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Abstract. We give a necessary and sufficient condition on the 1-jet of a field of
nilpotent endomorphisms to be integrable. Together with the well known corresponding
condition for an almost complex structure, the nullity of its Nijenhuis tensor, this gives
an integrability condition for any field of endomorphisms.
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It is a classical question to ask whether (the germ of) an almost complex structure J
is (the germ of) a complex structure i.e. if it is integrable: does it exist local coordinates
in which J becomes a constant matrix, namely ( ° [ )? A well known necessary and
sufficient condition on the 1-jet of J is that the Nijenhuis torsion tensor A; of J vanishes
[6]. We address here the same question for a field of nilpotent endomorphisms A: instead of
“J? = —1d”, we take “A™ = 0" for some n. More precisely, we suppose that A is conjugate, at
every point, to some fixed nilpotent endomorphism  this is necessary to hope integrability.

Immediately, the nullity of the Nijenhuis tensor A4 is necessary. Simple examples show
that this condition is not sufficient, see section 3, see also [4]. We show here that it be-
comes sufficient, together with the additional condition that each distribution of the flag
(ker AP)Z;% is involutive. The proof, unlike that of [6], follows essentially from the Cauchy-
Lipschitz theorem and some standard differential calculus.

In combination with the integrability condition for complex structures, this immediately
gives an integrability condition for any smooth endomorphism field M: M is integrable if
and only if it has constant invariant factors, Ny = 0 and ker(P(M)), for each invariant
factor P of M, is involutive.

A general viewpoint on this type of problems, that we do not use here, is given in [1].

Thanks. I thank R. Bryant, T. Delzant, E. Ghys, A. Oancea, and E. Opshtein for their
quickly answering my questions.

Everywhere, A is a germ of endomorphism field of TK? around 0 in K¢, with K = R or
K = C, i.e. a smooth (holomorphic if K = C) section of Endg(7TK%) on a neighbourhood V
of 0. All objects: coordinates, tangent bundles etc. are real if K = R and complex if K = C.

Section 1 recalls the requisite definitions and states the results, section 2 gives the proofs
and section 3 provides some additional results, comments and examples.

1 Definitions and results

We recall the two following definitions.

1.1 Definition The Nijenhuis torsion tensor of A is the vector valued 2-form defined by:
Na(X,Y) = [AX, AY] — A[X, AY] — A[AX,Y] + A*[X,Y].

We let the reader check that it is a tensor, see e.g. [3], ch. 1 prop. 3.12, where the torsion
tensor Sa p of some couple (A, B) of fields of endomorphisms is introduced. Our Ny is
equal to %SA,A- The fact that K = R or K = C plays no role here.
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1.2 Definition The field A is called integrable if there exists, on a neighbourdood V of the
origin, a coordinate system in which Mat(A) is constant i.e. a diffeomorphism, or a biholo-
morphism ¢ : V — U C K% such that ¢, A is the restriction to U of a linear transformation
of K<

Here we show the following result.

1.3 Theorem Let A be a germ of field of nilpotent endomorphisms of order n > 1 on K¢. If
K = C, we take A holomorphic. If K = R, we take A of class C¥, C*° or C" withr > n — 1.
Then A is integrable if and only if the three following conditions are satisfied:

— the invariant factors of A are constant,
Ny =0,
each distribution ker AP, for p € N, is involutive  hence integrable.

If A is analytic or of class C*°, the integral coordinates have the same regularity. If A if of
class C" with n —1 < r < 0o, they are at least, and possibly not more than, of class C"~" 12,
If A satisfies the three conditions but is not of class C™ 1, it is non integrable in general.

1.4 Remark The regularity condition “class C"~!”, though minor, has to be mentioned. In
other equivalence problems of G-structures of order 1 (see [1]), with G reductive, and solved
as P.D.E. problems, such a strong regularity condition does not seem to appear (see e.g. [5]
or Theorem II of [8]). In th. 1.3, the group G is the centraliser of Id + A in GL4(K), which
is not reductive as soon as A # 0. The regularity condition seems to be linked to that fact.
The present coordinates are not the solution of an elliptic P.D.E., see Remark 3.4. In-
stead, they arise naturally as the solution of O.D.E.’s integrated by induction. In that sense
the proof of Theorem 1.3 is similar to that of the Frobenius criterion given in [2|, C.1.1.

Together with the classical integrability condition for complex structures, the present
result gives easily the following corollary.

1.5 Corollary If A is any field of endomorphisms of class C™ on R?, with constant invariant
factors, then A is integrable if and only if the three following conditions are realised:
the invariant factors of A are constant,
-~ Ny =0,
— the distribution ker(P(A)), for each invariant factor P of A, is involutive.

