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Abstract. In our previous paper, we obtained several results concerning

cobordisms of algebraic knots associated with Brieskorn polynomials: for ex-
ample, under certain conditions, we showed that the exponents are cobordism

invariants. In this paper, we further obtain new results concerning the Fox–

Milnor type relations, decomposition of the algebraic cobordism class of an al-
gebraic knot associated with a Brieskorn polynomial that has a null-cobordant
factor over the field of rational numbers, and cyclic suspensions of knots. As a

corollary, we show that a spherical algebraic knot associated with a Brieskorn
polynomial has infinite order in the knot cobordism group.

1. Introduction

Let f : pCn`1,0q Ñ pC, 0q, n ě 1, be a holomorphic function germ with an
isolated critical point at the origin. For a sufficiently small positive real number
ε ą 0, set Kf “ S2n`1

ε X Vf , where Vf “ f´1p0q is the complex hypersurface in
Cn`1 with an isolated singularity at the origin and S2n`1

ε is the sphere of radius
ε centered at the origin in Cn`1 (see Fig. 1). It is known that Kf is an pn ´ 2q–
connected, oriented p2n ´ 1q–dimensional submanifold of S2n`1

ε “ S2n`1, that its
complement fibers over the circle S1, and that the isotopy class of Kf in S2n`1

is independent of the choice of ε as long as it is sufficiently small (see [16]). Note
also that the embedded topology of Vf Ă Cn`1 around the origin determines and
is determined by the (oriented) isotopy class of Kf Ă S2n`1 (see [18]). We call Kf

the algebraic knot associated with f . In this paper, a knot refers to (the isotopy
class of) an pn´2q–connected, oriented p2n´1q–dimensional submanifold in S2n`1.
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Figure 1. The algebraic knot Kf associated with the singularity
at 0 of a germ f
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In this paper, we consider Brieskorn polynomials

(1.1) fpz1, z2, . . . , zn`1q “ za1
1 ` za2

2 ` ¨ ¨ ¨ ` z
an`1

n`1

with exponents ai ě 2, 1 ď i ď n ` 1, and their associated algebraic knots Kf

[4]. We especially focus on the study of their properties concerning cobordisms.
Two knots K0 and K1 in S2n`1 are said to be cobordant if there exists a properly
embedded oriented submanifold X, diffeomorphic to K0 ˆ r0, 1s, of S2n`1 ˆ r0, 1s

such that X X pS2n`1 ˆ t0uq “ K0, and X X pS2n`1 ˆ t1uq “ ´K !
1, where ´K !

1 is
the mirror image of K1 with reversed orientation (see [1, 2]).

In our previous paper [3], we obtained several results concerning cobordisms of
algebraic knots associated with Brieskorn polynomials: for example, under certain
conditions, we showed that the exponents are cobordism invariants. In this paper,
we further obtain new results concerning the Fox–Milnor type relations, decom-
position of the algebraic cobordism class of an algebraic knot associated with a
Brieskorn polynomial that has a null-cobordant factor over the field of rational
numbers, and cyclic suspensions of knots.

The present paper is organized as follows. In §2, we recall several basic definitions
and properties concerning invariants and cobordisms of algebraic knots such as
Alexander polynomials and Seifert forms.

In §3, we focus on the Fox–Milnor type relations for Alexander polynomials
[8, 9] and give a characterization of Brieskorn polynomials that give algebraic knots
whose Alexander polynomials satisfy the Fox–Milnor type relation in terms of their
exponents. As a consequence, we show that an algebraic knot associated with a
Brieskorn polynomial is never null-cobordant: in fact, it turns out that a spherical
algebraic knot associated with a Brieskorn polynomial always has infinite order in
the knot cobordism group. As far as the authors know, this is the first explicit
example of a family of spherical algebraic knots which are not null-cobordant and
which have infinite order in the knot cobordism group.

In §4, we consider the linear independence of spherical algebraic knots associated
with certain Brieskorn polynomials in the knot cobordism group. In fact, Litherland
[14] has shown that the spherical algebraic knots in S3 associated with Brieskorn
polynomials of two variables are linearly independent in the 1–dimensional knot
cobordism group by using a certain signature invariant. We will use the same idea
to prove a similar linear independence result for higher dimensions.

In §5, we consider the group of algebraic cobordism classes of spherical knots
which has been introduced and studied by Levine [12, 13]. We give an explicit
example of a spherical algebraic knot associated with a Brieskorn polynomial such
that its algebraic cobordism class has a decomposition into those corresponding to
the irreducible factors of its Alexander polynomial over the field of rational numbers
and that one of them is algebraically null-cobordant. This shows that cobordant
spherical algebraic knots associated with Brieskorn polynomials may not share the
same irreducible factors of their Alexander polynomials, and therefore the study of
cobordism classes of algebraic knots associated with Brieskorn polynomials might
be more complicated than expected.

Finally in §6, we consider cyclic suspensions of knots [17] and study its relation-
ship to the cobordisms. Note that the algebraic knot associated with a polynomial
of the form fpz1, z2, . . . , zn`1q`zdn`2 is the d–fold cyclic suspension of the algebraic
knot associated with f . We will see that the cyclic suspension of knots often behaves
very badly with respect to cobordisms. For example we show that certain cyclic
suspensions of the algebraic knots constructed by Du Bois–Michel in [6], which are
cobordant to each other, are not diffeomorphic and are not cobordant.

Throughout the paper, all manifolds and maps between them are smooth of class
C8.
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2. Preliminaries

Let K be a p2n ´ 1q–dimensional knot in S2n`1. Suppose that there exists a
locally trivial fibration φ : S2n`1 ∖ K Ñ S1. We also assume that there is a
trivialization τ : NpKq Ñ K ˆ D2 of the normal disk bundle neighborhood NpKq

of K in S2n`1 such that the composition

NpKq ∖K
τ |NpKq∖K
´́ ´́ Ñ́K ˆ pD2 ∖ t0uq

pr2
´́ ´́ Ñ́D2 ∖ t0u

r
´́ ´́ Ñ́S1

coincides with φ|NpKq∖K , where pr2 is the projection to the second factor and
r is the radial projection. Then, we say that K is a fibered knot. We call the
closure F of a fiber of φ a fiber. Note that it is a 2n–dimensional compact oriented
submanifold of S2n`1 whose boundary coincides with K. A p2n ´ 1q–dimensional
fibered knot K is simple if it is pn ´ 2q–connected and F is pn ´ 1q–connected.
(Here, for n “ 1, a manifold is p´1q–connected if it is nonempty.) In this case,
F is homotopy equivalent to a bouquet of n–dimensional spheres. Note that an
algebraic knot associated with a holomorphic function germ f : pCn`1,0q Ñ pC, 0q

with an isolated critical point at the origin is a simple fibered knot [16]. In this
case, a fiber of such an algebraic knot is called the Milnor fiber for f .

Let ψ : F Ñ F be a geometric monodromy of the fibration φ; i.e., it is a
diffeomorphism which is constructed by integrating an appropriate horizontal vector
field on S2n`1 ∖K with respect to φ and which is the identity on the boundary.
In other words, S2n`1 ∖ IntNpKq is diffeomorphic to the manifold

F ˆ r0, 1s{px, 1q „ pψpxq, 0q, x P F.

The geometric monodromy is well-defined up to isotopy. The isomorphism

ψ˚ : HnpF ;Zq Ñ HnpF ;Zq

is called the algebraic monodromy. Its characteristic polynomial ∆Kptq is often
called the Alexander polynomial of K. When K is an algebraic knot associated
with a holomorphic function germ f , we often denote ∆Kf

ptq by ∆f ptq.
Let us consider the multiplicative group C˚ and its group ring QC˚ over the

field of rational numbers. For a monic polynomial ∆ptq with nonzero constant term,
we denote by div∆ the element

ÿ

mξxξy P QC˚,

where ξ runs over all roots of ∆ptq and mξ is its multiplicity. We also denote

Λa “ div pta ´ 1q

for a positive integer a. Now, let us consider a Brieskorn polynomial as in (1.1).
Then, by Brieskorn [4], it is known that

div∆f “ pΛa1
´ 1q pΛa2

´ 1q ¨ ¨ ¨
`

Λan`1
´ 1

˘

.

This implies that the roots of ∆f ptq are all roots of unity and that ∆f ptq is a
product of cyclotomic polynomials.

Let K be a p2n ´ 1q–dimensional knot. We say that K is spherical if K is
homeomorphic to the p2n´1q–dimensional sphere. WhenK is a simple fibered p2n´

1q–knot with n ‰ 2, it is known that K is spherical if and only if ∆Kp1q “ ˘1. For
algebraic knots associated with a Brieskorn polynomial, there is a characterization
of spherical knots due to Brieskorn [4] in terms of the exponents (for details, see
Theorem 3.12 of the present paper).

Let K be a simple fibered p2n ´ 1q–knot with fiber F . We define the bilinear
form θK : HnpF ;Zq ˆ HnpF ;Zq Ñ Z by θKpα, βq “ lkpa`, bq, where a and b are
n–cycles representing α and β, respectively, a` is the n–cycle in S2n`1 obtained
by pushing a into the positive normal direction of F , and lk denotes the linking
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Figure 2. Computing a Seifert matrix for the trefoil knot

number of n–cycles in S2n`1 (see Fig. 2). The bilinear form θK is called the Seifert
form of K and its representative matrix is called a Seifert matrix. It is known that
a Seifert form is unimodular, i.e., the determinant of the Seifert matrix is equal to
˘1.

It is known that for n ě 3, there is a one-to-one correspondence between the set
of isomorphism classes of unimodular bilinear forms over the integers and the set
of isotopy classes of simple fibered p2n´ 1q–knots [7, 10].

3. Fox–Milnor type relation

Let ∆f ptq and ∆gptq denote the Alexander polynomials for the algebraic knots
Kf and Kg associated with f and g, respectively. We say that the Alexander
polynomials satisfy the Fox–Milnor type relation if there exists a polynomial γptq
with integer coefficients such that ∆f ptq∆gptq “ ˘tdeg γγptqγpt´1q ([8, 9]). It is
known that if Kf and Kg are cobordant, then their Alexander polynomials satisfy
the Fox–Milnor type relation (for details, see [2], for example).

Remark 3.1. If f and g are Brieskorn polynomials, then the Alexander polynomials
∆f ptq and ∆gptq are products of cyclotomic polynomials, which are symmetric.
Therefore, their Alexander polynomials satisfy the Fox–Milnor type relation if and
only if ∆f ptq∆gptq is a square.

Let

fpzq “ za1
1 ` za2

2 ` ¨ ¨ ¨ ` z
an`1

n`1

be a Brieskorn polynomial with aj ě 2 for all j. Set Ef “ ta1, a2, . . . , an`1u, which
may contain the same integer multiple times and is considered to be a multi-set.

Definition 3.2. From Ef , we construct the (non multi-)subset Ef Ă Ef by the
successive procedure as follows.

(1) Take off all those even integers which appear an even number of times.
(2) Take off the multiple elements except for one in such a way that we get a

non multi-set.
(3) Take off aj if it is an integer multiple of an odd ak with k ‰ j.

We call the set Ef the essential exponent set of f . Note that Ef can be empty.

Theorem 3.3. Let

fpzq “ za1
1 ` za2

2 ` ¨ ¨ ¨ ` z
an`1

n`1 and gpzq “ zb11 ` zb22 ` ¨ ¨ ¨ ` z
bn`1

n`1

be Brieskorn polynomials with aj ě 2 and bj ě 2 for all j. Then, the Alexander
polynomials ∆f ptq and ∆gptq satisfy the Fox–Milnor type relation if and only if

their essential exponent sets coincide, i.e. Ef “ Eg.
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Example 3.4. For example, consider

fpzq “ z31 ` z42 ` z43 ` z64 ` z95 and gpzq “ z21 ` z22 ` z33 ` z34 ` z125 .

Then, we have

Ef “ t3, 4, 4, 6, 9u and Eg “ t2, 2, 3, 3, 12u.

In the process of Definition 3.2, after (1), we get the multi-sets t3, 6, 9u and t3, 3, 12u

for f and g, respectively. After (2), we get the sets t3, 6, 9u and t3, 12u. Finally,
after (3), we get the sets t3u and t3u. Hence, we get Ef “ Eg “ t3u and ∆f ptq
and ∆gptq satisfy the Fox–Milnor type relation. In fact, we have

div∆f ptq “ 4Λ12 ´ Λ3 ´ 1,

div∆gptq “ 24Λ36 ` 6Λ18 ´ 6Λ12 ´ 2Λ9 ´ 2Λ6 ´ 2Λ4 ` Λ3 ´ 1,

so we can verify that ∆f ptq and ∆gptq satisfy the Fox–Milnor type relation.
Note that by the signature formula due to Brieskorn [4], we see that the sig-

natures of the 8–dimensional Milnor fibers for f and g are equal to 274 and 30,
respectively. Thus, Kf and Kg are not cobordant, since the signature of a fiber of
a fibered knot is a cobordism invariant. Nevertheless, their Alexander polynomials
satisfy the Fox–Milnor type relation.

On the other hand, for

hpzq “ z31 ` z42 ` z43 ` z64 ` z85 ,

we have Eh “ t3, 8u, so ∆f ptq (or ∆gptq) and ∆hptq do not satisfy the Fox–Milnor
type relation. In fact, we have

div∆hptq “ 27Λ24 ´ 6Λ12 ` 9Λ8 ´ 2Λ6 ´ 2Λ4 ` Λ3 ´ 1.

In order to prove Theorem 3.3, let us prepare some preliminary lemmas. Recall
that we have

div∆f ptq “

n`1
ź

i“1

pΛai
´ 1q and div∆gptq “

n`1
ź

i“1

pΛbi ´ 1q

and that ∆f ptq and ∆gptq satisfy the Fox–Milnor type relation if and only if

div∆f ptq ” div∆gptq pmod 2q.

The following lemma is easy to prove by using the basic formula

ΛaΛb “ pa, bqΛra,bs,

for positive integers a and b, where pa, bq denotes the greatest common divisor of a
and b, and ra, bs denotes the least common multiple of a and b.

Lemma 3.5. For positive integers a, b and m, we have the following.

(1) If a is even, then we have

pΛa ´ 1qm ”

#

1 pmod 2q, m: even,

Λa ´ 1 pmod 2q, m: odd.

(2) If a is odd, then we have

pΛa ´ 1qm ” Λa ´ 1 pmod 2q

for all m.
(3) If a is odd, then we have

pΛa ´ 1qpΛab ´ 1q ” Λa ´ 1 pmod 2q.
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(4) If aj, j “ 1, 2, . . . ,m, are even, then we have
m

ź

j“1

pΛaj
´ 1q ”

m
ÿ

j“1

Λaj
´ 1 pmod 2q.

(5) If a is even and b is odd, then we have

ΛapΛb ´ 1q ” Λra,bs ´ Λa pmod 2q.

Then, we have the following.

Lemma 3.6. We have
ź

aPEf

pΛa ´ 1q ”
ź

aPEf

pΛa ´ 1q pmod 2q.

Remark 3.7. When Ef “ H,
ź

aPEf

pΛa ´ 1q

is understood to be equal to 0 in the group ring QC˚.

Proof of Lemma 3.6. By Lemma 3.5 (1) for m even, even if we perform the proce-
dure Definition 3.2 (1), the modulo 2 class of the product of Λa´1 over all elements
a of the relevant set, corresponding to the divisor of the relevant Alexander polyno-
mial, does not change. Then, by Lemma 3.5 (1) for m odd and (2), the same holds
with the procedure of Definition 3.2 (2). Finally, by Lemma 3.5 (3), we see that

div∆f ptq ”
ź

aPEf

pΛa ´ 1q pmod 2q.

□
Proof of Theorem 3.3. Suppose that Ef “ Eg holds. Then, by Lemma 3.6, we see
that ∆f ptq and ∆gptq satisfy the Fox–Milnor type relation.

Conversely, suppose that ∆f ptq and ∆gptq satisfy the Fox–Milnor type relation.
Then, by Lemma 3.6, we have

ź

aPEf

pΛa ´ 1q ”
ź

bPEg

pΛb ´ 1q pmod 2q.

Let E
0

f (resp. E
1

f ) be the subset of Ef consisting of even (resp. odd) integers. We

also define E
0

g and E
1

g similarly. Then, we have
¨

˚

˝

ź

aPE
0
f

pΛa ´ 1q

˛

‹

‚

¨

˚

˝

ź

aPE
1
f

pΛa ´ 1q

˛

‹

‚

”

¨

˚

˝

ź

bPE
0
g

pΛb ´ 1q

˛

‹

‚

¨

˚

˝

ź

bPE
1
g

pΛb ´ 1q

˛

‹

‚

pmod 2q.

By Lemma 3.5 (4), we have
¨

˚

˝

ÿ

aPE
0
f

Λa ´ 1

˛

‹

‚

¨

˚

˝

ź

aPE
1
f

pΛa ´ 1q

˛

‹

‚

(3.1)

”

¨

˚

˝

ÿ

bPE
0
g

Λb ´ 1

˛

‹

‚

¨

˚

˝

ź

bPE
1
g

pΛb ´ 1q

˛

‹

‚

pmod 2q.
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By comparing the terms of the forms Λd with d odd, we have
ź

aPE
1
f

pΛa ´ 1q ”
ź

bPE
1
g

pΛb ´ 1q pmod 2q.

(For this, see also [3, Lemma 3.3].) As no integer in E
1

f (or E
1

g) is a multiple of
another one, by the same argument as in the proof of [3, Theorem 2.7], we see that

E
1

f “ E
1

g.
By (3.1), we have

¨

˚

˝

ÿ

aPE
0
f

Λa

˛

‹

‚

¨

˚

˝

ź

aPE
1
f

pΛa ´ 1q

˛

‹

‚

(3.2)

”

¨

˚

˝

ÿ

bPE
0
g

Λb

˛

‹

‚

¨

˚

˝

ź

bPE
1
g

pΛb ´ 1q

˛

‹

‚

pmod 2q.

Then, by considering the terms of the forms Λd with d minimal on both sides, we
see that

minE
0

f “ minE
0

g,

which we set as m0. Consequently, by subtracting

Λm0

¨

˚

˝

ź

aPE
1
f

pΛa ´ 1q

˛

‹

‚

” Λm0

¨

˚

˝

ź

bPE
1
g

pΛb ´ 1q

˛

‹

‚

pmod 2q

from both sides of (3.2), we get
¨

˚

˝

ÿ

aPE
0
f∖tm0u

Λa

˛

‹

‚

¨

˚

˝

ź

aPE
1
f

pΛa ´ 1q

˛

‹

‚

”

¨

˚

˝

ÿ

bPE
0
g∖tm0u

Λb

˛

‹

‚

¨

˚

˝

ź

bPE
1
g

pΛb ´ 1q

˛

‹

‚

pmod 2q.

Repeating this procedure, we finally get E
0

f “ E
0

g. This completes the proof. □

Remark 3.8. By [3, Proposition 2.6], if the Seifert forms of Kf and Kg are Witt
equivalent over the real numbers (i.e., if they have the same equivariant signatures),
then their Alexander polynomials satisfy the Fox–Milnor type relation. So, by
Theorem 3.3, we have Ef “ Eg.

Corollary 3.9. Suppose that the exponents of a Brieskorn polynomial f are all
distinct and that no exponent is a multiple of another odd exponent. Let g be
an arbitrary Brieskorn polynomial with the same number of variables as f . Then
Kf and Kg are cobordant if and only if they have the same set of exponents. In
particular, if the exponents of f are all even and all distinct, the same conclusion
holds.

Proof. Under the assumption for f , we easily see that Ef “ Ef . Suppose that Kf

and Kg are cobordant. Then, their Alexander polynomials satisfy the Fox–Milnor

type relation, and by Theorem 3.3, we have Ef “ Eg. As Ef “ Ef has n ` 1

distinct elements, so does Eg. As this is a subset of Eg, we must have Eg “ Eg.
Hence we have Ef “ Eg. This completes the proof. □
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We also have the following.

Corollary 3.10. Let f be a Brieskorn polynomial. Then, the Alexander polyno-
mial ∆f ptq of the algebraic knot Kf associated with f is a square if and only if all
the exponents are even and each of them appears an even number if times.

Proof. Note that ∆f ptq is a square if and only if Ef “ H.

If Ef satisfies the condition in the corollary, we see easily that Ef “ H and that
∆f ptq is a square. On the other hand, if Ef contains an odd integer, it persists

in Ef . Furthermore, if an even integer appears exactly an odd number of times,

then one of them persists in Ef . Hence, in these cases, ∆f ptq is not a square. This
completes the proof. □

Theorem 3.11. The algebraic knot Kf associated with a Brieskorn polynomial f
is never null-cobordant.

Proof. Suppose that Kf is null-cobordant. Then, it bounds a 2n–dimensional disk
in D2n`2, so it is diffeomorphic to the standard p2n´ 1q–sphere.

Recall the following result due to Brieskorn [4]. For a Brieskorn polynomial f
with the exponent set Ef , we construct a finite graph Gf as follows: the vertices
correspond to the elements of Ef , and for a, b P Ef , we connect them by an edge
if their greatest common divisor satisfies pa, bq ą 1. A connected component of Gf

is called an odd 2–component if its vertex set consists of an odd number of even
integers such that each pair of vertices are connected by an edge and their greatest
common divisor is always equal to 2. Then we have the following.

Theorem 3.12 (Brieskorn [4]). Let f be a Brieskorn polynomial of n`1 variables.
For n ‰ 2, the algebraic knot Kf is spherical if and only if Gf satisfies one of the
following.

(1) The graph Gf contains at least two isolated vertices.
(2) The graph Gf contains one isolated vertex and an odd 2–component.

Now. let us go back to the proof of Theorem 3.11. By Theorem 3.12, as Kf

is spherical, we see that Ef contains an odd integer. Therefore, Ef is never an
empty set, and ∆f ptq is not a square. Hence, by Remark 3.1 we see that Kf is not
null-cobordant. □

In fact, we have a stronger result as follows.

Theorem 3.13. Let Kf be the algebraic knot associated with a Brieskorn polynomial
f . If it is spherical, then it always has infinite order in the knot cobordism group.

Proof. Suppose Kf is of finite order. Then, its equivariant signatures all vanish.
Therefore, by Remark 3.8, its Alexander polynomial must be a square. Then, the
rest of the proof is the same as that for Theorem 3.11. □

Proposition 3.14. Let Kf and Kg be the algebraic knots associated with Brieskorn
polynomials f and g, respectively. We assume that they are spherical.

(1) If Kf 7p´K !
gq is of finite order in the knot cobordism group, then the order

must be equal to 1 or 2.
(2) If Kf and Kg have the same equivariant signatures, then Kf 7Kf is cobor-

dant to Kg7Kg.

Proof. (1) It is known that Kf 7p´K !
gq is of finite order if and only if its equivariant

signatures all vanish. Therefore, by our assumption, the equivariant signatures of
Kf and Kg coincide, and by Remark 3.8, the Alexander polynomials of Kf and
Kg satisfy the Fox–Milnor type relation. Then, by [5, Theorem 3.4.8], Kf 7p´K !

gq



COBORDISM OF ALGEBRAIC KNOTS DEFINED BY BRIESKORN POLYNOMIALS, II 9

cannot have order 4 in the knot cobordism group. Hence, the order must be equal
to 1 or 2.

(2) Since Kf 7p´K !
gq has order 1 or 2, we see that

2pKf 7p´K !
gqq “ pKf 7Kf q7p´pKg7Kgq!q

is null-cobordant, and the result follows. □

We also have the following.

Proposition 3.15. Let f and g be Brieskorn polynomials. If the algebraic knots
Kf and Kg are cobordant, then their Alexander polynomials ∆f ptq and ∆gptq share
at least one irreducible cyclotomic polynomial factor.

Proof. By Theorem 3.12, we see that by adding appropriate powers of extra two

variables to f , we get a Brieskorn polynomial rf of n ` 3 variables such that K
rf is

spherical.
Suppose that the equivariant signatures for Kf all vanish. Then, its Seifert

form is Witt equivalent to 0 over the real numbers. Since the Seifert form for K
rf

is the tensor product of that for Kf and a certain matrix, we see that it is also
Witt equivalent to 0 over the real numbers. Hence, its equivariant signatures all
vanish, which contradicts Theorem 3.13. Hence, an equivariant signature of Kf

with respect to a root λ of ∆f ptq does not vanish. As an equivariant signature is
a cobordism invariant, the equivariant signature of Kg with respect to λ does not
vanish, either. This implies that λ is a root of ∆gptq. As the Alexander polynomials
∆f ptq and ∆gptq are products of cyclotomic polynomials, the result follows. □

4. Linear independence in the knot cobordism group

Litherland [14] has shown that the algebraic knots associated with the Brieskorn
polynomials zp1 ` zq2 with 2 ď p ă q and pp, qq “ 1 are linearly independent in the
knot cobordism group of dimension 1.

In order to prove a similar result in higher dimensions, let us prepare the fol-
lowing. For a fixed integer n ě 1, let B be a set of exponent sets of n` 1 elements
such that for each exponent set belonging to B, the exponents are relatively prime
to each other and that no two of the exponent sets of B have equal product. In
other words, for tpiu

n`1
i“1 ‰ tqiu

n`1
i“1 P B, we have

p1p2 ¨ ¨ ¨ pn`1 ‰ q1q2 ¨ ¨ ¨ qn`1.

We call such a set B a good family of exponent sets. For example, the set P of all
exponent sets such that the exponents are distinct prime numbers is a good family
of exponent sets.

Theorem 4.1. Let B be a good family of exponent sets of n` 1 elements, and con-
sider the family of Brieskorn polynomials whose exponent sets correspond bijectively
to elements of B. Then, for n ‰ 2, the associated algebraic knots are spherical and
are linearly independent in the knot cobordism group of dimension 2n´ 1.

Note that the corresponding algebraic knots are easily seen to be spherical by
Theorem 3.12.

For the proof of Theorem 4.1, let us prepare some materials. Let K be a p2n´1q-
dimensional spherical knot and V its Seifert matrix. For a complex number ζ of
modulus 1, let us consider the signature of the Hermitian matrix

p1 ´ ζqV ` p1 ´ ζ̄qV T .

This is independent of the choice of Seifert matrix V . This gives rise to a func-
tion S1 Ñ Z, where S1 is the unit circle in C, and it is known to be continuous
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(and therefore constant) everywhere except at p´1qn`1 times the unit roots of the
Alexander polynomial ∆Kptq (for example, see [5, Chapter 9]). This function is
not a cobordism invariant in general: however, the jumps at p´1qn`1 times the
unit roots of the Alexander polynomial are cobordism invariants (see [12, 15] or [5,
Theorem 3.4.7]).

Now let tpiu “ tp1, p2, . . . , pn`1u be an exponent set in B and set

P “ p1p2 ¨ ¨ ¨ pn`1.

Note that the integers p1, p2, . . . , pn`1 are relatively prime to each other. For a
positive integer r, set

L`

´ r

P

¯

“

#

pk1, k2, . . . , kn`1q P Zn`1

ˇ

ˇ

ˇ

ˇ

ˇ

n`1
ÿ

i“1

ki
pi

”
r

P
pmod 2q,

0 ă ki ă pi, i “ 1, 2, . . . , n` 1

*

,

L´

´ r

P

¯

“

#

pk1, k2, . . . , kn`1q P Zn`1

ˇ

ˇ

ˇ

ˇ

ˇ

n`1
ÿ

i“1

ki
pi

”
r

P
` 1 pmod 2q,

0 ă ki ă pi, i “ 1, 2, . . . , n` 1

*

.

Then, we see that L`pr{P q Y L´pr{P q contains at most one element, and that
L`pr{P q “ L´pr{P q “ H if and only if r is a multiple of some pi. Furthermore,
the jump at exp p2π

?
´1r{P q is equal to 1 if L`pr{P q ‰ H, is equal to ´1 if

L´pr{P q ‰ H, and is equal to 0 if r is a multiple of some pi (see [5, §9.3]).

Proof of Theorem 4.1. Let us show that the jump functions jtpiu are linearly in-
dependent over Z for tpiu P B. Suppose there is a nontrivial dependence relation
among jtpiu. LetM be the maximum of P “ p1p2 ¨ ¨ ¨ pn`1 appearing in a nontrivial
dependence relation. Note that by the definition of a good family of exponent sets,
such maximum is attained only by a unique element tqiu in B. Since jtpiup1{Mq “ 0
for p1p2 ¨ ¨ ¨ pn`1 ă M , we see that jtqiup1{Mq “ 0. This is a contradiction. There-
fore, the jump functions corresponding to the elements of B are linearly independent
over Z. Since the jump functions are additive cobordism invariants, the result fol-
lows. □

Remark 4.2. The above proof is based on the idea used in [14] for n “ 1. In
Theorem 4.1, we imposed the condition that no two of the exponent sets of B have
equal product. We do not know if this condition is redundant or not.

5. Decomposition of Seifert form

For a ě 2, let Ma be the pa´ 1q ˆ pa´ 1q unimodular matrix

Ma “

¨

˚

˚

˚

˚

˚

˚

˚

˝

1 ´1 0 ¨ ¨ ¨ 0

0 1 ´1
. . .

...

0 0 1
. . . 0

...
...

. . .
. . . ´1

0 0 ¨ ¨ ¨ 0 1

˛

‹

‹

‹

‹

‹

‹

‹

‚

.

Note that the Seifert form of the algebraic knot associated with the Brieskorn
polynomial

f “ za1
1 ` za2

2 ` ¨ ¨ ¨ ` z
an`1

n`1

is given by the tensor product L “ Ma1 bMa2 b ¨ ¨ ¨ bMan`1 .
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Recall that we have

S “ L`p´1qnLT , H “ p´1qn`1L´1LT , T “ p´1qn`1LpL´1qT , S “ LpI´Hq,

where L is the Seifert matrix, S is the sesquilinearized intersection form of the
Milnor fiber, H is the homological monodromy matrix, T is the cohomological
monodromy matrix, and I is the identity matrix.

Let us consider an explicit example:

fpz1, z2, z3q “ z31 ` z42 ` z43 .

Its characteristic polynomial of the monodromy (or Alexander polynomial) ∆f ptq
is given by

div∆f “ pΛ3 ´ 1qpΛ4 ´ 1qpΛ4 ´ 1q “ 2Λ12 ` Λ3 ´ 2Λ4 ´ 1,

and hence we have

∆f ptq “
pt12 ´ 1q2pt3 ´ 1q

pt4 ´ 1q2pt´ 1q

“
ϕ212 ϕ

2
6 ϕ

2
4 ϕ

2
3 ϕ

2
2 ϕ

2
1 ϕ3 ϕ1

ϕ24 ϕ
2
2 ϕ

2
1 ϕ1

“ ϕ212 ϕ
2
6 ϕ

3
3,

where for a positive integer m, ϕmptq denotes the m–th cyclotomic polynomial.
Note that the degrees of ϕ12, ϕ6, ϕ3 are equal to 4, 2, 2, respectively. According to
Steenbrink’s formula [19], the equivariant signatures corresponding to ϕ12, ϕ6, ϕ3
are equal to 8, 0, 6, respectively.

Let us analyze the ϕ6–primary component. The Seifert form for f is given by
the unimodular p18 ˆ 18q–matrix

L “ M3 bM4 bM4.

The formM3 is irreducible over Q, since its Alexander polynomial ϕ3 is irreducible.
On the other hand, the Alexander polynomial of M4 is equal to ϕ4 ϕ2, which is not
irreducible. Let us decompose M4 into the irreducible factors over Q.

By some computations, we see the following:

M4 “

¨

˝

1 ´1 0
0 1 ´1
0 0 1

˛

‚,

M´1
4 “

¨

˝

1 1 1
0 1 1
0 0 1

˛

‚,

S4 “ M4 `MT
4 “

¨

˝

2 ´1 0
´1 2 ´1
0 ´1 2

˛

‚,

T “ ´M4pM´1
4 qT “

¨

˝

0 1 0
0 0 1

´1 ´1 ´1

˛

‚,

H “ TT “

¨

˝

0 0 ´1
1 0 ´1
0 1 ´1

˛

‚.
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Note that

HTM4H “

¨

˝

0 1 0
0 0 1

´1 ´1 ´1

˛

‚

¨

˝

1 ´1 0
0 1 ´1
0 0 1

˛

‚

¨

˝

0 0 ´1
1 0 ´1
0 1 ´1

˛

‚

“

¨

˝

1 ´1 0
0 1 ´1
0 0 1

˛

‚“ M4.

The eigenvalues of H are ´1,˘
?

´1. Eigenvectors corresponding to the eigenvalues
´1,

?
´1 and ´

?
´1 are given by

¨

˝

1
0
1

˛

‚,

¨

˝

1
1 ´

?
´1

´
?

´1

˛

‚,

¨

˝

1
1 `

?
´1?

´1

˛

‚,

respectively. Therefore, the ϕ2–primary component is generated by
¨

˝

1
0
1

˛

‚,

and the ϕ4–primary component is generated by
¨

˝

1
1
0

˛

‚,

¨

˝

0
1
1

˛

‚.

(For this, consider the real and the imaginary parts of the corresponding eigenvec-
tors.) Set

P “

¨

˝

1 1 0
0 1 1
1 0 1

˛

‚.

Then, we have

P´1 “
1

2

¨

˝

1 ´1 1
1 1 ´1

´1 1 1

˛

‚

and

P´1HP “

¨

˝

´1 0 0
0 0 ´1
0 1 0

˛

‚.

So, we have verified that P gives the correct decomposition of the monodromy into
the irreducible components.

Remark 5.1. We can show that we cannot choose an integral unimodular matrix
as P as follows. If we choose

a

¨

˝

1
1
0

˛

‚` b

¨

˝

0
1
1

˛

‚ and a1

¨

˝

1
1
0

˛

‚` b1

¨

˝

0
1
1

˛

‚

as bases for the ϕ4–primary component for some integers a, b, a1, b1, then we can
show that the determinant of the corresponding p3 ˆ 3q–matrix is an even integer.

Then, we have

PTM4P “

¨

˝

2 0 0
0 1 ´1
0 1 1

˛

‚.
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So, over Q, the bilinear form M4 is isomorphic to p1q ‘R, where

R “

ˆ

1 ´1
1 1

˙

.

Then, we have, over Q,

L “ M3 bM4 bM4

– M3 b pp1q ‘Rq b pp1q ‘Rq

– M3 b pp1q ‘R ‘R ‘ pR bRqq

– M3 ‘ pM3 bRq ‘ pM3 bRq ‘ pM3 bR bRq.

The characteristic polynomials corresponding to the 4 irreducible factors are given
by

ϕ3ptq, ϕ12ptq, ϕ12ptq and ϕ3ptq2ϕ6ptq2,

respectively. So, in order to analyze the ϕ6–primary component of L, we still need
to decompose M3 bR bR, which is an p8 ˆ 8q–matrix.

Recall that the monodromy matrix H3 corresponding to M3 is given by

H3 “ ´M´1
3 M3 “

ˆ

0 ´1
1 ´1

˙

.

We have

R´1 “
1

2

ˆ

1 1
´1 1

˙

and the monodromy matrix HR corresponding to R is given by

HR “ ´R´1RT “

ˆ

0 ´1
1 0

˙

.

Set ω “ exp p2π
?

´1{3q. Eigenvectors of H3 corresponding to the eigenvalues ω
and ω̄ are given by

u1 “

ˆ

1
´ω

˙

and u2 “

ˆ

1
´ω̄

˙

,

respectively. Eigenvectors of HR corresponding to the eigenvalues
?

´1 and ´
?

´1
are given by

v1 “

ˆ

1
´

?
´1

˙

and v2 “

ˆ

1?
´1

˙

,

respectively. Therefore, the monodromy matrix H3,R,R associated withM3 bRbR
is diagonalized by the p8 ˆ 8q–matrix Q consisting of the 8 column vectors

ui b vj b vk,

i, j, k “ 1, 2, in such a way that

Q´1H3,R,RQ “

ˆ

ω 0
0 ω̄

˙

b

ˆ?
´1 0
0 ´

?
´1

˙

b

ˆ?
´1 0
0 ´

?
´1

˙

.

Therefore, the ϕ6–primary component is generated by u1 b v1 b v1, u1 b v2 b v2,
u2 b v1 b v1 and u2 b v2 b v2 over C. Note that

u1 b v1 b v1 “ p1,´
?

´1,´
?

´1,´1,´ω, ω
?

´1, ω
?

´1, ωqT ,

u1 b v2 b v2 “ p1,
?

´1,
?

´1,´1,´ω,´ω
?

´1,´ω
?

´1, ωqT ,

u2 b v1 b v1 “ p1,´
?

´1,´
?

´1,´1,´ω̄, ω̄
?

´1, ω̄
?

´1, ω̄qT ,

u2 b v2 b v2 “ p1,
?

´1,
?

´1,´1,´ω̄,´ω̄
?

´1,´ω̄
?

´1, ω̄qT .
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By considering the real and imaginary parts, we see that the ϕ6–primary component
is generated by

w1 “ p1, 0, 0,´1, 1{2,´
?
3{2,´

?
3{2,´1{2qT ,

w2 “ p0,´1,´1, 0,´
?
3{2,´1{2,´1{2,

?
3{2qT ,

w3 “ p1, 0, 0,´1, 1{2,
?
3{2,

?
3{2,´1{2qT ,

w4 “ p0, 1, 1, 0,´
?
3{2, 1{2, 1{2,

?
3{2qT

over R. Then, we have

w1 ` w3 “ p2, 0, 0,´2, 1, 0, 0,´1qT ,

pw1 ´ w3q{
?
3 “ p0, 0, 0, 0, 0,´1,´1, 0qT ,

pw2 ` w4q{
?
3 “ p0, 0, 0, 0,´1, 0, 0, 1qT ,

´pw2 ´ w4q “ p0, 2, 2, 0, 0, 1,´, 0qT .

Note that these 4 vectors can be written as

r1 “ p2, 1qT b p1, 0, 0,´1qT ,

r2 “ p0,´1qT b p0, 1, 1, 0qT ,

r3 “ p0,´1qT b p1, 0, 0,´1qT ,

r4 “ p2, 1qT b p0, 1, 1, 0qT ,

respectively. Then, by calculating

rTi pM3 bR bRqrj ,

i, j “ 1, 2, 3, 4, we see that the ϕ6–primary component of the bilinear form M3 b

R bR is isomorphic over Q to
¨

˚

˚

˝

0 ´4 0 ´12
´4 0 4 0
0 ´4 0 4
12 0 4 0

˛

‹

‹

‚

,

which, in turn, is isomorphic to
¨

˚

˚

˝

0 0 ´1 ´3
0 0 ´1 1

´1 1 0 0
3 1 0 0

˛

‹

‹

‚

over Q.
Consequently, we see that the ϕ6–primary component of M3 bRbR, hence that

of L, is algebraically null-cobordant.
Let p be a positive integer relatively prime to 2 and 3, and consider the Brieskorn

polynomial

gpz1, z2, z3, z4q “ z31 ` z42 ` z43 ` zp4 .

Then, the algebraic knot Kg associated with g is spherical, i.e. Kf is homeomorphic
to the sphere S7 (see Theorem 3.12). As the Seifert matrix Lg of Kg is given by
the tensor product of L and Mp, we see that a certain direct summand of Lg is null
cobordant over Q.

Let us recall some known facts about the algebraic knot cobordism group (for
details, see [5], for example). Let G be the algebraic cobordism group which consists
of the set of integral square matrices A satisfying detpA ´ AT q “ ˘1 up to Witt
equivalence. Let us consider the group GQ: square matrices A with entries in Q
satisfying that pA´AT qpA`AT q is non-singular, with the same equivalence relation
as in G. It is known that the natural inclusion G Ñ GQ is injective [13].
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It is also known that GQ is isomorphic to the group GQ of cobordism classes of
isometric structures.

For a polynomial δptq P Qrts, let Gδ
Q denote theWitt group of isometric structures

over Q corresponding to a power of δ. Then, it is known that GQ – ‘δGδ
Q, where

the sum is over all irreducible symmetric polynomials δ.
The above explicit example shows that if we consider the image of the cobordism

class of a spherical algebraic knot associated with a Brieskorn polynomial in ‘δGδ
Q,

then there might be a direct summand which vanishes in Gδ
Q for some δ. This

means that even if two algebraic knots are cobordant, the irreducible factors of
their Alexander polynomials might be different, although they share at least one
irreducible factor according to Proposition 3.15.

6. Cyclic suspension

In this section, we explore cyclic suspensions of simple fibered knots and their
properties concerning cobordisms.

Let K Ă S2n`1 be a p2n ´ 1q–knot. Then, we can move the standard sphere
S2n`1 Ă S2n`3 ambient isotopically to get S1 such that S1 intersects S2n`1 trans-
versely along K. For a positive integer d, we consider the d–fold cyclic branched

covering rS of S2n`3 branched along S2n`1, which is diffeomorphic to S2n`3. Then

the pull-back Kd of S1 by the branched covering map in rS is called the d–fold cyclic
suspension of K. Furthermore, we call the positive integer d the suspension de-
gree. Note that Kd itself is diffeomorphic to the d–fold branched covering of S2n`1

branched along K, and that it is considered to be a p2n ` 1q–knot in S2n`3. This
notion has been introduced by Neumann [17] (see also [11]). Note that if K is a
simple fibered knot, then so is Kd.

In this section, we consider the following problem.

Problem 6.1. For a common integer d, let pKiqd be the d–fold cyclic suspensions
of two knots Ki, i “ 1, 2. Furthermore, for another common integer e, let pKiqd,e be
the e–fold cyclic suspensions of pKiqd, i “ 1, 2. Is it possible to construct examples
such that Ki are not cobordant, that pKiqd are cobordant and that pKiqd,e are not
cobordant?

If the answer is affirmative, then it would show that the cyclic suspensions do
not preserve cobordisms in general.

Recall that the algebraic knot associated with a Brieskorn polynomial za1
1 `za2

2 `

¨ ¨ ¨ ` z
an`1

n`1 is the iterated cyclic suspension of the pa1, a2q–torus link in S3. The
above problem is closely related to the study of cobordisms of such knots.

Let n ě 3 be an integer. For the moment, we will assume that n is odd. Consider
the matrices

A1 “

ˆ

B C
´CT 0

˙

and

A2 “

ˆ

0 1
´1 0

˙

,

where B is a 2ˆ2 integer matrix with detpB`BT q “ ˘1, C is a 2ˆ2 integer matrix
with detC “ ˘1, and 0 denotes the 2 ˆ 2 zero matrix. So, A1 is a unimodular
p4 ˆ 4q–matrix and A2 is a unimodular p2 ˆ 2q–matrix. Let K1 and K2 be the
simple fibered p2n´ 1q-knots in S2n`1 whose Seifert matrices are given by A1 and
A2, respectively.

Let pKiqa be the a–fold cyclic suspension of the knot Ki, and pKiqa,b be the
b–fold cyclic suspension of pKiqa, i “ 1, 2. Then, their Seifert matrices pAiqa and
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pAiqa,b, respectively, are given by

pAiqa “ Ai bMa and pAiqa,b “ Ai bMa bMb.

Let us consider the 2–fold cyclic suspensions pKiq2. As M2 is the p1ˆ 1q–matrix
p1q, we can identify their Seifert matrices with those of Ki, i “ 1, 2. As we have

S1 “ A1 `AT
1 “

ˆ

B `BT 0
0 0

˙

, S2 “ A2 `AT
2 “ 0,

we see that

HnppK1q2;Zq – HnppK2q2;Zq – Z ‘ Z – Hn´1ppK1q2;Zq – Hn´1ppK2q2;Zq.

Furthermore, as A1 and A2 both have metabolizers, so does A1 ‘ p´A2q.
However, pK1q2 and pK2q2 are not cobordant, since the Seifert forms restricted

to HnppKiq2;Zq “ KerSi, i “ 1, 2, are not isomorphic (see [1]). Note that these
knots are not spherical.

Let us now consider the 3–fold cyclic suspensions pK1q3 and pK2q3, respectively.
Then, their Seifert matrices are given by

pA1q3 “ A1 bM3 “

ˆ

B bM3 C bM3

´CT bM3 0

˙

and

pA2q3 “ A2 bM3 “

ˆ

0 M3

´M3 0

˙

,

respectively. Then, the intersection matrices of their fibers are given by

pS1q3 “ pA1q3 ` pA1qT3 “

ˆ

B bM3 `BT bMT
3 C bM3 ´ C bMT

3

CT bMT
3 ´ CT bM3 0

˙

“

ˆ

B bM3 `BT bMT
3 C b pM3 ´MT

3 q

´CT b pM3 ´MT
3 q 0

˙

and

pS2q3 “ pA2q3 ` pA2qT3 “

ˆ

0 M3 ´MT
3

´pM3 ´MT
3 q 0

˙

,

respectively. As we have

detpM3 ´MT
3 q “ det

ˆ

0 ´1
1 0

˙

“ 1,

we see that both pS1q3 and pS2q3 are unimodular. Therefore, the fibered knots
pK1q3 and pK2q3 are spherical. As their Seifert matrices are obviously algebraically
null-cobordant, the knots are, in fact, null-cobordant, and in particular they are
cobordant.

We can also show that K1 and K2 are not diffeomorphic to each other for an
appropriate choice of C. For example, consider

C “

ˆ

0 1
´1 0

˙

.

In this case, the intersection matrices are

S1 “ A1 ´AT
1 “

ˆ

B ´BT C ` CT

´pC ` CT q 0

˙

“

ˆ

B ´BT 0
0 0

˙

and

S2 “ A2 ´AT
2 “

ˆ

0 2
2 0

˙

.

Therefore, the rank ofHn´1pK1;Zq is greater than or equal to 2, whileHn´1pK2;Zq

is finite of order 4. So, K1 and K2 are not diffeomorphic and hence are not cobor-
dant.
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Let us now consider pK1q2,3 “ pK1q3,2 and pK2q2,3 “ pK2q3,2. Their Seifert
forms are given by

pA1q3,2 “ A1 bM3 bM2 “

ˆ

B bM3 C bM3

´CT bM3 0

˙

and

pA2q3,2 “ A2 bM3 bM2 “

ˆ

0 M3

´M3 0

˙

,

respectively. Then, their intersection matrices are

pS1q3,2 “ pA1q3,2 ´ pA1qT3,2 “

ˆ

B bM3 ´BT bMT
3 C bM3 ` C bMT

3

´CT bM3 ´ CT bMT
3 0

˙

and

pS2q3,2 “ pA2q3,2 ´ pA2qT3,2 “

ˆ

0 M3 `MT
3

´M3 ´MT
3 0

˙

,

respectively. For C as above, we see that

|detpS1q3,2| “ 34, |detpS2q3,2| “ 32,

and hence pK1q3,2 and pK2q3,2 are not diffeomorphic and are not cobordant.
Summarizing, we have the following.

(1) K1 and K2 are not diffeomorphic and are not cobordant.
(2) pK1q2 and pK2q2 are diffeomorphic, but are not cobordant.
(3) pK1q3 and pK2q3 are spherical and null-cobordant, so they are cobordant

to each other.
(4) pK1q3,2 “ pK1q2,3 and pK2q3,2 “ pK2q2,3 are not diffeomorphic and are not

cobordant.

So, this answers Problem 6.1 affirmatively.

Remark 6.2. In general, if two knots K1 and K2 are cobordant, and if their cyclic
suspensions pK1qd and pK2qd are spherical, then pK1qd and pK2qd are cobordant.

Moreover, if K1 and K2 are spherical knots which are cobordant, then pK1q2,2
and pK2q2,2 are also cobordant. See [11, §8].

Now, let us consider examples of algebraic knots. In [6], Du Bois and Michel
constructed two polynomials

f “ hr,s,p,qpz1, z2, . . . , zn`1q and g “ hs´8,r`8,p,qpz1, z2, . . . , zn`1q

with isolated critical points at the origin such that Kf and Kg are cobordant,
although they are not isotopic. Let k be a positive integer called an exponent in
the sense of [6] for both of f and g: i.e., ptkf ´ 1q2 and ptkg ´ 1q2 both vanish,
where tf and tg are homological monodromies for the Milnor fibrations for f and
g, respectively, and “1” denotes the identity homomorphism. Let us consider the
algebraic knots K

rf and K
rg associated with

rfpz1, z2, . . . , zn`2q “ fpz1, z2, . . . , zn`1q ` zkn`2

and

rgpz1, z2, . . . , zn`2q “ gpz1, z2, . . . , zn`1q ` zkn`2,

respectively. Note that they are k–fold cyclic suspensions of Kf and Kg, respec-
tively.

Lemma 6.3. The homology groups HnpK
rf ;Zq and HnpK

rg;Zq have non-isomorphic
torsions.



18 VINCENT BLANLŒIL AND OSAMU SAEKI

Proof. Recall that K
rf (resp. K

rg) is the k–fold cyclic branched cover of S2n`1

branched along Kf (resp. Kg). This implies that K
rf admits an open book structure

with page diffeomorphic to Ff and with algebraic monodromy t “ tkf .
Let B Ă K

rf be the branched locus and let E be the complement of an open

tubular neighborhood of B in K
rf . Thus, E is the total space of a fiber bundle

over S1 with fiber Ff and with algebraic monodromy t “ tkf . Then, we have the

following Wang exact sequence of homology [20] (see also [16, Lemma 8.4]):

HnpFf ;Zq
t´1

´́ ´́ Ñ́HnpFf ;Zq Ñ HnpE;Zq Ñ Hn´1pFf ;Zq.

Since Ff is pn´ 1q–connected [16], we have Hn´1pFf ;Zq “ 0 so that we have

HnpE;Zq – HnpFf ;Zq{ Impt´ 1q.

Then, by the Meyer–Vietoris exact sequence for the pair pE,NpBqq, where NpBq

is the closed tubular neighborhood of B in K
rf , we have that

HnpBNpBq;Zq Ñ HnpNpBq;Zq ‘HnpE;Zq Ñ HnpK
rf ;Zq Ñ Hn´1pBNpBq;Zq

is exact. As NpBq – Kf ˆ D2 and Kf is homeomorphic to S2n´1 with n ě 3, we
see that HnpBNpBq;Zq, HnpNpBq;Zq and Hn´1pBNpBq;Zq all vanish. Therefore,
we have HnpK

rf ;Zq – HnpE;Zq, and hence they are isomorphic to the quotient

HnpFf ;Zq{ptkf ´ 1qHnpFf ;Zq.

On the other hand, Kerptkf ´ 1q is a pure submodule of the free abelian group

HnpFf ;Zq of finite rank. Therefore, there exists a free abelian subgroup Hf of
HnpFf ;Zq such that HnpFf ;Zq “ Hf ‘ Kerptkf ´ 1q. As Imptkf ´ 1q is contained in

Kerptkf ´ 1q, we see that HnpK
rf ;Zq – HnpFf ;Zq{ptkf ´ 1qHnpFf ;Zq is isomorphic

to Hf ‘

´

Kerptkf ´ 1q{ Imptkf ´ 1q

¯

. Note that a similar isomorphism holds for

HnpK
rg;Zq as well.

Since the twist groups, which are the torsion subgroups of Kerptkf ´1q{ Imptkf ´1q

and Kerptkg ´ 1q{ Imptkg ´ 1q, are not isomorphic according to [6], we see that the
torsion subgroups of HnpK

rf ;Zq and HnpK
rg;Zq are not isomorphic. □

The above lemma implies that although Kf and Kg are cobordant, their cyclic
suspensions K

rf and K
rg are not, since they are not diffeomorphic.

If we take further iterated cyclic suspensions appropriately, say K
pf and K

pg,

where
pfpz1, z2, . . . , zn`3, zn`4q “ rfpz1, z2, . . . , zn`2q ` zvn`3 ` zwn`4

and

pgpz1, z2, . . . , zn`3, zn`4q “ rgpz1, z2, . . . , zn`2q ` zvn`3 ` zwn`4

for some appropriate prime numbers v and w, then K
pf and K

pg are spherical and

hence are cobordant.
Summarizing, we have the following.

(1) The algebraic knots Kf and Kg are cobordant, but are not isotopic.
(2) Their k–fold cyclic suspensions K

rf and K
rg are not diffeomorphic and are

not cobordant.
(3) The iterated cyclic suspensions K

pf and K
pg of K

rf and K
rg, respectively, are

cobordant.

This is yet another example that shows that cyclic suspensions (with a fixed
suspension degree) do not behave well with respect to cobordisms. This time, the
example shows this phenomenon for algebraic knots.
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Remark 6.4. (1) If K0 and K1 are cobordant knots, then if their cyclic suspensions
rK0 and rK1, respectively, of the same degree are spherical of dimension greater than

or equal to 5, then they are cobordant. This is because the Seifert matrices of rKi

are tensor products of those of Ki, which are algebraically cobordant, and the
same matrix, and hence they are algebraically cobordant. For spherical higher
dimensional knots, this implies that they are cobordant.

(2) Similarly, ifK is a spherical knot which has finite order in the knot cobordism

group, then if its cyclic suspension rK is spherical, then rK also has finite order in
the knot cobordism group. This is because, since the Seifert form of K is Witt

equivalent to zero over the real numbers, so is that of rK.

(3) Suppose that K is a spherical knot and that its d–fold cyclic suspension rK

is also spherical. Let us suppose that rK is null-cobordant. Then, we do not know
if K is also null-cobordant or not.

Similarly, suppose that K0 and K1 are spherical knots and that their d–fold

cyclic suspensions rK0 and rK1, respectively, are also spherical. Let us suppose that
rK0 and rK1 are cobordant. Then, we do not know if K0 and K1 are also cobordant
or not, except for the case d “ 2.

Since the algebraic knots associated with Brieskorn polynomials are iterated
cyclic suspensions of torus knots, the observations in this section may show that by
adding extra variables we may encounter a pair of algebraic knots associated with
Brieskorn polynomials which are cobordant but which have distinct exponents.
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