai,p(v) = ai,p(c
λvc−λ).

Write cλvrc
−λ ∈ N∨(fπ(tr)) as a product v′ru with (v′r, u) ∈ N ∨(π, tr)×N∨(fπ(tr+0)

)
. Then

ai,p(vr) = ai,p(c
λvrc

−λ) = ai,p(v
′
r) + ai,p(u).

By induction, there exists (v′ℓ) ∈
∏m

ℓ=r+1 N ∨(π, tℓ) such that

v′r+1 · · · v′m Lwt(π) = ucλ vr+1 · · · vm Lwt(π)

and

ai,p(v
′
ℓ) =

{
ai,p(u) + ai,p(vℓ) if ℓ = (r + 1)+,
ai,p(vℓ) for all other ℓ ∈ {r + 1, . . . ,m}.

Again we distinguish two cases. If (α∨
i , p) ∈ Φ∨,+

a (π, tr), then fπ(tr+0) ̸⊆ H−
(α∨

i , p)
and therefore

ai,p(u) = 0. If (α∨
i , p) /∈ Φ∨,+

a (π, tr), then ai,p(vr) = ai,p(v
′
r) = 0 and anew ai,p(u) = 0. Thus,

ai,p(u) = 0 holds unconditionally, which concludes the proof of (ii).

Lastly, let us deal with statement (iii). We distinguish three cases.

Suppose first that (α∨
i , p) ∈ Φ∨,+

a (π, tr). We write vr = x(α∨
i , p)

(a) ṽr where a = ai,p(vr) and ṽr

is a product of elements xβ(aβ) with β ∈ Φ∨,+
a (π, tr) \ {(α∨

i , p)} and aβ ∈ C. From (18) we get

x(−α∨
i ,−p)(1/b) x(α∨

i , p)
(a) = (1− a/b)−αi x(α∨

i , p)
(a(1− a/b)) x(−α∨

i ,−p)(1/(b− a)).

By Lemma 4.12,
x(−α∨

i ,−p)(1/(b− a)) ṽr x(−α∨
i ,−p)(−1/(b− a))

belongs to N∨(fπ(tr)). We write it as a product ṽ′ru with (ṽ′r, u) ∈ N ∨(π, tr)×N∨(fπ(tr+0)

)
.

By induction, there exists (v′ℓ) ∈
∏m

ℓ=r+1 N ∨(π, tℓ) such that

v′r+1 · · · v′m Lwt(π) = u x(−α∨
i ,−p)(1/(b− a)) vr+1 · · · vm Lwt(π).

Then

x(−α∨
i ,−p)(1/b) vr · · · vm Lwt(π) = (1− a/b)−αi

[
x(α∨

i , p)
(a(1− a/b)) ṽ′r

]
v′r+1 · · · v′m Lwt(π).

Denoting the element between square brackets above by v′r, we get the desired expression, up
to the inconsequential left multiplication by (1− a/b)−αi .

Suppose now that there exists q > p such that (α∨
i , q) ∈ Φ∨,+

a (π, tr); then ai,p(vr) = 0.
We write vr = x(α∨

i , q)
(a) ṽr where a ∈ C and ṽr is a product of elements xβ(aβ) with β ∈
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Φ∨,+
a (π, tr)\{(α∨

i , q)} and aβ ∈ C. Let c be a square root in 1+ tO of 1− (a/b)tq−p. From (18)
we get

x(−α∨
i ,−p)(1/b) x(α∨

i , q)
(a) = c−αi x(α∨

i , q)
(a) x(−α∨

i ,−p)(1/b) c
−αi .

By Lemma 4.12,
x(−α∨

i ,−p)(1/b)
(
c−αi ṽr c

αi
)
x(−α∨

i ,−p)(−1/b)

belongs to N∨(fπ(tr)); we write it as a product ṽ′ru with (ṽ′r, u) ∈ N ∨(π, tr) × N∨(fπ(tr+0)

)
.

By induction, there exists (v′ℓ) ∈
∏m

ℓ=r+1 N ∨(π, tℓ) such that

v′r+1 · · · v′m Lwt(π) = u x(−α∨
i ,−p)(1/b) c

−αi vr+1 · · · vm Lwt(π).

Then
x(−α∨

i ,−p)(1/b) vr · · · vm Lwt(π) = c−αi
[
x(α∨

i , q)
(a) ṽ′r

]
v′r+1 · · · v′m Lwt(π).

Denoting the element between square brackets above by v′r, we get the desired expression, up
to the inopportune left multiplication by c−αi . The latter can however be wiped off by a further
use of the inductive assumption.

Last, suppose that no affine coroot of direction α∨
i occurs in Φ∨,+

a (π, tr); then ai,p(vr) = 0. By
Lemma 4.12,

x(−α∨
i ,−p)(1/b) vr x(−α∨

i ,−p)(−1/b)

belongs to N∨(fπ(tr)). We write it as a product v′ru with (v′r, u) ∈ N ∨(π, tr)×N∨(fπ(tr+0)

)
.

By induction, there exists (v′ℓ) ∈
∏m

ℓ=r+1 N ∨(π, tℓ) such that

v′r+1 · · · v′m Lwt(π) = u x(−α∨
i ,−p)(1/b) vr+1 · · · vm Lwt(π).

Then
x(−α∨

i ,−p)(1/b) vr · · · vm Lwt(π) = v′r v
′
r+1 · · · v′m Lwt(π),

as desired, which concludes the proof of (iii). □

Let us now consider i ∈ I and two integral paths π and η related by the equation η = ẽiπ. We
denote by p the minimum of the function t 7→ ⟨α∨

i , π(t)⟩ over the interval [0, 1] and by a and
b the two points in time where π is bent to produce η. Noting that the conditions spelled out
in sect. 4.1 do not uniquely determine b, we choose it to be the largest possible: either b = 1
or ⟨α∨

i , π(b+ h)⟩ > p for all small enough h > 0.

Let (t1, . . . , tm) be the ordered list of all elements in [0, 1[ such that Φ∨,+
a (π, t) ̸= ∅. We set

tm+1 = 1. The set Φ∨,+
a (π, a) may be empty; if this happens, we insert a in the list (t1, . . . , tm),

for it will simplify the notation hereafter. On the contrary, the above condition imposed on
b ensures that either b = 1 or (α∨

i , p) ∈ Φ∨,+
a (π, b), so b automatically appears in the list

(t1, . . . , tm+1). We denote by r and s the indices in {1, . . . ,m+1} such that a = tr and b = ts.
By design tr = a < tr+1 ≤ ts = b.
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Lemma 4.14 Adopt the setting described in the two preceding paragraphs. Choose (vℓ) ∈∏m
ℓ=1 N ∨(π, tℓ) such that ai,p(vs) + · · · + ai,p(vℓ) ̸= 0 for each ℓ ∈ {s, . . . ,m}. Then for any

h ∈ C×, there exists (wℓ) ∈
∏m

ℓ=1 N ∨(η, tℓ) such that

v1 · · · vr−1 x(−α∨
i ,−p−1)(h) vr · · · vm Lwt(π) = w1 . . . wm Lwt(η).

Proof. Let (vℓ) be as in the statement and let h ∈ C×. We set

A = v1 · · · vr−1 and B = vr · · · vm.

We note that fπ(tr) ⊆ H(α∨
i , p+1), so x(α∨

i , p+1)(−1/h) ∈ N∨(fπ(tr)).
Using Lemma 4.13 (i), we find (v′r+1, . . . , v

′
m) ∈

∏m
ℓ=r N ∨(π, tℓ) such that

x(α∨
i , p+1)(−1/h) B Lwt(π) = v′r · · · v′m Lwt(π)

and ai,p(v
′
ℓ) = ai,p(vℓ) for all ℓ ∈ {r, . . . ,m}. We set c = ai,p(vs) and write v′s = x(α∨

i , p)
(c) ṽ′s.

Then ṽ′s ∈ N ∨(π, ts) and ai,p(ṽ
′
s) = 0. We also set

C = v′r · · · v′s−1 and D = ṽ′s v
′
s+1 · · · v′m.

Using Lemma 4.13 (iii), we find (ṽ′′s , v
′′
s+1, . . . , v

′′
m) ∈

∏m
ℓ=s N ∨(π, tℓ) such that

x(−α∨
i ,−p)(−1/c) DLwt(π) = ṽ′′s v

′′
s+1 · · · v′′m Lwt(π).

Last, we set

E = x(α∨
i , p)

(c) x(−α∨
i ,−p)(1/c) x(α∨

i , p)
(c),

F = x(α∨
i , p)

(−c) ṽ′′s v
′′
s+1 · · · v′′m,

K = x(−α∨
i ,−p−1)(h) x(α∨

i , p+1)(1/h).

Then
A x(−α∨

i ,−p−1)(h) B Lwt(π) = AKCEF Lwt(π). (21)

Observing that

Φ∨,+
a (η, tℓ) =


Φ∨,+
a (π, tℓ) if 1 ≤ ℓ < r,

{(α∨
i , p+ 1)} ⊔ s(α∨

i , p+1)

(
Φ∨,+
a (π, tr)

)
if ℓ = r,

s(α∨
i , p+1)

(
Φ∨,+
a (π, tℓ)

)
if r < ℓ < s,

ταi

(
Φ∨,+
a (π, tℓ)

)
if s ≤ ℓ ≤ m,
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we check that the sequence(
v1, . . . , vr−1, x(α∨

i , p+1)(−h)
(
z(p+1)αisi

)
v′r
(
z(p+1)αisi

)−1
,(

z(p+1)αisi
)
v′r+1

(
z(p+1)αisi

)−1
, . . . ,

(
z(p+1)αisi

)
v′s−1

(
z(p+1)αisi

)−1
,

zαi x(α∨
i , p)

(−c) ṽ′′s z−αi , zαi v′′s+1 z
−αi , . . . , zαi v′′m z−αi

)
(22)

belongs to
∏m

ℓ=1 N ∨(η, tℓ). In addition, the product of the elements in this sequence is

A x(α∨
i , p+1)(−h)

(
z(p+1)αisi

)
C
(
z(p+1)αisi

)−1
zαi F z−αi .

We now apply two transformations to the sequence (22): we conjugate the last m−s+1 terms
by (−c)−αi , and we conjugate the last m− r+ 1 by h−αi . The resulting sequence, denoted by
(wℓ), still belongs to

∏m
ℓ=1 N ∨(η, tℓ), because all our constructions are T∨(C)-equivariant.

Observing that

K = h−αi x(α∨
i , p+1)(−h)

(
z(p+1)αisi

)
and E =

(
z(p+1)αisi

)−1
(−c)−αi zαi

(see equation (19)), we obtain

w1 · · ·wm = AKCEF z−αi (−ch)αi ,

and a comparison with (21) yields

A x(−α∨
i ,−p−1)(h) B Lwt(π) = AKCEF z−αi Lwt(η) = w1 · · ·wm Lwt(η),

as desired. □

We can now prove Proposition 4.5 (iv). We consider the situation

η1 ⊗ · · · ⊗ ηn = ẽi(π1 ⊗ · · · ⊗ πn)

in the crystal Π⊗n, and our aim is to show that Z̊(π1 ⊗ · · · ⊗ πn) is contained in the closure of
Z̊(η1 ⊗ · · · ⊗ ηn) in Grn.

As in the proof of Proposition 4.5 (iii), we regard the concatenation π = π1 ∗ · · · ∗ πn as a map
from [0, n] to ΛR, each path π1, . . . , πn being travelled at nominal speed, and the same for
η = η1 ∗ · · · ∗ ηn. Thus, for each j ∈ {1, . . . , n} the restriction of π to the interval [j − 1, j] is
πj , up to the obvious shifts in time and space.
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By Proposition 4.2 (ii), we have η = ẽiπ. We denote by a and b the two points in time where
π is bent to produce η. Let (t1, . . . , tm) be the ordered list of all elements in [0, n[ such that
Φ∨,+
a (π, t) ̸= ∅. We insert a in this list if it does not already appear there. We set t0 = 0 and

tm+1 = n. We denote by r and s the indices in {1, . . . ,m+ 1} such that a = tr and b = ts.

