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Introduction

This is a report about a question raised by Long and Reid in [1] in 2002 : they
showed a result that they found surprising, which is that there exists fuchsian
groups that have the same cusp set as the modular group PSL(2,Z), namely
Q ∪ {∞}. Such groups they call �pseudomodular groups�, and the associated
hyperbolic surfaces they call �pseudomodular surfaces�. At the end of their ar-
ticle they ask a bunch of questions. Among others, they ask if there exists an
in�nity of noncommensurable pseudomodular examples in the family of groups
they considered in their article, namely the once punctured torus groups. The
�rst question was answered in 2018 by Lou, Tan and Vo in [2]. They applied the
idea of Long and Reid to a wider family of fuchsian groups, whose fundamental
domains are obtained by gluing together once-punctured torus domains. Such
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domains they call �hyperbolic jigsaws�. They �nd in�nitely many pseudomod-
ular groups in this family, by increasing the size of the jigsaws. The second
question remains open, and we tried, so far unsuccessfully, to answer a similar
one : does there exist an in�nite family of noncommensurable groups, i.e. whose
associated hyperbolic surfaces are homeomorphic to each other ? This is still a
research project.

In the �rst section of this report we expose the basic de�nitions required in
the question initially asked by Long and Reid : does there exist �nite covolume
noncocompact fuchsian groups with the same cusp set that are not commensu-
rable ? The proof by Long and Reid involving computational experiments that
we have reproduced, we give some precisions about the implementation and the
results of these computational experiments. In the second section we expose
the the construction of pseudomodular groups by Long and Reid. The third
section is devoted to the de�nition of hyperbolic jigsaws and the construction
of an in�nite family of hyperbolic jigsaws and the construction of an in�nite
family of hyperbolic jigsaw groups, by Lou, Tan and Vo.

All these sections rely on the same main ideas. In particular, in order to
show that a group is not commensurable to the modular group PSL(2,Z), we
show that it is not arithmetic.

1 Introduction to the problem

De�nition 1. Let Γ1, Γ2 be discrete subgroups of the group of orientation
preserving isometries of the hyperbolic plane, PSL(2,R), Γ1 and Γ2 are said
to be commensurable (or commensurable in a weak sense) if there exists G1

subgroup of Γ1, G2 subgroup of Γ2, both of �nite index, such that

∃γ ∈ PSL(2,R), G2 = γ−1G1γ

The terminology �commensurable in a weak sense� is used because there is
a stronger notion of commensurability, that we will use to introduce arithmetic
groups (appendix A, see de�nition 15).

De�nition 2. Let Γ be a fuchsian group. The cusp set of Γ is the set of all
�xed points of parabolic transformations, contained in R ∪ {+∞}. It is denoted
by Cusp(Γ).

Remark 1. The cusp set of a fuchsian group Γ is the orbit by Γ of the set of
ideal vertices of any fundamental domain of Γ.

Proposition 1.

Cusp(PSL(2,Z)) = Q ∪ {+∞}

Proposition 2. If Γ1 and Γ2 are two fuchsian groups that are commensurable,
then there exists γ ∈ PSL(2,R) such that Cusp(Γ1) = γ · Cusp(Γ2).

Proof. LetG1 be a �nite index subgroup of Γ1. It su�ces to show that Cusp(G1) =
Cusp(Γ1). If γ ∈ Γ1 is a parabolic element with �xed point z /∈ Cusp(Γ2), then
for n ∈ Z, each γn is in a di�erent class of Γ1/G1, thus G1 is not �nite index.
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The question is the following : Is the other implication true ? In other words,
does there exist Γ1, Γ2 fuchsian groups that are not commensurable and such
that Cusp(Γ1) = Cusp(Γ2) ?

The answer to the second question is obviously yes, it su�ces to �nd two
cocompact fuchsian groups that are not commensurable, or two noncommensu-
rable fuchsian groups with empty cusp set. Thus we should re�ne the question
to make it interesting : does there exist Γ1, Γ2 not cocompact and �nite co-
volume fuchsian groups that are not commensurable and such that Cusp(Γ1) =
Cusp(Γ2) ?

2 Construction of pseudomoduar groups

Inthis section, we mostly follow the article [1] by D.D. Long and A.W. Reid.

De�nition 3. A pseudomodular group Γ ∈ PSL(2,R) is a fuchsian group for
which Cusp(Γ) = Q ∪ {∞} and that is not commensurable to PSL(2,Z). The
complete hyperbolic surface H2/Γ is then called a pseudomodular surface.

Theorem 1. (Long, Reid) There exists a pseudomodular group.

2.1 The once-punctured torus group

One can exhibit a pseudomodular group by looking at the family of fuchsian
groups giving rise to a once-punctured torus. Let u2 ∈ R+ and consider the
ideal quadrilateron whose vertices are −1, 0, u2,∞. A once-punctured torus is
a hyperbolic surface obtained from this quadrilateron by gluing together the
edges (∞,−1) and (u2, 0) and the edges (−1, 0) and (∞, u2).

Let us �nd Γ a fuchsian group such that H2/Γ is the once-punctured torus.
Γ has to contain g1, g2 ∈ PSL(2,R) such that

g1(0) = u2

g1(−1) =∞
g2(∞) = u2

g2(−1) = 0

A calculation gives :

g2 '
(
au2 au2

a 1
au2 + a

)
g1 '

(
bu2 + 1

b bu2

b b

)
with a, b ∈ R.

However the group < g1, g2 > does not de�ne a fuchsian group with funda-
mental domain the ideal quadrilateron (∞,−1, 0u2) for all a, b ∈ R. In order
to �nd the good parameters, let us recall the Poincré theorem about hyperbolic
surfaces obtained by gluing together edges of a polygon :

3



Theorem 2. (Poincaré) Let P be an ideal polygon in H2 with a pair number of
edges : {E1, E2, . . . E2k} Let φi ∈ PSL(2,R) be such that φi(E2i−1) = Ei. Then
the topological space X obtained from P by gluing together E2i−1 with Ei is a
hyperbolic surface and it is complete if and only if there exists a family (Cp) of
horodisks indexed by the vertices of P such that for all i if φi sends p to p′ then
φi(Cp) = Cp′ .

Moreover, in that case, the group Γ generated by the φi's is discete and acts
freely on H2. P is a fundamental polygon for Γ and the inclusion P ↪→ H2

induces an isometry X ' H2/Γ

Thus, in order to have that H2/ < g1, g2 > is the once-punctured torus we
want, we need horocircles C∞, C−1, C0, Cu2 , respectively at ∞, −1, 0 and u2,
such that

g2(C∞) = Cu2

g−11 (Cu2) = C0

g−12 (C0) = C−1

g1(C−1) = C∞

Such horocircles exist if and only if for any horocircle C∞ at ∞, we have
g1g
−1
2 g−11 g2(C∞) = C∞, that is to say g1g

−1
2 g−11 g2 is a parabolic �xing ∞.

We de�ne τ such that

g1g
−1
2 g−11 g2 '

(
1 2τ
0 1

)
Embedding in this equation the preceding calculus, we get τ ≥ 1 + u2 and :

g1 =
1√

τ − 1− u2

(
τ − 1 u2

1 1

)
g2 =

1√
τ − 1− u2

(
u u
1
u

τ−u2

u

)
Then < g1, g2 > is a group acting freely on H2 (thus containing only hyper-

bolic and parabolic isometries).
Let us now show that < g1, g2 > is a free group with two generators. On

�gure 1 it is easy to show that the tiles with numbers ≥ n can only be reached
from the orginal tile (∞,−1, 0, u2) by words in g±11 , g±12 of length ≥ n.

Thus we see that composing at most n times g1, g2, g
−1
1 and g−12 we get

5 +

n−1∑
k=1

3k

elements. Thus < g1, g2 > is a free group. We also see that the group < g1, g2 >
is determined by only two parameters, 2τ and u2. We thus denote the group
∆(g1, g2).
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Figure 1: images of the fundamental domain of ∆( 3
8 ,

11
2 ) by the words of length

≤ 2

2.2 Strategy to show that ∆(u2, 2τ) is pseudomodular

First of all, we notice that if u2 and 2τ are in Q, then it is easy to show that
Cusp(∆(u2, 2τ)) ⊂ Q ∪ {∞}

Further, we see that since ∞,−1, 0 and u2 are in the same orbit modulo
∆(u2, 2τ), and according to remark 1, we have

Cusp(∆(u2, 2τ)) = ∆(u2, 2τ) · ∞

In order to show that ∆(u2, 2τ) is not pseudomodular, we thus need to check
two things :

(i) First, ∆(u2, 2τ) is not commensurable to the modular group

(ii) Second, Cusp(∆(u2, 2τ)) = Q ∪ {∞}

To check (i), it is possible to prove that < g1, g2 > is arithmetic if and only
if Tr(g21), Tr(g2)2 and Tr(g21g

2
2) are in Z (see appendix A).

Let us now focus on the point (ii). Let x ∈ Q∪ {∞} be a cusp of ∆(u2, 2τ).

Then there exists γ ∈ ∆(u2, 2τ) such that γ(∞) = x = α
β . Take γ '

(
a b
c d

)
with a, b, c, d ∈ Z coprime. Then γ−1 '

(
d −b
−c a

)
. Take p

q ∈ Q. We have

γ−1
(
p

q

)
=

dp− bq
−cp+ aq

As a consequence, the denominator of γ−1
(
p
q

)
is a divisor of −cp+ aq. Thus,

in order to have the denominator of γ−1
(
p
q

)
smaller than q, it su�ces to have

| − cp+ aq| < q ⇐⇒
∣∣∣∣pq − a

c

∣∣∣∣ < 1

c
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The interval (
x− 1

c
, x+

1

c

)
is called the �killer interval� associated to γ.

Killer intervals are at the heart of the proof of pseudomodularity of some of
the groups ∆(u2, 2τ), thanks to the following proposition :

Proposition 3. The group ∆(u2, 2τ) is pseudomodular if and only if the union
of the killer intervals associated to all the elements in ∆(u2, 2τ) contains Q.

Proof. If ∆(u2, 2τ) is pseudomodular, any rational is a cusp. Since any cusp
x ∈ Q is the image of in�nity by an isometry γ ∈ ∆(u2, 2τ), x is the centre
of the killer interval associated to γ, Q is contained in the union of all killer
intervals

Reciprocally, if any rational x is in a killer interval I, considering the isometry
γ ∈ ∆(u2, 2τ) associated to I, we know that the denominator of γ−1(x) is strictly
smaller than the denominator of γ. Iterating this process, we have a sequence
of rationals in the same orbit whose denominators are decreasing, thus this
sequence reaches ∞ at some point, showing that x is in the orbit of ∞, thus is
a cusp of ∆(u2, 2τ).

We can notice that, since the translation

(
1 2τ
0 1

)
is in ∆(u2, 2τ), the trans-

lation

(
1 α
0 1

)
too, where α is the numerator of 2τ . Since the translation(

1 α
0 1

)
does not change the denominator of rational numbers, if I is a closed

interval of length α, any rational is in the orbit of some rational in I with same
denominator. Thus, by the same argument as above, it is enough to cover any
closed interval of length α with killer intervals in order to show that ∆(u2, 2τ)
is a pseudomodular group. In fact, the following section will enable us to have
a little bit weaker condition.

2.3 Index 2 supergroup of ∆(u2, 2τ)

We will now introduce for any u2, 2τ (τ ≥ u2 + 1) a fuchsian group Γ of which

∆(u2, 2τ) is a index 2 subgroup and that contains the elliptic isometry

(
1 τ
0 1

)
.

Since the cusp set of a �nite index subgroup of a fuchsian group is the cusp set
of this group, by the argument of the last paragraph in the above subsection,
this gives us the proposition that we will use to search pseudomodular groups :

Proposition 4. Let I be a closed interval of length δ where δ is the numerator
of τ . Suppose there exists γ1, . . . γn ∈ ∆(u2, 2τ) such that the union of their
killer intervals covers I. Then

Cusp(∆(u2, 2τ)) = Q ∪ {∞}
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Write ∆(u2, 2τ) =< g1, g2 > with g1 and g2 as de�ned in subsection 2.1. Let
(x1, y1) be the axis of g1 and (x2, y2) the axis of g2. Let P1 be the intersection
point of (x1, y1) and (x2, y2) and let h1 be the π-rotation around P1.

Any π-rotation h with centre P in the axis (x1, y1) �xes this axis and in-
terchanges x1 and x2. Thus hh1 �xes x1 and x2 and it is not the identitity (if
P 6= P1), so it is a hyperbolic isometry and its translation distance is 2d(P1, P ).
Let P2 ∈ (x1, y1) and h2 the π-rotation around P2 be such that h2h1 = g1 (so
2d(P1, P2) is the translation distance of g1). Similarly, let P3 ∈ (x2, y2) and h3
the π-rotation around P3 be such that h1h3 = g2.

We have that the group < h1, h2, h3 > is an index 2 supergroup of < g1, g2 >.
Indeed, let γ ∈< h1, h2, h3 > \ < g1, g2 > and let us show that there exists
α ∈< g1, g2 > such that γ = h1α. Write γ = γ1 . . . γn with γi ∈ {h1, h2, h3}.

• If n = 1, then γ = h1, or γ = h2 = h1h1h2 = h1(h2h1)−1 = h1g
−1
1 or

γ = h3 = h1h1h3 = h1g2. In any case, γ = h1α, α ∈< g1, g2 >.

• If n ≥ 2, then several cases can occur. If γn = γn−1, then γ = γ1 . . . γn−2 =
h1α, α ∈< g1, g2 > by induction. If γn = h1, γn−2 = h2, then γ =
γ1 . . . γn−2g

−1
1 = h1α

′g−11 with α′ ∈< g1, g2 by induction, thus γ = h1α,
with α = α′g−11 . If γn = h2 and γn−1 = h3, then γ = γ1 . . . γn−2h3h1h1h2 =
h1α

′g−12 g−11 with α′ ∈< g1, g2 > by induction. The other cases are similar
to one of the three cases that were just handled.

In order to have an index 2 fuchsian supergroup of ∆(u2, 2τ), it is now
enough to prove the following lemma :

Lemma 1. A �nite index supergroup of a fuchsian group is a fuchsian group.

Proof. Let Γ1 and Γ2 be subgroups of PSL(2,R) with Γ1 a fuchsian group and a
�nite index subgroup of Γ2. Let us show that Γ2 acts properly discontinuously
on H2. If [Γ2 : Γ1] = n, we have :

Γ2 = Γ1 t Γ1 · γ1 t · · · t Γ1 · γn

Let K ⊂ H2 be compact. We have :

K ∩ Γ2 ·K = (K ∩ Γ1 ·K) ∪ (K ∩ Γ1 · γ1K) ∪ · · · ∪ (K ∩ Γ1 · γnK)

= K ∩ Γ1 · (K ∪ γ1K ∪ · · · ∪ γnK)

⊂ (K ∪ γ1K ∪ · · · ∪ γnK) ∩ Γ1 · (K ∪ γ1K ∪ · · · ∪ γnK)

Writing L = (K ∪ γ1K ∪ · · · ∪ γnK), we have L is compact (�nite union of
compacts), and since Γ1 is a fuchsian group, it acts properly discontinuously on
H2, thus L ∩ Γ1 · L is �nite, so K ∩ Γ2 ·K is �nite as well. This shows that Γ2

acts properly discontinuously on H2, thus is a fuchsian group.
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Now it only remains to show that

(
1 τ
0 1

)
∈< h1, h2, h3 >. But we have :

(
1 2τ
0 1

)
= g1g

−1
2 g−11 g2

= h2h1h3h1h1h2h1h3

= (h2h1h3)2

Necessarily, h2h1h3 is the translation by τ .

2.4 Implementation and results

Using this technique, Long and Reid in [1] found four classes of pseudomodular
groups ∆( 5

7 , 6), ∆( 2
5 , 4), ∆( 3

7 , 4), ∆( 3
11 , 4) and Ayaka in [3] found a �fth one

which is ∆( 5
13 , 4). We focused on the case when τ = 2(u2 + 2) and we found

four more pseudomodular groups, for u2 ∈
{

2
3 ,

3
4 ,

3
8 ,

5
8

}
. These four groups we

found all have di�erent cusp densities (see appendix B), so they are of four
di�erent commensurability classes. However we were not able to prove that
those groups are not commensurable to the ones already found by Ayaka and
Long and Reid.

3 In�nite families of pseudomodular surfaces

We now wonder if there exists in�nitely many commensurability classes of pseu-
domodular groups. The answer is positive. In order to see it, we have to stop
considering only ideal quadrilatera and take bigger polygons. In this section,
we follow the presentation by Lou, Tan and Vo in [2].

De�nition 4. A marked triangle is an oriented triangle along with one point
on each of its edges.

Let T be such a triangle with oriented triple of ideal vertices (v1, v2, v3) ∈
(R∪{∞})3, and marked points x1 ∈ (v1, v2), x2 ∈ (v2, v3) and x3 ∈ (v3, v1). Let
p1 (respectively p2, p3) be the orthogonal projection of v3 on (x1, x2) (respec-
tively of v1 on (v2, v3), of v2 on (v2, v1)) and for i = 1, 2, 3 let us call �parameter
associated to the edge i� and write ki = e2d(pi,xi) ∈ (0,+∞), d(pi, xi) being the
oriented distance, calculated with respect from the orientation of the edge ei
containing xi. The triple (k1, k2, k3), up to cyclic permutation, characterizes T
up to isometry of marked triangles. We thus write ∆(k1, k2, k3) to denote T .

Let us write h1, h2, h3 the π-rotations around x1, x2, x3. The isometries
h1h2 and h2h3 are side pairings of an ideal quadrilateron, just like g1 and g2
in section 2, and < h1, h2, h3 > is an index 2 supergroup of < h1h2, h2h3 > as
we saw in subsection 2.3. The Poincaré theorem says that < h1, h2, h3 > is a
fuchsian group with the triangle ∆(k1, k2, k3) as a fundamental domain if h1h2h3
is parabolic, and a computation shows that < h1, h2, h3 > is a fuchsian group
with the triangle ∆(k1, k2, k3) as a fundamental domain if h1h2h3 is parabolic,
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and a computation shows that this is equivalent to saying that k1k2k3 = 1. We
call �good� triangles marked triangles with k1k2k3 = 1.

De�nition 5. Let T , T ′ be two marked triangles. We say that an edge ei of
T is compatible with an edge e′j of T ′ if ei and e′j have the same parameter
(i, j = 1, 2, 3).

Let T , T ′ be two marked triangles, ei, e
′
j sides respectively of T and T ′ that

are compatible. Let us glue T and T ′ along ei and e′j , such that the marked
point x of ei and e′j are identi�ed. Then the π rotation around x sends the
(unmarked) triangle T on T ′ and the (unmarked) triangle T ′ on T .

De�nition 6. A jigsaw is de�ned by induction :

• A marked triangle ∆(k1, k2, k3) is a jigsaw.

• A triangle glued with a jigsaw along an exterior side of the jigsaw and a
compatible side of the triangle is a jigsaw.

Remark 2. A jigsaw with n triangles is a (n+ 2)-agon.

De�nition 7. The group ΓJ associated to a jigsaw J is the group generated by
the π-rotations around the marked points of the exterior sides of J .

Proposition 5. If a jigsaw J is made only with �good� triangles, then

(1) ΓJ is a fuchsian group with fundamental domain the polygon de�ned by
the jigsaw, and Cusp(ΓJ) = ΓJ · ∞

(2) If there are n triangles in J , then ΓJ is an order 2-supergroup of a free
group de�ned by side pairings of a (2n+ 2)-agon.

Proof. (2) is a consequence of the Poincaré theorem applied to J ∪ h(J), where
h is a π-rotation around an exterior side of J . (1) is a consequence of (2).

From now on, we will consider only jigsaws made up of �good� hyperbolic
triangles.

Such a jigsaw J gives rise, when considering ΓJ · J , to a triangulation of the
hyperbolic plane with marked triangles, each edge of the triangulation having a
parameter associated to it.

De�nition 8. • An integral triangle is a marked triangle that is isometric
to ∆(1, 1

n , n) for some n ∈ N.

• An integral jigsaw is a jigsaw made with integral triangles, among which
there is a ∆(1, 1, 1) triangle.

• An integral jigsaw is in standard position if it contains a ∆(1, 1, 1) traingle
with vertices in position (∞,−1, 0).

Proposition 6. Let J be an integral jigsaw in standard position. Let TJ be the
triangulation of H2 associated to J . Let ∆ be a ∆(1, 1

n , n)-triangle that has an
ideal vertex at ∞.
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• If n = 1, then the two other ideal vertices are m and m+ 1 with m ∈ Z.

• If n 6= 1 and the edge of ∆ opposite to ∞ has parameter 1, then the two
other vertices are m and m+ n with m ∈ Z.

• If n 6= 1 and the edge of ∆ opposite to ∞ has parameter n or 1
n , then the

two other vertices of ∆ are m and m+ 1 with m ∈ Z.

Proof. It is an induction starting at the ∆(1, 1, 1) triangle of J with vertices∞,
−1 and 0.

Proposition 7. Let J be an intergral jigsaw in standard position. Let TJ be
the triangulation of H2 associated to J and let ∆ be an integral triangle of TJ
with one vertex at ∞. Let m ∈ Z be another ideal vertex of ∆. Then there is
γ ∈ ΓJ such that γ(∞) = m and such that the killer interval associated to γ is
(m− 1,m+ 1).

Proof. We have m ∈ Cusp(ΓJ), so there exists γ ∈ ΓJ such that γ(∞) = m. Let
∆′ be the triangle of TJ that is the preimage of ∆ by γ : ∆ = γ(∆′). Since γ
preserves orientation, the relations ∆ = γ(∆′), m = γ(∞) is enough to compute
γ knowing the vertices of ∆ and ∆′. According to proposition 6, there are only
few cases for the vertices of ∆ and ∆′. In each case, the computation gives
(m− 1,m+ 1) as a killer interval for γ.

Proposition 8. If J is an integral jigsaw in standard position that contains
only ∆(1, 1, 1) and ∆(1, 12 , 2) triangles (and at least one of each type), then ΓJ
is nonarithmetic.

Proposition 9. Let Jn be the integral jigsaw in standard position with a ∆(1, 1, 1)
triangle and n ∆(1, 12 , 2)-triangles glued, each having a vertex at ∞ and positive
ideal vertices. Then the ΓJn are noncommensurable with each other.

A Arithmeticity of fuchsian groups

There is a canonical surjection π : SL(2,R) � PSL(2,R). Reciprocally, to
any group Γ < PSL(2,R), we can associate the group π−1(Γ) < SL(2,R). In
this section, thanks to these two correspondances, we will consider without
distinction subgroups of PSL(2,R) and the corresponding subgroups in SL(2,R).

A.1 Quaternion algebras

De�nition 9. (Quaternion algebra) A quaternion algebra over a �eld k is an
algebra over k whose dimension as a k-vector space is 4 and which is a simple
central algebra, i.e.

• The centre of A is k · 1

• For any ideal R ⊂ A such that there exists e ∈ N with Re = {0}, R = {0}
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Proposition 10. Let A be a quaternion algebra. There exists i, j ∈ A such
that the family (1, i, j, ij) is a basis of the k-vector space A and i2 ∈ k, j2 ∈ k,
ij = −ji.

Let i, j ∈ A be as in the proposition 10. Then the operations on A are totally
determined by the values of i2 ∈ k and j2 ∈ k. Furthermore, if B is another
quaternion algebra over the same �eld k, and i′, j′ ∈ B as in the proposition 10,
if i2 = i′2 and j2 = j′2, then A and B are isomorphic as k-algebras. Thus we
can denote quaternion algebras by the notation(

a b

k

)
k being the base �eld and a, b ∈ k being the respective values of i2, j2.

For example, the hamiltonian quaternions

H =

(
−1 − 1

R

)
and the matrices of size 2 with coe�cients in a �eld k

M(2, k) =

(
1 1

k

)

are quaternion algebras, with i =

(
0 1
1 0

)
and j =

(
1 0
0 −1

)
in the case of

M(2, k).
Let A =

(
a b
k

)
be a quaternion algebra over a �eld k, and i, j ∈ A as in

proposition 10. We can de�ne on A a reduced trace Trd and a reduced norm
Nrd, by setting for x = x1 · 1 + x2 · i+ x3 · j + x4 · ij :

Trd(x) = 2x1

Nrd(x) = x21 − ax22 − bx23 + x24

We can check that these two functions don't depend on the choice of i and j. In
the case the the matrices of size 2, the reduced trace corresponds to the trace and
the reduced norm to the determinant. One can check that for any quaternion
algebra, the reduced trace is additive and the reduced norm is multiplicative.

De�nition 10. A quaternion algebra A is called a division algebra if any ele-
ment in A is invertible.

In particular, the hamiltonian quaternions H form a division algebra, but
M(2, k) is not a division algebra. In fact we ave the following proposition :

Proposition 11. Let A be a quaternion algebra over a �eld k. If A is not a
division algebra, then A is isomorphic to M(2, k).

11



A.2 Groups derived from a quaternion algebra

Let us now de�ne arithmetic fuchsian groups and state the main theorems that
enable us to characterize them. First we need to de�ne a very special case of
quaternion algebras, that are the ones involved in the de�nition of arithmetic
fuchsian groups.

De�nition 11. A totally real number �eld is a number �eld k such that for any
embedding σ : k ↪→ C, one has σ(k) ⊂ R.

Let A =
(
a b
k

)
be a quaternion algebra over a number �eld k, and let k ↪→ C

be an embedding. Then
(
σ(a) σ(b)
σ(k)

)
de�nes a quaternion algebra over the number

�eld σ(k), that we write Aσ.

De�nition 12. Let A be a quaternion algebra over a totally real number �eld
k, and let id = σ1, . . . , σn be the embeddings k ↪→ C. A is said to be a �good�
quaternion algebra if {

A⊗ R 'M(2,R)

Aσi ⊗ R ' H (2 ≤ i ≤ n)

A ' B meaning �A and B isomorphic�.

De�nition 13. Let A be a quaternion algebra over k totally real number �eld,
and write k0 for the ring of integers of k (i.e. elements in k that are roots of
unitary polynomials with coe�cients in Z). An order of A is a subring O of A
that generates A as a k-vector space and such that for all x ∈ O, Trd(x) ∈ k0
and Nrd(x) ∈ k0.

Proposition 12. If A is a �good� quaternion algebra and O is an order of A,
then ι(O) is a fuchsian group, where ι is the isomorphism ι : A⊗ R 'M(2,R)
and

O1 = {x ∈ O,Nrd(x) = 1}

De�nition 14. A group Γ < SL(2,R) is derived from a quaternion algebra if
there exists a �good� quaternion algebra A and an order O of A such that Γ is a
�nite index subgroup of ι(O1) where ι is the isomorphism ι : A ⊗ R ' M(2,R)
and O1 = {x ∈ O,Nrd(x) = 1}

De�nition 15. Two subgroups Γ1 and Γ2 of SL(2,R) are said to be commen-
surable in a strong sense if Γ1 ∩ Γ2 is �nite index in both Γ1 and Γ2.

De�nition 16. A group Γ < SL(2,R) is said to be arithmetic if it is commen-
surable in a strong sense to a group derived from a quaternion algebra.

Here are now the two main theorems of this subsection :

Theorem 3. A group Γ < SL(2,R) is derived from a quaternion algebra if and
only if

(i) k = Q[Tr(Γ)] is a totally real number �eld, where Tr(Γ) = {Tr(x), x ∈ Γ}

12



(ii) Tr(Γ) ⊂ k0

(iii) If φ : k ↪→ R is an embedding that is not identity, then φ(Tr(R)) is bounded
in R.

Proof. (Sketch) Let A = k[Γ] (i.e. linear combinations of elements in Γ with
elements in k) and O = k0[Γ]. The following statements need to be proven :

(1) A is a quaternion algebra

(2) A is �good�

(3) O is an order of A

(4) Γ is a �nite order subgroup of O1.

• Point (4) is easy : it is obvious that Γ is a subgroup of O1. Moreover,
according to proposition 12, O1 is a fuchsian group. Since Γ is of �nite
coarea, O1 is of �nite coarea and Area(H2/Γ) = [Γ : O1] · Area(H2/O1).
So Γ is a �nite order subgroup of O1

• The proofs of (1) and (3) are quite elementary, though a little bit technical.
It is in the proof of (3) that hypothesis (ii) is involved.

• The proof of (2) is more di�cult. It is the one that involves (iii).

Theorem 4. If Γ < PSL(2,R) is �nitely generated and �nite covolume, then Γ
is arithmetic if and only if Γ2 is derived from a quaternion algebra.

A.3 The case of ∆(u2, 2τ)

In the case of ∆(u2, 2τ) =< g1, g2 > with u2, τ ∈ Q, we know that ∆(u2, 2τ)(2) <
PSL(2,Q), thus Tr(∆(u2, 2τ)) ⊂ Q. As a consequence, the theorems 3 and 4
can be stated as follows :

Theorem 5. For u2, 2τ ∈ Q, ∆(u2, τ) is an arithmetic fuchsian group if and
only if for γ ∈ ∆(u2, 2τ)(2), Tr(γ) ∈ Z.

In our research of pseudomodular groups, we want to �nd groups that are
not pseudomodular to PSL(2,Z). In fact it is enough to �nd groups that are
not arithmetic thanks to the following proposition :

Proposition 13. If Γ is a �nite covolume fuchsian group that is commensurable
(in a weak sense) to an arithmetic group, then Γ is arithmetic.

Proof. If Γ is commensurable to Γ′ with Γ′ arithmetic, then Γ is commensurable
in a strong sense to γΓ′γ−1 with γ ∈ PSL(2,R). Then it is enough to show
that γΓ′γ−1 is arithmetic. Since Γ is �nite covolume, Γ′ too and γΓ′γ−1 too.
Moreover Tr((γΓ′γ−1)2) = Tr(γΓ′(2)γ−1) = Tr(Γ(2)). So since Tr(Γ′(2)) veri�es
the conditions of the theorem 3, Tr((γΓ′γ−1)(2)) too, thus (γΓ′γ−1)(2) is derived
from a quaternion algebra. Finally, γΓ′γ−1 is arithmetic and so is Γ.

13



PSL(2,Z) is obviously arithmetic since M(2,Z) is an order of the �good�
quaternion algebra M(2,Q). Thus it is enough to show that a group ∆(u2, 2τ)
is nonarithmetic in order to show that it is not commensurable to PSL(2,Z).
Knowing this is enough for our purpose because there are very few arithmetic
groups among the family ∆(u2, 2τ). But we have a stronger fact :

Proposition 14. The group ∆(u2, 2τ) is commensurable (in a weak sense) to
PSL(2,Z) if and only if it is arithmetic.

In order to prove this proposition we need two hard theorems :

Theorem 6. Any order of M(2,Q) is embedded into a maximal order.

Theorem 7. Any maximal order of M(2,Q) is conjugated to M(2,Z).

Proof. of proposition 14 Suppose ∆(u2, 2τ) is arithmetic. Then ∆(u2, 2τ)(2) is
derived from a quaternion algebra. As a consequence of the proof of theorem
3, we have A = Q[∆(u2, 2τ)(2)] ⊂ M(2,Q) is a quaternion algebra and O =
Z[∆(u2, 2τ)(2)] is an order of A. Since A is a Q-vector space of dimension 4,
subspace of M(2,Q), A = M(2,Q) and O is an order of M(2,Q). Thus O is

included into a maximal order Õ of M(2,Q) (theorem 6), which is conjugated
to M(2,Z) by theorem 7 :

O ⊂ Õ = γM(2,Z)γ−1

with γ ∈ GL(2,Q). Thus we have :

∆(u2, 2τ)(2) < O1 < Õ1 = γ SL(2,Z)γ−1

Since ∆(u2, 2τ)(2) and PSL(2,Z) are �nite covolume fuchsian groups, ∆(u2, 2τ)(2)

is a �nite index subgroup of γ PSL(2,Z)γ−1, so it is commensurable to PSL(2,Z).
But ∆(u2, 2τ)(2) is a �nite index subgroup of ∆(u2, 2τ), so ∆(u2, 2τ) is com-
mensurable to PSL(2,Z).

Let us now come back to practical purposes. Instead of computing the whole
set of traces of ∆(u2, 2τ)(2) in order to see if ∆(u2, 2τ) is arithmetic, we only
need to compute 3 of them :

Proposition 15. If γ ∈ ∆(u2, 2τ), then Tr(γ) is a polynomial in Tr(g21), Tr(g22)
and Tr(g21g

2
2) with integer coe�cients.

Once again, for our purpose only one implication is really useful and it is
the easy one. Indeed, since we want to prove that groups are not arithmetic, it
su�ces to have one trace that is not in Z. Let us see, however, the techniques
that allow to prove this proposition.

Proposition 16. Let Γ be a subgroup of SL(2,Q). Let α1, . . . αn be generators
of Γ. Let

E = {αi1 · · ·αik , i1 < · · · < ik, 1 ≤ k ≤ n}
Then the trace of any element γ ∈ Γ can be expressed as a polynomial in elements
of E with integer coe�cients.
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Proof. Let us show this proposition when n = 2, α1 and α2 are generators of
Γ. The proof for bigger n's uses the same idea. Let us show that for any word
with letters in {α1, α2, α

−1
1 , α−12 }, Tr(w) is a polynomial in Tr(α1), Tr(α2) and

Tr(α3) with integer coe�cients. Let us proceed by induction. The proof only
uses the Cayley-Hamilton identity :

γ2 − Tr(γ)γ + I2 = 0

• For words of length 1, i.e. α1, α2, α
−1
1 and α−12 , we have have for instance

α1 − Tr(α1)I2 + α−11 = 0

thus taking the trace :
Tr(α1) = Tr(α−11 )

and similarly Tr(α2) = Tr(α−12 ).

• Let w be a word of length k ≥ 2. If w = w′α2
1, we have by multiplicating

the Cayley-Hamilton identity by w′ :

w′α1 − Tr(α1)w′α1 − w′ = 0

thus, taking the trace

Tr(w) = Tr(α1) Tr(w′α1)− Tr(w′)

by induction, Tr(w′α1) and Tr(w′) are polynomials in Tr(α1), Tr(α2) and
Tr(α1α2) with integer coe�cients. The same arguments works if w =
w′α2

2, w
′ = α−21 or w′ = α−22 . Since Tr(ab) = Tr(ba), we can reduce the

problem to one of these cases as soon as w is not of the form γ1 · · · γk with
γ1 = γk or γi = γi+1 for some i. In this last case, w is in fact an integer
polynomial in words that are strictly shorter than w and a word of the
form (α1α2)l. Indeed, if w = w′γ, then still by multiplicating by w′ and
taking the trace in Cayley-Hamilton, we get

Tr(w) = Tr(w′) Tr(γ)− Tr(w′γ−1)

With this relation we can �change� any occurence of α−11 or α−12 in w in
respectively α1 or α2. Finally, it su�ces to notice that by multiplicating
by γl−2 in Cayley-Hamilton, we have

Tr(γl)− Tr(γ) Tr(γl−1) + Tr(γl−2) = 0

Thus Tr((α1α2)l) is an integer polynomial in Tr(α1α2).

Proposition 17. The group ∆(u2, 2τ)(2) =< g1, g2 >
(2) is generated by words

of length 2 and 4 in which the sum of all the occurences of g1 (respectively g2)
(counting negatively for occurences of g−11 ) is even.
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Now that we have a �nite family of generators for < g1, g2 >(2), we can
compute all the traces associated to the set E of the proposition 16. Such a
computation (for instance with a formal calculus software) shows that they are
all polynomials in Tr(g21), Tr(g22) and Tr(g21g

2
2), proving proposition 15. In order

to prove proposition 17, we �rst need a lemma that gives us explicitely the group
< g1, g2 >

(2).

Lemma 2. As a set, the group < g1, g2 >
(2) is

E =
{

(gη12 )gε11 g
η2
2 · · · g

εk
1 (g

ηk+1

2 ), εi, ηi ∈ {±1},
∑

ηi ≡
∑

εi (mod 2)
}

As a consequence, proposition 17 says that < g1, g2 >(2) is generated by
words of < g1, g2 >

(2) of length ≤ 4.

Proof. (of the lemma) The only hard inclusion is E ⊂< g1, g2 >
(2). Let us pick

w ∈ E and let us show that w is a product of squares of elements of < g1, g2 >
by induction on the length of w.

• If w is of length 0 or 2, it is obvious.

• If w is of length ≥ 3, then we can suppose g1 is the �rst letter of w. If g21
are the �rst two letters of w, then w = g1w

′ and we conclude by induction.
Else, since there is an even number of elements in {g1, g−11 } in w, there
is another occurence of g±11 further in the word : w = g1w

′g±11 w′′. A
multiplication by (g21w

′)−2 gives (g1w
′)−2w = w′−1g−11 g±11 w′′. We can

iterate this process untill we get a smaller word or a word of the type
γ21 · · · γ2k with γi ∈ {g1, g

−1
1 , g2, g

−1
2 }. This proves the lemma by induction.

Proof. (of proposition 17) Let G be the set de�ned in the proposition 17, and
let w be a word in < g1, g2 >

(2). Once again we proceed by induction.

• By the lemma, if the length of w is ≤ 4, w ∈ E .

• If the length of w is bigger than 4, let us focus on the last 4 letters of w
: w = w1w2 with w2 of length 4. If w2 ∈ G, we can already conclude by
induction. We can also conclude if the 2 last letters of w2 are the same.
The cases that are left can all be handled with the same trick. Let us
consider the case where w2 = g21g2g1. Then w2 · (g−11 g−12 g−11 g2) = g1g2,
which is of length < 4. Since g−11 g−12 g−11 g2 ∈ G, we can also conclude by
induction in this case.
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B Cusp density

De�nition 17. Let Γ be a fuchsian group. The commensurator of Γ is the set{
γ ∈ PSL(2,R : γ−1Γγ is commensurable to Γ)

}
Proposition 18. Let Γ, Γ′ be fuchsian groups

(1) Γ ⊂ Comm(Γ)

(2) Comm(Γ) is a group

(3) If Γ and Γ′ are commensurable, then Comm(Γ) and Comm(Γ′) are conju-
gated

Theorem 8. (Margulis)

• If Γ is an arithmetic fuchsian group, then Comm(Γ) is dense in PSL(2,Z).

• If Γ is a nonarithmetic fuchsian group, then Comm(Γ) is a fuchsian group
and [Γ : Comm(Γ)] < +∞

Take u1, τ1, u2, τ2 ∈ R so that Γ1 = ∆(u21, 2τ1) and Γ2 = ∆(u22, 2τ2) are
nonarithmetic and commensurable to each other. We have the following com-
mutative diagram, with G their common commensurator.

H2 H2

H2/Γ1 H2/Γ2

H2/Comm(Γ1) H2/Comm(Γ2)

π1

∃γ̃

π2

σ1 σ2

γ

The existence of γ̃ is ensured by the proposition 18 : since Comm(Γ1) and
Comm(Γ2) are conjugated in PSL(2,R), the isometry γ lifts to an isometry
γ̃ ∈ PSL(2,R).

Now consider a horoball D1 in H2 at a cusp p of Γ1 =< g1, g2 >, and then its
orbit P1 under the action of Γ1. The condition on g1g

−1
2 g−11 g2 being a parabolic

ensures that there is in P1 at most one horoball per cusp of Γ1 ; and the fact
that H2/Γ1 has only one cusp ensures that there is at least one horocircle in
P1 at each cusp of Γ1. Finally there is in P1 exactly one horocircle per cusp of
Γ1. Moreover, if D1 is small enough for the disks of P1 corresponding to the 4
cusps of a fundamental domain of Γ1, then all the horoballs in P1 are disjoint.
By increasing D1 continuously, we get a smallest D1, called D

0
1, such that the

horoballs in P 0
1 are not disjoint anymore. This P1 is called the �maximal circle

packing� associated to Γ1. We denote it by P 0
1 .

We can consider similarly a horoball D2 at the cusp γ̃ of Γ2 and the circle
packing P2 associated. Since γ̃ is an isometry, the horoball D0

2 corresponding
to the maximal circle P 0

2 veri�es D0
2 = γ̃(D0

1) and P 0
2 = γ̃(P 0

1 ).
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We call �cusp density� of Γ1 and we write Dens(Γ1) the quantity

Dens(Γ1) =
Area(π1(P 0

1 ))

Area(H2/Γ1)

Let us now show that the cusp density is a commensurability invariant, i.e.,
in our context, that Dens(Γ1) = Dens(Γ2). We have, by de�nition of γ̃, σ2 ◦
π2(P 0

2 ) = γ(σ1 ◦ π1(P 0
1 )). Thus Area(σ1 ◦ π1(P 0

1 )) = Area(σ2 ◦ π2(P 0
2 )) But σ1

and σ2 are �nite coverings, say d1 and d2 coverings. So we have :

Area(H2/Γ1) = d1 ·Area(H2/Comm(Γ1))

Area(π1(P 0
1 )) = d1 ·Area(σ1 ◦ π1(P 0

1 ))

Area(H2/Γ2) = d2 ·Area(H2/Comm(Γ2))

Area(π2(P 0
2 )) = d2 ·Area(σ2 ◦ π2(P 0

2 ))

Since Area(H2/Comm(Γ1)) = Area(H2/Comm(Γ2)), this shows Dens(Γ1) =
Dens(Γ2)
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