Of course, the minimal regularity condition in general is that A is of class C"~! along each
integral leaf of ker(P(A)), with P = Q", @ irreducible. Eventually, a little remark, proven
in section 2, is worth to be pointed out autonomously.

1.6 Remark If A isnilpotent, the nullity of A4 implies the integrability of each distribution
Im AP, but not that of the kernel distributions ker AP.

2 Proof of the results

If A is integrable, it is conjugate, at any point, to some fixed nilpotent matrix, so it has
constant invariant factors. So the first condition of Theorem 1.3 and of Corollary 1.5 is the
0-order integrability condition for A, and is necessary. From now on we suppose it holds.

We introduce the following technical torsion-related tensor, and one of its properties.



2.1 Definition If B is another endomorphism field on V and if A and Bc ommute, we
introduce:

" 5(X,Y) = [AX, BY] — A[X, BY] - B[AX,Y] + AB[X,Y].

The reader may check it is a tensor; the sum Sa p = Ny g+ N 4 is the torsion of (A, B)
cited in Def. 1.1, well-defined even if AB # BA. So here Ny = NA,A =1S44.

2.2 Proposition All N}y, 4, for p,q € N* depend only on Ny, through both following
relations:

(i) for all couple (X,Y) of vectors, Nj 4,(X,Y) = 31| AT N (X, AF71Y),
(ii) for all couple (X,Y') of vectors, Ny, 4o(X,Y) =3} APTFN)) 4o (X, AF1Y).
In particular, if Ny = 0, then all Ny, 4, and all Nav = N}, 4, also vanish.
Proof. As Ny 4o(X,Y) = =N}, 4(Y, X), (i) is a special case of (ii). Let us prove (ii) by
induction on p. It is trivial for p = 1. Suppose it holds for some p.
Tt aa(X,Y) = [APTIX, ATY] — AYAPTIX, Y] — APPH X, ATY] + APTOH XY
= [APTIX, ATY] — AY[APTIX, Y] — A[APX, ATY] + ATTHAPX, AY]
+ A[APX, ATY] — AT AP X, AY] — APTLX, ATY] + APTITLX Y]
= N4 aa(APX,Y) + A ar, 40 (X, Y)),
hence it holds for p + 1. O
Proof of Remark 1.6. Now we can prove Remark 1.6. As N4 = 0, each distribution Im AP
is integrable. Let us prove it is involutive, the conclusion follows by the Frobenius criterion.
Let us take X and Y any vector fields and show: [APX, APY] € Im AP. By Proposition 2.2,

Nar(X,Y) =0, so [APX, APY]| = AP[X, APY] + AP[APX,Y] — A®[X,Y] and we are done.
Besides, example 3.7 gives a counter example to the integrability of ker AP.

2.3 Notation If A satisfies the three conditions of Theorem 1.3, using Remark 1.6, we
denote respectively by ZP and KP the integral foliation of the distribution Im NP respectively
ker NP, for any p. We shortly denote Z! by Z, and denote by 7 the projection V — V/T.

2.4 Recall/vocabulary If F is some foliation on V, and V' some distribution or vector field
on V, V is called basic (for F) if, for any open set U where F is trivial, setting Il : U — U/ F,
IV is constant along each leaf of F, and so V “passes to the quotient” on U/F. If V is a
vector field, this means exactly that its flow sends each leaf of F on a leaf of F.

To prove the theorem, we already introduce the following, and prove a lemma about it.

The two flags ker A C ker A2 C ... C ker A" 1 C ker A" = TK¢ and ImA™ ' C ... C
Im A C Im A° = TK¢ satisfy the following inclusion properties:

Im AL
N
(Im A" 2 Nker A) C Im A"—2
N N
(mA" 3 Nkerd) C (ImA" 3NkerA?) C ImA"2
N N N
ker A C ker A2 C kerA3 < - kerdA™!' c TV.



Any entry of this array is integrable, generating the following foliations:

Infl
N
(Ir?nK'h) < VAL
N N
(I 3nKYH c I 3nk?) c In?
N N N
K C 12 c K3 c - Krtocoy,

2.5 Lemma If the three conditions of Theorem 1.3 are realised, then there exist local
coordinates ((za”)a)n>i>j>1 adapted to this array of foliations i.e. such that, for any p €
[1,n] and q < p, the (%ﬂ)a with i < p and j < q parametrise the leaves of Z" P N K49. The
coordinates may be chosen of class C™! in case K = R, holomorphic in case K = C.

