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Constraints in shape optimization

• Objectives of the PhD: neural meth-
ods for reach constrained shape op-
timization problems

• Could neural networks solve turbu-
lent Navier-Stokes shape optimiza-
tion problems?

• Existence and regularity of optimal
shapes depend on the the admissible
set, i.e. on the constraints of the
problem.

• Numerical methods are designed to
enforce these constraints.
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Setting and objectives (I)

We aim to solve the following volume-constrained shape optimization problem

inf
Ω∈Oad
|Ω|≤V0

J (Ω),

with Ω ⊂ D a shape in Oad, an admissible space to be specified, V0 ∈ R∗
+, and J a

shape functional defined by

J (Ω) =

∫
Ω

j(uΩ) dx,

where j is regular, and uΩ is the solution of the Poisson problem, with f ∈ L2(Ω)®
−∆uΩ = f inΩ;

uΩ = 0 on ∂Ω.
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Setting and objectives (II)

φ

D

Ω

Ω = φ(Ω)

We want to build a volume-preserving mapping φ that sends a given shape onto the
optimal one.
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Setting and objectives (III)

• Build a parametrization of the mapping φ that preserves the volume of the
shape.

• Compute the shape-derivative of the objective function with respect to these
parameters introduced before.
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Computation of the shape derivative (I)

Definition 1 (Shape derivative in the sense of Hadamard).
One function J (Ω) of the domain is said to be shape differentiable at Ω if the
underlying mapping V 7→ J ((I + V )(Ω)), from W 1,∞(Rd ,Rd) into R is Fréchet
differentiable at V = 0. The corresponding Fréchet differential is denoted by
⟨dJ (Ω), V ⟩ and the following expansion holds

J ((I + V )(Ω)) = J (Ω) + ⟨dJ (Ω), V ⟩+ o(||V ||B1,∞(0,1)).

x

V (x)

Ω

(I + V )(Ω)
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Computation of the shape derivative (II)

Theorem 1 (Hadamard shape derivative).
Let J be a shape functional defined by

J (Ω) =

∫
Ω

j(uΩ) dx,

where j is regular, and uΩ is the solution of the Poisson problem, with f ∈ L2(Ω)®
−∆uΩ = f inΩ;

uΩ = 0 on ∂Ω.

Thus
⟨dJ (Ω), V ⟩ =

∫
∂Ω

vΩ V · n dσ,

with vΩ := (j(uΩ)−∇uΩ · ∇pΩ) where pΩ solves®
−∆pΩ = −j ′(uΩ) inΩ;

pΩ = 0 on ∂Ω,

pΩ is called adjoint state.
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Volume-preserving ODE flows

The flow associated with a divergence-free vector field V in D ⊂ Rn is defined by the
ODE ®

∂tφ(t, x) = V ◦ φ(t, x) ∀(t, x) ∈ [0, 1]× D;

φ(0, x) = x ∀x ∈ D,

and φ is volume-preserving, i.e. ∀t,Ω, |Ω| = |φ(t,Ω)|.
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Helmoltz decomposition of divergence-free vector fields

Any vector field V ∈ L2(D)d can
be decomposed in the following
way

V = curlϕ+∇z .

If V ∈ L2(D)d is assumed to be
divergence-free, z solves®

−∆z = 0 inD;

z = g on ∂D,

with g ∈ H1/2(D).

φ

D

Ω

Ω = φ(Ω)

We call φphi,g the solution of®
∂tφϕ,g (t, x) = (curlϕ+∇z(g)) ◦ φϕ,g (t, x) ∀(t, x) ∈ [0, 1]× D;

φϕ,g (0, x) = x ∀x ∈ D,
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A reformulated optimization problem

The shape functional under consideration is

J (Ω) =

∫
Ω

j(uΩ) dx,

To compute a gradient descent on the parameters of the volume preserving map, we
introduce the new shape functional”J (ϕ, g) := J (φϕ,g (1, Ω)) =

∫
Ωϕ,g

j(uϕ,g ) dx,

with Ωϕ,g = φϕ,g (1,Ω) and uϕ,g ∈ H1
0 (Ωϕ,g ) solution of®

−∆uϕ,g = f inΩϕ,g ;

uϕ,g = 0 on ∂Ωϕ,g .

Remark: by searching the minimum of ”J , we are now solving a constraint-free
optimization problem. We now have to compute the differential of ”J with respect
to ϕ and g .
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Computation of the functionnal derivative (I)

As φϕ,g replaces I + V in the shape derivative in the sens of Hadamard, we use the
chain rule applied in (ϕ, g) = 0, in the direction (ϕ̂, ĝ) in the Hadamard formulae”J (ϕ, g) =

∫
Ω

j(uϕ,g )dx,

becomes
⟨d ”J (0), ϕ̂⟩ =

∫
∂Ω

vΩ curlϕ̂ · n dσ,

and
⟨d ”J (0), ĝ⟩ =

∫
∂Ω

vΩ ∇z(ĝ) · n dσ.

With vΩ = j(uΩ)−∇uΩ · ∇pΩ.

We want to express the shape derivatives as a scalar product exploitable to compute
a gradient descent.
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Computation of the functionnal derivative (II)

After some computations, the shape derivatives are given byÆ
∂ ”J
∂g

(0, 0), ĝ

∏
=

≠
∂yΩ
∂n

, ĝ

∑
L2(∂D)

,

with yΩ ∈ H1
0 (Ω), such that for all w ∈ H1

0 (Ω),∫
D

∇yΩ · ∇w dx =

∫
D

∇w · ∇qΩ dx,

and qΩ ∈ H1(D) the orthogonal projection of vΩ ∈ H1(Ω) on H1(D), such that for
all w ∈ H1(D), ∫

D

∇qΩ · ∇w dx = −
∫
Ω

∇vΩ · ∇w dx.
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Computation of the functionnal derivative (III)

Æ
∂ ”J
∂ϕ

(0, 0), ϕ̂

∏
=
¨
curlξΩ, ϕ̂

∂
L2(∂D)

,

with ξΩ ∈ H1(D), for all w ∈ H1(D),

⟨ξΩ, w⟩H1(D) = −
∫
∂Ω

vΩ⟨curlw , n⟩ dx.
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Algorithm

• Solve the partial differential equations (PDEs):

• Solve the following PDEs on the domain Ω: uΩ, pΩ, qΩ, yΩ, ξΩ.

• Construct the divergence-free vector field:

• Compute ∇z(g) and curl ξΩ.

• Combine these quantities to form a divergence-free vector field.

• Compute the associated flow (ordinary differential equation):

• Integrate the flow φ(t, x) defined by the previous vector field, for
t ∈ [0, 1], with the initial condition φ(0, x) = x .

• Domain deformation:

• Transport the domain Ω by the obtained flow: Ωfinal := φ(1,Ω).

Remark: all the equations can be solved using any numerical method (FEM, NNs).
The shape can be represented either by a mesh or a level set function. This is not an
issue, as for now it remains an abstract method that can be implemented with any
numerical technique.
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Hamiltonian ODEs

∂tϕ(t, (x , p)) = J∇H(ϕ)(t, (x , p))

• (x , p) belongs to the phase space

• x can represent the position of the system, while p can represent the
momentum of the system

• dim(x) = dim(p) := d

• H is the Hamiltonian function, i.e. the energy of the system

• J is the symplectic form in the canonical bases of R2d , i.e.

J =

Å
0 Id

−Id 0

ã
• J is in R2 the −π/2 rotation matrix
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How to adapt Hamiltonian mechanics to our problem?

• Hamiltonian potential physically reprents an energy that is conserved in time.

• The flow associated with the Hamiltonian ODE, called symplectic maps,
preserves the volume of the phase space.

• We want to make it preserve the volume of our shape, because symplectic maps
have a lot of structure properties that we can leverage to introduce a smarter
parametrization of the volume-presereving maps of even dimensions.
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Some useful properties [Arnold]

Shear maps
Any symplectic map in C 1(R2d) can be approximated by the composition of several
shear maps, defined as follows, with x = (x1, x2) ∈ R2d

fup

Å
x1

x2

ã
=

Å
x1 +∇Vup(x2)

x2

ã
and fdown

Å
x1

x2

ã
=

Å
x1

x2 +∇Vdown(x1)

ã
,

where Vup/down ∈ C 2(Rd ,R), and ∇V : Rd → Rd is the gradient of V .

How could we parametrize efficiently the shear maps?

25 / 41



1 Foreword
Constraints in shape optimization
Intrinsic volume preservation

2 Mathematical framework for volume-preserving shape-optimization
Background on shape derivatives
Volume-preserving ODE flows
Reformulation of the shape optimization problem
The special case of dimension 2 and symplectic geometry

3 Neural networks can solve shape optimization problems
Neural symplectic maps
PDE resolution
Combinaison of PINNs and SympNets

26 / 41



SympNets [Jin et al, 2020]

Theorem
Let q > 0 be the depth of the neural network. In practice, we set q > 2n. We define
the approximation ’σK ,a,b of ∇V by an activation functionσ : R → R, two vectors
a, b ∈ Rq, a matrix K ∈ Mq,n(R), and diag(a) = (aiδij)1≤i,j≤q, as follows’σK ,a,b(x) = K⊺diag(a)σ(Kx + b),

Then, gradient modules Gup andGdown are defined to approximate fup and fdown, by

Gup

Å
x1

x2

ã
=

Å
x1 + ’σK ,a,b(x2)

x2

ã
and Gdown

Å
x1

x2

ã
=

Å
x1

x2 + ’σK ,a,b(x1)

ã
.
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Parametric problems

• Examples: solving a parameter de-
pendant PDE for a wide range of pa-
rameters

- Stokes equation for different
viscosity coefficients,

- elasticity equation for different
elasticity or shear moduli or
Poisson coefficients.

