ODE flows and volume constraints in shape optimization

Amaury Bélières–Frendo¹, Charles Dapogny², Victor Michel-Dansac³, Yannick Privat^{4,5}

- ¹ Institut de Recherche Mathématique Avancée, Université de Strasbourg, Strasbourg, France
 ² Laboratoire Jean Kuntzmann, CNRS, Grenoble, France
- ³ MACARON project-team, Université de Strasbourg, CNRS, Inria, IRMA, Strasbourg, France ⁴ Institut Élie Cartan de Lorraine, École des Mines de Nancy, Nancy, France ⁵ Institut Universitaire de France

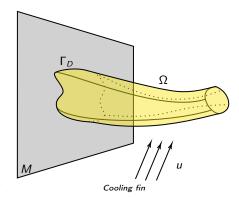
6th May. 2025 - ANR Stoigues - Autrans

- Foreword
 - Constraints in shape optimization
 - Intrinsic volume preservation
- Mathematical framework for volume-preserving shape-optimization
 - Background on shape derivatives
 - Volume-preserving ODE flows
 - Reformulation of the shape optimization problem
 - The special case of dimension 2 and symplectic geometry
- Neural networks can solve shape optimization problems
 - Neural symplectic maps
 - PDE resolution
 - Combinaison of PINNs and SympNets

- Foreword
 - Constraints in shape optimization
 - Intrinsic volume preservation
- Mathematical framework for volume-preserving shape-optimization
 - Background on shape derivatives
 - Volume-preserving ODE flows
 - Reformulation of the shape optimization problem
 - The special case of dimension 2 and symplectic geometry
- 3 Neural networks can solve shape optimization problems
 - Neural symplectic maps
 - PDE resolution
 - Combinaison of PINNs and SympNets

Constraints in shape optimization

- Objectives of the PhD: neural methods for reach constrained shape optimization problems
- Could neural networks solve turbulent Navier-Stokes shape optimization problems?
- Existence and regularity of optimal shapes depend on the the admissible set, i.e. on the constraints of the problem.
- Numerical methods are designed to enforce these constraints.



- Foreword
 - Constraints in shape optimization
 - Intrinsic volume preservation
- 2 Mathematical framework for volume-preserving shape-optimization
 - Background on shape derivatives
 - Volume-preserving ODE flows
 - Reformulation of the shape optimization problem
 - The special case of dimension 2 and symplectic geometry
- 3 Neural networks can solve shape optimization problems
 - Neural symplectic maps
 - PDE resolution
 - Combinaison of PINNs and SympNets

Setting and objectives (I)

We aim to solve the following volume-constrained shape optimization problem

$$\inf_{\substack{\Omega \in \mathscr{O}_{\mathrm{ad}} \\ |\Omega| \leq V_{\mathbf{0}}}} \mathscr{J}(\Omega),$$

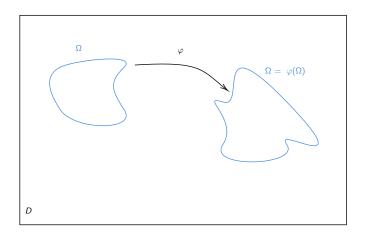
with $\Omega \subset D$ a shape in $\mathscr{O}_{\mathrm{ad}}$, an admissible space to be specified, $V_0 \in \mathbb{R}_+^*$, and \mathscr{J} a shape functional defined by

$$\mathscr{J}(\Omega) = \int_{\Omega} j(u_{\Omega}) dx,$$

where j is regular, and u_{Ω} is the solution of the Poisson problem, with $f \in L^{2}(\Omega)$

$$\begin{cases} -\Delta u_{\Omega} = f & \text{in } \Omega; \\ u_{\Omega} = 0 & \text{on } \partial \Omega. \end{cases}$$

Setting and objectives (II)



We want to build a volume-preserving mapping φ that sends a given shape onto the optimal one.

Setting and objectives (III)

- \bullet Build a parametrization of the mapping φ that preserves the volume of the shape.
- Compute the shape-derivative of the objective function with respect to these parameters introduced before.