Proof. The lemma is nothing but the fact (x) that the distributions ker A? are basic for
any of the foliations 7P, or in other words, that the foliations 7 “pass” to the quotient by
any of the ZP. Indeed if (*) holds, take any coordinate system (%)™ ; such that the leaves
of Z"P are the levels of ((z%)a)i>p. In particular, (z7), may be viewed as coordinates of
7(V). By (%), 7(V) is endowed with the foliations 7(K) C 7(K2) C ... C m(K"1), so (27)4
may be turned into some other system (22 - (22™)a), adapted to this flag: the leaves
of m(K4) are the levels of ((za")a)i>q- Inductively, we build the coordinates of the lemma.

Now, (*) amounts exactly to a stronger version of Remark 1.6: any of the distributions
ker AP +1Im A? is involutive. We prove it and are done. Take X, X’ vector fields in ker A? and
Y, Y’ two vector fields in Im A9, Then: [X+Y, X' +Y'] = [X, X'|+ [V, Y]+ [X,Y']+[Y, X'].
As ker AP, by assumption, and Im A9, by Remark 1.6, are involutive, [X, X'] € ker AP and
[Y,Y'] € Im A9. We are left with showing, for instance, that [X,Y”’] € ker AP + Im A7 i.e.
that AP[X,Y’] € Im APT9. Take a field Z such that Y/ = A9Z:

Ap[Xv Y/] == AP,AQ(Xv Y) +Ap+q[X? Z] + [ApX?AqZ] - AQ[APX’ Z] :
—_————

=0 by Prop 2.2 €Ilm Ar+ta =0 as X €ker AP

Regularity. If A is of class C", the distributions Im AP and ker A9 are of class C" i.e. the
foliations are of class C"*1, so are the coordinates. If A is holomorphic, everything is. [

Proof of the theorem. If A is integrable, the integrability of ker AP and the nullity of N4
are immediate. Let us prove the converse. The proof, when directly written in the general
case A"71 £ A" = ( with n any integer, is a cumbersome induction. So we state it in cases
n = 2 and n = 3, where all the arguments are involved. Then we give the structure of the
induction for the general case. We also suppose that A is of class C* and postpone the
remarks about regularity when A is analytic or of class C".

Proving that A is integrable amounts to building a field of basis # on V such that:

(i) Matg(A) is constant,

(ii) any two vector fields of § commute (in other terms, the field 3 is integrable).
Proof for n = 2. Here T C K C V; take coordinates (($é),g, (x%)ﬁ, (x%)ﬁ) of V, adapted to

this flag of foliations. Set (ZZ-)f;1 the coordinate vectors (8‘23> and (Zi)fgi'ldil the (8%2)7




so that Z; € ker A for i < dy. Then ((AZ;)i>d,, (Zi)f;{@) is a basis field on V, the (Zi)ztl
belonging to ker A. Thus, in this basis:

I,
Mat(A) = constant =

o O O

0
0 O

0 0

We now replace the Z; by some commuting Z!, letting the form of Mat(A) unchanged. All
vector fields are m-basic (i.e. Z-basic), so all brackets are in Im A (the fields “commute mod-
ulo Im A”). Moreover, as Ny = 0, for any 4,j, [AZ;, AZ;| = A|Z;, AZ;| + A[AZ;, Z;] —
A?Z;, Z;] € Im A? = {0}, so the AZ; commute. Let S be the level {z! = 0} (transverse
to Z) and <I>§- be the flow of AZ;, for j > dy. Those flows commute and define a diffeomor-

: . \d1+d2 tay+1 tdy +dy :
phism @ : (m, (t;)jLy2,) = @417 ©... 0@, 175> from S x By, (€) on a neighbourhood

of §in V. We now set (Z)); := (Z;); along S, and push them by the flows <I>§. Formally:

Z/(®(m, (tj)fgi'flil)) = d(@iﬁlill 0...0 @fi‘ilijj)(m)Zz(m) Then: (a) the Z! are coordinate
vector fields along S, and are pushed forward on V by commuting flows, so they commute
everywhere, and by construction they commute with the fields AZ; (apply the Jacobi iden-
tity); (b) the flows <I>§- respect the leaves of Z, so Z;— Z! € Im A, so AZ; = AZ; (c) the flows
<I’§- respect the leaves of . To check (c¢), take Z a vector field in ker A, then as Ny = 0,
[AZj, Z] € ker A: A[AZJ, Z] = [AZJ,AZ] + AQ[Z]‘, Z] — A[ZJ,AZ] =0.

Let us conclude. By (a) and (b), the basis field 3 = ((AZ!)isq,, (Z))%1%) consists of
commuting vector fields. By (c), the (Z{)f;l, obtained by pushing the (Zz-)fgl by the <I>§-,

belong still everywhere to ker A, so Matg(A) is unchanged. We are done.

