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Objectives of the PhD: neural meth-
ods for reach constrained shape op-
timization problems

Could neural networks solve turbu-
lent Navier-Stokes shape optimiza-
tion problems?

Existence and regularity of optimal
shapes depend on the the admissible
set, i.e. on the constraints of the
problem.

Numerical methods are designed to
enforce these constraints.
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We aim to solve the following volume-constrained shape optimization problem

qinf A (),
[1Q|<Vo

with Q C D a shape in 0.4, an admissible space to be specified, Vo € R}, and ¢ a
shape functional defined by

Q) = / J(ug) dx,

where j is regular, and ugq is the solution of the Poisson problem, with f € L?(£)

—Aug=f inQ;
ug =20 on 092.
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Setting and objectives (1)

We want to build a volume-preserving mapping ¢ that sends a given shape onto the
optimal one.
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e Build a parametrization of the mapping ¢ that preserves the volume of the
shape.

e Compute the shape-derivative of the objective function with respect to these
parameters introduced before.
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© Mathematical framework for volume-preserving shape-optimization
@ Background on shape derivatives
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Computation of the shape derivative (1)

One function ¢ () of the domain is said to be shape differentiable at Q if the
underlying mapping V — 7 ((1+ V)(Q)), from W (R RY) into R is Fréchet
differentiable at VV = 0. The corresponding Fréchet differential is denoted by
(d_#(Q), V) and the following expansion holds

A([[+V)(Q) = () +(d7(Q), V) +o(||Vlls1.2(0.1))-
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Computation of the shape derivative (Il)

Theorem 1 (Hadamard shape derivative).
Let ¢ be a shape functional defined by

F@ = [ jun)ax,
Q
where j is regular, and uq is the solution of the Poisson problem, with f € L*(Q)

—Aug =f inQ;
ug =0 on 0f2.

Thus
(d7(Q), V) = /BQ Vo V- nda,

with vo = (j(ua) — Vug - Vpa) where pq solves

—Apog = —j'(ug) inQ;
po=0 on 9%,

pa is called adjoint state.
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© Mathematical framework for volume-preserving shape-optimization

@ Volume-preserving ODE flows
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Volume-preserving ODE flows

The flow associated with a divergence-free vector field V in D C R" is defined by the
ODE

Orp(t,x) = Vop(t,x) V(t,x)e€[0,1] x D;

99(07 X) =X Vx e D,

and ¢ is volume-preserving, i.e. Vt,Q, || = |p(t, Q).
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Helmoltz decomposition of divergence-free vector fields‘

Any vector field V € L3(D)? can
be decomposed in the following
way

V = curlp + Vz.

If V € L?(D)? is assumed to be
divergence-free, z solves

—Az=0 inD;
z=g onoD,

with g € H/?(D).

We call @phi g the solution of

{a%_g(t, x) = (curlg + Vz(g)) 0 ¢s.(t,x)  V(t,x) €[0,1] x D;

?0.6(0,x) = x

Vx € D,
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© Mathematical framework for volume-preserving shape-optimization

@ Reformulation of the shape optimization problem
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The shape functional under consideration is

Q) = / J(ug) dx,

To compute a gradient descent on the parameters of the volume preserving map, we
introduce the new shape functional

Flo8) = S oos ) = [ i) dx
.8
with Qg = 0s.(1,Q) and uy . € Hy(Qy,¢) solution of

—Aug e =1f inQyg;
Up.g = 0 0n8§2¢,g.

Remark: by searching the minimum of ¢, we are now solving a constraint-free

optimization problem. We now have to compute the differential of fwith respect
to ¢ and g.
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As @4 o replaces I+ V in the shape derivative in the sens of Hadamard, we use the
chain rule applied in (¢, g) = 0, in the direction (¢, g) in the Hadamard formulae

T e) = / J(uog) dx,

becomes

— ~

(d_7(0), ¢) = / vo curlg - ndo,
Elo]

—

(d_7(0), 8) = /d Vi) ndo,

With vq = j(uq) — Vug - Vpa.

We want to express the shape derivatives as a exploitable to compute
a gradient descent.
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After some computations, the shape derivatives are given by
%(07 0), — <8£7 > 7
og on 2(8D)
with yo € H3(Q), such that for all w € H3(Q),

/VyQ-Vdez/VW~VquX,
D D

and go € H'(D) the orthogonal projection of vo € H*(Q) on H*(D), such that for
all w e HY(D),

/an-dexz—/VVQ~dex.
D Q
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Computation of the functionnal derivative (I11)

<a/(o 0). 1) = e, )

with & € HY(D), for all w € H'(D),

oy W)ra(p) = —/ vo(curlw, n) dx.

on
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[ATEGHEhm|

e Solve the partial differential equations (PDEs):

e Solve the following PDEs on the domain Q: uq, pa, ga, ya, £a-

Construct the divergence-free vector field:

e Compute Vz(g) and curl &q.

e Combine these quantities to form a divergence-free vector field.

Compute the associated flow (ordinary differential equation):

e Integrate the flow ¢(t, x) defined by the previous vector field, for
t € [0,1], with the initial condition ¢(0, x) = x.

e Domain deformation:

e Transport the domain Q by the obtained flow: Qgnal := (1, Q).

Remark: all the equations can be solved using any numerical method (FEM, NNs).
The shape can be represented either by a mesh or a level set function. This is not an
issue, as for now it remains an abstract method that can be implemented with any
numerical technique.
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https://irma.math.unistra.fr/~belieres/research/ode_flow_autrans.mp4

© Mathematical framework for volume-preserving shape-optimization

@ The special case of dimension 2 and symplectic geometry
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6f¢(t7 (va)) =JV (¢)(t7 (va))
(x, p) belongs to the phase space

x can represent the position of the system, while p can represent the
momentum of the system

dim(x) = dim(p) := d
is the Hamiltonian function, i.e. the of the system

is the symplectic form in the canonical bases of R??, i.e.
_ ( 0 Id>
T \—-ly 0

is in R? the —7/2 rotation matrix

23/41



e Hamiltonian potential physically reprents an energy that is conserved in time.

e The flow associated with the Hamiltonian ODE, called symplectic maps,
preserves the volume of the phase space.

e We want to make it preserve the volume of our shape, because symplectic maps
have a lot of structure properties that we can leverage to introduce a smarter
parametrization of the volume-presereving maps of even dimensions.
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Some useful properties [Arnold]

Any symplectic map in C*(R??) can be approximated by the composition of several
shear maps, defined as follows, with x = (x1, x2) € R2d
x1) _ (x1+ VVip(x2)
fup =
X2 X2

) a nd fdown (

X1

2=
where Vi, /down € C%(R?,R), and VV : RY — R? is the gradient of V.

X1

X2 + vvdown(xl)) ’

How could we parametrize efficiently the shear maps?

DA
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SympNets [Jin et al, 2020]

Let g > 0 be the depth of the neural network. In practice, we set g > 2n. We define
the approximation Gk ., of VV by an activation functiono : R — R, two vectors

a,b € RY, a matrix K € Mg »(R), and diag(a) = (aidij)1<ij<q. as follows

ok.ab(x) = KTdiag(a)o(Kx + b),

Then, gradient modules Gup and Gyown are defined to approximate fup and fyown, by
g (X1) _ (X1 + 0k ,ap(x2)
up X2 - X2

e A

X2 + @(n)) '

DA
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Parametric problems

e Examples: solving a parameter de-
pendant PDE for a wide range of pa-
rameters

- Stokes equation for different
viscosity coefficients,

- elasticity equation for different
P . /
elasticity or shear moduli or
Poisson coefficients.

e The dimension of the approximation
space increases with the dimension
of the parameter space.

e Accuracy of the Monte-Carlo inte- //
gral only depends on the colloca-
tion points which will be in the cross
space of the domain and of the pa-
rameter space.
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Numerical implementation

|

Dirichlet energy

f Polsso” problem ............................... .
: PDE resolution Fixed Volume i Shape representation
PINNs : : SympNets

inf

inf
Q€0 ueHF(Q)

Jo 2Vl = fu

gradient
descent
Shape optimization
GeSONN
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. . 1 .
Paramteric function: § = {(W¥, bk)}k:o designates the set of parameters to be

trained by the neural network, which propagates the input data through its / different

layers, according to the sequence of operations:

2 = X,
X =Wt 4 b, 1< k<,
Z = 27t 4.

Each layer has as an ouput a vector zx € R%, where g is the number of “neurons”,
and is defined by a , a bias vector b € R% and a
non-linear activation function o(.).

Activation functions: hyperbolic tangent, sigmoid, relu...
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Find an approximation of uq the solution of the Poisson problem

f=Aug=f inQ;
(P): {UQ =0 on 09.

Our problem can be directly seen as an optimization problem

inf 1/\v\/|2dx—/fvdx.
veHi(@) 2 Jq Q
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© Neural networks can solve shape optimization problems

@ Combinaison of PINNs and SympNets
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Here is a domain generated by a symplectic mapping of the unit disk of R?.

T

§1 /\ TSl

\7:1/
—Aur(y) = f(y), y€TS!
ur(y) = 0, y € TSt

we introduce w : S' — R, defined for a.e. x € Q by
w(x) = (ur o T)(x).
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Joint formulation of the Dirichlet energy (I1)
PDE

{—div(AVw) =foT,

w =0,

in St
on S,
with A : S' — R a uniformly elliptic metric tensor, defined by
A=Jrt U
Optimization problem
inf {%/ AVw - Vw —/ fw, Jur € H3(TS'), w=uroT € H&(SI)}
st st

DA
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Joint formulation of the Dirichlet energy (l11) [Béliéres et al, 2025]

The Dirichlet energy as a loss function

V 1 ~
jP/S(e w; {XI =2 Z {5 |vaV9,w . VVG,UJ'z - waQ,w} (Xi)

e 0 the trainable weights of the PINN, w the trainable weights of the SympNet;

Voo i St = R; x = a(x)ug(Twx) + B(x) a test function;
e T, :R%* — R? the SympNet;

e up: T.,S* = R the PINN.

DAy
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[ATEGHEhm|

e Problem setup:

e Consider a parameterized PDE defined on a reference domain B? x M.
e Use a transformation T, to map to the physical domain and push the
PDE accordingly.
e Train a composite model (PINN + SympNet):

e For each training iteration:

e Sample N collocation points (x;, ;) in B? x M.

e Compute the loss associated to the PDE residual at each collocation
point

e Update model parameters (6, w) via a gradient descent.

Remark: The method jointly optimizes the PDE solution and the transformation
using PINNs and a SympNet. The PDE is solved only at the end of the training
procedure. This method only applies for min min problems.
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Source term f = 1‘
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(d) point wise error of the PDE
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Parametric family of source terms, f = exp(1 — (%) — (ux2)
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Conclusion

2 strategies
e Parametrize a divergence-free vector field.

e Parametrize a symplectic flow.
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Thank you for your attention!
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