Geometric shape optimization for Dirichlet energy with physics informed and symplectic neural networks Congrès d'Analyse Numérique 2024

> A. <u>BÉLIÈRES-FRENDO</u>^{1,2} E. FRANCK^{1,2,3} V. MICHEL-DANSAC^{1,2,3} Y. PRIVAT^{2,3,4}

IRMA, Université de Strasbourg¹ - NumPEx² - INRIA, MACARON team³ Institut Élie Cartan de Lorraine, Univ. Lorraine⁴ - INRIA, SPHINX team⁵

May 28th 2024 - Île de Ré

Univ	ersité	
	de Strasbourg	

(IRMA, Université de Strasbourg)

Context

Objectives

Limitations of existing shape derivative methods

- Derivative calculation can be highly complex (multiphysics model)
- determination of an adjoint problem and a descent step: very costly in terms of computation time and memory allocation
- highly local approaches
- not "well-posed" for all physical models (turbulent Navier-Stokes equations)

Discover neural networks algorithms

- Automatic Differentiation (AD) avoids truncation errors
- Monte-Carlo integration for parametric problems and very complex topologies
- joint gradient descent on several mutually dependent networks
- GPU computation, highly parallelized/vectorized
- Asymptotic convexity

Objective: Proof of concept on a very simple model, the Dirichlet energy minimization

Underlying PDE

$$(\mathcal{P}):\begin{cases} -\Delta u = f & \text{ in } \Omega; \\ u = 0 & \text{ on } \partial \Omega. \end{cases} \stackrel{\text{(f f is regular enough)}}{\leftarrow} (\mathcal{P}_{\mathcal{O}}): \inf_{v \in H^1_0(\Omega)} \int_{\Omega} |\nabla v|^2 - fv \end{cases}$$

"Natural" energy:

$$\mathcal{E}(\Omega) = \int_{\Omega} |
abla u|^2 - fu$$

Minimization problem:

 $(\mathcal{D}): \quad \inf\{\mathcal{E}(\Omega), \Omega \text{ bounded open set of } \mathbb{R}^n, \text{ such that } |\Omega| \leq V_0\}.$

(IRMA, Université de Strasbourg)

Mathematical results¹

Existence and regularity

There exists an optimal shape. Studying the regularity of the solutions is not an easy issue, and not central in this work.

First order optimality condition

Let $f \in L^2_{loc}(\mathbb{R}^n)$. If Ω is a solution to (\mathcal{D}) with a C^2 boundary, then there exists c > 0 such that

$$\nabla u_{\Omega}^{f}|=c \text{ on } \partial \Omega.$$

¹A. Henrot and M. Pierre, *Variation et optimisation de formes: Une analyse géométrique*. Springer Berlin Heidelberg, 2005.

(IRMA, Université de Strasbourg)

Overview

How to represent a shape?

Existing methods

- Boundary nodes of a mesh
- density and micro-structure
- Ievel-set function
- porous materials
- differentiable map

Symplectic maps

- Symplectic maps are differentiable maps that preserves a symplectic structure
- algebraic interpetation: $\langle ., J. \rangle$ is preserved with $J = \begin{pmatrix} 0 & l \\ -l & 0 \end{pmatrix}$
- physical idea: the flow of an Hamiltonian ODE is a symplectic map
- symplectic maps preserve the volume
- $\bullet\,$ the symplectic form is the volume form in \mathbb{R}^2

Some usefull properties

Shear maps

One of the simplest families of symplectic transformations from \mathbb{R}^{2d} into \mathbb{R}^{2d} is called "shear maps", and is defined as follows

$$f_{
m up}\begin{pmatrix} x_1\\ x_2 \end{pmatrix} = \begin{pmatrix} x_1 +
abla V_{
m up}(x_2)\\ x_2 \end{pmatrix}$$
 and $f_{
m down}\begin{pmatrix} x_1\\ x_2 \end{pmatrix} = \begin{pmatrix} x_1\\ x_2 +
abla V_{
m down}(x_1) \end{pmatrix}$
where $V_{
m up/down} \in C^1(\mathbb{R}^d, \mathbb{R})$, and $abla V : \mathbb{R}^d o \mathbb{R}^d$ is the gradient of V .

Lemma

Any symplectic map can be approximated by the composition of several shear maps - the composition of several symplectic maps still remains symplectic.

SympNets²

Theorem

Let q > 0 be the depth of the NN. In practice, we set q > 2d. We define $\widehat{\sigma_{K,a,b}}$ the approximation of ∇V in terms of an activation function $\sigma : \mathbb{R} \to \mathbb{R}$, two vectors $a, b \in \mathbb{R}^q$, a matrix $K \in \mathcal{M}_{q,n}(\mathbb{R})$, and $\operatorname{diag}(a) = (a_i \delta_{ij})_{1 \leq i,j \leq q}$, as follows

$$\widehat{\sigma_{K,a,b}}(x) = K^t \operatorname{diag}(a) \sigma(Kx + b),$$

Then, gradient modules \mathcal{G}_{up} and \mathcal{G}_{down} are defined to approximate f_{up} and $f_{down},$ by

$$\mathcal{G}_{\mathsf{up}}\begin{pmatrix}x_1\\x_2\end{pmatrix} = \begin{pmatrix}x_1 + \widehat{\sigma_{\mathcal{K}, \mathfrak{a}, b}}(x_2)\\x_2\end{pmatrix} \quad \text{and} \quad \mathcal{G}_{\mathsf{down}}\begin{pmatrix}x_1\\x_2\end{pmatrix} = \begin{pmatrix}x_1\\x_2 + \widehat{\sigma_{\mathcal{K}, \mathfrak{a}, b}}(x_1)\end{pmatrix}.$$

²P. Jin, Z. Zhang, A. Zhu, *et al.*, "SympNets: Intrinsic structure-preserving symplectic networks for identifying Hamiltonian systems," *Neural Networks*, vol. 132, pp. 166–179, 2020.

(IRMA, Université de Strasbourg)

G-SympNets

A symplectic network

Loss function to learn a given symplectic map ${\mathcal T}$

$$\mathcal{J}_{\mathcal{S}}(\omega; \{x_i\}_{i=1}^N) = \sum_{i=1}^N |T_{\omega}(x_i) - \mathcal{T}(x_i)|^2,$$

And for parametric problems?

 $\widehat{\sigma_{K,a,b}}(x) = K^t \operatorname{diag}(a) \sigma(Kx + b)$ becomes:

$$\widetilde{\sigma}_{K,K_{\mu},a,b}(x;\mu) = K^t \sigma(Kx + b + K_{\mu}\mu).$$

- n_{μ} number of parameters
- $\mu \in \mathbb{M} \subset \mathbb{R}^{n_{\mu}}$
- $K_{\mu} \in \mathcal{M}_{q,n_{\mu}}(\mathbb{R})$

One can show that $\tilde{\sigma}_{\mathcal{K},\mathcal{K}_{\mu},\mathbf{a},b}$ is a gradient module, and that the whole network remains symplectic with respect to $x \in \mathbb{R}^{2d}$, for each parameter $\mu \in \mathbb{M}$.

Learning a simply connected parameterized shape with a SympNet

We introduce the symplectic map $\mathcal{T}_{\mu}=\mathcal{S}_{\mu}^{1}\circ\mathcal{S}_{\mu}^{2}$, with

$$\begin{cases} S^1_{\mu} : (x_1, x_2; \mu) \mapsto (x_1 - \mu x_2^2 + 0.3 \sin(\frac{x_2}{\mu}) - 0.2 \sin(8x_2), & x_2), \\ S^2_{\mu} : (x_1, x_2; \mu) \mapsto (x_1, & x_2 + 0.2\mu x_1 + 0.12 \cos(x_1)). \end{cases}$$

Numerical simulation parameters

- Number of networks: 4;
- width of networks: 10;
- learning rate: 10^{-2} ;
- collocation points: 10⁴;
- epochs: 10³;
- μ ∈ (0.5, 2).