Proof for n = 3. We see here that in general, we will need an induction. This time, let
($Zv) be a coordinate system given by Lemma 2.5 for the array of foliations we deal with:

IQ
A (So the coordinates (xl,l)
1 1 parametrising the 5,1 2,2
(Z F?IC) - a foliations are, (xgl)ﬂ (ﬂfg2),@ 33
correspondingly:) (x5 ) (x57)s (z37)8

K c K2 c v

Let us set (Zi)f;fdﬁd?’ the coordinate vectors ?33,*, in a way such that Z; € ker A for i < d;

and Z; € ker A% for i < dy +ds (a). The fields Z; are K9-basic for all ¢ (b); in other words,
for any j, as soon as Z; € ker A, [Z;, Z;] € ker A?. By construction, the Z; are also m-basic,
so for any p, [Z;, APZ;] € Im A (c). The family ((4%Z))isdy+do> (AZi)imay, (Zi)i) is a basis
field on V), consisting of vector fields commuting modulo Im A and in which, because of (a):

w

N)

Mat(A) = constant = M =

[ecBen B en B e B e B @)
SO oo oo
OOOOO?
OO oo oo
OOOO?O
OOO&T‘OO

We now replace the Z; by some Z! commuting modulo Im A?, letting the form of Mat(A)
unchanged. As above, we take S the level {z?* = 0,21* = 0} (transverse to Z), and
(@g)gzl the flows of the fields (AZg)k>d; > (A2Zk)k>d, +dy, arbitrarily indexed by some o €
[1, N]. Because of (c¢) and as Ny = 0, [APZ;,A9Z;] € Im A% for p > 1 and ¢ > 1 (d),



so those flows commute modulo Im A%. As in the case n = 2, we build a diffeormorphism
D (m, (ta)N_q) > @i o...0®% from S x B () on a neighbourhood of S in V; ® depends
on the arbitrary order of the ®!, but it does not matter. We define similarly the Z/. As the
®! commute modulo Im A2, so do the Z! with each other, and with the AZ; and AZZJ-:

for all (i,j) and p > 1, [Z],Zj] € Im A* (e) and [Z], APZ;] € Im A (f).

Besides, as the ®/, preserve each leaf of Z, for any i, Z! = Z;[Im A]. Thus for p > 1, APZ! =
APZ; [lm A?] (g). For p > 1 and ¢ > 1, it comes from (f) and (g): [Z], A?Z}] € Im A, and
from (d) and (g): [APZ], A?Z]] € Im A?. So the basis field ((A%2Z))isd +dys (AZ))isdy > (Z1)i)
is made of vector fields commuting modulo Im A2.

We also check that the Z! still satisfy (a) and (b) i.e. that, if Z; € ker A9, then Z] €
ker A9, and that the Z/ are K9-basic. The Z! are equal to the Z; along S, and are pushed by
the flows ®!, of the APZ;, p > 1. The wanted results follow from the fact that those flows
preserve each foliation K9  equivalently, the fact that the APZ; are K9-basic. Indeed, take
Z any vector field in ker A7, then, as NMa» 40 = 0, [APZ;, Z] € ker AY:

AUAPZ;, 7] = [APZ;, ATZ) + APTY (2, 7] —AP[Z;, A1Z) = 0.
= ~—— =

=0 =0

€ ker A? by (b)

Results at that step, and a remark: we just get a basis field ((A%2Z))isdy+dys (AZ))i>dy
(Z1)i), made of vector fields commuting modulo Im A%, and satisfying (a) and (b). Conse-
quently, Mat(A) in this basis has the constant writing M given above. Using again Ny = 0,
we get moreover that, for p > 1 and ¢ > 1, [APZ], A1Z]] € Im A3 = {0}.

End of the proof. Using the remark just above, and iterating the process, we get new
flows ®/! which, this time, commute. It comes a new ®', and new fields Z" which, this time,
commute with each other and with the APZ! p > 1. We conclude as for the case n = 2.

Proof for any n. The case n = 3 contains all arguments. So here we only state the structure
of the induction. We set d, = dim(dn(ker A%)/dm(ker A%~ 1)). Remark: with this notation,
the invariant factors of A are (X,..., X, X% ... X2, ..., X", ..., X").
—_— — ——
dq times do times dpn, times
Take a coordinate system (mg’v) as given by Lemma 2.5 for the array of foliations

;-i;l'“""d" the coordinate vectors

displayed on page 4. Let us set (Zi(o)) in a way

Az
such that Z; € ker A for i < dy, Z; € ker A% for i < dy + dy etc. We set S the level
{zt* =0,..., 2" * =0, }, transverse to Z.

