
An integrability ondition for �eldsof nilpotent endomorphismsCharles Boubel1, Marh 28th. 2011.Abstrat. We give a neessary and su�ient ondition on the 1-jet of a �eld ofnilpotent endomorphisms to be integrable. Together with the well known orrespondingondition for an almost omplex struture, the nullity of its Nijenhuis tensor, this givesan integrability ondition for any �eld of endomorphisms.MSC 2010: 53C15, 53A55, (53C10).Key words: integrability, equivalene, nilpotent endomorphism, Nijenhuis tensor.It is a lassial question to ask whether (the germ of) an almost omplex struture Jis (the germ of) a omplex struture i.e. if it is integrable: does it exist loal oordinatesin whih J beomes a onstant matrix, namely „

0 I

−I 0

«? A well known neessary andsu�ient ondition on the 1-jet of J is that the Nijenhuis torsion tensor NJ of J vanishes[6℄. We address here the same question for a �eld of nilpotent endomorphisms A: instead of�J2 = − Id�, we take �An = 0� for some n. More preisely, we suppose that A is onjugate, atevery point, to some �xed nilpotent endomorphism � this is neessary to hope integrability.Immediately, the nullity of the Nijenhuis tensor NA is neessary. Simple examples showthat this ondition is not su�ient, see setion 3, see also [4℄. We show here that it be-omes su�ient, together with the additional ondition that eah distribution of the �ag
(ker Ap)n−1

p=1 is involutive. The proof, unlike that of [6℄, follows essentially from the Cauhy-Lipshitz theorem and some standard di�erential alulus.In ombination with the integrability ondition for omplex strutures, this immediatelygives an integrability ondition for any smooth endomorphism �eld M : M is integrable ifand only if it has onstant invariant fators, NM = 0 and ker(P (M)), for eah invariantfator P of M , is involutive.A general viewpoint on this type of problems, that we do not use here, is given in [1℄.Thanks. I thank R. Bryant, T. Delzant, É. Ghys, A. Oanea, and E. Opshtein for theirquikly answering my questions.Everywhere, A is a germ of endomorphism �eld of TK
d around 0 in K

d, with K = R or
K = C, i.e. a smooth (holomorphi if K = C) setion of EndK(TK

d) on a neighbourhood Vof 0. All objets: oordinates, tangent bundles et. are real if K = R and omplex if K = C.Setion 1 realls the requisite de�nitions and states the results, setion 2 gives the proofsand setion 3 provides some additional results, omments and examples.1 De�nitions and resultsWe reall the two following de�nitions.1.1 De�nition The Nijenhuis torsion tensor of A is the vetor valued 2-form de�ned by:
NA(X,Y ) = [AX,AY ] − A[X,AY ] − A[AX,Y ] + A2[X,Y ].We let the reader hek that it is a tensor, see e.g. [3℄, h. 1 prop. 3.12, where the torsiontensor SA,B of some ouple (A,B) of �elds of endomorphisms is introdued. Our NA isequal to 1

2SA,A. The fat that K = R or K = C plays no role here.1Institut de Reherhe Mathématique Avanée, UMR 7501 � Université de Strasbourg et CNRS, 7 rueRené Desartes, 67084 STRASBOURG CEDEX, FRANCE1



1.2 De�nition The �eld A is alled integrable if there exists, on a neighbourdood V of theorigin, a oordinate system in whih Mat(A) is onstant i.e. a di�eomorphism, or a biholo-morphism ϕ : V → U ⊂ K
d suh that ϕ∗A is the restrition to U of a linear transformationof K

d.Here we show the following result.1.3 Theorem Let A be a germ of �eld of nilpotent endomorphisms of order n > 1 on K
d. If