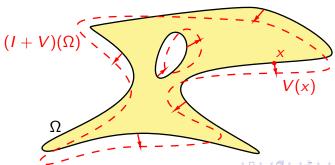
- Foreword
 - Constraints in shape optimization
 - Intrinsic volume preservation
- Mathematical framework for volume-preserving shape-optimization
 - Background on shape derivatives
 - Volume-preserving ODE flows
 - Reformulation of the shape optimization problem
 - The special case of dimension 2 and symplectic geometry
- 3 Neural networks can solve shape optimization problems
 - Neural symplectic maps
 - PDE resolution
 - Combinaison of PINNs and SympNets

Computation of the shape derivative (I)

Definition 1 (Shape derivative in the sense of Hadamard)

One function $\mathscr{J}(\Omega)$ of the domain is said to be shape differentiable at Ω if the underlying mapping $V\mapsto\mathscr{J}((I+V)(\Omega))$, from $W^{1,\infty}(\mathbb{R}^d,\mathbb{R}^d)$ into \mathbb{R} is Fréchet differentiable at V=0. The corresponding Fréchet differential is denoted by $(d\mathscr{J}(\Omega),V)$ and the following expansion holds

$$\mathscr{J}((\mathrm{I}+V)(\Omega))=\mathscr{J}(\Omega)+\langle\mathrm{d}\mathscr{J}(\Omega),V\rangle+\mathrm{o}(||V||_{B^{1,\infty}(0,1)}).$$



Computation of the shape derivative (II)

Theorem 1 (Hadamard shape derivative).

Let \(\mathcal{I} \) be a shape functional defined by

$$\mathscr{J}(\Omega) = \int_{\Omega} j(u_{\Omega}) dx,$$

where j is regular, and u_{Ω} is the solution of the Poisson problem, with $f \in L^{2}(\Omega)$

$$\begin{cases} -\Delta u_{\Omega} = f & \text{in } \Omega; \\ u_{\Omega} = 0 & \text{on } \partial \Omega. \end{cases}$$

Thus

$$\langle d \mathscr{J}(\Omega), V \rangle = \int_{\partial \Omega} v_{\Omega} V \cdot n \, d\sigma,$$

with $v_{\Omega} := (j(u_{\Omega}) - \nabla u_{\Omega} \cdot \nabla p_{\Omega})$ where p_{Ω} solves

$$\begin{cases} -\Delta p_{\Omega} = -j'(u_{\Omega}) & \text{in } \Omega; \\ p_{\Omega} = 0 & \text{on } \partial \Omega, \end{cases}$$

 p_{Ω} is called adjoint state.

- Foreword
 - Constraints in shape optimization
 - Intrinsic volume preservation
- Mathematical framework for volume-preserving shape-optimization
 - Background on shape derivatives
 - Volume-preserving ODE flows
 - Reformulation of the shape optimization problem
 - The special case of dimension 2 and symplectic geometry
- 3 Neural networks can solve shape optimization problems
 - Neural symplectic maps
 - PDE resolution
 - Combinaison of PINNs and SympNets

Volume-preserving ODE flows

The flow associated with a divergence-free vector field V in $D\subset\mathbb{R}^n$ is defined by the ODE

$$\begin{cases} \partial_t \varphi(t,x) = V \circ \varphi(t,x) & \forall (t,x) \in [0,1] \times D; \\ \varphi(0,x) = x & \forall x \in D, \end{cases}$$

and φ is volume-preserving, i.e. $\forall t, \Omega$, $|\Omega| = |\varphi(t, \Omega)|$.

Helmoltz decomposition of divergence-free vector fields

Any vector field $V \in L^2(D)^d$ can be decomposed in the following way

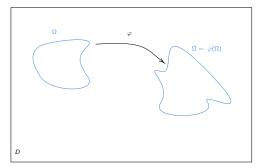
$$V = \operatorname{curl} \phi + \nabla z$$
.

If $V \in L^2(D)^d$ is assumed to be divergence-free, z solves

$$\begin{cases} -\Delta z = 0 & \text{in } D; \\ z = g & \text{on } \partial D, \end{cases}$$

with $g \in H^{1/2}(D)$.

