Geometric shape optimization for Dirichlet energy with physics-informed and symplectic neural networks

<u>A. Bélières–Frendo¹, E. Franck², V. Michel-Dansac², Y. Privat³</u> ¹IRMA, Université de Strasbourg, CNRS UMR 7501, 7 rue René Descartes, 67084 Strasbourg, France

²Université de Strasbourg, CNRS, Inria, IRMA, F-67000 Strasbourg, France ³Université de Lorraine, CNRS, Inria, IECL, F-54000 Nancy, France

The authors acknowledge the financial support of the ExaMA project.

Introduction

The governing Partial Differential Equation (PDE). We study the Poisson equation

$$(\mathcal{P}) \begin{cases} -\Delta u_{\Omega}^{f} = f & \text{in } \Omega, \\ u_{\Omega}^{f} = 0 & \text{on } \partial \Omega. \end{cases}$$

• Ω is an open bounded connected set in \mathbb{R}^n

• $f \in H^{-1}(\Omega)$ is the source term

• u_{Ω}^{f} is the unique solution in $H_{0}^{1}(\Omega)$ of the Poisson problem

The solution u_{Ω}^{f} of the Poisson problem (\mathcal{P}) is defined as the unique solution of the variational problem

 $(\mathcal{O}_{\mathcal{P}}) \inf \{\mathcal{J}(\Omega, u), \ u \in H^1_0(\Omega)\},\$

with $\sigma(0, y) = \frac{1}{2} \int |\nabla y|^2 \langle f(y) \rangle$ \vee $- \mu l(\mathbf{0})$

2. Symplectic NNs (SympNets)

This work is concerned with **geometric optimization**. In \mathbb{R}^2 , the **volume-preserving differentiable maps** are the **symplectic maps** (one can think of the flow of a Hamiltonian ordinary differential equation).

Objective: Train a symplectic NN to transform a disk into a given shape.

2.1. Principle of SympNets

Architecture

Definition (shear maps): One of the simplest families of symplectic transformations from \mathbb{R}^{2d} into \mathbb{R}^{2d} is called "shear maps", and is defined as follows

 $f_{up}\begin{pmatrix}x\\y\end{pmatrix} = \begin{pmatrix}x + \nabla V_{up}(y)\\y\end{pmatrix}; f_{down}\begin{pmatrix}x\\y\end{pmatrix} = \begin{pmatrix}x\\y + \nabla V_{down}(x)\end{pmatrix},$

3.2. Shape optimization loss function

We want to solve the problem $(\mathcal{O}_{\mathcal{P}})$. For that, we minimize the following parametric loss function [4]

$$\mathcal{J}(\theta,\omega,\{(\mathbf{x}_{i};\mu_{i})\}_{i=1}^{N}) = \frac{V_{0}}{N} \sum_{i=1}^{N} \left\{ \frac{1}{2} |A_{\omega} \nabla \mathbf{v}_{\theta,\omega} \cdot \nabla \mathbf{v}_{\theta,\omega}|^{2} - \widetilde{f_{\omega}} \mathbf{v}_{\theta,\omega} \right\} (\mathbf{x}_{i};\mu_{i})$$

 \blacktriangleright θ and ω the trainable weights for the PINN and the SympNet;

- ► $v_{\theta,\omega}$: $x \in C \mapsto \alpha(x)u_{\theta}(T_{\omega}x) + \beta(x) \in \mathbb{R}$ the solution of the Poisson problem set in $T_{\omega}C$;
- $T_{\omega}: \mathbb{R}^{2d} \to \mathbb{R}^{2d}$ the SympNets;
- ► $A_{\omega} = J_{T_{\omega}}^{-1} \cdot J_{T_{\omega}}^{-t}$ the metric tensor;
- $u_{\theta}: T_{\omega} \mathcal{C} \to \mathbb{R}$ the PINN;
- $\alpha : \mathcal{C} \mapsto \mathbb{R}$ a \mathcal{C}^{∞} function that vanishes on $\partial \mathcal{C}$;
- $\blacktriangleright \ \widetilde{f_{\omega}}: x \in \mathcal{C} \mapsto (f \circ T_{\omega})(x) \in \mathbb{R}.$

with
$$\mathcal{J}(\Omega, u) = \frac{1}{2} \int_{\Omega} |\nabla u|^2 - \langle f, u \rangle_{H^{-1}(\Omega), H^1_0(\Omega)}, \quad \forall u \in H^1_0(\Omega).$$

• The shape optimization problem. Introduce the Dirichlet energy \mathcal{E} , a shape functional given by

 $\mathcal{E}(\Omega):=\inf_{u\in H^1_0(\Omega)}\mathcal{J}(\Omega,u).$

Note that $\mathcal{E}(\Omega) = \mathcal{J}(\Omega, u_{\Omega}^{f})$. Minimizing the Dirichlet energy within sets of given volum $V_0 > 0$ is a prototypal problem in shape optimization. It reads

 $(\mathcal{O}_{\mathcal{D}})$ inf $\{\mathcal{E}(\Omega), \Omega \text{ bounded set of } \mathbb{R}^n, \text{ such that } |\Omega| = V_0\}.$

- ► **Objective**. Solve this problem with a *Neural Network (NN)*. We mention some of NNs advantages in the following non-exhaustive list.
 - 1. Automatic Differentiation (AD) avoids truncation errors;
 - 2. Parametric set of of source terms, or computational domains, thanks to Monte-Carlo integration;
 - 3. Mesh-free: work on very complex topologies
 - 4. Parallel code: joint gradient descent on several mutually dependent networks thanks to NNs. We train a network representing the solution of the PDE, and another network representing the computational domain.