• The dimension of the approximation
space increases with the dimension
of the parameter space.

• Accuracy of the Monte-Carlo inte-
gral only depends on the colloca-
tion points which will be in the cross
space of the domain and of the pa-
rameter space.

Ω

M

M× Ω
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Objective

Dirichlet energy
Poisson problem
Fixed Volume

Numerical implementation

PDE resolution
PINNs

Shape representation
SympNets

Shape optimization
GeSONN

gradient
descent

inf
Ω∈Oε

inf
u∈H1

0(Ω)

∫
Ω

1
2 |∇u|2 − f u
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Physics-informed neural networks (PINNs) (I)

Paramteric function: θ =
{
(W k , bk)

}l

k=0 designates the set of parameters to be
trained by the neural network, which propagates the input data through its l different
layers, according to the sequence of operations:

z0 = x ,

zk = σ(W kzk−1 + bk), 1 ≤ k ≤ l ,

z l = W lz l−1 + bl .

Each layer has as an ouput a vector zk ∈ Rqk , where qk is the number of “neurons”,
and is defined by a weights matrix W k ∈ Rqk × Rqk−1, a bias vector b ∈ Rqk and a
non-linear activation function σ(.).
Activation functions: hyperbolic tangent, sigmoid, relu...
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PINNS (II)

Find an approximation of uΩ the solution of the Poisson problem

(P) :

®
−∆uΩ = f in Ω;

uΩ = 0 on ∂Ω.

Our problem can be directly seen as an optimization problem

inf
v∈H1

0 (Ω)

1
2

∫
Ω

|∇v |2 dx −
∫
Ω

fv dx.
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Joint formulation of the Dirichlet energy (I)

Here is a domain generated by a symplectic mapping of the unit disk of R2.

S1

x y

T S1

T

T −1

−∆uT (y) = f (y), y ∈ T S1

uT (y) = 0, y ∈ ∂T S1

we introduce w : S1 → R, defined for a.e. x ∈ Ω by

w(x) = (uT ◦ T )(x).
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Joint formulation of the Dirichlet energy (II)

PDE ®
−div

(
A∇w

)
= f ◦ T , in S1;

w = 0, on S1,

with A : S1 → R a uniformly elliptic metric tensor, defined by

A = J−1
T · J−⊺

T .

Optimization problem

inf

ß
1
2

∫
S1

A∇w · ∇w −
∫
S1

f̃ w , ∃uT ∈ H1
0 (T S1), w = uT ◦ T ∈ H1

0 (S1)

™
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Joint formulation of the Dirichlet energy (III) [Bélières et al, 2025]

The Dirichlet energy as a loss function

JP/S

(
θ, ω; {xi}N

)
=

V0

N

N∑
i=1

ß
1
2
|Aω∇vθ,ω · ∇vθ,ω|2 − ‹fωvθ,ω™ (xi )

• θ the trainable weights of the PINN, ω the trainable weights of the SympNet;

• vθ,ω : S1 → R; x 7→ α(x)uθ(Tωx) + β(x) a test function;

• Tω : R2d → R2d the SympNet;

• uθ : TωS1 → R the PINN.
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Algorithm

• Problem setup:

• Consider a parameterized PDE defined on a reference domain B2 ×M.

• Use a transformation Tω to map to the physical domain and push the
PDE accordingly.

• Train a composite model (PINN + SympNet):

• For each training iteration:

• Sample N collocation points (xi , µi ) in B2 ×M.
• Compute the loss associated to the PDE residual at each collocation

point
• Update model parameters (θ, ω) via a gradient descent.

Remark: The method jointly optimizes the PDE solution and the transformation
using PINNs and a SympNet. The PDE is solved only at the end of the training
procedure. This method only applies for min min problems.
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Source term f = 1
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Parametric family of source terms, f = exp
Ä
1 − (x1

µ )
2 − (µx2)

2
ä
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(a) solution, µ = 0.83
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(b) solution, µ = 1.13
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Conclusion

2 strategies

• Parametrize a divergence-free vector field.

• Parametrize a symplectic flow.
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Thank you!

Thank you for your attention!
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