Learning a parametric family of symplectic maps

Figure: Learning the symplectic map $\mathcal{T}_{\mu} = S^{1}_{\mu} \circ S^{2}_{\mu}$, with $S^{1}_{\mu} : (x_{1}, x_{2}; \mu) \mapsto (x_{1} - \mu x_{2}^{2} + 0.3 \sin(\frac{x_{2}}{\mu}) - 0.2 \sin(8x_{2}), x_{2})$ $S^{2}_{\mu} : (x_{1}, x_{2}; \mu) \mapsto (x_{1}, x_{2} + 0.2\mu x_{1} + 0.12 \cos(x_{1})).$ Hausdorff distance is computed randomly sample 1000 points in $\mathbb{M} = [0.5, 2]$

Table: Statistics on the Hausdorff distance between the reference shape and the learned shape, on the parameter set $\mathbb{M} = [0.5, 2]$.

Mean value	Maximal value	Minimal value	Variance
9.45×10^{-3}	$2.10 imes10^{-2}$	$6.05 imes10^{-3}$	4.50×10^{-6}

-

(IRMA, Université de Strasbourg)

Learning-based shape Optimisation

May 28, 2024

Principle of the algorithm³

³M. Raissi, P. Perdikaris, and G. E. Karniadakis, "Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations." *J. Comput. Phys.*, vol. 378, pp. 686–707, 2019 (IRMA, Université de Strasbourg). Learning-based shape Optimisation. May 28, 2024 16/36

Network tuning

Boundary conditions

• Network: u_{θ}

• solution:
$$v_{\theta} = u_{\theta}\beta + \alpha$$

- β s.t. $\gamma^{0}_{\partial\Omega}\beta = 0$
- α s.t. $\gamma^{0}_{\partial\Omega}\alpha$ is equal to the boundary condition of (\mathcal{P})

Example for (\mathcal{P}) in the unit disk: $\alpha(x, y) = 0$ and $\beta(x, y) = 1 - x^2 - y^2$.

Loss function

$$\mathcal{J}_{N}\left(\theta; \{x_i\}_{i=1}^{N}\right) = \frac{V_0}{N} \sum_{i=1}^{N} \left\{ \frac{1}{2} |\nabla v_{\theta}(x_i)|^2 - f(x_i) v_{\theta}(x_i) \right\},$$

where $\{x_i\}_{i=1}^N \in \Omega^N$ are N collocation points.

Remark: $\mathcal{J}_N\left(\theta; \{x_i\}_{i=1}^N\right) = \mathcal{J}(u_\theta, \Omega) + \mathcal{O}(N^{-1/2}).$

Resolution of a parametric family of PDEs

PINNs

Setting of the parametric problem

- n_{μ} : number of parameters μ in the problem
- $\mathbb{M} \subset \mathbb{R}^{n_{\mu}}$: the space of parameters
- $u^{
 ho}_{ heta}:\Omega imes\mathbb{M}
 ightarrow\mathbb{R}$ the parametric neural network

•
$$f^{p}: \Omega \times \mathbb{M} \to \mathbb{R}$$

 $(\mathcal{P}^{p}): \begin{cases} -\Delta u^{p}(x;\mu) = f^{p}(x;\mu), & \text{for } (x;\mu) \in \Omega \times \mathbb{M}; \\ u^{p}(x;\mu) = 0, & \text{for } (x;\mu) \in \partial\Omega \times \mathbb{M}. \end{cases}$
Example: $\mathbb{M} = \mathbb{R} \times \mathbb{R}, f^{p}: (x = (x_{1}, x_{2}); \mu = (\mu_{1}, \mu_{2})) \mapsto \exp(1 - \left(\frac{x_{1}}{\mu_{1}}\right)^{2} - \left(\frac{x_{2}}{\mu_{2}}\right)^{2}).$

Loss function

$$\mathcal{J}_{N}^{p}\left(\theta;\{x_{i},\boldsymbol{\mu}_{i}\}_{i=1}^{N}\right) = \frac{V_{0}}{N}\sum_{i=1}^{N}\left\{\frac{1}{2}|\nabla v_{\theta}^{p}(x_{i};\boldsymbol{\mu}_{i})|^{2} - f^{p}(x_{i};\boldsymbol{\mu}_{i})v_{\theta}^{p}(x_{i};\boldsymbol{\mu}_{i})\right\}.$$

How to manage the boundary conditions in complex geometries?