We call
$$\varphi_{phi,g}$$
 the solution of
$$\begin{cases} \partial_t \varphi_{\phi,g}(t,x) = (\mathrm{curl}\phi + \nabla z(g)) \circ \varphi_{\phi,g}(t,x) & \forall (t,x) \in [0,1] \times D; \\ \varphi_{\phi,g}(0,x) = x & \forall x \in D, \end{cases}$$



- Foreword
 - Constraints in shape optimization
 - Intrinsic volume preservation
- Mathematical framework for volume-preserving shape-optimization
 - Background on shape derivatives
 - Volume-preserving ODE flows
 - Reformulation of the shape optimization problem
 - The special case of dimension 2 and symplectic geometry
- Neural networks can solve shape optimization problems
 - Neural symplectic maps
 - PDE resolution
 - Combinaison of PINNs and SympNets

A reformulated optimization problem

The shape functional under consideration is

$$\mathscr{J}(\Omega) = \int_{\Omega} j(u_{\Omega}) dx,$$

To compute a gradient descent on the parameters of the volume preserving map, we introduce the new shape functional

$$\widehat{\mathscr{J}}(\phi, g) := \mathscr{J}(\varphi_{\phi,g}(1, \Omega)) = \int_{\Omega_{\phi,g}} j(u_{\phi,g}) dx,$$

with $\Omega_{\phi,g}=arphi_{\phi,g}(1,\Omega)$ and $u_{\phi,g}\in H^1_0(\Omega_{\phi,g})$ solution of

$$\begin{cases} -\Delta u_{\phi,g} = f & \text{in } \Omega_{\phi,g}; \\ u_{\phi,g} = 0 & \text{on } \partial \Omega_{\phi,g}. \end{cases}$$

Remark: by searching the minimum of $\widehat{\mathscr{J}}$, we are now solving a constraint-free optimization problem. We now have to compute the differential of $\widehat{\mathscr{J}}$ with respect to ϕ and g.

Computation of the functionnal derivative (I)

As $\varphi_{\phi,g}$ replaces I+V in the shape derivative in the sens of Hadamard, we use the chain rule applied in $(\phi, g) = 0$, in the direction $(\widehat{\phi}, \widehat{g})$ in the Hadamard formulae

$$\widehat{\mathscr{J}}(\phi, g) = \int_{\Omega} j(u_{\phi,g}) dx,$$

becomes

$$\langle d\widehat{\mathscr{J}}(0), \widehat{\phi} \rangle = \int_{\partial\Omega} v_{\Omega} \operatorname{curl} \widehat{\phi} \cdot n \, d\sigma,$$

and

$$\langle \mathrm{d} \, \widehat{\mathscr{J}}(0), \, \widehat{g} \rangle = \int_{\partial \Omega} v_{\Omega} \, \nabla z(\widehat{g}) \cdot n \, \mathrm{d} \sigma.$$

With $v_{\Omega} = j(u_{\Omega}) - \nabla u_{\Omega} \cdot \nabla p_{\Omega}$.

We want to express the shape derivatives as a scalar product exploitable to compute a gradient descent.

Computation of the functionnal derivative (II)

After some computations, the shape derivatives are given by

$$\left\langle \frac{\partial \widehat{\mathscr{J}}}{\partial g}(0,0),\,\widehat{g}\right\rangle = \left\langle \frac{\partial \underline{y_\Omega}}{\partial n},\,\widehat{g}\right\rangle_{L^2(\partial D)},$$

with $y_{\Omega} \in H_0^1(\Omega)$, such that for all $w \in H_0^1(\Omega)$,

$$\int_{D} \nabla y_{\Omega} \cdot \nabla w \, dx = \int_{D} \nabla w \cdot \nabla q_{\Omega} \, dx,$$

and $q_{\Omega} \in H^1(D)$ the orthogonal projection of $v_{\Omega} \in H^1(\Omega)$ on $H^1(D)$, such that for all $w \in H^1(D)$,

$$\int_{D} \nabla \mathbf{q}_{\Omega} \cdot \nabla w \, \mathrm{d}x = -\int_{\Omega} \nabla \mathbf{v}_{\Omega} \cdot \nabla w \, \mathrm{d}x.$$

8 / 41

Computation of the functionnal derivative (III)

$$\left\langle \frac{\partial \widehat{\mathscr{J}}}{\partial \phi}(0,0),\, \widehat{\phi} \right\rangle = \left\langle \operatorname{curl}\! \xi_\Omega,\, \widehat{\phi} \right\rangle_{L^2(\partial D)},$$

with $\xi_{\Omega} \in H^1(D)$, for all $w \in H^1(D)$,

$$\langle \xi_{\Omega}, w \rangle_{H^{1}(D)} = - \int_{\partial \Omega} v_{\Omega} \langle \operatorname{curl} w, n \rangle dx.$$

- Solve the partial differential equations (PDEs):
 - Solve the following PDEs on the domain Ω : u_{Ω} , p_{Ω} , q_{Ω} , y_{Ω} , ξ_{Ω} .
- Construct the divergence-free vector field:
 - Compute $\nabla z(g)$ and $\operatorname{curl} \xi_{\Omega}$.
 - Combine these quantities to form a divergence-free vector field.
- Compute the associated flow (ordinary differential equation):
 - Integrate the flow $\varphi(t,x)$ defined by the previous vector field, for $t \in [0,1]$, with the initial condition $\varphi(0,x) = x$.
- Domain deformation:
 - Transport the domain Ω by the obtained flow: $\Omega_{\mathsf{final}} := \varphi(1,\Omega)$.

Remark: all the equations can be solved using any numerical method (FEM, NNs). The shape can be represented either by a mesh or a level set function. This is not an issue, as for now it remains an abstract method that can be implemented with any numerical technique.

plots

lien vidéo

- Foreword
 - Constraints in shape optimization
 - Intrinsic volume preservation
- Mathematical framework for volume-preserving shape-optimization
 - Background on shape derivatives
 - Volume-preserving ODE flows
 - Reformulation of the shape optimization problem
 - The special case of dimension 2 and symplectic geometry
- 3 Neural networks can solve shape optimization problems
 - Neural symplectic maps
 - PDE resolution
 - Combinaison of PINNs and SympNets

Hamiltonian ODEs

$$\partial_t \phi(t, (\mathbf{x}, \mathbf{p})) = \mathbf{J} \nabla H(\phi)(t, (\mathbf{x}, \mathbf{p}))$$

- (x, p) belongs to the phase space
- x can represent the position of the system, while p can represent the momentum of the system
- $\dim(x) = \dim(p) := d$
- H is the Hamiltonian function, i.e. the energy of the system
- J is the symplectic form in the canonical bases of \mathbb{R}^{2d} , i.e.

$$J = \begin{pmatrix} 0 & I_d \\ -I_d & 0 \end{pmatrix}$$

• J is in \mathbb{R}^2 the $-\pi/2$ rotation matrix

How to adapt Hamiltonian mechanics to our problem?

- Hamiltonian potential physically reprents an energy that is conserved in time.
- The flow associated with the Hamiltonian ODE, called symplectic maps, preserves the volume of the phase space.
- We want to make it preserve the volume of our shape, because symplectic maps have a lot of structure properties that we can leverage to introduce a smarter parametrization of the volume-preserving maps of even dimensions.

Some useful properties [Arnold]

Shear maps

Any symplectic map in $C^1(\mathbb{R}^{2d})$ can be approximated by the composition of several shear maps, defined as follows, with $x = (x_1, x_2) \in \mathbb{R}^{2d}$

$$\mathit{f}_{\mathrm{up}} \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} = \begin{pmatrix} x_{1} + \nabla \mathit{V}_{\mathrm{up}}(x_{2}) \\ x_{2} \end{pmatrix} \quad \text{and} \quad \mathit{f}_{\mathrm{down}} \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} = \begin{pmatrix} x_{1} \\ x_{2} + \nabla \mathit{V}_{\mathrm{down}}(x_{1}) \end{pmatrix},$$

where $V_{\text{up/down}} \in C^2(\mathbb{R}^d, \mathbb{R})$, and $\nabla V : \mathbb{R}^d \to \mathbb{R}^d$ is the gradient of V.

How could we parametrize efficiently the shear maps?

- Foreword
 - Constraints in shape optimization
 - Intrinsic volume preservation
- Mathematical framework for volume-preserving shape-optimization
 - Background on shape derivatives
 - Volume-preserving ODE flows
 - Reformulation of the shape optimization problem
 - The special case of dimension 2 and symplectic geometry
- Neural networks can solve shape optimization problems
 - Neural symplectic maps
 - PDE resolution
 - Combinaison of PINNs and SympNets

Theorem

Let q>0 be the depth of the neural network. In practice, we set q>2n. We define the approximation $\sigma_{K,a,b}$ of ∇V by an activation function $\sigma:\mathbb{R}\to\mathbb{R}$, two vectors $a,b\in\mathbb{R}^q$, a matrix $K\in\mathcal{M}_{q,n}(\mathbb{R})$, and $\mathrm{diag}(a)=(a_i\delta_{ij})_{1\leq i,j\leq q}$, as follows

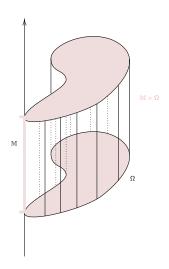
$$\widehat{\sigma_{K,a,b}}(x) = K^{\mathsf{T}} \mathrm{diag}(a) \sigma(Kx + b),$$

Then, gradient modules \mathcal{G}_{up} and \mathcal{G}_{down} are defined to approximate f_{up} and f_{down} , by

$$\mathcal{G}_{\mathsf{up}} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_1 + \widehat{\sigma_{K,a,b}}(x_2) \\ x_2 \end{pmatrix} \quad \mathsf{and} \quad \mathcal{G}_{\mathsf{down}} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 + \widehat{\sigma_{K,a,b}}(x_1) \end{pmatrix}.$$

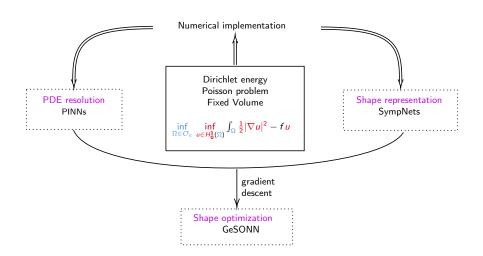
Parametric problems

- Examples: solving a parameter dependant PDE for a wide range of parameters
 - Stokes equation for different viscosity coefficients,
 - elasticity equation for different elasticity or shear moduli or Poisson coefficients.
- The dimension of the approximation space increases with the dimension of the parameter space.
- Accuracy of the Monte-Carlo integral only depends on the collocation points which will be in the cross space of the domain and of the parameter space.



- Foreword
 - Constraints in shape optimization
 - Intrinsic volume preservation
- Mathematical framework for volume-preserving shape-optimization
 - Background on shape derivatives
 - Volume-preserving ODE flows
 - Reformulation of the shape optimization problem
 - The special case of dimension 2 and symplectic geometry
- Neural networks can solve shape optimization problems
 - Neural symplectic maps
 - PDE resolution
 - Combinaison of PINNs and SympNets

Objective



Physics-informed neural networks (PINNs) (I)

Paramteric function: $\theta = \{(W^k, b^k)\}_{k=0}^I$ designates the set of parameters to be trained by the neural network, which propagates the input data through its I different layers, according to the sequence of operations:

$$\begin{cases} z^{0} = x, \\ z^{k} = \sigma(W^{k}z^{k-1} + b^{k}), 1 \le k \le I, \\ z^{l} = W^{l}z^{l-1} + b^{l}. \end{cases}$$

Each layer has as an ouput a vector $z_k \in \mathbb{R}^{q_k}$, where q_k is the number of "neurons", and is defined by a weights matrix $W^k \in \mathbb{R}^{q_k} \times \mathbb{R}^{q_k-1}$, a bias vector $b \in \mathbb{R}^{q_k}$ and a non-linear activation function $\sigma(.)$.

Activation functions: hyperbolic tangent, sigmoid, relu...

PINNS (II)

Find an approximation of u_{Ω} the solution of the Poisson problem

$$(\mathcal{P}): egin{cases} -\Delta u_\Omega = f & \text{in } \Omega; \\ u_\Omega = 0 & \text{on } \partial \Omega. \end{cases}$$

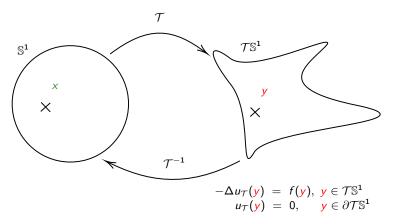
Our problem can be directly seen as an optimization problem

$$\inf_{\boldsymbol{\nu} \in \mathcal{H}_{\boldsymbol{0}}^{\boldsymbol{1}}(\Omega)} \frac{1}{2} \int_{\Omega} |\nabla \boldsymbol{\nu}|^2 \, \mathrm{d} \boldsymbol{x} - \int_{\Omega} \boldsymbol{\mathit{f}} \boldsymbol{\nu} \, \mathrm{d} \boldsymbol{x}.$$

- Foreword
 - Constraints in shape optimization
 - Intrinsic volume preservation
- 2 Mathematical framework for volume-preserving shape-optimization
 - Background on shape derivatives
 - Volume-preserving ODE flows
 - Reformulation of the shape optimization problem
 - The special case of dimension 2 and symplectic geometry
- Neural networks can solve shape optimization problems
 - Neural symplectic maps
 - PDE resolution
 - Combinaison of PINNs and SympNets