This builds vector fields Zi(o) satisfying the following induction hypothesis, at step k = 0:

(1) the ZZ-(k) are equal to the ZZ-(O) along S,
(2) the ZZ-(k) are K9-basic for all g,
(Hg) (3) For any ¢ and for ¢ < d; + ... +dq, ZZ-(k) € ker A9,

(4) for any (a,b) € N2, for any (i, j), [AaZZ-(k),AbZJ(-k)] € Im AR+,
(5) for any (a,b) € (N*)?, for any (i, 7), [AaZZ-(k),AbZJ(-k)] € Im AF+2,

\

Setting B*) = (ApZi(k))i,p, it follows from (Hy) that 3%) is a basis field on V, in which
Mat(A) has a constant Jordan form, of the type given for the case n = 3.
If fields Zi(k) are built, satisfying (Hg), then you introduce the flows (@ék)t)N of the

a=1

fields A?Z%) for p > 1, you set ZZ-(kH) = ZZ-(O) along S and then push the Zi(k—H) on the



whole V by the flows @,(lk)t, in an arbitrary order. The very arguments given for the case
n = 3 show that the Zi(k—H) satisfy (Hg41). The induction propagates.

Conclusion and reqularity questions. If A is of class C™, the basis field 31 consists of
commuting vector fields, so we are done. If K =R and r = w, or K = C, the flows <I>§ are
given by the Cauchy-Kovalevskaya theorem, so all remains analytic and we are also done.
In case A is only of class C", r < oo, each step of the induction loses one order of
regularity. Indeed, if ®! is the flow of some APZZ-(kfl) of class C", ®! is also C", so the ZJ(-k),

defined as the Zj(kfl) pushed by the differential of the ®!, are only C™ 1. So we may lose n
orders of regularity. Modifying slightly the end of the proof, we see that we lose only n — 1.

Carrying on the induction up to (H,_;) would provide some C"~"*+! fields ZZ.(n_l)7 but
as possibly n —r + 1 = 0, this is useless: commuting fields of class C° but not C'' do not
provide corresponding coordinate functions, in general. Instead, we use directly the CT—"+2-
diffeomorphism ® : (m, (t;)N,) = ®% o...0 ®''(m) of this (n — 1)" step of the induction.

As the fields AaZZ-(nJ)7 with a > 0, commute, and parametrising m € S by its coordinates
20" )i, ® is nothing but a local parametrisation of V by a system of coordinates of class
.00 g p Yy y

C™ 2. with coordinate vectors all the AaZZ-(nfl) with @ > 0. These coordinate vectors
form a basis field in which Mat(A) has a constant Jordan form. We are done.

Eventually, the condition that A is of class C™ ! is necessary, and the given regularity
of the integral coordinates is optimal: this follows from Example 3.5 in the next section. [J

Proof of Corollary 1.5. The integrability of the characteristic subspaces of A amounts
to their involutivity, through the Frobenius criterion. In turn this is implied by the nullity
of Na. First, let us build integral coordinates on the integral leaf of each characteristic
subspace, through the origin. On each characteristic subspace, take A = .S + N the “semi-
simple + nilpotent” decomposition of A.

On the integral leaf of the spaces relative to some real eigenvalue A, S = A1d, so applying
Theorem 1.3 to the nilpotent part N gives the coordinates.

On the integral leaf of the other spaces, S = AId+uJ for some J with J? = —Id. For
any commuting endomorphisms U and V, Nyiv = Ny + Ny + Np;y, + Ny, ;, so using
Proposition 2.2, we get that, for any P € K[X], NP(A) = 0 as soon as Ny = 0. So here
Nj= Ny =0, J is integrable by the integrability condition for complex structures, and N,
viewed as a complex endomorphism, is integrable by Theorem 1.3.

Finally, take the unique “product” coordinate system extending the coordinates built
above, on R%: it is integral for A. Indeed, for each characteristic subspace E of A, you may
take @ € R[X] such that Q(A)g = A on E if Ajg is invertible, Q(A)p = Ajp+1dg on E
if A|p is nilpotent, and Q(A)|p = 0 on the sum F of the other characteristic subspaces. To
prove that the matrix of A is constant in our coordinates, we must check that (Ly A)(X) = 0,
i.e. that [Y, AX] = 0, for any coordinate vector fields X tangent to F and Y tangent to F.
Now, as Né)(A),A =0: Q(A)Y,AX] = [Q(A)Y,AX] — AlQ(A)Y, X]+ Q(A).A]Y, X] = 0. As
[Y, AX] € E and as Q(A)|g is invertible, we are done. O

3 Some additional results and examples

3.1 Proposition [A higher partial regularity of the coordinates, when K = R| In
restriction to each integral leaf T% of Im A¥, for each k < n — 1, the coordinates built by
Theorem 1.3 are of class C"~"t2+% and in general not more. Besides, The coordinates that
are constant along the leaves of T are of class C"727% and in general not more.