1. PINNs and DeepRitz

We want to solve the problem (\mathcal{P}) in a fixed shape with a PINN. For that, we minimize the following loss function [1]

$$\mathcal{J}_{PDE}(\theta) = \frac{V_0}{N} \sum_{i=1}^N \frac{1}{2} |\nabla v_\theta(x_i)|^2 - f(x_i) v(x_i),$$

where $V_{up/down} \in C^1(\mathbb{R}^d, \mathbb{R})$, and $\nabla V : \mathbb{R}^d \to \mathbb{R}^d$ is the gradient of V. **Lemma [2]**: Any symplectic map can be approximated by the composition of several shear maps.

Theorem [2]: Let q > 0 be the depth of the NN, and 2*d* the dimension of the state space (here d = 1). We define $\widehat{\sigma_{K,a,b}}$ the approximation of ∇V in terms of an activation function σ , a vector $b \in \mathbb{R}^{q}$, a matrix $K \in \mathcal{M}_{q,2d}(\mathbb{R})$ and $a \in \mathbb{R}^{q}$ a vector, and diag $(a) = (a_{i}\delta_{ij})_{1 \leq i,j \leq q}$, as follows

$$\widehat{\sigma_{K,a,b}}(x) = K^t \text{diag}(a) \sigma(Kx + b)$$

We define the gradient modules \mathcal{G}_{up} and \mathcal{G}_{down} to approximate f_{up} and f_{down}

$$\mathcal{G}_{up}\begin{pmatrix} x\\ y \end{pmatrix} = \begin{pmatrix} x + \widehat{\sigma_{K,a,b}}(y)\\ y \end{pmatrix}; \quad \mathcal{G}_{down}\begin{pmatrix} x\\ y \end{pmatrix} = \begin{pmatrix} x\\ y + \widehat{\sigma_{K,a,b}}(x) \end{pmatrix}.$$

These functions are called gradient modules because $\widehat{\sigma_{K,a,b}}$ is able to approximate any ∇V .

Loss function

To learn a given symplectic map $\mathcal{T}_{objective}$ with a SympNet \mathcal{T}_{ω} , we minimize with respect to ω the following loss function [2]

$$\mathcal{J}_{\mathcal{S}}(\omega, \{x_i\}_{i=1}^N) = \sum_{i=1}^N |T_{\omega}(x_i) - \mathcal{T}_{\text{objective}}(x_i)|^2,$$

3.3. Numerical results

Theorem [3]: The problem (\mathcal{O}_D) has a unique solution (Ω^*, u^*) . The first order optimality condition reads: $\nabla u^* \cdot n$ is constant a.e. on $\partial \Omega^*$. For the numerical simulation, we take standard NNs settings in this section.

- \blacktriangleright θ is the trainable set of parameters of the PINN;
- ► $v_{\theta} = \alpha u_{\theta}$ is the approximation of the solution of (\mathcal{P});
- ► u_{θ} is the PINN;
- α is a C^{∞} function, such that $\gamma_0^{\partial\Omega}\alpha = 0$ (for instance, if Ω is a disk, $\alpha(x, y) = 1 - x - y$);
- ► *N* is the number of the $\{x_i\}_{i=1}^N$ collocation points.

1.1. Numerical results

For the first simulation, in 2D, we solve the Poisson equation (\mathcal{P}) in an annulus, with the source term $f = \exp(1 - (x/2)^2 - (2y)^2)$. The 4 layers of the network have 10, 20, 20 and 10 neurons respectively and the learning rate is $5 \cdot 10^{-3}$. We compare it to a Finite Element Method (FEM) simulation done with FreeFem++ with a 500 × 500 mesh.

1.2. What about the parametric problem?

Consider a source term f^p which depends on parameters $\mu \in \mathbb{M}$. The parameteric problem (\mathcal{P}^p) can still be solved for a slightly larger but comparable computation time. The parameteric Poisson problem then reads

where ω are trainable weights and $\{x_i\}_{i=1}^N$ are N collocation points.

► Can we make it parametric?

We propose to introduce $K_{\mu} \in \mathcal{M}_{q,n_{\mu}}(\mathbb{R})$ (with n_{μ} the number of parameters) and replace $\widehat{\sigma_{K,a,b}}(x)$ with [4]

 $\widetilde{\sigma}_{K,K_{\mu},a,b}(x;\mu) = K^{t} \sigma(Kx + b + K_{\mu}\mu).$

2.2. Numerical results

Here, we trained a SympNet to learn the parametric family of symplectic maps $\mathcal{T}_{\mu}=\mathcal{S}_{\mu}^{1}\circ\mathcal{S}_{\mu}^{2}$, with

 $\begin{cases} \mathcal{S}^1_\mu: (x,y;\mu) \mapsto (x-\mu y^2+0.3\sin(\frac{y}{\mu})-0.2\sin(8y), & y) \\ \mathcal{S}^2_\mu: (x,y;\mu) \mapsto (x, & y+0.2\mu x+0.12\cos(x)) \end{cases}$

The SympNet was trained with 4 up and down networks, a width q = 5 and with a learning rate equal to 10^{-2} .

3. Shape optimization with NNs

problem

We now minimize the Dirichlet energy for

 $(\mathcal{B}) \begin{cases} -\Delta u = 0 & \text{in } \Omega; \\ u = 1 & \text{on } \Gamma_i; \\ u = 0 & \text{on } \Gamma_e. \end{cases}$

Our numerical strategy remains to learn a symplectic map T_{ω} minimizing the Dirichlet energy. To handle the boundary $\partial \Gamma_i$, we compute $T_{\omega}^{-1}K$ [4].

For the numerical simulations, we take standard NNs settings, and K is an ellipse of parameters (a = 0.6, b = 1/0.6).

 $\left(\mathcal{P}^{p}
ight)egin{cases} -\Delta u^{p}(x;\mu)=f^{p}(x;\mu), & ext{for}\left(x;\mu
ight)\in\Omega imes\mathbb{M};\ u^{p}(x;\mu)=0, & ext{for}\left(x;\mu
ight)\in\partial\Omega imes\mathbb{M}. \end{cases}$

M is the space of parameters;
 f^p: Ω × M → ℝ is the parametric source term.
 We train the loss function J^p with {x_i, μ_i}^N_{i=1} ∈ Ω × M

$$\mathcal{J}_{PDE}^{p}\left(\theta; \{x_{i}, \mu_{i}\}_{i=1}^{N}\right) = \frac{V_{0}}{N} \sum_{i=1}^{N} \left\{\frac{1}{2} |\nabla v_{\theta}^{p}|^{2} - f^{p} v_{\theta}^{p}\right\}(x_{i}; \mu_{i}),$$

3.1. Solving a PDE in a shape generated by a symplectic map

Objective: Train a SympNet and a PINN to transform a circle into the optimal shape for the Dirichlet energy.

Lemma [4]: Let \mathcal{T} be a differentiable map and $u_{\mathcal{T}} \in H_0^1(\mathcal{TC})$, such that $w = u_{\mathcal{T}} \circ \mathcal{T} \in H_0^1(\mathcal{C})$. If $u_{\mathcal{T}}$ is the solution of (\mathcal{P}) , then w is solution of

1. $A : \mathcal{C} \to \mathbb{R} = J_{\mathcal{T}}^{-1} \cdot J_{\mathcal{T}}^{-t}$ is a uniformly elliptic metric tensor; 2. $J_{\mathcal{T}} = D\mathcal{T}$ the Jacobian matrix of \mathcal{T} in the canonical basis of \mathbb{R}^2 ; 3. $\tilde{f} = f \circ \mathcal{T} : \mathcal{C} \to \mathbb{R}$ the source term.

The previous problem can be formulated in a weaker sense, as the following optimization problem:

 $(\mathcal{O}_{\mathcal{P}_{\mathcal{T}}}) \quad \inf \left\{ \frac{1}{2} \int_{\mathcal{C}} A \nabla w \cdot \nabla w - \int_{\mathcal{C}} \widetilde{f} v, \quad w = u_{\mathcal{T}} \circ \mathcal{T} \in H^1_0(\mathcal{C}) \right\}.$

Remark: In spirit, we compute a shape derivative of \mathcal{J} .

Ongoing work and perspectives

- Publish the open source code GeSONN (GEometric Shape Optimization with Neural Networks)
- Investigate GeSONN for the compliance loss function
- Adapt GeSONN to the other equations

► Fixed point algorithm

References

- [1] W. E, Y. Bing. The Deep Ritz method: A deep learning-based numerical algorithm for solving variational problems. *Commun. Math. Stat.* 6:1–12, (2018).
- [2] P. Jin, Z. Zhang, A. Zhu, Y. Tang and G. E. Karniadakis. SympNets: Intrinsic structure-preserving symplectic networks for identifying Hamiltonian systems. *Neural Networks*, 132:166–179, 2020.
- [3] A. Henrot and M. Pierre. Shape Variation and Optimization: Geometrical Analysis. *Mathématiques & Applications*, 2005.
- [4] A. Bélières–Frendo, E. Franck, V. Michel-Dansac and Y. Privat. Geometric shape optimization for Dirichlet energy with NNs. *in preparation*, 2024.