There is a unique integer k ∈ {1, . . . , n} such that a and b both belong to [k − 1, k]. Plainly,
ηk = ẽiπk and ηj = πj for all j ∈ {1, . . . , n}\{k}. We record that η1 ∗ · · · ∗ ηj = ẽi(π1 ∗ · · · ∗πj)
if j ∈ {k, . . . , n}.

For j ∈ {1, . . . , n}, we set νj = wt(π1) + · · · + wt(πj) and denote by mj the largest element
ℓ ∈ {0, . . . ,m} such that tℓ ∈ [0, j[. Then Z̊(π1 ⊗ · · · ⊗ πn) is the set of all elementsm1∏

ℓ=1

vℓ

 zν1 , z−ν1

 m2∏
ℓ=m1+1

vℓ

 zν2 , . . . , z−νn−1

 mn∏
ℓ=mn−1+1

vℓ

 zνn

 (23)

with (vℓ) ∈
∏m

ℓ=1 N ∨(π, tℓ).

Now assume that (vℓ) is chosen so that ai,p(vs)+ · · ·+ai,p(vℓ) ̸= 0 for each ℓ ∈ {s, . . . ,m} and
pick h ∈ C×. Lemma 4.14 provides us with a sequence (wℓ) ∈

∏m
ℓ=1 N ∨(η, tℓ) such that

v1 · · · vr−1 x(−α∨
i ,−p−1)(h) vr · · · vm Lwt(π) = w1 · · ·wm Lwt(η).

However (wℓ) satisfies more equations: for j ∈ {1, . . . , n}, we have{
v1 · · · vmj Lνj = w1 · · ·wmj Lνj if j < k,

v1 · · · vr−1 x(−α∨
i ,−p−1)(h) vr · · · vmj Lνj = w1 · · ·wmj Lνj+αi if j ≥ k,

(24)

in the first case because wℓ = vℓ for all ℓ ∈ {1, . . . ,mk−1}, in the second case because
Lemma 4.14 would have returned the subsequence (wℓ)1≤ℓ≤mj

if we had fed it with the paths
π1 ∗ · · · ∗ πj and η1 ∗ · · · ∗ ηj and the datum (vℓ)1≤ℓ≤mj

and h.

The system (24) translates to a single equation in Grn, which manifests that the element
obtained by inserting x(−α∨

i ,−p−1)(h) just before vr in (23) belongs to Z̊(η1⊗· · ·⊗ηn). Letting
h tend to 0, we conclude that (23) lies in the closure of this set. To be sure, this conclusion has
been reached under the assumption that ai,p(vs) + · · · + ai,p(vℓ) ̸= 0 for each ℓ ∈ {s, . . . ,m},
but this restriction can be removed by a small perturbation of ai,p(vs).

Thus, Proposition 4.5 (iv) is, at last, fully proven.

5 Comparison with the tensor product basis

We keep the notation from sect. 2. Let λ = (λ1, . . . , λn) in (Λ+)n. The tensor product V (λ)
can be endowed on the one hand with its MV basis (sect. 2.3), on the other hand with the
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tensor product of the MV bases of the factors V (λ1), . . . , V (λn). In this section, we compare
these two bases through the explicit identification

F (Iλ1 ∗ · · · ∗ Iλn)
∼= F (Iλ1)⊗ · · · ⊗ F (Iλn)

afforded by Beilinson and Drinfeld’s fusion product. We show that the transition matrix is
upper unitriangular and that its entries are intersection multiplicities. The order relation
needed to convey the triangularity involves the inclusion of cycles.

5.1 Deformations

The Beilinson–Drinfeld Grassmannian GrBD is a relative version of the affine Grassmannian
where the base is the space of effective divisors on a smooth curve. The choice of the affine
line amply satisfies our needs and offers three advantages: there is a natural global coordinate
on A1, every G-torsor on A1 is trivializable, and the monodromy of any local system is trivial.
Rather than looking for more generality, we will pragmatically stick with this choice. Consistent
with sect. 2, the coordinate on A1 is denoted by z.

Formally, the Beilinson–Drinfeld Grassmannian GrBD
n is defined as the functor on the category

of commutative C-algebras that assigns to an algebra R the set of isomorphism classes of
triples (x1, . . . , xn;F , β), where (x1, . . . , xn) ∈ An(R), F is a G∨-torsor over A1

R and β is a
trivialization of F away from the points x1, . . . , xn ([5], sect. 5.3.10; [43], Definition 3.3; [46],
Definition 3.1.1). We denote by π : GrBD

n → An the morphism to the base, which forgets F
and β. It is known that GrBD

n is representable by an ind-scheme and that π is ind-proper.

We are only interested in the set of C-points, endowed with its ind-variety structure. Using
a trivialization of F , we can thus adopt the following simplified definition: GrBD

n is the set of
pairs (x1, . . . , xn; [β]), where (x1, . . . , xn) ∈ Cn and [β] belongs to the homogenenous space

G∨(C[z, (z − x1)
−1, . . . , (z − xn)

−1
])

/G∨(C[z]).
This set is endowed with the structure of an ind-variety.

Example 5.1. ([5], Remark in sect. 5.3.10.) We consider the case G∨ = GLN . Here the datum
of [β] is equivalent to the datum of the C[z]-lattice β(L0) in C(z)N , where L0 = C[z]N is the
standard lattice. Let us write x for the point (x1, . . . , xn) and set fx = (z − x1) · · · (z − xn).
Then a lattice L is of this form β(L0) if and only if there exists a positive integer k such that
fk
xL0 ⊆ L ⊆ f−k

x L0. For each positive integer k, define
(
GrBD

n

)
k to be the subset of GrBD

n

consisting of all pairs (x;L) with fk
xL0 ⊆ L ⊆ f−k

x L0. We identify C[z]/(f2k
x ) with the vector
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space V of polynomials of degree strictly less than 2kn, and subsequently identify L0/f
2k
x L0

with V N . The space
(
GrBD

n

)
k can then be realized as a Zariski-closed subset of

Cn ×
2knN⋃
d=0

Gd

(
V N
)

where Gd

(
V N
)

denotes the Grassmannian of d-planes in V N . In this way, GrBD
n is the inductive

limit of a system of algebraic varieties and closed embeddings, in other words, an ind-variety.

We also want to deform the n-fold convolution variety Grn. Accordingly, we define Grn as the
set of pairs (x1, . . . , xn; [β1, . . . , βn]), where (x1, . . . , xn) ∈ Cn and [β1, . . . , βn] belongs to

G∨(C[z, (z − x1)
−1
])

×G∨(C[z]) · · · ×G∨(C[z]) G∨(C[z, (z − xn)
−1
])

/G∨(C[z])
(see [43], Definition 3.8, or [46], (3.1.21)). This set Grn is endowed with the structure of an
ind-variety; it comes with a map mn : Grn → GrBD

n defined by

mn(x1, . . . , xn; [β1, . . . , βn]) = (x1, . . . , xn; [β1 · · ·βn]).

Example 5.2. We again consider the case G∨ = GLN . Then an element in Grn is the datum
of a point (x1, . . . , xn) ∈ Cn and a sequence (L1, . . . , Ln) of C[z]-lattices in C(z)N for which
there exists a positive integer k such that

(z − xj)
kLj−1 ⊆ Lj ⊆ (z − xj)

−kLj−1

for all j ∈ {1, . . . , n}; here again L0 = C[z]N is the standard lattice and Lj = (β1 · · ·βj)(L0).

In the above example, we can partition Grn into cells by specifying the relative positions of the
pairs of lattices (Lj−1, Lj) in terms of invariant factors. This construction can be generalized
to an arbitrary group G as follows: given λ = (λ1, . . . , λn) in (Λ+)n, we define Grλn as the
subset of Grn consisting of all pairs (x1, . . . , xn; [β1, . . . , βn]) with

βj ∈ G∨(C[z]) (z − xj)
λj G∨(C[z])

for j ∈ {1, . . . , n}. The Cartan decomposition

G∨(C[z, (z − xj)
−1
])

=
⊔

λj∈Λ+

G∨(C[z]) (z − xj)
λj G∨(C[z])

yields
Grn =

⊔
λ∈(Λ+)n

Grλn
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and it can be checked that
Grλn =

⊔
µ∈(Λ+)n

µ1≤λ1, ..., µn≤λn

Grµn . (25)

In addition, the maps (x1, . . . , xj ; [β1, . . . , βj ]) 7→ (x1, . . . , xj−1; [β1, . . . , βj−1]) exhibit Grλn as
the total space of an iterated fibration with base Grλ1

1 and successive fibers Grλ2
1 , . . . , Grλn

1 . It
follows that Grλn is a smooth connected variety of dimension 2ρ(|λ|) + n.

Let us now investigate the fibers of the map π ◦ mn : Grn → Cn. Given x ∈ C, we set
Ox = C[[z − x]] and Kx = C((z − x)). We identify O and K with Ox and Kx by means of the
map z 7→ z − x.

We fix x = (x1, . . . , xn) in Cn. Let supp(x) be the set of values y ∈ C that appear in the
tuple x. For y ∈ supp(x), denote by my the number of indices j ∈ {1, . . . , n} such that xj = y
and choose an increasing sequence (p0 = 0, p1, p2, . . . , pmy = n) in a way that each interval
[pk−1 + 1, pk] contains exactly one index j such that xj = y. For β = [β1, . . . , βn] in the fiber

(Grn)x = G∨(C[z, (z − x1)
−1
])

×G∨(C[z]) · · · ×G∨(C[z]) G∨(C[z, (z − xn)
−1
])

/G∨(C[z]),
we define Θ(β)y as the point [(β1 · · ·βp1), (βp1+1 · · ·βp2), . . . , (βpmy−1+1 · · ·βn)] in

G∨(Ky) ×G∨(Oy) · · · ×G∨(Oy) G∨(Ky)︸ ︷︷ ︸
my factors G∨(Ky)

/G∨(Oy) ∼= Grmy

(note that Θ(β)y does not depend on this choice, because βj ∈ G∨(Oy) if xj ̸= y).

Proposition 5.3 The map β 7→ (Θ(β)y) is a bijection

(Grn)x
≃−→

∏
y∈supp(x)

Grmy .

Proof. Combining the Iwasawa decomposition (1) with the easily proven equality

N∨(Kx) = N∨(C[z, (z − x)−1
])

N∨(Ox), (26)

we obtain the well-known equality

G∨(Kx) = G∨(C[z, (z − x)−1
])

G∨(Ox),

for each x ∈ C.
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The case n = 1 of the proposition is banal. Assume that n ≥ 2, and for y ∈ supp(x), pick
γy ∈ Grmy . Set x′ = (x1, . . . , xn−1) and m = mxn , write γxn = [γ1, . . . , γm]. Reasoning by
induction on n, we know that there is a unique β′ = [β1, . . . , βn−1] in (Grn−1)x′ such that

Θ(β′)y =

{
γy if xn ̸= y,

[γ1, . . . , γm−1] if xn = y.

The elements γ1, . . . , γm belong to G∨(K), which we identify with G∨(Kxn). We choose
βn ∈ G∨(C[z, (z − xn)

−1
])

such that

(β1 . . . βn−1)
−1(γ1 . . . γm) ∈ βnG

∨(Oxn).

Then [β1, . . . , βn−1, βn] is the unique element β in (Grn)x such that Θ(β)y = γy for all y. □

Keep the notation above for x and the integers my and let λ = (λ1, . . . , λn) in (Λ+)n. For
each y ∈ supp(x), define λy ∈ (Λ+)my as the ordered tuple formed by the weights λj , for
j ∈ {1, . . . , n} such that xj = y. Then, under the bijection given in Proposition 5.3, the fiber(
Grλn

)
x identifies with ∏

y∈supp(x)

Gr
λy
my .

5.2 Global cycles

Recall our notation N∨ for the unipotent radical of B∨. For µ ∈ Λ and x ∈ C, we define

S̃µ|x = (z − x)µN∨(C[z, (z − x)−1
])

= N∨(C[z, (z − x)−1
])

(z − x)µ.

Equation (26) expresses that the natural map

N∨(C[z, (z − x)−1
])

/N∨(C[z]) → N∨(Kx)/N
∨(Ox)

is bijective; composing with the natural map N∨(K)/N∨(O) → Gr, we obtain, after left
multiplication by (z − x)µ, a bijection

S̃µ|x /N
∨(C[z]) ≃−→ Sµ.

For (µ1, . . . , µn) ∈ Λn, let Sµ1 ∝ · · · ∝ Sµn be the set of all pairs (x1, . . . , xn; [β1, . . . , βn]) with
(x1, . . . , xn) in Cn and [β1, . . . , βn] in

S̃µ1|x1
×N∨(C[z]) · · · ×N∨(C[z]) S̃µn|xn

/N∨(C[z]).
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Rewriting the Iwasawa decomposition as

G∨(C[z, (z − x)−1
])

=
⊔
µ∈Λ

N∨(C[z, (z − x)−1
])

(z − x)µ G∨(C[z]),

we then see that the natural map

Ψ :
⊔

(µ1,...,µn)∈Λn

Sµ1 ∝ · · · ∝ Sµn → Grn

is bijective. Here Ψ is regarded as the calligraphic variant of the letter Ψ used in sect. 2.2;
these two glyphs may be hard to distinguish, but hopefully this choice will not lead to any
confusion.

More generally, given (µ1, . . . , µn) ∈ Λn and N∨(O)-stable subsets Z1 ⊆ Sµ1 , . . . , Zn ⊆ Sµn , we
define Z1∝· · ·∝Zn to be the subset of all pairs (x1, . . . , xn; [β1, . . . , βn]) with (x1, . . . , xn) ∈ Cn

and
[β1, . . . , βn] ∈ Z̃1|x1

×N∨(C[z]) · · · ×N∨(C[z]) Z̃n|xn
/N∨(C[z])

where each Z̃j|xj
is the preimage of Zj under the map S̃µj |xj

→ Sµj .

For µ ∈ Λ, we define
Ṡµ =

⋃
(µ1,...,µn)∈Λn

µ1+···+µn=µ

Ψ
(
Sµ1 ∝ · · · ∝ Sµn

)
.

Proposition 5.4 Let λ = (λ1, . . . , λn) in (Λ+)n and let µ ∈ Λ.

(i) All the irreducible components of Grλn ∩ Ṡµ have dimension ρ(|λ|+ µ) + n.

(ii) The map (Z1, . . . , Zn) 7→ Ψ(Z1 ∝ · · · ∝ Zn) induces a bijection⊔
(µ1,...,µn)∈Λn

µ1+···+µn=µ

∗Z (λ1)µ1 × · · · × ∗Z (λn)µn

≃−→ Irr
(
Grλn ∩ Ṡµ

)
.

(The bar above Ψ(Z1 ∝ · · · ∝ Zn) means closure in Ṡµ.)

Proof. Let (µ1, . . . , µn) ∈ Λn be such that µ1+ · · ·+µn = µ and let (Z1, . . . , Zn) ∈ ∗Z (λ1)µ1 ×
· · ·× ∗Z (λn)µn . Then the set Ψ(Z1∝· · ·∝Zn) is irreducible. By Proposition 5.3 and its proof,
the fiber of this set over a point x ∈ Cn is isomorphic to the product, over all y ∈ supp(x), of
cycles

Ψ(Zj1 ⋉ · · ·⋉ Zjm) ⊆ Grm
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where j1, . . . , jm are the indices j ∈ {1, . . . , n} such that xj = y. We remark that if we
set λy = (λj1 , . . . , λjm) and µy = µj1 + · · · + µjm , then this cycle belongs to ∗Z (λy)µy . By
Proposition 2.2 (i), the dimension of the fiber of Ψ(Z1 ∝ · · · ∝ Zn) over x is therefore∑

y∈supp(x)

ρ(|λy|+ µy) = ρ(|λ|+ µ)

and we conclude that Ψ(Z1 ∝ · · · ∝ Zn) has dimension ρ(|λ|+ µ) + n.

To finish the proof, we observe that these sets Ψ(Z1 ∝ · · · ∝ Zn) cover Grλn ∩ Ṡµ and are not
redundant. □

Our MV bases are defined with the help of the unstable subsets Tµ instead of the stable subsets
Sµ. We can easily adapt the constructions of this subsection to this case by replacing the Borel
subgroup B∨ with its opposite with respect to T∨, and replacing similarly its unipotent radical
N∨. We shall do this while keeping the notation ∝ and Ψ. Note that when we replace Ṡµ by

Ṫµ =
⋃

(µ1,...,µn)∈Λn

µ1+···+µn=µ

Ψ
(
Tµ1 ∝ · · · ∝ Tµn

)

in Proposition 5.4, ρ(|λ| + µ) + n must be replaced by ρ(|λ| − µ) + n and the sets ∗Z (λj)µj

must be replaced by their unstarred counterparts.

5.3 The fusion product

For any x ∈ C, the fibers of GrBD
n and Grn over (x, . . . , x) are isomorphic to Gr and Grn,

respectively. Thus,
GrBD

n

∣∣
∆

≃−→ ∆×Gr and Grn
∣∣
∆

≃−→ ∆×Grn,

where ∆ is the small diagonal, defined as the image of the map x 7→ (x, . . . , x) from C to Cn.
In the other extreme, the morphism mn : Grn → GrBD

n is an isomorphism after restriction to
the open locus U ⊆ Cn of points with pairwise different coordinates ([46], Lemma 3.1.23), and
by Proposition 5.3, Grn

∣∣
U

is isomorphic to U × (Gr)n. We define maps τ , i, j and ζ according
to the diagram below.

Grn ∆×Grn

��

τoo i // Grn
mn
��

U × (Gr)n

≃
��

j
oo

ζ
// (Gr)n

∆×Gr

��

GrBD
n

π
��

GrBD
n

∣∣
U

��

∆ // Cn Uoo
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Let λ ∈ (Λ+)n and µ ∈ Λ, set

B(λ) = IC
(
Grλn , C

)
, d = dimGrλn = 2ρ(|λ|) + n, k = 2ρ(µ)− n

and denote the inclusion Ṫµ → Grn by ṫµ. The next statement is due to Mirković and Vilonen.

Proposition 5.5

(i) There are natural isomorphisms

i!B(λ)[n] ∼= τ ! IC
(
Grλn , C

)
and

j!B(λ)[n] ∼= ζ !
(
IC
(
Grλ1 , C

)
⊠ · · ·⊠ IC

(
Grλn , C

))
.

(ii) Each cohomology sheaf of (π ◦mn)∗ B(λ) is a local system on Cn.

(iii) The complex of sheaves (π ◦mn ◦ ṫµ)∗ (ṫµ)! B(λ) is concentrated in degree k and its k-th
cohomology sheaf is a local system on Cn.

Proof. To prove statement (i), one follows the reasoning in [3], sect. 1.7.5, noting that B(λ)

and IC
(
Grλn , C

)
are the sheaves denoted by

(
τ◦Iλ1

)
⊠̃ · · · ⊠̃

(
τ◦Iλn

)
and Iλ1 ⊠̃ · · · ⊠̃ Iλn

in loc. cit. Statement (ii) is [39], (6.4). Statement (iii) is contained in the proof of [39],
Proposition 6.4, up to a base change in the Cartesian square

Ṫµ
ṫµ

//

��

Grn
mn

��

Tµ(An)
kµ

// GrBD
n .

□

Combining Propositions 2.1 and 5.5 (i), we see that the total cohomology of the stalk of the
complex (π◦mn)∗ B(λ) identifies with F (Iλ) at any point in ∆, and with F (Iλ1)⊗· · ·⊗F (Iλn)
at any point in U . Statement (ii) in Proposition 5.5 thus provides the identification

F (Iλ) ∼= F (Iλ1)⊗ · · · ⊗ F (Iλn)

required to compare the two bases of V (λ). Statement (iii) further identifies the weight spaces

Fµ(Iλ) ∼=
⊕

(µ1,...,µn)∈Λn

µ1+···+µn=µ

Fµ1(Iλ1)⊗ · · · ⊗ Fµn(Iλn).
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5.4 Intersection multiplicities

We keep the setup introduced in the previous section. In addition, we denote by

Lµ(λ) = H k (π ◦mn ◦ ṫµ)∗ (ṫµ)! B(λ)

the local system appearing in Proposition 5.5 (iii).

For each point x ∈ Cn, we define maps as indicated below(
Grλn ∩ Ṫµ

)
x

//

g′

��

h′ $$

(
Ṫµ

)
x

ṫ′µ

��

i′

$$

Grλn ∩ Ṫµ
//

g

��

Ṫµ

ṫµ

��

(
Grλn

)
x

j′
//

h $$

(Grn)x
i
$$

// {x}
i0

$$

Grλn j
// Grn π◦mn

// Cn

where for instance
(
Grλn

)
x is the fiber of Grλn over x. (The notation i and j does not designate

the same maps as in the previous subsection.) We then construct the following diagram,
referred to as (♡) in the sequel.

Hk
(
Ṫµ, (ṫµ)

! B(λ)
)

≃ //

≃
��

Hk+d
(
Grλn ∩ Ṫµ, g

!CGrλn

)
≃

∩
[
Grλn
]

//

��

HBM
d−k

(
Grλn ∩ Ṫµ

)
(g∗ux)∩
��

Hk
(
(Ṫµ)x, (ṫ

′
µ)

!i∗B(λ)
)

≃ // Hk+d
((

Grλn ∩ Ṫµ

)
x, g

′ !C (Grλn)x

) ∩
[
(Grλn)x

]
// HBM

d−k−2n

((
Grλn ∩ Ṫµ

)
x

)

The left vertical arrow in (♡) is the restriction of the cohomology with support in Ṫµ from Grn
to (Grn)x. In other words, it is the image by the functor Hk

(
Ṫµ, (ṫµ)

!−
)

of the adjunction
morphism B(λ) → i∗i

∗ B(λ). Lemma 5.7 below implies that it is an isomorphism. Likewise,
the middle vertical arrow is the restriction from Grλn to

(
Grλn

)
x, afforded by the adjunction

morphism j∗ B(λ) → h∗h
∗j∗ B(λ).

On the top line, the left arrow is the restriction from Grn to Grλn , fulfilled by the adjunction
morphism B(λ) → j∗j

∗ B(λ) = j∗CGrn [d]. On the bottom line, it is the restriction from
(Grn)x to

(
Grλn

)
x, achieved by i∗ B(λ) → (j′)∗(j

′)∗i∗ B(λ). Mirković and Vilonen’s argument
(reproduced in sect. 2.3) shows that these two arrows are isomorphisms.
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The two paths around the left square in (♡) are two different expressions for the restriction
from Grn to

(
Grλn

)
x; therefore this square commutes.

In both lines of (♡) the right arrow is Alexander duality. We note that HBM
d−k

(
Grλn ∩ Ṫµ

)
and

HBM
d−k−2n

((
Grλn ∩ Ṫµ

)
x

)
are the top-dimensional Borel–Moore homology groups.

The map h is a regular embedding of codimension n. Its orientation class (generalized Thom
class) is an element

ux ∈ H2n
((

Grλn
)
x, h

!CGrλn

)
.

The right vertical arrow in (♡) is the cap product with

g∗ux ∈ H2n
((

Grλn ∩ Ṫµ

)
x, (h

′)!CGrλn∩Ṫµ

)
,

the restriction of ux to Grλn ∩ Ṫµ.

Lemma 5.6 In the diagram (♡), the square on the right commutes.