K = C, we take A holomorphi. If K = R, we take A of lass Cω, C∞ or Cr with r > n− 1.Then A is integrable if and only if the three following onditions are satis�ed:� the invariant fators of A are onstant,� NA = 0,� eah distribution ker Ap, for p ∈ N, is involutive � hene integrable.If A is analyti or of lass C∞, the integral oordinates have the same regularity. If A if oflass Cr with n−1 6 r < ∞, they are at least, and possibly not more than, of lass Cr−n+2.If A satis�es the three onditions but is not of lass Cn−1, it is non integrable in general.1.4 Remark The regularity ondition �lass Cn−1�, though minor, has to be mentioned. Inother equivalene problems of G-strutures of order 1 (see [1℄), with G redutive, and solvedas P.D.E. problems, suh a strong regularity ondition does not seem to appear (see e.g. [5℄or Theorem II of [8℄). In th. 1.3, the group G is the entraliser of Id + A in GLd(K), whihis not redutive as soon as A 6= 0. The regularity ondition seems to be linked to that fat.The present oordinates are not the solution of an ellipti P.D.E., see Remark 3.4. In-stead, they arise naturally as the solution of O.D.E.'s integrated by indution. In that sensethe proof of Theorem 1.3 is similar to that of the Frobenius riterion given in [2℄, C.1.1.Together with the lassial integrability ondition for omplex strutures, the presentresult gives easily the following orollary.1.5 Corollary If A is any �eld of endomorphisms of lass C∞ on R
d, with onstant invariantfators, then A is integrable if and only if the three following onditions are realised:� the invariant fators of A are onstant,� NA = 0,� the distribution ker(P (A)), for eah invariant fator P of A, is involutive.Of ourse, the minimal regularity ondition in general is that A is of lass Cn−1 along eahintegral leaf of ker(P (A)), with P = Qn, Q irreduible. Eventually, a little remark, provenin setion 2, is worth to be pointed out autonomously.1.6 Remark If A is nilpotent, the nullity ofNA implies the integrability of eah distribution

Im Ap, but not that of the kernel distributions ker Ap.2 Proof of the resultsIf A is integrable, it is onjugate, at any point, to some �xed nilpotent matrix, so it hasonstant invariant fators. So the �rst ondition of Theorem 1.3 and of Corollary 1.5 is the
0-order integrability ondition for A, and is neessary. From now on we suppose it holds.We introdue the following tehnial torsion-related tensor, and one of its properties.2



2.1 De�nition If B is another endomorphism �eld on V and if A and B ommute, weintrodue:
N ′

A,B(X,Y ) = [AX,BY ] − A[X,BY ] − B[AX,Y ] + AB[X,Y ].The reader may hek it is a tensor; the sum SA,B = N ′
A,B + N ′

B,A is the torsion of (A,B)ited in Def. 1.1, well-de�ned even if AB 6= BA. So here NA = N ′
A,A = 1

2SA,A.2.2 Proposition All N ′
Ap,Aq for p, q ∈ N

∗ depend only on NA, through both followingrelations:(i) for all ouple (X,Y ) of vetors, N ′
A,Aq(X,Y ) =

∑q
k=1 Aq−kNA(X,Ak−1Y ),(ii) for all ouple (X,Y ) of vetors, N ′

Ap,Aq(X,Y ) =
∑p

k=1 Ap−kN ′
A,Aq(X,Ak−1Y ).In partiular, if NA = 0, then all N ′

Ap,Aq and all NAp = N ′
Ap,Ap also vanish.Proof. As N ′

A,Aq(X,Y ) = −N ′
Aq,A(Y,X), (i) is a speial ase of (ii). Let us prove (ii) byindution on p. It is trivial for p = 1. Suppose it holds for some p.

N ′
Ap+1,Aq(X,Y ) = [Ap+1X,AqY ] − Aq[Ap+1X,Y ] − Ap+1[X,AqY ] + Ap+q+1[X,Y ]

= [Ap+1X,AqY ] − Aq[Ap+1X,Y ] − A[ApX,AqY ] + Aq+1[ApX,AY ]

+ A[ApX,AqY ] − