CANONICAL BASES AND THE CONJUGATING
REPRESENTATION OF A SEMISIMPLE GROUP

PIERRE BAUMANN

Let G be a semisimple simply connected affine algebraic
group over an algebraically closed field k of characteristic
zero, let A(G) be the k-algebra of regular functions of G,
and let C(G) be the subalgebra consisting of class functions.
We explain how Lusztig’s work on canonical bases affords a
constructive proof of the fact, due to Richardson, that A(G)
is a free C(G)-module.

1. Introduction

We fix an algebraically closed field k£ of characteristic zero. Let G be a re-
ductive affine algebraic group over k£ and let V' be an affine G-variety over
k. We denote by A(G) and A(V') the k-algebras of regular functions on G
and V respectively. The action of G on V gives rise to a rational representa-
tion of G on A(V'). A natural question is to investigate whether the algebra
A(V) is a free module over its subalgebra A(V) of invariant elements. The
case where V is a k-vector space on which G acts linearly has been investi-
gated by Chevalley [Ch, Bo|, Kostant [Ko|, Popov [Po]|, Schwarz [Sc], and
Littelmann [Li|. In the general case, only examples have been studied, for
instance by Richardson [Ril, Ri2| or Schwarz and Wehlau [SW].

We will investigate the case where the variety V is the group G, acting on
itself by inner automorphisms. Then the subalgebra of invariant elements
C(G) = A(G)C is the set of regular class functions. We assume in the re-
mainder of the paper that G is semisimple and simply connected. Richardson
proved in [Ril] that the following result holds under these assumptions.

Theorem 1. There exists a G-stable vector subspace E of A(G) such that

the product map of A(G) induces a vector space isomorphism from C(G)®y E
onto A(G).

Richardson’s proof is based on a study of the geometric properties of the
conjugacy classes of G and relies on heavy results of commutative algebra like
the Quillen-Suslin theorem. Furthermore, as Richardson himself observed,
his method gives only the existence of a subspace F, and does not tell how
to choose an explicit E. One can ask for instance (see Sect. 12.1 in loc. cit.)
if it is possible to find a subspace F which behaves nicely in relation to the
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Peter-Weyl decomposition of A(G), that is, the decomposition into isotypical
components for the left regular representation of G.

The aim of this paper is to provide an alternate proof of Richardson’s
theorem. Our method gives a more rigid choice for E, which satisfies the
condition stated above. It relies on canonical bases, which are a quite recent
tool in representation theory. The source of this method can be traced back
to a paper of Joseph and Letzter [JL|, who acknowledge an idea of Polo.
Our main reference for canonical bases will be Lusztig’s book [Lu2|, whose
notations will be recalled but not explained.

2. A graded quantized model and its canonical basis

In this section, tensor products and linear duals are taken over the field Q(v)

of rational functions in one indeterminate.
2.1. Notations. We choose a maximal torus 7" in G. The weight lattice X

is the character group of 1. The coroot lattice Y is the dual lattice of X,
the duality pairing between X and Y being denoted by (, ) : Y x X — Z.
The choice of a Borel subgroup B containing 1" affords a set I C Y of simple
coroots and an injection (I — X, i — i) that gives the corresponding simple
roots. The dominant integral weights form a cone X in the weight lattice.
The set I is a basis of the lattice Y. We assume that a symmetric bilinear
form (v,v') — v -1/ is given on Y so that i - i is a positive even integer and
2(i-5)/(i-4) = (i,5') for all 4, j in I.

We define on X two order relations. For any v, v/ in X, we say that
v < v whenever v/ —v € 3, Ni' and that v < v/ whenever v/ —v € X
The poset (X1, <) is a distributive lattice.

Let v be an indeterminate. From the data above, one can define the
Q(v)-algebra f, generated by the symbols (6;);c; submitted to the quantized
Serre relations (|[Lu2|, Chap. 1 and §33.1). One then defines as in Chap-
ter 3 of [Lu2| the quantized enveloping Q(v)-algebra U and its involutive
automorphism w. Following §§3.4-3.5 in [Lu2|, we denote the category of
weight U-modules by C and its full subcategory of integrable U-modules by
C’. Given a dominant integral weight A, there is a unique simple object A in
C’ with highest weight A\ and highest weight vector 7y, and a unique simple
object “Ay in C" with lowest weight —\ and lowest weight vector £_y ([Lu2|,
§3.5). In §14.4 of [Lu2|, Lusztig defines the canonical basis B of f and its
family of subsets B(\), where A € XT. An immediate consequence of these
definitions is the following fact.