Joint formulation of the Dirichlet energy (I)

Here is a domain generated by a symplectic mapping of the unit disk of \mathbb{R}^2 .



we introduce $w: \mathbb{S}^1 \to \mathbb{R}$, defined for a.e. $x \in \Omega$ by

$$w(x) = (u_{\mathcal{T}} \circ \mathcal{T})(x).$$

Joint formulation of the Dirichlet energy (II)

PDE

$$\begin{cases} -\operatorname{div}(A\nabla w) = f \circ \mathcal{T}, & \text{in } \mathbb{S}^1; \\ w = 0, & \text{on } \mathbb{S}^1, \end{cases}$$

with $A:\mathbb{S}^1 o \mathbb{R}$ a uniformly elliptic metric tensor, defined by

$$A = J_{\mathcal{T}}^{-1} \cdot J_{\mathcal{T}}^{-\intercal}.$$

Optimization problem

$$\inf\left\{\frac{1}{2}\int_{\mathbb{S}^1}A\nabla w\cdot\nabla w-\int_{\mathbb{S}^1}\widetilde{f}\,w,\quad\exists u_{\mathcal{T}}\in H^1_0(\mathcal{T}\mathbb{S}^1),\quad w=u_{\mathcal{T}}\circ\mathcal{T}\in H^1_0(\mathbb{S}^1)\right\}$$

Joint formulation of the Dirichlet energy (III) [Bélières et al, 2025]

The Dirichlet energy as a loss function

$$\mathcal{J}_{P/S}(\theta,\omega;\{x_i\}^N) = \frac{V_0}{N} \sum_{i=1}^N \left\{ \frac{1}{2} |A_\omega \nabla v_{\theta,\omega} \cdot \nabla v_{\theta,\omega}|^2 - \widetilde{f_\omega} v_{\theta,\omega} \right\} (x_i)$$

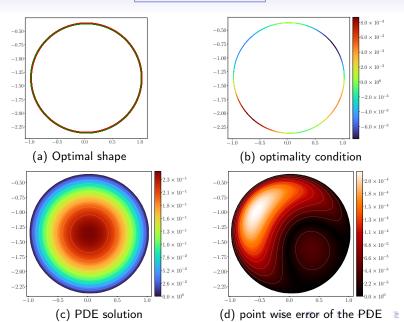
- $m{ heta}$ the trainable weights of the PINN, ω the trainable weights of the SympNet;
- $v_{\theta,\omega}: \mathbb{S}^1 \to \mathbb{R}; x \mapsto \alpha(x)u_{\theta}(T_{\omega}x) + \beta(x)$ a test function;
- $T_{\omega}: \mathbb{R}^{2d} \to \mathbb{R}^{2d}$ the SympNet;
- $u_{\theta}: T_{\omega}\mathbb{S}^1 \to \mathbb{R}$ the PINN.

Problem setup:

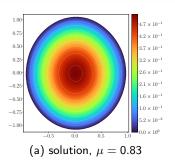
- Consider a parameterized PDE defined on a reference domain $B^2 \times \mathcal{M}$.
- \bullet Use a transformation T_ω to map to the physical domain and push the PDE accordingly.
- Train a composite model (PINN + SympNet):
 - For each training iteration:
 - Sample N collocation points (x_i, μ_i) in $B^2 \times \mathcal{M}$.
 - Compute the loss associated to the PDE residual at each collocation point
 - Update model parameters (θ, ω) via a gradient descent.

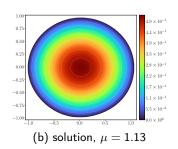
Remark: The method jointly optimizes the PDE solution and the transformation using PINNs and a SympNet. The PDE is solved only at the end of the training procedure. This method only applies for min min problems.

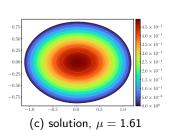
Source term f = 1

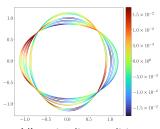


Parametric family of source terms, $f = \exp\left(1 - \left(\frac{x_1}{\mu}\right)^2 - (\mu x_2)^2\right)$









Conclusion

2 strategies

- Parametrize a divergence-free vector field.
- Parametrize a symplectic flow.

Thank you!

Thank you for your attention!