Proof. The optimality: “in general not more” follows from Example 3.5 below. To prove
the announced regularities, recall that the (A“Zi(nfl))m are the coordinate vectors finally
obtained in Theorem 1.3. In the proof of Theorem 1.3, each vector field Aoz g

7
well-determined modulo Im A%t*+1 from the moment that AaZZ-(k) is defined i.e. AaZi(k) =

AaZi(kJrl) =...= A“Zi(nfl) [Im Aa+k+1]. In particular:

i) The (42 z™V a>n—k—1 are well-determined from step k of the induction i.e. Aez(n=1)
(] = 1
= AaZi(k). But the Zi(k) are of class C"*, so the (AaZi(k))a>n_k_1 are of class C"~F.

(ii) As the Zi(k) are of class C"~* and as for any a > 0, AaZZ.("_l) = AaZZ.(k_l) [Im A¥]
then the [A“ZZ-(nfl) mod Im A" *] are all of class C"+17F.

Now, the AaZZ-(n_l) with @ > n—k —1 are the coordinate vectors along the leaves of Z?~*~1,
So by (i), the coordinates are of class C"~**1 along those leaves, the first claim. For the last
claim, denote the coordinates given by Theorem 1.3 by (y;)I; = ((yi,j);y:il)?:p on such a
way that the leaves of Z¥ are the levels of the N-tuple (y;)i>n—x. Then the (%)bn—k are the
((AaZZ.(nfl))i)LKk and we have to show that the (y;)j>n_x are of class C™T27% for any k > 1.
Take any coordinate system (y.)?" ; = ((yg,j)jy:i1)?:1 of class C"*1 such that the leaves of 7%
are the levels of the N-tuple (y});>n—k. As the (y;)I; share the same property, the matrix
M = (dyi(aiy;));fj:l is upper block triangular, as well as Mat(a/9y, ) (a%i)?:l = ML

j=1

Thus, for each k£ > 1, (dyz(a%,» =0 and:
J /i>n—k,j<n—k

0 0 -1
k
(dyi (ay,>> = [Mat(a/ay;)j>n_k <—ay mod Im A > :| .
i)/ i j>n—k ‘ >n=k

By (ii), the matrix on the right side is of class C™*17* so0 the (dy;)i>n_k are of class CT+1=F
and the (y;)i>n_ are of class C"+27F O

For the next proposition, we introduce the following terminology.

3.2 Vocabulary A section o of 7 : V — V/T is said here to respect the foliations K! C
... K" Liffor all p € N, do.(dn(ker AP)) C ker AP. This amounts to saying that the image
of o is the level {z!* =0,...,2""1* =0,} of some coordinate system given by Lemma 2.5.

3.3 Proposition [Uniqueness of the integral coordinates| Let A be an integrable field
of nilpotent endomorphisms, T be the integral foliation of the distribution Im A, KP be that
of each ker AP for p € N, and 7 be the projection V — V/I. Then a system of integral
coordinates for A, in which Mat(A) is a constant Jordan matrix, is uniquely given by the
independent choice of:

a section o of 7, respecting the foliations K' C ... C K", in the sense of Vocabulary
3.2,

— coordinates ((Z1.0)™ ..., (Zn.a)¥™,)) of m(V) respecting the foliations w(K') C ... C
m(K"~1) i.e. such that the leaves of each w(KP) are the levels of {((Zp+1.0)as- - - » Zna)a -

More precisely, there is a unique “Jordan” coordinate system ((2'),(z1),...,(zn)) for A,
characterised by the fact that:

((z1)y--+,(2n)) =7 (Z1,...,2Zn), (the levels of this k-tuple are the leaves of T),



the coordinates (z') are determined by the fact that {(z') = 0} is the image of o and
that the k-tuple (%)Z is equal to that of the non null (Aa%)mj. (The coordinates (z')
i -

parametrise the leaves of Z.) Explicitly, the fields of coordinate vectors are the k-tuple:

dp—; dn—; n \n—i
(A1 2yt ((An=2 iyt | (A3t (e i)