Lemma 2. For any b € B, there is a dominant integral weight e(b) such
that {xe Xt |beB\)} =¢(b) + XT.

Proof. With the notations of loc. cit., b belongs to B(\) if and only if the
inequality (7, A) > min{n | b € “B;,} holds true for all ¢ € I. It is therefore
sufficient to set e(b) so that for all i € I, (i,e(b)) =min{n |be 7B;,}. O
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2.2. A graded quantized model for A(G). By §25.1 in [Lu2]|, for any
dominant integral weights \, u € X, there are unique maps of U-modules
Z')\“u : A)\—i-u — A)\®AM and wi)\“u : “}A,\_;_‘u — WAM(X)MA)\ such that i)\,u(n)\—&-,u) =
M\ @ Ty and wi)\#(f,)\f“) = g—u ® E-x.

Using the antipode of U, the dual vector space M* of a U-module M
can be viewed as a U-module. If M and N are U-modules and if one of
them is finite-dimensional, then the U-modules (M ® N)* and N* ® M* are
naturally isomorphic. The dual of a finite-dimensional object of C’ belongs
to C'.

For any dominant integral weight A, we define the U-module H* = (“A\®
Ay)*. We also set H = @, y+ H*. The family of maps

H> @ H" — HM*
(1) [ (AN @ (AN @ (Ap)” @ (“Ap)" = (Axg)™ @ (“Arsp)”
PRIAT®s — (ix,) (rap) @ (Vi (¢®s)

induces a product m : H ® H — H which endows H with the structure of
a Xt-graded algebra. One can easily show that this algebra is associative
and has a unit.

By Proposition 25.1.4 (a) in [Lu2|, for any dominant integral weight A
there is a unique U-linear map d) : “A\®A ) — Q(v) such that 6 (- ®ny) =
1, where Q(v) is considered as a U-module via the co-unit of U. This form
) is a U-invariant element in H?.

For any two dominant integral weights A and p, Lusztig defines in §25.1.5
of [Lu2| the map ¢ : “Ax;, ® Ay, — YAy ® Ay, as the composition

id®6,®id
_

iy | i
wA)\+u®A/\+MM>wAN® "-’A)\®A)\®AM wAu(X)@(U)@A“.

Lemma 3. (a) The dual map (ty)* : H* — H ™" is injective and coincides
with the left multiplication by 0y in the algebra H.

(b) In the algebra H, one has d) 6, = x4, for any dominant integral weights
A and .

Proof. The injectivity of (£))* follows from the surjectivity of ¢y, which is
shown in [Lu2|, Lemma 25.1.6 (c). Let us write 6y = >, p; ® ¢; in (A))* ®
(“Ax)*. Then for any elements ;7 ®s; € (A,)*®(“Ay,)" and 35 t,®uy, €
“Axtpu ® Axyp, we have

(Oa X (32515 ®55), 22 te @ ui)
= ((iag)” (rj @) @ (Yian)" (i ® 85),tr @ )
1,5,k

=D (I ®pi®a®s), “iru(te) ® iru(ur))
4,7,k
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= Z <T‘j ® o)\ ® s, (wb\,u & ik,u)(tk ® ug))
j7k
= (Z] 7 ® 85, (D ) th ® ug))-
This calculation proves (a).
Now the linear form 49, on “Ax;, ® Ay, is U-linear and takes the
value 1 on the element {_y_,, ® 74, since it can be written as (t))* (6,) =
0, o tx. Therefore it coincides with x4, which proves (b). O

2.3. Dual-based modules and isotypical decompositions. The simple
objects of the category C’' are the U-modules A,, where o is a dominant
integral weight; they are pairwise non-isomorphic. Given an object M in C’
and a dominant integral weight o, we denote the sum of the simple subobjects
of M isomorphic to A, by Mo]. By complete reducibility, we have M =
@D,cx+ Mlo]. Given P C X, we denote the subspace @,cp M[o] by
M|[P]. For short, we will write > o instead of {r € X | 7 > o}, £ o
instead of {T € X | 7 £ ¢}, and so on.