Proof. Applying formula IX.4.9 in [24], we get ux ∩
[
Grλn

]
=
[
(Grλn)x

]
.

Formula (8) in [15], sect. 19.1 (or formula IX.3.4 in [24]) asserts that given a topological
manifold X and inclusions of closed subsets a : A → X and b : B → X, for any

α ∈ H•(A, a!CX), β ∈ H•(B, b!CX) and C ∈ HBM
• (X)

one has
(b∗α) ∩ (β ∩ C) = (α ∪ β) ∩ C. (27)

Using the six operations formalism, one checks without much trouble that this result is also
valid if A and B are only locally closed.

Now pick
ξ ∈ Hk+d

(
Grλn ∩ Ṫµ, g

!CGrλn

)
.

Applying (27) twice and using that ux has even degree, we compute

(h∗ξ) ∩
(
ux ∩

[
Grλn

])
= (ξ ∪ ux) ∩

[
Grλn

]
= (ux ∪ ξ) ∩

[
Grλn

]
= (g∗ux) ∩

(
ξ ∩

[
Grλn

])
.

This equality means precisely that ξ has the same image under the two paths in (♡) that
circumscribe the square on the right. □
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Lemma 5.7 There are natural isomorphisms

Hk
(
Ṫµ, (ṫµ)

! B(λ)
)
∼= H0

(
Cn,Lµ(λ)

)
and Hk

(
(Ṫµ)x, (ṫ

′
µ)

! i∗ B(λ)
)
∼=
(
Lµ(λ)

)
x

and the left vertical arrow in (♡) is the stalk map H0
(
Cn,Lµ(λ)

)
→
(
Lµ(λ)

)
x.

Proof. The first isomorphism is

H0
(
Cn,Lµ(λ)

)
= Hk

(
Cn, (π ◦mn)∗ (ṫµ)∗ (ṫµ)

! B(λ)
)
= Hk

(
Ṫµ, (ṫµ)

! B(λ)
)
.

The second one requires the notion of a universally locally acyclic complex (see [9], sect. 5.1).
Specifically, B(λ) is (π ◦mn)-ULA ([42], proof of Proposition IV.3.4, or [43], Lemma 3.20), so
there is an isomorphism

i∗ B(λ) → i! B(λ)[2n].

Then

Hk
(
(Ṫµ)x, (ṫ

′
µ)

! i∗ B(λ)
)
= Hk

(
(Ṫµ)x, (ṫ

′
µ)

! i! B(λ)[2n]
)

= Hk
(
{x}, (π ◦mn)∗ (ṫ

′
µ)∗ (ṫ

′
µ)

! i! B(λ)[2n]
)

= Hk
(
{x}, (π ◦mn)∗ (ṫ

′
µ)∗ i

′! (ṫµ)
! B(λ)[2n]

)
= Hk

(
{x}, (i0)! (π ◦mn)∗ (ṫµ)∗ (ṫµ)

! B(λ)[2n]
)
,

the last step being proper base change. Now (π ◦ mn)∗ (ṫµ)∗ (ṫµ)
! B(λ) is the local system

Lµ(λ) shifted by −k, and therefore

Hk
(
(Ṫµ)x, (ṫ

′
µ)

! i∗ B(λ)
)
= H0

(
{x}, (i0)! Lµ(λ)[2n]

)
= H0

(
{x}, (i0)∗ Lµ(λ)

)
=
(
Lµ(λ)

)
x

as desired. □

By Proposition 5.4, the irreducible components of Grλn ∩ Ṫµ are all top-dimensional and can be
indexed by ⊔

(µ1,...,µn)∈Λn

µ1+···+µn=µ

Z (λ1)µ1 × · · · × Z (λn)µn ; (28)

namely, to a tuple Z = (Z1, . . . , Zn) is assigned the component

X (Z) = Ψ(Z1 ∝ · · · ∝ Zn) ∩ Grλn ,
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the bar denoting closure in Ṫµ. From now on, to lighten the writing, we will substitute Z (λ)µ
for the cumbersome compound (28), using implicitly the bijection (2).

The proof of Proposition 5.4 shows that for any x ∈ Cn, the irreducible components of the
fiber

(
Grλn ∩ Ṫµ

)
x have all the same dimension and can be indexed by Z (λ)µ. Let us look

more closely at two particular cases.

If x ∈ Cn lies in the open locus U of points with pairwise different coordinates, then, under
the bijection (Grn)x ∼= (Gr)n from Proposition 5.3, the irreducible components of

(
Grλn ∩ Ṫµ

)
x

are identified with the sets

X (Z)x ∼=
(
Z1 ∩Grλ1

)
× · · · ×

(
Zn ∩Grλn

)
(29)

with Z = (Z1, . . . , Zn) in Z (λ)µ.

On the other hand, recalling that an element Z ∈ Z (λ)µ is a subset of Grλn , we may consider
the preimage Y(Z) of ∆×

(
Z∩Grλn

)
under the isomorphism Grn

∣∣
∆

≃−→ ∆×Grn. Then for any
x ∈ ∆, the irreducible components of the fiber

(
Grλn ∩ Ṫµ

)
x are the sets Y(Z)x for Z ∈ Z (λ)µ.

Let us introduce a last piece of notation before stating the next theorem. In sect. 2.3, we
explained the construction of the MV basis of the µ-weight space of V (λ). This basis is in
bijection with Z (λ)µ and we denote by ⟨Z⟩ the element indexed by Z. On the other hand,
given Z = (Z1, . . . , Zn) in Z (λ1) × · · · × Z (λn), we can look at ⟨⟨Z⟩⟩ = ⟨Z1⟩ ⊗ · · · ⊗ ⟨Zn⟩,
another element in V (λ).

Theorem 5.8 Let (Z′,Z′′) ∈ (Z (λ)µ)
2. The coefficient aZ′,Z′′ in the expansion〈〈

Z′′〉〉 = ∑
Z∈Z (λ)µ

aZ,Z′′
〈
Z
〉

is the multiplicity of Y(Z′) in the intersection product X (Z′′) ·
(
Grλn

)∣∣
∆

computed in the ambient
space Grλn .

Proof. Taking into account Lemma 5.7, the diagram (♡) can be rewritten as follows.

H0
(
Cn,Lµ(λ)

) ≃ //

≃
��

HBM
top

(
Grλn ∩ Ṫµ

)
(g∗ux)∩
��(

Lµ(λ)
)
x

≃ // HBM
top

((
Grλn ∩ Ṫµ

)
x

)
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The fundamental classes of the irreducible components of Grλn ∩ Ṫµ and
(
Grλn ∩ Ṫµ

)
x provide

bases of the two Borel–Moore homology groups, both indexed by Z (λ)µ. In these bases, the
right vertical arrow can be regarded as a matrix, say Qx. This matrix can be computed by
intersection theory: applying Theorem 19.2 in [15], we see that if x ∈ U (respectively, x ∈ ∆),
then the entry in Qx at position (Z′,Z′′) is the multiplicity of X (Z′)x (respectively, Y(Z′)x)
in the intersection product

X (Z′′) ·
(
Grλn

)
x

computed in the ambient space Grλn . Identifying Grn
∣∣
U

with U × (Gr)n by virtue of Proposi-
tion 5.3 and using the description over U of X (Z′) and X (Z′′) afforded by (29), we see that
Qx is the identity matrix for each point x ∈ U .

According to the discussion at the end of sect. 5.3, the geometric Satake correspondence identi-
fies V (λ)µ with each fiber of the local system Lµ(λ). The basis element ⟨Z⟩ is the fundamental
class of X (Z)x when x ∈ ∆, and the basis element ⟨⟨Z⟩⟩ is the fundamental class of X (Z)x
when x ∈ U . Therefore, the coefficient aZ′,Z′′ in the statement of the theorem is the entry at
position (Z′,Z′′) in the product Qx∆ × (QxU )

−1, for any choice of (x∆,xU ) ∈ ∆× U . □

In particular, the entries aZ′,Z′′ of the transition matrix between our two bases are nonnegative
integers.

Proposition 5.9 In the setup of Theorem 5.8, the diagonal entry aZ′′,Z′′ is equal to one.

Proof. Write Z′′ = (Z1, . . . , Zn) in Z (λ1) × · · · × Z (λn). By the slice theorem applied to
the quotient map G∨(C[z, z−1

])
→ Gr (or, in this concrete situation, using Remark 15 and

Corollary 5 in [17]), we can find, for each j ∈ {1, . . . , n}, an affine variety Uj and a map
ϕj : Uj → G∨(C[z, z−1

])
such that u 7→ [ϕj(u)] sends Uj isomorphically to an open subset of

Grλj which meets Zj .

For x ∈ C and u ∈ Uj , let ϕj(u)|x denote the result of substituting z − x for z in ϕj(u). We
can then define an open embedding ϕ as on the diagram

Cn × (U1 × · · · × Un)
ϕ

//

��

Grλn
π◦mn

��

Cn Cn

by setting

ϕ(x1, . . . , xn;u1, . . . , un) =
(
x1, . . . , xn;

[
ϕ1(u1)|x1

, . . . , ϕn(un)|xn

])
.

Since intersection multiplicities are of local nature, aZ′′,Z′′ can be computed after restriction
to the image of ϕ, where the situation is that of a trivial bundle. □
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5.5 An example

It is possible to put coordinates on Grλn and to effectively compute the intersection multiplicities
mentioned in Theorem 5.8. In this section, we look at the case of the group G = SL3. We
adopt the usual description Λ = (Zε1 ⊕ Zε2 ⊕ Zε3)/Z(ε1 + ε2 + ε3) of the weight lattice, so
that V (ε1) is the defining representation of G and V (−ε3) is its dual.

We consider the sequence of dominant weights λ = (ε1,−ε3). The basic MV cycles are Zi =

Grε1 ∩ Tεi and Z−i = Gr−ε3 ∩ T−εi for i ∈ {1, 2, 3}, and with this notation

Z (λ) =
{
(Zi, Z−j)

∣∣ (i, j) ∈ {1, 2, 3}2
}
.

To abbreviate, we set Zi,−j = (Zi, Z−j). For weight reasons, ⟨⟨Zi,−j⟩⟩ = ⟨Zi,−j⟩ if i ̸= j. The
rest of the transition matrix between the two bases is given as follows.

⟨⟨Z1,−1⟩⟩ = ⟨Z1,−1⟩
⟨⟨Z2,−2⟩⟩ = ⟨Z2,−2⟩+ ⟨Z1,−1⟩
⟨⟨Z3,−3⟩⟩ = ⟨Z3,−3⟩+ ⟨Z2,−2⟩

From these relations, we get ⟨Z3,−3⟩ = ⟨⟨Z3,−3⟩⟩ − ⟨⟨Z2,−2⟩⟩ + ⟨⟨Z1,−1⟩⟩. This allows to check
that ⟨Z3,−3⟩ is G-invariant, which in truth is a consequence of the compatibility of the MV
basis of V (λ) with the isotypic filtration (Theorem 3.4).

As an example, let us sketch out a computation which justifies that ⟨Z1,−1⟩ appears with
coefficient one in ⟨⟨Z2,−2⟩⟩. We consider two charts on Grλ2 , both with C6 as domain:

ϕ1 : (x1, x2, a, b, c, d) 7→

x1, x2;

z − x1 a b
0 1 0
0 0 1

 ,

1 0 0
c z − x2 0
d 0 z − x2

 ,

ϕ2 : (x1, x2, a
′, b′, c′, d′) 7→

x1, x2;

1 0 0
a′ z − x1 b′

0 0 1

 ,

z − x2 c′ 0
0 1 0
0 d′ z − x2

 .

(The matrices here belong to the group PGL3(C[z, (z−x1)
−1, (z−x2)

−1]).) One easily computes
the transition map between these two charts:

a′ = 1/a, b′ = −b/a, c′ = −a(ac+ bd+ x2 − x1), d′ = −ad.