Proof. We show that, once the image S of ¢ and the fields Z; along it are chosen, the
extension of the Z; satisfying Theorem 1.3 is unique. Take Z another such extension. As
Z; = Z; along S and as both fields are Z-basic, Z; = Z; lmA] on V. So for a > 0,
A“Z; = AZ; [Im A% on V. Now [Z;, A°Z;] = 0, so [Z;, A°Z;) € Im A%, As Z; = Z; along
S, and as the saturation of S by the flows of the (A%Z;); o0 is the whole V, it comes that
Z; = Z; [Im A% everywhere. By induction, Z; = Z; [Im A¥] for all k and we are done. [

3.4 Remark Let us consider the particular case of an endomorphism field A, constant in
the natural coordinates of the compact manifold 7' = R?/Z<. Tt follows from Proposition 3.3
that the space of (global) integral coordinates for A is infinite dimensional. This shows that
such coordinates are not the solution of an elliptic problem. Instead, they appear naturally
as the solution of a system of O.D.E., with an “initial condition” arbitrarily chosen in some
infinite dimensional function space. This holds as soon as the minimal polynomial of A
contains a factor (X —a), a € R, may A be invertible or not.

The following example shows that, in Theorem 1.3, A has to be of class C"!, and that
the integral coordinates may be not more regular than claimed in it and in Proposition 3.1.

3.5 Example Consider R” with coordinates denoted by (z;)?, take r € N* and (a) =
(o))"=} an (n — 1)-tuple of functions in C"(R™, R), with a,,—1 > 0. Set A = Ay defined
by Aoy (3%) =0, A(a)(a‘;) = for all i € [2,n — 1] and Agq)(3%) = 31 ize-. By
construction, each ker AP = dajZ is integrable, and we (‘he(’k that Ny=0if and only
if:

P+1

8&1 8(1”1 8&1
= —— and

Vi k € [1,n— 2], =0.

8xk 8atk+1 8371

We assume that this condition is satisfied, so Theorem 1.3 applies. Notice that then, the
knowledge of ap_1 determines all the other «a;, up to a additive constant. Let us build
the integral coordinates (y;)!'_; determined by an arbitrary choice of o and by the choice
“Zn = x,” i.e. by y, = x,, (see Proposition 3.3). Notice that necessarily, y, = yn(2,), as the
levels of both z,, and y,, are the integral leaves of ker A"~!. So, a reparametrisation ¥, (z,)
of the last coordinate amounts to multiply all the «; by 1/y),(z,), thus if a,—1 cannot by
made independent of z,, by a multiplication by some function of x,, — we now assume
this ., we do not lose any generality by taking directly y, = x,. Similarly, a different
choice of o amounts to add to each z; with ¢ < n — 1, some function f(mn) This lets all the
(aim)”*1 unchanged and adds some linear combination of them to 6 . In turn this lets the
«; unchanged, up to additive constants. So we do not lose generahty
Now the coordinates y; are determined by the above initial condition and the system:

M.A(a).Mil = A(O,...,O,l) with M = <ggl> .
J 1

As the y; must respect the foliations ZP, notice that yr = yr(xk, ..., x,). We let the reader



check that the system, with the initial conditions, is equivalent to:

Yn = xp and for i <n—1, y; =0 along {z1 = ... = 2,1 = 0},
(x) { Gk =5k PﬁygT:ﬂ for all k € [1,n — ]],
82?1 = % for all k € [1,n — 2] and ¢ € [2,n — 1],
where the P; are the rational fractions in the «; inductively defined by: P} = Olnl—l and
P =- Z; II%P This system is overdetermined but, by Theorem 1.3, and as we
have assumed that A4 = 0, we now it is holonomic i.e. it admits a (here unique) solution.
This solution is determined by the relation y,—1 = P, = ﬁ and, by induction on k, by

the equations, directly given by integration of (x):

o1 & ayn—k-{-i
(**) Yn—k = ; Z(BT%)(Ij,...7ﬂ7n72,t7$n)dt

Tn—i 8
Yn—k+i—1
+Z/ (;.I‘nJri (xl""’xn—i—l’tvo"'-,oa.ﬂl‘n)dt.

We have announced an effective example, so let us provide a simple one. Take a,_1 =
1/(1+2,_10(zy,)) with §(¢t) = t"H! for t > 0 and else #(t) = 0. This a,,_1 is of class C” and
not of class C" 1. This gives: 3, 1 = 1+ x,_10(x,) and, by induction left to the reader:

—fork<r+1,ypk = (1 + ) 0% () 4 2p_g, with z,_p of class CT—F+2,
for k > r 4+ 2, y,_ is not defined.