In Chapter 27 of his book [Lu2|, Lusztig defines the notion of a based
module. A based module is a pair (M, B) consisting of a finite-dimensional
U-module M which belongs to C" and a Q(v)-basis B of M satisfying several
properties stated in loc. cit. Based modules are the objects of a category: a
morphism from the based module (M, B) to the based module (M’, B') is a
morphism f : M — M’ of U-modules such that f(B) C B’ U {0} and such
that the set B Nker f is a basis of ker f.

We define a dual-based module as a pair (M, B) consisting of a finite-
dimensional U-module M which belongs to ¢’ and a Q(v)-basis B of M such
that the dual module M* together with the basis B* dual to B is a based
module. Dual-based modules form a category, the morphisms between two
dual-based modules being defined in the same way as morphisms between
based modules.

For any dual-based module (M, B) and any dominant integral weight o,
we put

Blo] = (BN M[< o])\ (BN M[< o]).

The following properties of dual-based modules are direct consequences of

similar properties of based modules.

Proposition 4. Let (M, B) be a dual-based module and let o be a dominant
integral weight.

(a) The subspaces M[< o] and M[< o] are spanned over Q(v) by their
intersection with B.

(b) The restriction of the canonical surjection p : M[< o] — M[< o]/M[<
o] to Blo] is injective and the pair (M[< o]/M[< o], p(Bo])) is a dual-based
module.

(c) When o runs over X, the sets Blo| form a partition of B.
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(d) Let (M', B') be a sub-dual-based module of (M, B) and assume that M
has only one non-zero isotypical component. Then the Q(v)-vector space M"
spanned by B\ B’ is a complementary sub-U-module of M’ in M and the
pair (M", B\ B') is a dual-based module.

(e) Let (M', B') be a dual-based module and assume that U acts trivially on
M or on M'. Then (M @ M', B® B') is a dual-based module, where B ® B’
denotes the set {b@b' | be B, b € B'}.

Proof. Proposition 27.1.8 in [Lu2| asserts that for any dominant integral
weight 7 and any based module (N, C'), the submodule N[> 7] is spanned
over Q(v) by its intersection with C. One deduces from this fact that the
submodule N[P] is spanned over Q(v) by its intersection with C' for any
subset P C X such that P + (},N¢') C P. In particular, this property
holds for N[£ ¢*] and N[#£ o*|, where o is the highest weight of (A,)*.
Applying this result to the case of the based module (M*, B*) and taking
orthogonals, we obtain Property (a).

Property (a) proves that the restriction of p defines a bijection from B[o]
onto a basis of the Q(v)-vector space M [< o]/M[< o]. To check that the pair
(M[< o]/M[< o],p(B]o])) satisfies all the axioms of a dual-based module,
it suffices to use duality as in the proof of Property (a) and to refer to the
definition of based modules in §27.1.2 of [Lu2|. Property (b) is proved.

Choose any z in B. We can find 0 € X such that x € M[< o] and such
that ¢ is minimal for this property with respect to the order <. Since B is a
basis of M, the element = does not belong to the span of J._ (BNM[< 7]).
By Property (a), one deduces that x does not belong to M |[< o] and therefore
that x belongs to B[o]. We have proved that B is the union of its subsets
Blo], and it remains us to show that these sets B|o| are pairwise disjoint.
Suppose that Bo| and B[7| share a certain element x. Then M[< o] and
M|[< 7] intersect non-trivially. This implies that o — 7 belongs to the root
lattice )", Z4', and thus there exists a weight p less than or equal to o and
7 such that M[< o]NM[< 7] = M[< p]. Since = belongs to M[< p] but not
to M[< o], we cannot have p < o. Therefore p = o, and similarly p = 7.
Therefore o = 7, which completes the proof of Property (c).