In the chart ϕ1, the cycle Y(Z1,−1) is defined by the equations a = b = x2 − x1 = 0. In
the chart ϕ2, the cycle X (Z2,−2) is defined by the equations b′ = c′ = 0. Thus, the ideals in
R = C[x1, x2, a, b, c, d] of the subvarieties

V = ϕ−1
1

(
Y(Z1,−1)

)
and X = ϕ−1

1

(
X (Z2,−2)

)
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are respectively
p = (a, b, x2 − x1) and q = (b, ac+ x2 − x1).

Since q ⊆ p, we have V ⊆ X; in fact, V is a subvariety of X of codimension one. The local
ring A = OV,X of X along V is the localization of R/q at the ideal p/q. Observing that
c is not in p, we see that its image in A is invertible, and then that x2 − x1 generates the
maximal ideal of A. As a consequence, the order of vanishing of x2 − x1 along V (see [15],
sect. 1.2) is equal to one. By definition, this is the multiplicity of Y(Z1,−1) in the intersection
product X (Z2,−2) · Grλ2

∣∣
∆

.

5.6 Factorizations

A nice feature of the Beilinson–Drinfeld Grassmannian is its so-called factorizable structure (see
for instance [42], Proposition II.1.13). On the other side of the geometric Satake equivalence,
this corresponds to associativity properties of partial tensor products.

Let n = (n1, . . . , nr) be a composition of n in r parts. We define the partial diagonal

∆n = {(x1, . . . , x1︸ ︷︷ ︸
n1 times

, . . . , xr, . . . , xr︸ ︷︷ ︸
nr times

) | (x1, . . . , xr) ∈ Cr}.

We write λ as a concatenation
(
λ(1), . . . ,λ(r)

)
, where each λ(j) belongs to (Λ+)nj , and similarly

we write each Z ∈ Z (λ)µ as
(
Z(1), . . . ,Z(r)

)
with Z(j) ∈ Z (λ(j)). Then

V (λ) = V
(
λ(1)

)
⊗ · · · ⊗ V

(
λ(r)

)
and

〈
Z(j)

〉
∈ V

(
λ(j)

)
.

Further, define
X (Z,n) = Ψ(Z1 ∝ · · · ∝ Zn)

∣∣
∆n

∩ Grλn
where the bar means closure in

(
Ṫµ

)∣∣
∆n

. These X (Z,n) generalize the set X (Z) defined in
sect. 5.4, as the latter corresponds to the composition (1, . . . , 1).

Theorem 5.8 can then be extended to this context in a straightforward fashion, as demonstrated
by the following statement.

Proposition 5.10 Let (Z′,Z′′) ∈ (Z (λ)µ)
2. The coefficient bZ′,Z′′ in the expansion〈

Z′′
(1)

〉
⊗ · · · ⊗

〈
Z′′
(r)

〉
=

∑
Z∈Z (λ)µ

bZ,Z′′ ⟨Z⟩

is the multiplicity of Y(Z′) in the intersection product X (Z′′,n) ·
(
Grλn

)∣∣
∆

computed in the
ambient space Grλn

∣∣
∆n

.

The proof does not require any new ingredient and is left to the reader.
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5.7 Triangularity

In this section, we show that the transition matrix described in Theorem 5.8 is unitriangular
with respect to an adequate order on Z (λ)µ.

Proposition 5.11 Let (µ1, . . . , µn) and (ν1, . . . , νn) in Λn and let S be a stratum for the
ind-structure of Grn. If Ψ

(
Tν1 ∝ · · · ∝ Tνn

)
meets the closure of S ∩Ψ

(
Tµ1 ∝ · · · ∝ Tµn

)
, then

ν1 ≥ µ1, ν1 + ν2 ≥ µ1 + µ2, . . . , ν1 + · · ·+ νn ≥ µ1 + · · ·+ µn.

Proof. Given a tuple ζ = (ζ1, . . . , ζn) in (Λ/ZΦ)n, we set

Grn,ζ =
⊔

λ∈(Λ+)n

λ1∈ζ1, ..., λn∈ζn

Grλn .

From equation (25), we deduce that each Grn,ζ is closed and connected in the ind-topology.
As these subsets form a finite partition of the space Grn, they are its connected components.
We easily verify that a subset of the form Ψ

(
Tµ1 ∝ · · · ∝ Tµn

)
is contained in Grn,ζ if each ζj

is the coset of µj modulo ZΦ. Therefore, a necessary condition for Ψ
(
Tν1 ∝ · · · ∝ Tνn

)
to meet

the closure of S ∩ Ψ
(
Tµ1 ∝ · · · ∝ Tµn

)
is that µj − νj ∈ ZΦ for each j ∈ {1, . . . , n}.

Let λ∨ ∈ HomZ(Λ,Z) be a dominant integral weight for the group G∨ and let V be the finite
dimensional irreducible representation of G∨ of highest weight λ∨. Then G∨(C(z)) acts on
V ⊗ C(z). The standard lattice L0 = V ⊗ C[z] is left stable by G∨(C[z]).

We choose a nonzero linear form p : V → C that vanishes on all weight subspaces of V but the
highest weight subspace. Extending the scalars, we regard p as a linear form V ⊗C(z) → C(z).

For x = (x1, . . . , xn) in Cn, we set fx = (z − x1) · · · (z − xn). Let S be a stratum for the
ind-structure of Grn. There exists a positive integer k such that fk

xL0 ⊆ β1 . . . βn(L0) ⊆ f−k
x L0

for each (x1, . . . , xn; [β1, . . . , βn]) ∈ S.

Now we take (µ1, . . . , µn) ∈ Λn and (x1, . . . , xn; [β1, . . . , βn]) in S ∩ Ψ
(
Tµ1 ∝ · · · ∝ Tµn

)
. Then

p(β1 . . . βn(L0)) is the fractional ideal

(z − x1)
⟨λ∨,µ1⟩ · · · (z − xn)

⟨λ∨,µn⟩C[z],

and therefore

dim
(
p(β1 . . . βn(L0))/f

k
x C[z]

)
= kn−

〈
λ∨, µ1 + · · ·+ µn

〉
.
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If the point (x1, . . . , xn; [β1, . . . , βn]) degenerates to

(y1, . . . , yn; [γ1, . . . , γn]) ∈ Ψ
(
Tν1 ∝ · · · ∝ Tνn

)
,

then
dim

(
p(γ1 . . . γn(L0))/f

k
y C[z]

)
≤ dim

(
p(β1 . . . βn(L0))/f

k
x C[z]

)
which translates to 〈

λ∨, ν1 + · · ·+ νn
〉
≥
〈
λ∨, µ1 + · · ·+ µn

〉
.

This inequality holds for any dominant coweight λ∨, hence ν1 + · · ·+ νn ≥ µ1 + · · ·+ µn.

This proves the last of the stated inequalities. The other ones can be obtained in a similar way,
by taking the image under the obvious truncation map Grn → Grj for each j ∈ {1, . . . , n}. □

Corollary 5.12 Adopt the setup of Theorem 5.8. Let (µ1, . . . , µn) and (ν1, . . . , νn) in Λn be
such that Z′ ∈ Z (λ1)ν1 × · · · × Z (λn)νn and Z′′ ∈ Z (λ1)µ1 × · · · × Z (λn)µn. A necessary
condition for aZ′,Z′′ ̸= 0 is that

ν1 ≥ µ1, ν1 + ν2 ≥ µ1 + µ2, . . . , ν1 + · · ·+ νn−1 ≥ µ1 + · · ·+ µn−1.

We can obtain more stringent conditions regarding the transition matrix by looking at the
associativity properties from sect. 5.6. The sharpest result is obtained with a composition
(n1, n2) of n in two parts. Accordingly, we write λ as a concatenation (λ(1),λ(2)) and similarly
write each Z ∈ Z (λ) as (Z(1),Z(2)). Here Z(1) is an element in Z (λ1) × · · · × Z (λn1), but

owing to the bijection (2) it can also be regarded as a cycle in Gr
λ(1)
n1 .

Theorem 5.13 Let (Z′,Z′′) ∈ (Z (λ)µ)
2. Consider the expansion〈

Z′′
(1)

〉
⊗
〈
Z′′
(2)

〉
=

∑
Z∈Z (λ)µ

bZ,Z′′ ⟨Z⟩.

If bZ′,Z′′ ̸= 0, then either Z′ = Z′′ or Z′
(1) ⊊ Z′′

(1) as cycles in Gr
λ(1)
n1 . In addition, bZ′′,Z′′ = 1.

Proof. Let Z′ = (Z ′
1, . . . , Z

′
n) and Z′′ = (Z ′′

1 , . . . , Z
′′
n) in Z (λ)µ.

For j ∈ {1, . . . , n}, let µj be the weight such that Z ′′
j ∈ Z (λj)µj . Using the gallery models

from [17] (or Theorem 4.6 and Proposition 4.8), we find a nonnegative integer dj and construct
a map ϕj : Cdj → N−,∨(C[z, z−1

])
such that

{[
ϕj(a) z

µj
] ∣∣ a ∈ Cdj

}
is a dense subset of Z ′′

j .
Then

ϕ : (x;a1, . . . ,an) 7→
(
x;
[
ϕ1(a1)|x1

(z − x1)
µ1 , . . . , ϕn(an)|xn

(z − xn)
µn

])
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maps Cn ×Cd1 × · · · ×Cdn onto a dense subset of Ψ(Z ′′
1 ∝ · · · ∝Z ′′

n), where the notation (. . .)|x
means the result of substituting z − x for z in (. . .).

Assume that bZ′,Z′′ ̸= 0. By Proposition 5.10, Y(Z′) is contained in X (Z′′, (n1, n2)), hence in
the closure of Ψ(Z ′′

1 ∝ · · · ∝ Z ′′
n)
∣∣
∆(n1,n2)

.

Take a point in Z′
(1) ∩ Gr

λ(1)
n1 , written as [g1, . . . , gn1 ] where each gj is in G∨(C[z, z−1

])
. We

can complete this datum to get an element

Γ =
(
0, . . . , 0;

[
g1, . . . , gn

])
of Y(Z′). Working in the analytic topology for expositional simplicity, we see that Γ is the limit
of a sequence (ϕ(xp;a1,p, . . . ,an,p))p∈N with xp ∈ ∆(n1,n2) and (a1,p, . . . ,an,p) ∈ Cd1×· · ·×Cdn .
We write

xp = (x1,p, . . . , x1,p︸ ︷︷ ︸
n1 times

, x2,p, . . . , x2,p︸ ︷︷ ︸
n2 times

) with of course lim
p→∞

x1,p = lim
p→∞

x2,p = 0. (30)

Then

[g1, . . . , gn1 ] = lim
p→∞

[
ϕ1(a1,p) z

µ1 , . . . , ϕn1(a1,n1) z
µn1
]
|x1,p

= lim
p→∞

[
ϕ1(a1,p) z

µ1 , . . . , ϕn1(a1,n1) z
µn1
]

is the limit of a sequence of points in Z′′
(1). Therefore Z′

(1)∩Gr
λ(1)
n1 ⊆ Z′′

(1), whence the inclusion

Z′
(1) ⊆ Z′′

(1).

In addition to bZ′,Z′′ ̸= 0, assume that the latter inclusion is an equality. Then Z′
(1) = Z′′

(1)

because these two MV cycles are irreducible components of the same Gr
λ(1)
n1 ∩ (mn1)

−1(Tµ(1)
),

with indeed µ(1) = µ1+ · · ·+µn1 . We regard Z′
(2) and Z′′

(2) as cycles in Gr
λ(2)
n2 . Take a point in

Z′
(2) ∩Gr

λ(2)
n2 , written as [gn1+1, . . . , gn] where each gj is in G∨(C[z, z−1

])
. We can then look

at the element
Γ =

(
0, . . . , 0;

[
zµ1 , . . . , zµn1 , gn1+1, . . . , gn

])
of Y(Z′). Again Γ is the limit of a sequence (ϕ(xp;a1,p, . . . ,an,p))p∈N with xp ∈ ∆(n1,n2) and
(a1,p, . . . ,an,p) ∈ Cd1 × · · · × Cdn . We set

Bp = z−µ(1) ϕ1(a1,p) z
µ1 · · · ϕn1(an1,p) z

µn1 .