Domain generated by a symplectic transformation of the unit disk of \mathbb{R}^2

we introduce $w : \mathcal{C} \to \mathbb{R}$, defined for a.e. $x \in \Omega$ by

$$w(x) = (u_{\mathcal{T}} \circ \mathcal{T})(x)$$

New equation⁴

PDE

$$\begin{cases} -\operatorname{div}(A\nabla w) = f \circ \mathcal{T}, & \text{ in } \mathcal{C}; \\ w = 0, & \text{ on } \mathcal{C}, \end{cases}$$

with $A: \mathcal{C} \to \mathbb{R}$ a uniformly elliptic metric tensor, defined by

$$A=J_{\mathcal{T}}^{-1}\cdot J_{\mathcal{T}}^{-t},$$

Optimization problem

$$\inf\left\{\frac{1}{2}\int_{\mathcal{C}}A\nabla w\cdot\nabla w-\int_{\mathcal{C}}\widetilde{f}v,\quad \exists u_{\mathcal{T}}\in H^{1}_{0}(\mathcal{TC}),\quad w=u_{\mathcal{T}}\circ\mathcal{T}\in H^{1}_{0}(\mathcal{C})\right\}$$

⁴A. Belieres Frendo, E. Franck, V. Michel Dansac, *et al.*, "Learning-based shape optimisation," *To be published soon...*,

(IRMA, Université de Strasbourg)

Numerical experiments

Equation to solve

Poisson problem, with a parametric source term f, given by

$$f(x, y; a) = \exp\left(1 - \left(\frac{x}{a}\right)^2 - (ay)^2\right), \quad a \in (0.5, 1.5),$$
 (1)

 $\mathcal{T}_{\mu=0.5}(\mathcal{B}(1,0) \setminus \mathcal{B}(0.2,0))$ is the computational domain.

Network parameters

- layer sizes: 3, 20, 40, 40, 20, 1
- learning rate: 2×10^{-3}
- activation: tanh
- collocation points: 20000
- epochs: 1500

Poisson equation in a patatoïd with parametric source term

Table: Statistics on $|\int_{\Omega} A \nabla u \nabla \varphi - f \varphi|$ for 10³ quasi-random test functions φ

Mean value	Maximal value	Minimal value	Variance
8.43×10^{-3}	4.53×10^{-2}	1.10×10^{-5}	5.01×10^{-5}

(IRMA, Université de Strasbourg)

GeSONN

Overview

Two neural networks, but a single loss function⁵

The Dirichlet energy as a loss function

$$\mathcal{J}_{P/S}(\theta,\omega;\{x_i\}^N) = \frac{V_0}{N} \sum_{i=1}^N \left\{ \frac{1}{2} \left| A_\omega \nabla v_{\theta,\omega} \cdot \nabla v_{\theta,\omega} \right|^2 - \widetilde{f}_\omega v_{\theta,\omega} \right\} (x_i)$$

- θ the trainable weights of the PINN, ω the trainable weights of the SympNet;
- $v_{\theta,\omega} : C \to \mathbb{R}; x \mapsto \beta(x)u_{\theta}(T_{\omega}x) + \alpha(x)$ the solution of the Poisson problem set in $T_{\omega}C$;
- $T_{\omega}: \mathbb{R}^{2d} \to \mathbb{R}^{2d}$ the SympNet;
- u_{θ} : $T_{\omega}C \rightarrow \mathbb{R}$ the PINN;

⁵A. Belieres Frendo, E. Franck, V. Michel Dansac, *et al.*, "Learning-based shape optimisation," *To be published soon...*,

(IRMA, Université de Strasbourg)

Numerical experiment on an analytical solution, f = 1

Figure: Shape optimization, f = 1. Top left: learned shape (green line) and reference shape (red line). Top right: learned optimality condition. Bottom left: learned PDE solution. Bottom right: pointwise error.