In Theorem 1.3, we want the y; to be of class (at least) C' — else writing A in them makes
no sense , so we must require here that g is well defined and of class C'! i.e. that r > n—1.
Moreover, y; is of class C" "2 and not of class C" "3, so the regularity given in Theorem
1.3 is optimal. Similarly, the example shows also the optimality of Proposition 3.1.

3.6 Remark We may add that if a vector field V is of class C%, its flow ®%, is of class C*
and, for a generic V, is not of class C**!. Thus if W is another vector field, of class C*' with
s' > s, its image (®%,), W for t # 0 is of class C*~! and, for a generic V, is not of class C*.
Used inductively in the proof of Theorem 1.3, this remark shows that, for a generic field A,
the vector fields Zi(f;-) are of class C"~% and not more. So for a generic A, the coordinates
are not more regular than announced in Theorem 1.3 and Proposition 3.1.

The two little counter-examples 3.7 and 3.8 ensure the independance of both last condi-
tions of Theorem 1.3.

3.7 Example Here is a field A such that A4 = 0 and ker A is non involutive, with minimal

nilpotence index of A (2) and ambient dimension (4). In K4 with (‘oordlnatee (z;)%, define
Aby A(zE) = A(ZE) =0, A(z%) = exp(w2) 7% and A(z%) = 52 All [A%2 ,Ab 9 -] for
{a,b} € {0,1} vanish except [A823, 8:::2] — exp(xg)a—m, hence NA = 0. But ker A = kera

with @ = dzg + xodx3, and a A da = das A dzg A dzg # 0 so ker A is not involutive.

3.8 Example Here is a field A such that Ay # 0 and ker A is involutive, with minimal
ambient nilpotence index of A (again 2) and dimension for it (again 4). Similarly, define A
by A(a%l) = A(a_m) =0, A(am) = eXp(wg)% and A(%) = 6%2 All [Aaa%i,Ab%] for
{a,b} C {0,1} vanish except [A8;E37 822] = [A£3 A£4] = exp(xg)ag So Na # 0 as

NA((%S, 8354) - exp(xg) . But ker A = ker(dxzs) Nker(dzy) is involutive.

10



3.9 Remark However, in Theorem 1.3, for some similarity types of endomorphisms A,
the second condition may be omitted or relaxed, as it is (partially) implied by the first
one. For instance, if A is cyclic, then for every p, ker A? = Im A" P is involutive. More
generally, if for some p, dim(ker AP/Im A" P) = 1, then ker AP is involutive. Indeed, take
(Y;); a basis field of Im A" P and X a field such that (X, (Y;);) spans ker AP. As Ny =
0, ¥5,Y;] € ImA™P C ker AP, besides [X,X] = 0. Take Z; such that Y; = A""PZ;,
then AP[X)Y;] = — AP7An_p(X, Zy) + [APX, AP Z] — AMPIAPX, Z;] + A" X, Z;] = 0 so
[X,Y;] € ker AP, thus ker AP is involutive.

3.10 Remark If A is nilpotent, N4 = 0 does not imply that the ker AP are involutive. It
gives however a weaker fact: if X,Y € ker AP, then [X,Y] € ker A?. Indeed, by Proposition
2.2 Nar(X,Y) =0, s0 A?P[X,Y] = —[APX, APY] + AP[X, APY] + AP[APX,Y] = 0.

3.11 Remark In Theorem 1.3, if A is defined on V = K¢, the integral coordinates may be
in fact built on the whole K¢. Indeed, Theorem 1.3 builds coordinates on some ball B(p, R,).
around any point p of V, with R, depending only on the coefficients of the matrix A around
p, through the flows ®; appearing in the proof of the theorem. So on any precompact set of
V, this R, is bounded from below by a positive constant. Now take any domain of the type
| — a,a[d, on which integral coordinates are defined; by what precedes and by the unicity
result 3.3, these coordinates may be extended on some | — o/, o/[? with o/ > a. We are done.

3.12 Example/Remark A consequence of Corollary 1.5 is that, if (M,V) is a manifold
with a torsion free affine connection, any parallel endomorphism field A on M is integrable.

More generaly, an endomorphism field is integrable if and only if it is parallel for some
torsion free affine connection V (compare [5] Th. 6.1). Indeed, if A is integrable, define V
by Va%i = 0 in some integral coordinate system (v;)%_;. It is torsion free and immediately
VA = 0. Conversely, suppose VA = 0 with VgV — VyU = [U, V] for all vector fields U
and V. Then N4 = 0 and, by the Frobenius criterion, each distribution ker A? is integrable.
Besides, VA = 0 implies that A has constant invariant factors so Corollary 1.5 applies.

I do not know other significant examples where endomorphism fields satisfying naturally
the assumptions of Corollary 1.5 appear.
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