Writing again (30), we have

Lµ(1)
= lim

p→∞

[
zµ(1)Bp

]
|x1,p

= lim
p→∞

[
zµ(1)Bp

]
(31)
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and

zµ(1) [gn1+1, . . . , gn] =

lim
p→∞

(zµ(1)Bp)|x1,p

[
ϕn1+1(an1+1,p) z

µn1+1 , . . . , ϕn(an,p) z
µn
]
|x2,p

.
(32)

Let K be the kernel of the evaluation map N−,∨(C[z−1
])

→ N−,∨(C) at z = ∞. The multi-
plication induces a bijection

K ×N−,∨(C[z]) ≃−→ N−,∨(C[z, z−1
])
.

We decompose Bp as a product B−,pB+,p according to this bijection. Using (31) and identifying
the ind-variety T0 with K, we obtain that B−,p tends to one when p goes to infinity. Inserting
this information in (32), we obtain

[gn1+1, . . . , gn] = lim
p→∞

B+,p

[
ϕn1+1(an1+1,p) z

µn1+1 , . . . , ϕn(an,p) z
µn
]
,

so [gn1+1, . . . , gn] is the limit of a sequence of points in Z′′
(2). We conclude that Z′

(2) ⊆ Z′′
(2),

and since these two cycles have the same dimension, that actually Z′
(2) = Z′′

(2).

To sum up: if bZ′,Z′′ ̸= 0, then Z′
(1) ⊆ Z′′

(1), and in case of equality Z′
(1) = Z′′

(1), we additionally
have Z′

(2) = Z′′
(2). This proves the first statement in the theorem. The second one is proved in

the same manner as Proposition 5.9. □

Remark 5.14. Using Theorem 5.13, one easily sharpens Corollary 5.12: with the notation of
the latter, if aZ′,Z′′ ̸= 0, then either Z′ = Z′′ or one of the displayed inequalities is strict. The
proof is left to the reader.

Application to standard monomial theory.
Let λ ∈ Λ+ and let ℓ ⊆ V (λ)∗ be the line spanned by a highest weight vector. The group G
acts on the projective space P(V (λ)∗); let Q be the stabilizer of ℓ, a parabolic subgroup of G.
The map g 7→ gℓ induces an embedding of the partial flag variety X = G/Q in P(V (λ)∗). We
denote by L the pull-back of the line bundle O(1) by this embedding. Then the homogeneous
coordinate ring of X is

Rλ =
⊕
m≥0

H0
(
X,L ⊗m

)
;

here H0
(
X,L ⊗m

)
is isomorphic to V (mλ) and the multiplication in Rλ is given by the pro-

jection onto the Cartan component

V (mλ)⊗ V (nλ) → V ((m+ n)λ).
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The algebra Rλ is endowed with an MV basis, obtained by gathering the MV bases of the
summands V (mλ).

Each MV cycle Z ∈ Z (λ) defines a basis element ⟨Z⟩ ∈ V (λ). Given an m-tuple Z =
(Z1, . . . , Zm) of elements of Z (λ), the product ⟨Z1⟩ · · · ⟨Zm⟩ in the algebra Rλ is the image
of ⟨⟨Z⟩⟩ = ⟨Z1⟩ ⊗ · · · ⊗ ⟨Zm⟩ under the projection V (λ)⊗m → V (mλ). This product is called
standard if Z lies in the Cartan component of the crystal Z (λ)⊗m.

Remark 3.5 implies that the MV basis element ⟨Z⟩ ∈ V (λ)⊗m goes, under the projection
V (λ)⊗m → V (mλ), either to an element in the MV basis of V (mλ) or to 0, depending on
whether Z lies or not in the Cartan component of Z (λ)⊗m.

Using Corollary 5.12 and Remark 5.14, we can then endow, for each degree m, the Cartan
component of Z (λ)⊗m with an order, so that the transition matrix expressing the standard
monomials in the MV basis of Rλ is unitriangular. In particular, the standard monomials form
a basis for the algebra Rλ too, and straightening laws can be obtained from Theorem 5.8.

The dual of the MV basis is compatible with the Demazure modules contained in V (mλ)∗;
this property is recorded as Remark 2.6 (ii) in [2] but the crux of the argument is due to
Kashiwara [27]. This implies that for any Schubert variety Y ⊆ X, the kernel of the restriction
map ⊕

m≥0

H0
(
X,L ⊗m

)
→
⊕
m≥0

H0
(
Y,L ⊗m

)
is spanned by a subset of the MV basis of Rλ. Therefore the homogeneous coordinate ring of
Y is also endowed with an MV basis.

These observations suggest that the MV basis could be a relevant tool for the study of the
standard monomial theory.

5.8 A conjectural symmetry

Recall the notation set up in sects. 3.1–3.2. Given λ ∈ Λ+, we set λ∗ = −w0λ, where as
usual w0 denotes the longest element in the Weyl group W . As is well known, there exists a
unique bijection σ : B(λ) → B(λ∗) which for each i ∈ I exchanges the actions of ẽi and f̃i.
In our context, we will regard σ as a bijection Z (λ) → Z (λ∗) and may define it by means of
Lemma 2.1 (e) in [33] and Theorem 4.9.

Now let n ≥ 1 and let λ = (λ1, . . . , λn) in (Λ+)n. We set λ∗ = (λ∗
n, . . . , λ

∗
1) and define a

bijection
σ : Z (λ1)× · · · × Z (λn) → Z (λ∗

n)× · · · × Z (λ∗
1)
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by σ(Z1, . . . , Zn) = (σ(Zn), . . . , σ(Z1)). (Using the same symbol σ to denote different bijections
is certainly abusive, but adding extra indices to disambiguate would overload the notation
without clear benefit.) The Cartesian products above are in fact tensor product of crystals,
and here again σ exchanges the actions of ẽi and f̃i for each i ∈ I ([23], Theorem 2).

Let µ ∈ Λ and choose (Z′,Z′′) ∈ (Z (λ)µ)
2; we then obtain σ(Z′) and σ(Z′′) in Z (λ∗)−µ.

Recall the notation introduced in Theorem 5.8 to denote the entries of the transition matrix
between the two bases of V (λ) and adopt a similar notation as regards V (λ∗).

Conjecture 5.15. The equality aZ′,Z′′ = aσ(Z′),σ(Z′′) holds.

According to [11], this conjecture is true in type A1. Its general validity would have two
interesting consequences.

Firstly, one could then strengthen Theorem 5.13. Indeed bZ′,Z′′ ̸= 0 would imply not only
Z′
(1) ⊆ Z′′

(1), but also σ(Z′
(2)) ⊆ σ(Z′′

(2)), restoring the symmetry between the two tensor
factors.

Secondly, the MV basis of an irreducible representation V (λ) would then satisfy the analogue
of [37], Proposition 21.1.2. In fact, one easily verifies that the MV basis enjoys this property if
λ is minuscule or quasi-minuscule. Our conjecture would allow to deduce the general case by
taking suitable tensor products, mimicking the strategy of proof from [40].

6 The basis on the invariant subspace

Let n ≥ 1 and let λ ∈ (Λ+)n. The MV basis of V (λ) is compatible with the isotypic filtration,
hence provides a basis of the invariant subspace V (λ)G, called the Satake basis in [12]. In this
section we study two properties of this basis.

6.1 Cyclic permutations

Let us write λ = (λ1, . . . , λn) and consider the rotated sequence λ[1] = (λ2, . . . , λn, λ1). Thus,

V (λ) = V (λ1)⊗ · · · ⊗ V (λn) and V
(
λ[1]
)
= V (λ2)⊗ · · · ⊗ V (λn)⊗ V (λ1).

The signed cyclic permutation

x1 ⊗ · · · ⊗ xn 7→ (−1)2ρ(λ1) x2 ⊗ · · · ⊗ xn ⊗ x1,

defines an isomorphism of G-modules R : V (λ) → V
(
λ[1]
)
. In particular, R induces a linear

bijection between the invariant subspaces.
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Theorem 6.1 The signed cyclic permutation R maps the Satake basis of V (λ)G to the Satake
basis of V

(
λ[1]
)G.

Theorem 6.1 replicates a similar result for the dual canonical basis due to Lusztig ([37], 28.2.9),
and our proof below mirrors Lusztig’s argument. It has been proved by Fontaine, Kamnitzer
and Kuperberg in the case where all the weights λj are minuscule ([12], Theorem 4.5). The
bijection induced by R between the two Satake bases has a nice interpretation, both in terms
of crystals (see [13]) and in terms of cluster combinatorics (see [22], sect. 2.1.6).

The rest of this section is devoted to the proof of Theorem 6.1.

As in sect. 3, we denote by {αi | i ∈ I} the set of simple roots and choose simple root vectors
ei and fi in the Lie algebra of G of weights ±αi such that [ei, fi] = −α∨

i . The Weyl group W
is generated by the simple reflections si and contains a longest element w0.

Given λ ∈ Λ+ and w ∈ W , we can pick a reduced word (i1, . . . , iℓ) of w and form the product
of divided powers

θ(w, λ) = f
(n1)
i1

· · · f (nℓ)
iℓ

, where nj = ⟨α∨
ij , sij+1 · · · siℓλ⟩.

This element does not depend on the choice of (i1, . . . , iℓ) ([37], Proposition 28.1.2), which
legitimizes the notation. We note that θ(w0, λ) acts on V (λ) by mapping highest weight
vectors to lowest weight vectors.

We set λ = λ1, the first element in the sequence λ. With the notation of sect. 5.4, the highest
and lowest weight elements in the MV basis of V (λ) are

vλ =
〈
{Lλ}

〉
and vw0λ =

〈
Grλ

〉
.

Under suitable normalizations in the geometric Satake equivalence, these two elements are
related by vw0λ = θ(w0, λ) · vλ (see [2], Theorem 5.2 and Remark 2.10). We define v∗λ to be
the linear form on V (λ) such that ⟨v∗λ, vλ⟩ = 1 and that vanishes on all weight subspaces of
weight different from λ. Similarly, we define v∗w0λ

to be the linear form on V (λ) such that
⟨v∗w0λ

, vw0λ⟩ = 1 and that vanishes on all weight subspaces of weight different from w0λ.

Let M be a representation of G. The assignment v ⊗m 7→ (−1)2ρ(λ) m⊗ v defines an isomor-
phism P : V (λ)⊗M → M ⊗ V (λ).

We set λ∗ = −w0λ. Let M◦ be the isotypic component of M corresponding to the highest
weight λ∗, namely, the sum of all subrepresentations isomorphic to V (λ∗). Given a weight
µ ∈ Λ, we denote by Mµ the corresponding weight subspace of M and set M◦

µ = M◦ ∩ Mµ.
Then M◦

λ∗ is the set of all vectors in Mλ∗ that are annihilated by all the root vectors ei and
M◦

w0λ∗ is the set of all vectors in Mw0λ∗ that are annihilated by all the root vectors fi.
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Lemma 6.2 The following diagram commutes and consists of isomorphisms of vector spaces.

(V (λ)⊗M)G
P //

v∗w0λ
⊗idM

��

(M ⊗ V (λ))G

idM⊗v∗λ
��

M◦
λ∗

θ(w0,λ∗)
//M◦

w0λ∗

(33)

Proof. By additivity, we can reduce to the case where M is a simple representation. If M is
not isomorphic to the dual of V (λ), then all four spaces are zero and the statement is banal.
We therefore assume that M ∼= V (λ∗); in this case, all four spaces are one dimensional.

Let mλ∗ be a highest weight vector in M and set mw0λ∗ = θ(w0, λ
∗) · mλ∗ . There exists a

unique G-invariant bilinear form Φ : V (λ)×M → C such that Φ(vw0λ,mλ∗) = 1. This form Φ
is non-degenerate and a standard computation gives Φ(vλ,mw0λ∗) = (−1)2ρ(λ).