(IRMA, Université de Strasbourg)

Numerical experiment on an analytical solution, f = 1

Relevant metrics related to the shape optimization of the Poisson equation with f = 1.

Hausdorff distance	variance of the optimality condition	L^2 error
$3.09 imes10^{-2}$	$1.88 imes10^{-5}$	9.15×10^{-5}

Source terms for numerical simulations

Exponential of level-set functions

We define $\phi(x, y)$ the level set function of a given shape. In the next slides we will use a source term under the form:

 $f(x,y) = \exp(\phi(x,y))$

GeSONN

Numerical experiments for parametric problems

$\phi(x, y; a) = 1 - \left(\frac{x}{a}\right)^2 - (ay)^2, \quad a \in (0.5, 1.5) (1/2)$

Figure: Approximate solution (top left, top right, and bottom left), optimality conditions (bottom right).

 $\phi(x, y; a) = 1 - \left(\frac{x}{a}\right)^2 - (ay)^2, \quad a \in (0.5, 1.5) (2/2)$

Statistics of relevant metrics in the case of a parametric source term given by (1), obtained by computing each metric for 10^3 values of μ .

Metric	Mean	Max	Min	Variance
optim. cond. var. form.	$\begin{array}{c} 1.88 \times 10^{-4} \\ 5.89 \times 10^{-2} \end{array}$	$\begin{array}{c} 4.97 \times 10^{-4} \\ 1.58 \times 10^{-1} \end{array}$	$\begin{array}{c} 6.91 \times 10^{-5} \\ 3.21 \times 10^{-3} \end{array}$	$\begin{array}{c} 7.12 \times 10^{-9} \\ 8.37 \times 10^{-4} \end{array}$

The Bernoulli overdetermined PDE

Problem statement

 $\begin{cases} -\Delta u_{\Omega}^{K}=0 & \text{in } \Omega, \\ u_{\Omega}^{K}=1 & \text{on } \Gamma_{i}, \\ u_{\Omega}^{K}=0 & \text{on } \Gamma_{e}, \\ \nabla u \cdot n=c & \text{on } \partial \Gamma_{e}. \end{cases}$

The Dirichlet energy has to be optimized!

The solution u_{Ω}^{K} of Bernoulli problem remains a minimum of the Dirichlet energy

$$\mathcal{E}_{\mathcal{K}}(\Omega) = \frac{1}{2} \int_{\Omega} |\nabla u_{\Omega}^{\mathcal{K}}|^2$$

30 / 36

Numerical strategy for the Bernoulli problem⁶

How to sample points?

⁶A. Belieres Frendo, E. Franck, V. Michel Dansac, *et al.*, "Learning-based shape optimisation," *To be published soon...*,

(IRMA, Université de Strasbourg)

Bernoulli overdetermined PDE resolution

K is an ellipse of parameters a = 6/10 and b = 10/6

Conclusion

(IRMA, Université de Strasbourg)

What is going next ?

With SympNets

- Minimization of the first eigen value of the Laplacian
- 3D
- Stokes equations
- compliance

Topological optimization

Porous materials.

Thank you for your attention!

Bibliography

- [1] A. Henrot and M. Pierre, *Variation et optimisation de formes: Une analyse géométrique*. Springer Berlin Heidelberg, 2005.
- [2] P. Jin, Z. Zhang, A. Zhu, Y. Tang, and G. E. Karniadakis, "SympNets: Intrinsic structure-preserving symplectic networks for identifying Hamiltonian systems," *Neural Networks*, vol. 132, pp. 166–179, 2020.
- [3] M. Raissi, P. Perdikaris, and G. E. Karniadakis, "Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations," *J. Comput. Phys.*, vol. 378, pp. 686–707, 2019.
- [4] A. Belieres Frendo, E. Franck, V. Michel Dansac, and Y. Privat, "Learning-based shape optimisation," *To be published soon...*,