Finally Property (d) is a consequence of the proof of Proposition 27.1.7
in [Lu2|, and Property (e) follows by dualizing the construction given in
§27.3 and Theorem 27.3.2 of [Lu2|. O

It is of course possible to extend the notion of (dual-) based module to
the case of an infinite-dimensional U-module which is graded with finite-
dimensional graded components. In this case, the basis is required to be
compatible with the decomposition of the module as the direct sum of its
graded components.
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2.4. The basis of H. By §§24.3 and 27.3.4 in [Lu2], each module *A) ® Ay
has a canonical basis, with which it forms a based module. By Proposi-
tion 27.3.5 (a) in [Lu2|, the map ¢ty : “Ax;, ® Ay — YAy ® Ay is a
morphism of based modules.

Each module H* = (“Ay ® Ay)* comes therefore with the dual basis By,
so that the pair (H*, B)) is a dual-based module. By Lemma 3 (a), the left
multiplication by &y defines an injective morphism of dual-based modules
from (H*, B,) to (H*™*, Byi,).

In particular, we get an injective map from B, to By;,. By Lemma 3 (b)
these maps form a directed system of injective maps between sets, and we
denote its limit' by By, = li_r)nB - We denote the canonical injective map

By — B by tx. By Proposition 27.2.2 in [Lu2|, this directed system
is compatible with the decompositions By = | |,cx+ Balo], which yields a
similar decomposition B, = | | ¢ x+ Boolo].

Lemma 5. Given © € Bo, there is a dominant integral weight £(x) such
that {\ € Xt |z € 1x(By)} =e(z) + XT.

Proof. By duality, the assertion is equivalent to the following fact: for any
A\ i, v € X7 such that A < v and p < v and any ¥ in the canonical ba-
sis of “A, ® A,, the non-vanishing of both ¢)(y) and ¢,(y) implies that
of tsup(ap)(¥), where sup(-,-) is the supremum in the distributive lattice
(XT,<). In turn, this fact is a direct consequence of Proposition 25.1.10
in [Lu2| and Lemma 2. O

Lemma 6. The set By[0] is reduced to the element Jy.

Proof. The space H*[0] = Homy (“Ay®Ay, Q(v)) has dimension at most one,
since YAy ® Ay is generated by a single element, namely & ) ® ). Therefore
B [0] has at most one element and it suffices to show that §, € By. We
observe that the kernel of dy is (“A) ® Ay)[> 0], which by Proposition 27.1.8
in [Lu2| is spanned over Q(v) by its intersection with the canonical basis of
“A) ® Ay. Therefore ¢y vanishes on all elements of this canonical basis but
one. The exception is the vector £_) ® ny: it belongs to the canonical basis
by Theorem 24.3.3 in [Lu2| and §) evaluates to 1 on it. This shows that Jy
belongs to the basis dual to the canonical basis of “A) ® Ay, that is to say
0y belongs to B). O

The direct sum of the dual-based modules (H*, By) will be denoted by
(H,B). Lemma 6 tells that B[0] = {6, | A € X1} and Proposition 4 (a)
implies that the pair (H[0], B[0]) is a dual-based module. By Lemma 3 (a),
for any A € X, the left multiplication by &y is an injective morphism from
the dual-based module (H, B) into itself.

!This limit Be is, in a certain sense, the basis dual to the canonical basis of the
subspace Ulg of Lusztig’s modified quantized enveloping algebra, see Chap. 23 of [Lu2|.
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2.5. A filtration of H and the freeness theorem for its associated
graded. The dual-based module (H, B) is filtered by the family of sub-
modules (H|[< o], BN H[< o]), the indexing set being the poset (X, <).
The associated graded dual-based module is @ . y+(gr?(H), Blo]), where
gr?(H) = H[< o]/H[< o] and B[o] is the image of Blo] = | |ycx+ Balo]
under the canonical surjection p : H[< o] — gr?(H).

We view H as the regular left H-module. The subspace H[0] acts by
morphisms of U-modules; therefore its action stabilizes each isotypical com-
ponent of H and induces an action on any gr?(H).