The assignment v⊗m 7→ Φ(v, ?)m defines a G-equivariant isomorphism V (λ)⊗M → End(M).
The preimage x of idM by this bijection spans the vector space (V (λ)⊗M)G. By construction,
(v∗w0λ

⊗ idM )(x) = mλ∗ and (v∗λ ⊗ idM )(x) = (−1)2ρ(λ)mw0λ∗ . Thus, both paths around the
diagram map x to mw0λ∗ . □

We take M = V (λ2) ⊗ · · · ⊗ V (λn). We define M• to be the step in the isotypic filtration of
M where the component M◦ is appended to smaller ones. There is a natural quotient map
p : M• → M◦.

We set M = Z (λ2)×· · ·×Z (λn). Using the notation introduced in sect. 5.4, the MV basis of
M consists of elements ⟨Z⟩ for Z ∈ M . Let M • be the set of all Z ∈ M such that ⟨Z⟩ ∈ M•;
since MV bases are L-perfect, {⟨Z⟩ | Z ∈ M •} is a basis of M•. Let M ◦ be the set of all
Z ∈ M • such that ⟨Z⟩ /∈ ker p; then {p(⟨Z⟩) | Z ∈ M ◦} is a basis of M◦. In consequence, each
weight subspace of M◦ is endowed with a basis.

As a crystal, M decomposes as the disjoint union (direct sum) of its connected components,
and M ◦ is the union of the connected components of M that are isomorphic to Z (λ∗). For
each connected component C ⊆ M ◦, the subspace of M◦ spanned by BC = {p(⟨Z⟩) | Z ∈ C }
is a subrepresentation isomorphic to V (λ∗), and by Remark 3.5, BC identifies with the MV
basis of V (λ∗). The action of θ(w0, λ

∗) therefore maps the highest weight element in BC to
the lowest element in BC . We conclude that the bottom horizontal arrow in (33) maps the
basis of M◦

λ∗ to the basis of M◦
w0λ∗ .

Each element in the MV basis of V
(
λ[1]
)
= M ⊗V (λ) is of the form ⟨Z⟩, with Z in Z

(
λ[1]
)
=

M ×Z (λ). Let V (λ) ̸=λ be the sum of all the weight subspaces of V (λ) other than the higher
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weight subspace. Theorem 5.13 implies that for each Z(1) ∈ M ,〈
Z(1)

〉
⊗
〈
{Lλ}

〉
≡
〈(
Z(1), {Lλ}

)〉 (
mod M ⊗ V (λ)̸=λ

)
.

Thus, for Z(1) ∈ M and Z =
(
Z(1), {Lλ}

)
, we have (idM ⊗ v∗λ)(⟨Z⟩) =

〈
Z(1)

〉
.

As evidenced by the crystal structure on M ⊗Z (λ), the Satake basis of the space (M⊗V (λ))G

consists of the vectors ⟨Z⟩ for the pairs Z =
(
Z(1), {Lλ}

)
such that Z(1) ∈ M ◦

w0λ∗ . Noting that〈
Z(1)

〉
∈ M◦

w0λ∗ for those Z(1), we conclude that the right vertical arrow in (33) maps basis
elements to basis elements.

Similarly, the left vertical arrow in (33) maps the Satake basis of (V (λ) ⊗ M)G to the basis
of M◦

λ∗ . Lemma 6.2 then concludes the proof of Theorem 6.1.

6.2 Tensor product with an invariant element

Let (n′, n′′) be a composition of n in two parts. Correspondingly, we write λ ∈ (Λ+)n as a
concatenation (λ′,λ′′) and view each element in Z (λ) as a pair (Z′,Z′′) ∈ Z (λ′)× Z (λ′′).

The following proposition implies that the Satake basis of the invariant subspace of V (λ)
satisfies the second item in Khovanov and Kuperberg’s list of properties for the dual canonical
basis (see the introduction of [30]).

Proposition 6.3 Let (Z′,Z′′) ∈ Z (λ). If
〈
Z′〉 ∈ V (λ′)G, then

〈
Z′〉⊗ 〈Z′′〉 = 〈(Z′,Z′′)

〉
.

Proof. Let Z′ ∈ Z (λ′). Recall the map mn′ : Grn′ → Gr defined in sect. 2.2 and the notation
µI from sect. 3.4 and set µ = µI(Z

′). Then mn′(Z′) ⊆ Grµ and
〈
Z′〉 appear in the isotypic

filtration of V (λ′) at the step where the component of type V (µ) is appended.

If
〈
Z′〉 ∈ V (λ′)G, then µ = 0, accordingly Grµ = {L0}, and as a result

Z′ ⊆ (mn′)−1({L0}) ⊆ (mn′)−1(T0).

This implies that no MV cycle in Z (λ′) can be strictly contained in Z′. (Such a cycle would
be contained in (mn′)−1(T0), so would be an irreducible component of Grλ

′
n′ ∩ (mn′)−1(T0),

and would end up having dimension ρ(|λ′|), the same as Z′.) The desired result now directly
follows from Theorem 5.13. □
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7 Applications to the MV basis of C[N ]

We adopt the notation set up in the preamble of sect. 3. Let N be the unipotent radical of
the Borel subgroup B and let C[N ] be the algebra of regular functions on N . At the expense
of an isogeny, which does not alter N , we can assume that G is simply-connected.

For each dominant weight λ ∈ Λ+, we can choose a highest weight vector vλ in the represen-
tation V (λ) and define the linear form v∗λ : V (λ) → C such that ⟨v∗λ, vλ⟩ = 1 et ⟨v∗λ, v⟩ = 0
for all weight vectors v of weight other than λ. This yields an embedding Ψλ : v 7→ ⟨v∗λ, ?v⟩
of V (λ) into C[N ], where ⟨v∗λ, ?v⟩ stands for the function n 7→ ⟨v∗λ, nv⟩. The MV bases of
the representations V (λ) can be transported to C[N ] through these maps Ψλ, and they glue
together to form a basis of C[N ], which we call the MV basis of C[N ] (see [2]).

The algebra C[N ] comes with several remarkable bases: the MV basis, subject of our current
investigation, but also the dual canonical basis of Lusztig/upper global basis of Kashiwara,
and (in simply laced type) the dual semicanonical basis. The theory of cluster algebras was
developed in order to compute effectively these bases (or at least, the dual canonical basis).
Concretely, the cluster structure of C[N ] allows to define specific elements, called cluster mono-
mials, which are linearly independent and easily amenable to calculations. It is known that
both the dual canonical and the dual semicanonical bases contain all the cluster monomials
[20, 25], but also that these bases differ (except when cluster monomials span C[N ]).

The methods developed in sect. 5 allow to effectively compute products of elements of the MV
basis of C[N ]. This allows us to prove that this basis contains quite a few cluster monomials
(Proposition 7.2) and that it generally differs from both the dual canonical and the dual
semicanonical bases (Proposition 7.3).

7.1 Cluster monomials

As explained in [21], sect. 4.3, each reduced word (i1, . . . , iℓ) of the longest element w0 in the
Weyl group W yields a seed of the cluster structure of C[N ]. The main result of this section,
Proposition 7.2, presents a sufficient condition for the cluster monomials built from one of these
seeds to belong to the MV basis of C[N ].

Set t∨R = HomZ(Λ,R) and let C = {x ∈ t∨R | ∀i ∈ I, ⟨x, αi⟩ > 0} be the Weyl chamber in t∨R.
We consider the following condition about a reduced word (i1, . . . , iℓ):

(A) There exist x1 ∈ si1(C), x2 ∈ (si1si2)(C), . . . , xℓ ∈ (si1 · · · siℓ)(C) such that xk − xk+1 ∈
C for each k ∈ {1, . . . , ℓ− 1}.
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For instance, choose (x, y) ∈ C2 in such a way that the straight line joining x to −y avoids
all the two-codimensional faces of the Weyl fan in t∨R. List in order the chambers successively
crossed by this line: C, si1C, (si1si2)(C), . . . The word (i1, i2, . . .) produced in this manner is
then reduced and obviously satisfies condition (A).

Let Q ⊆ Λ be the root lattice. We denote by Q+ the positive cone in Q with respect to the
dominance order, that is to say, the set of all linear combinations of the simple roots αi with
non-negative integral coefficients. We set Q− = −Q+.

Lemma 7.1 Let (i1, . . . , iℓ) be a reduced word, set wk = si1 · · · sik for k ∈ {1, . . . , ℓ}, and let
(ν1, . . . , νℓ) ∈ w1(Q−)×· · ·×wℓ(Q−). Assume that ν1+ · · ·+νk ∈ Q+ for all k ∈ {1, . . . , ℓ−1},
that ν1 + · · ·+ νℓ = 0, and that (i1, . . . , iℓ) satisfies condition (A). Then ν1 = · · · = νℓ = 0.

Proof. We set µ0 = 0 and µk = ν1 + · · ·+ νk for k ∈ {1, . . . , ℓ}. We pick x1, . . . , xℓ as stated
in condition (A). Then

ℓ∑
k=1

⟨xk, νk⟩ =
ℓ∑

k=1

⟨xk, µk − µk−1⟩ =
ℓ−1∑
k=1

⟨xk − xk+1, µk⟩.

From xk ∈ wk(C) and νk ∈ wk(Q−), we deduce that ⟨xk, νk⟩ ≤ 0 for each k ∈ {1, . . . , ℓ}. On
the other hand, from xk−xk+1 ∈ C and µk ∈ Q+, we deduce that ⟨xk−xk+1, µk⟩ ≥ 0 for each
k ∈ {1, . . . , ℓ− 1}. We conclude that each ⟨xk, νk⟩ is indeed zero, which implies νk = 0. □

In sect. 6.1, we defined, for each (λ,w) ∈ Λ+ ×W , a product θ(λ,w) of divided powers of the
root vectors fi. We can then set vwλ = θ(λ,w) · vλ; this is a vector of weight wλ in V (λ).
We define ∆λ,wλ = Ψλ(vwλ), usually called a flag minor if λ is minuscule. We denote by
{ϖi | i ∈ I} the set of fundamental weights.

Proposition 7.2 Let (i1, . . . , iℓ) be a reduced word and define xk = ∆ϖik
,si1 ···sikϖik

for each
k ∈ {1, . . . , ℓ}. If (i1, . . . , iℓ) satisfies condition (A), then any monomial in x1, . . . , xℓ belongs
to the MV basis of C[N ].

Proof. We choose λ = (λ1, . . . , λℓ) in (Λ+)ℓ. For k ∈ {1, . . . , ℓ}, we set wk = si1 · · · sik .
The extremal weight vector vwkλk

∈ V (λk) belongs to the MV basis ([2], Remark 2.10 and
Theorem 5.2), so vwkλk

= ⟨Zk⟩ where Zk is the cycle Grλk∩Twkλk
. We set µ = w1λ1+· · ·+wℓλℓ

and Z = (Z1, . . . , Zℓ). We adopt the convention of sect. 5.4 and regard Z as an element
of Z (λ)µ; then ⟨⟨Z⟩⟩ = vw1λ1 ⊗ · · · ⊗ vwℓλℓ

.
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Let us expand this element on the MV basis of V (λ). As in Theorem 5.8, we write

⟨⟨Z⟩⟩ =
∑

Z′∈Z (λ)µ

aZ′,Z

〈
Z′〉. (34)

Suppose Z′ ∈ Z (λ)µ satisfies aZ′,Z ̸= 0. Let (ν1, . . . , νℓ) ∈ Λℓ be the tuple of weights such
that Z′ ∈ Z (λ1)ν1 × · · · × Z (λℓ)νℓ . For each k ∈ {1, . . . , ℓ}, we have Z (λk)νk ̸= ∅, so w−1

k νk
is a weight of V (λk), whence (νk − wkλk) ∈ wk(Q−). From ν1 + · · · + νℓ = µ, we deduce
that (ν1 − w1λ1) + · · ·+ (νℓ − wℓλℓ) = 0. And by Corollary 5.12, we get

(ν1 − w1λ1) + · · ·+ (νk − wkλk) ∈ Q+

for each k ∈ {1, . . . , ℓ−1}. Then, assuming that (i1, . . . , iℓ) satisfies condition (A) and applying
Lemma 7.1, we obtain νk = wkλk for each k ∈ {1, . . . , ℓ − 1}. In other words, none of the
inequalities given in Corollary 5.12 is strict. By Remark 5.14, this forces Z′ = Z. Thus, the
expansion (34) contains a single term, namely ⟨Z⟩.

Set λ = λ1+· · ·+λℓ and let p : V (λ) → V (λ) be the unique morphism that maps vλ1⊗· · ·⊗vλn

to vλ. Noting that p is the quotient map to the top factor in the isotypic filtration of V (λ)
and applying Remark 3.5, we obtain that p(⟨Z⟩) belongs to the MV basis of V (λ). From the
equality vw1λ1 ⊗ · · · ⊗ vwℓλℓ

= ⟨Z⟩, we deduce that

∆λ1,w1λ1 · · ·∆λℓ,wℓλℓ
=
〈
v∗λ, p

(
?⟨Z⟩

)〉
= Ψλ

(
p
(
⟨Z⟩
))

belongs to the MV basis of C[N ]. The claim in the proposition is the particular case where
each λk is a multiple of ϖik . □

7.2 A computation in type D4

In [29], Kashiwara and Saito found an example in type A5 where the singular support of a
simple perverse sheaf related to the canonical basis is not irreducible. Looking again at this
situation, Geiß, Leclerc and Schröer [19] computed the dual canonical and dual semicanonical
elements and found that they were different. They also observed that a similar phenomenon
occurs in type D4. In [2], sect. 2.7, this setting in type D4 was examined anew: the MV basis is
a third basis, different from the other ones. In an appendix to [2], Dranowski, Kamnitzer and
Morton-Ferguson extended this observation to the spot in type A5 uncovered by Kashiwara
and Saito.

Let us have a closer look at the D4 case. As usual, we label the vertices of the Dynkin diagram
from 1 to 4, with 2 for the central node. Our three bases are indexed by the crystal B(∞):
given b ∈ B(∞), we denote the corresponding dual semicanonical basis element by C(b), the
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dual canonical basis element by C ′(b), and the MV basis element by C ′′(b). Calling b0 the
highest weight element in B(∞), we set

b1 =
(
f̃2
(
f̃1f̃3f̃4

)
f̃2
)2

b0 and b12 =
(
f̃2
)2(

f̃1f̃3f̃4
)2(

f̃2
)2

b0.

Proposition 7.3 The basis elements are related by the equations

C(b12) = C ′′(b12) + 2C(b1) and C ′(b12) = C ′′(b12) + C(b1).

The proof is given in [2], except for one justification left to the present paper. We here fill the
gap.

The fundamental weight ϖ2 is the highest root α1 + 2α2 + α3 + α4. The crystal of the repre-
sentation V (ϖ2) (the adjoint representation) is pictured below. Highest weights are towards
the left, vertices are represented as keys p

q with p, q in {1, 2, 3, 4, 1, 2, 3, 4}, and operators f̃1,
f̃2, f̃3 and f̃4 are indicated by dashed, solid, dotted and dash-dotted arrows, respectively.

1

2

1

3

1

4

1

4

2

3

1

3

2

4

2

4

1

2

2

3

3

4

3

4

2

2

3

3

4

4

4

4

2

1

3

2

4

3

4

3

3

1

4

2

4

2

4

1

4

1

3

2

3

1

2

1

If we endow the weight lattice Λ with its usual basis (ε1, ε2, ε3, ε4), then the weight of the
element p

q is simply εp + εq, with the convention that εı = −εi for i ∈ {1, 2, 3, 4}. The crystal
contains four elements of weight zero, namely 2

2
, 3

3
, 4

4
and 4

4
.

We set λ = (ϖ2, ϖ2) and look at the tensor square V (λ) = V (ϖ2)
⊗2. As in sect. 5.4, its MV

basis consists of symbols ⟨Z⟩, where Z = (Z1, Z2) is a pair in Z (ϖ2) × Z (ϖ2). In addition,
V (λ) is endowed with the tensor product basis. To keep the notation straightforward, we
indicate MV cycles by the keys p

q , making use of the isomorphism between Z (ϖ2) and the
crystal pictured above.
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We claim that〈
2

3

〉
⊗
〈

3

2

〉
= 2

〈(
1

2
, 2

1

)〉
+
〈(

1

3
, 3

1

)〉
+
〈(

2

3
, 3

2

)〉
+
〈(

1

4
, 4

1

)〉
+
〈(

1

4
, 4

1

)〉
+
〈(

2

4
, 4

2

)〉
+
〈(

2

4
, 4

2

)〉
+
〈(

1

3
, 3

1

)〉
+
〈(

2

3
, 3

2

)〉
.

(35)

Let p : V (ϖ2)
⊗2 → V (2ϖ2) be the unique morphism that maps vϖ2 ⊗ vϖ2 to v2ϖ2 . Applying

Ψ2ϖ2 ◦ p to the equality (35), we obtain the equation

C ′′(b13)C
′′(b14) = 2C ′′(b1) +

8∑
i=2

C ′′(bi) + C ′′(b12)

asserted without proof in [2]. Establishing (35) will therefore complete the proof of Proposi-
tion 7.3. Actually, an inspection of the proof in loc. cit. reveals that it is enough to justify
that the coefficient in front of

〈(
1

2
, 2

1

)〉
is strictly larger than one.

We will use Theorem 5.8 to prove this fact. Here the group G∨ is SO8. For (i, j) ∈ {1, . . . , 8}, we
denote by Ei,j the matrix of size 8×8 with zeros everywhere except for a one at position (i, j).
For each coroot α∨ ∈ Φ∨, we define a subgroup xα∨ : C → G∨ by the following formulas, where
I is the identity matrix, a ∈ C, and i, j are elements in {1, 2, 3, 4} such that i < j.

x(εi−εj)∨(a) = I + a(Ei,j − E9−j,9−i) x(εi+εj)∨(a) = I + a(Ei,9−j − Ej,9−i)

x(εj−εi)∨(a) = I + a(E9−i,9−j − Ej,i) x(−εi−εj)∨(a) = I + a(E9−i,j − E9−j,i)

For each root α, we define a map χα : C10 → G∨(C[z, z−1
])

by the formula

χα(a)(z) =

(
8∏

k=1

xβ∨
k
(ak)

)
xα∨(a9 + za10) z

α

where a stands for the tuple (a1, . . . , a10) ∈ C10 and where β∨
1 , . . . , β∨

8 are the coroots β∨ such
that ⟨β∨, α⟩ = 1. We specify the enumeration in our cases of interest as follows.

α β∨
1 β∨

2 β∨
3 β∨

4 β∨
5 β∨

6 β∨
7 β∨

8

ε1+ε2 (ε1−ε3)∨ (ε1−ε4)∨ (ε1+ε4)∨ (ε1+ε3)∨ (ε2−ε3)∨ (ε2−ε4)∨ (ε2+ε4)∨ (ε2+ε3)∨

−ε1−ε2 (−ε2−ε3)∨ (−ε2−ε4)∨ (ε4−ε2)∨ (ε3−ε2)∨ (−ε1−ε3)∨ (−ε1−ε4)∨ (ε4−ε1)∨ (ε3−ε1)∨

ε2−ε3 (ε2−ε1)∨ (ε2−ε4)∨ (ε2+ε4)∨ (ε1+ε2)∨ (−ε1−ε3)∨ (−ε3−ε4)∨ (ε4−ε3)∨ (ε1−ε3)∨

ε3−ε2 (ε3−ε1)∨ (ε3−ε4)∨ (ε3+ε4)∨ (ε1+ε3)∨ (−ε1−ε2)∨ (−ε2−ε4)∨ (ε4−ε2)∨ (ε1−ε2)∨
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We now define two charts on Grλ2 , both with C22 as domain:

ϕ1 : (x1, x2,a,b) 7→
(
x1, x2;

[
χε1+ε2(a)(z − x1), χ−ε1−ε2(b)(z − x2)

])
,

ϕ2 : (x1, x2,a
′,b′) 7→

(
x1, x2;

[
χε2−ε2(a

′)(z − x1), χε3−ε2(b
′)(z − x2)

])
.

One can then compute the transition map between these two charts. (The calculations were
actually carried out with the help of the computer algebra system Singular [10].) One finds
the variables a′1, . . . , b′10 as rational functions in x2 − x1, a1, . . . , b10. We denote by f the
l.c.m. of the denominators.

Recall the notation used in sect. 5.4. In the chart ϕ1, the cycle Y
(

1

2
, 2

1

)
is defined by the

equations a1 = · · · = a10 = x2 − x1 = 0, so the ideal in R = C[x1, x2, a1, . . . , a10, b1, . . . , b10] of

V = ϕ−1
1

(
Y
(

1

2
, 2

1

))
is

p = (a1, . . . , a10, x2 − x1).

In the chart ϕ2, the cycle X
(

2

3
, 3

2

)
is defined by the equations a′2 = a′3 = a′4 = a′8 = a′9 =

a′10 = b′2 = b′3 = b′4 = b′8 = 0. Since the zero locus of f contains the locus where the transition
map between the charts is not defined, the ideal q of the subvariety

X = ϕ−1
1

(
X
(

2

3
, 3

2

))
is the preimage in R of the ideal qf = (a′2, a

′
3, a

′
4, a

′
8, a

′
9, a

′
10, b

′
2, b

′
3, b

′
4, b

′
8) of the localized ring

Rf . Singular gives the following expression:

q = (a1a4 + a2a3, a1a6 − a2a5, a3a6 + a4a5, a1a7 − a3a5, a2a7 + a4a5, a1a8 − a4a5,

a2a8 − a4a6, a3a8 − a4a7, a5a8 + a6a7, a9, a10, a1b4 + a2b3 + a3b2 + a4b1,

a5b4 + a6b3 + a7b2 + a8b1, a3b6 + a4b5 + a7b2 + a8b1 − (x2 − x1), a2b7 − a3b6 + a6b3 − a7b2,

a1b8 + a3b6 + a5b4 + a7b2, a2b8 − a4b6 + a6b4 − a8b2, a3b8 − a4b7 + a7b4 − a8b3).

We observe that q ⊆ p, hence V ⊆ X.

Let a and x be two indeterminates. Let B be the field C(x, b1, . . . , b10). Extract the last seven
equations from q and remove the term x2−x1 in the third one: we then deal with seven linear
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equations with coefficients in B in the eight variables a1, . . . , a8. This system has a non-zero
solution (c1, . . . , c8) ∈ B8. We can then define an algebra morphism u : R/q → B[a]/(a2) by

u(x1) = u(x2) = x, u(bi) = bi for i ∈ {1, . . . , 10},
u(a9) = u(a10) = 0, u(ai) = cia for i ∈ {1, . . . , 8}.

The ring B[a]/(a2) is local with maximal ideal (a) and the preimage of this ideal by u is the
ideal p/q of R/q.

Let A be the localization of R/q at p/q. Then u extends to an algebra morphism u : A →
B[a]/(a2). By construction, the kernel of u contains x2 − x1 but not all a1, . . . , a8. Therefore
x2−x1 does not generate the maximal ideal of A. Since A is the local ring OV,X of X along V ,
this means that the order of vanishing of x2 − x1 along V is larger than one. In other words,
the multiplicity of Y

(
1

2
, 2

1

)
in the intersection product X

(
2

3
, 3

2

)
· Grλ2

∣∣
∆

is larger than one.

Applying Theorem 5.8, we conclude that in (35) the coefficient in front of
〈(

1

2
, 2

1

)〉
is strictly

larger than one.
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