We now fix a dominant integral weight o. We define

B[o]P"™ = {1} (2) | @ € Bw[o]} = | | {z € Ba[o] | e(ta(@)) = A},
X

and we call B[o]P"™ its image under the canonical surjection p. We denote
by K7 the Q(v)-vector subspace spanned in gr?(H) by B[o]P™™".

Proposition 7. (a) The action of ) on gr?(H) induces an injective mor-
phism from the dual-based module (gr? (H), Blo]) into itself.

(b) The family of sets (5x - Blo]P"™)\cx+ form a partition of Blo].

(c) The pair (K°, Blo]P"™) is a dual-based module.

Proof. Assertion (a) follows from the fact that the left multiplication by dy
is an injective morphism from the dual-based module (H, B) into itself.

As for Assertion (b), we consider an element x € B,[0]. Let v = (¢, (2)).
By Lemma 5, A = u — v belongs to X+ and there exists y € B,[o] such
that ¢, (y) = tu(z). By construction, y € B[o|P"™ and p(z) is the image of
p(y) under the action of dy. This proves that Blo] = J,c x+ (6 - Blo]Pr™).
A similar reasoning based on Lemma 5 and on Assertion (a) shows that the
union is disjoint.

To prove Assertion (c), it is enough to show that for all dominant integral
weight A, the pair (K°Ngr? (H*), B[o]P"™Ngr? (H*)) is a dual-based module.
This is trivial for A = 0. The case of a general A\ will be proved by induction
on »_.(i,\). Assume that X\ # 0 is given. By the induction hypothesis, we
can assume that the pair (K Ngr? (H*), Blo]P"™ Ngr® (H*)) is a dual-based
module for all © € X such that u < X. Assertion (b) then says that the
pair

( D o &g, || m-w[o]mimmgr”(mn)

peXt, u<X pneXt, u<X



8 PIERRE BAUMANN

is a sub-dual-based module of (gr®(H?), B[o] N gr®(H™)) and that

B[U]prim N ng(H)‘) _

(Betns e )\ (L e @ e ).

REX T, p=<A

Now Assertion (c) follows from Proposition 4 (d O

).
We now have three dual-based modules (gr?(H), B[o]), (H[0], B[0]), and
(K7, B[o|P*™). By Proposition 4 (e), the pair (H[0] ® K, B[0] ® B[o|P™™)
is a dual-based module.

Theorem 8. The action of H[0] on gr?(H) gives rise to an isomorphism
from (H[0] ® K7, B[0] @ B[o|P™) onto (gr? (H), Blo]).

Proof. Since U acts trivially on H|[0], the U-linear action of H[0] on gr?(H)
induces a morphism of U-modules from H[0]®gr?(H) to gr?(H). By Propo-
sition 7 (a) and (b), this morphism restricts to a bijection from B[0]®B[c]Pri™
onto Blo]. The theorem follows. O

3. Specialization to the classical case

3.1. Specialization of U-modules. Let A be the ring Z[v,v~!]. The field
k is an A-algebra on which v acts as the identity. For any A-module 47", we
denote by 7" the k-module k ® 4 4T obtained by base ring change.

We call g the Lie algebra of the group G and we choose Chevalley gener-
ators Fy, ..., By, F1, ..., Fy, Hy, ..., Hp in it.

In §3.1.13 of [Lu2| (see also Theorem 4.5 in [Lul]), Lusztig defines an
A-form 4U of U. Formulas in §§3.1.5 and 3.3.3 of [Lu2| show that 4U
inherits from U the structure of a Hopf algebra over A. Therefore ;U is a
Hopf algebra over k. Furthermore, since the quantized Serre relations are
verified by the simple root vectors in 4U, there is a natural morphism of
Hopf algebras ¢ : U(g) — xU. Thanks to ¢, every ;U-module has a natural
structure of a U(g)-module.

We use the standard strategy to specialize a finite-dimensional U-module
M: we first choose a Q(v)-basis B of M such that the A-submodule 4M
spanned by B in M is stable under the action of 4U, and then ;M is a U(g)-
module. So what we really specialize is the pair (M, B). Thanks to Con-
dition (b) in Definition 27.1.2 of [Lu2]|, based modules satisfy the required
condition to be specializable. One can also construct new specializable pairs
by standard procedures like dualization, tensor product, or twisting with
w, and then the specialization commutes with these constructions. We ex-
tend this framework to infinite-dimensional U-modules provided that they
are graded with finite-dimensional graded components and that their bases
consist of homogeneous elements.
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Let A € XT. In Theorem 14.4.11 of [Lu2]|, Lusztig constructs a Q(v)-basis
B(A)) of Ay so that (Ay,B(Ay)) is a based module. Lusztig shows in §33.1.2
of [Lu2| that the specialized module ;(Ay) is a simple highest weight module
with highest weight A. The basis B(A)) endows x(Ay) with a preferred
highest weight vector ,m\. Take another ; € XT. By Proposition 25.1.2
in [Lu2|, the map 4y, : Axyy — Ar®q(v) Ay sends the A-submodule spanned
by B(Axt,) in Ayy, into the A-submodule spanned by B(A)) ® B(A,)
in A) ®gy) Ay It therefore specializes to the morphism of U(g)-modules
k(i) k(M) — £(AN) @k k(Ay) that sends gnaiy to g0y @ g1y

Similarly, the U-module “A) comes with a canonical basis “B(A)). There-
fore it can be specialized to the U(g)-module (“ A ), which is a simple lowest
weight module with lowest weight —\ and lowest weight vector p£_). The
specialization of “iy , : “Axy, — “Ay @g) “A is the morphism of Ul(g)-
modules k(wi)\ﬂu) : k(wA)\—i-u) — k(wAu) Rk k(wA)\) that sends kf_)\_# to
kE—p @ k€.

The family (x(As)),ex+ affords a complete set of pairwise non-isomorphic
finite-dimensional simple U(g)-modules. Given a finite-dimensional U(g)-
module M and a dominant integral weight o, we denote its isotypical com-
ponent of type x(As) by M[o]. Given P C X™*, we denote the subspace

B, cp Mlo] by M[P].

Proposition 9. Let (M, B) be a dual-based module and M its specializa-
tion. Then for any o € X, the dual-based modules (M|< o], BN M[< o])
and (M[< o], BN M[< o]) specialize to (;M)[< o] and (1, M)[< o], respec-
twely. In particular (M[0], BN M]|0]) specializes to (xM)[0].

Proof. We will only prove the case of (M[< o], BN M[< o]). One can
enumerate the weights in < ¢ as a finite sequence 7p,...,7, such that
7; < 1j = ¢ < j. The dual-based module (M[< o], BN M[< o]) is then
filtered by the composition series (M[{Tl, ooy Tit), BOM[{r,... ,Ti}])0<i<n.
As U-modules, the quotient modules are isotypical of type A,, and specialize
therefore to isotypical modules of type (A;,), by the dual version of Propo-
sition 27.1.7 in [Lu2|. Thus the specialization of (M[< o], BN M[< o]) has
a filtration with quotients isomorphic to x(A-, ), ..., or x(A;,), which shows
that (M[< o]) C (xM)[< o]. A similar reasoning shows that the special-
ization of M /M[< o] has a filtration with quotients isomorphic to modules
of the form (A;) with 7 £ o, whence

((eM)/ 1(M[< o)) [< 0] = (o(M/M][< 0]))[< 0] = 0.
Therefore the equality x(M[< o]) = (xM)[< o] holds. O
3.2. Specialization of H. We are now in a position where we can specialize

the U-module H, the multiplication map m : H ®q(,) H — H, and the
freeness result from Theorem 8.
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We first observe that by Theorem 24.3.3 in [Lu2], the A-lattice spanned
in H* by the basis B) is the same as the A-lattice spanned by the basis dual
to the basis “B(A)) ® B(A)) of “A\ ®q(y) Ax. Therefore the multiplication
map m sends the A-submodule spanned in H ®q(,) H by B ® B into the
A-submodule spanned in H by B. It gives rise to a multiplication map
km:kH@)k kH—> kH.

Proposition 10. The specialization H is the U(g)-module

EB (k(AN)" @k K(“AN)).

rext+

The multiplication map pm is given by Formula (1) in which the maps (ix,)*
and (“iy,)* are replaced by their specializations j(ix )" and ,(“iyu)*.

We now fix a dominant integral weight o. By Proposition 9, the isotypical
component (;H)[o] is naturally isomorphic to the specialization of the dual-
based module (gr(H), B[o]). The specialization ,(K9) of (K7, B[o]P"™) is
then seen as a U(g)-submodule of (;,H)[o]. By Theorem 8 and Proposition 9,
we get the following result.

Theorem 11. The map ym induces an isomorphism of U(g)-modules from
(kH)[O] R k(KU) onto (kH)[U]

3.3. The Cartan filtration on A(G). To complete the proof of Theorem 1,
it only remains to relate the specialized algebra . H to the algebra A(G). We
first describe this latter.

Let M be a rational G-module. Then for any v € M and f € M*, the
function on G

g (f,9-v)
is regular. The map from M* ®; M to A(G) which sends f ® v to c%) is
a morphism of G-modules; it is injective if M is simple. By definition, its
image is the coefficient space C'(M) of the module M. Then the Peter-Weyl
decomposition
AG) = D C(ry)
Aext
holds. The filtration of A(G) indexed by the poset (X', <) and given by
the submodules
L@ = B Ch®w)
peX+, u<A

is a filtration of algebra. The associated graded is

gr(A(G) = D er(AG)),

AeX+
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where

grM(A(G)) = AN(G)/ 3, cn Au(G) = C(k(AN)) = k(AN)* @k k(AN).

For any X\, € X7, there is a unique morphism py , : x(Ay) @k x(Ay) —
k(Axty) of U(g)-modules such that the composition py, o g(ix,) is the
identity of p(Axt,). Then the multiplication of the algebra gr(A(G)) is
defined by the family of maps

C(k(Ax)) ®k C(e(Ap)) = Cli(Arip))
k(AN @k k(AN) @k 1(AL)* @k k(ML) = k(Arip)” @k k(Artp)
for@gey = k(i (90 f) @pau(z®y)
For any A € X, the U(g)-module (“A,) is simple with lowest weight

— X\ and lowest weight vector p£_», therefore there is a unique isomorphism

hy : k(Ay) — k(YA))* of U(g)-modules such that (hy(gmn), k&) = 1.

Lemma 12. For any X\, p € X, the relation (“ix )" o (hy ®k hy) = hagy o0
Pa,u holds.

Proof. Both members of the equality to be proved are U(g)-linear maps
from 1 (Ax) @k k(Au) to k(“Axyn)* ~ Kk(Axgy). Since the latter is simple and
has multiplicity one in the former, both members are equal up to a scalar.
To complete the proof, it therefore suffices to check that both linear forms

(Pagp © ) (e @ kmy) and [1(¥ix )" o (ha @k hy)] (k12 ® &7) take the
value 1 when evaluated on the vector x{__,. O

Let ¢ be the map from gr(A(G)) to pH defined by the family of maps
g (A(G)) — k(HY)
K(AXN)" @k k(AN) = K(AN)" @k K(YAN)"
fez — f®h\(z)
Lemma 12 implies directly the following statement.

Proposition 13. The map ¢ is a U(g)-linear isomorphism of algebras.

Theorem 11 therefore translates immediately to a similar statement for
gr(A(G)). Since the U(g)-module A(G) is not only filtered but also graded,
we can lift the submodule @, v+ ¢~ (x(K7)) of gr(A(G)) to a submodule
E of A(G). Then the multiplication map in A(G) restricts to an isomorphism
of vector spaces from C(G) ® E onto A(G), since the graded counterpart
of this restriction

gr(A@)0] &% (Boex+ (1K) = Byex+ &r(AG))0]

is itself bijective. This concludes the proof of Theorem 1.
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Remark. The author does not understand the relation between the point of
view presented in this paper and the extension by Donkin [Do| of Richard-
son’s work to the case where the ground field has a positive characteristic.

Acknowledgements. The author has the pleasure to thank N. Reshetikhin for
a three-months long invitation at the University of California at Berkeley.
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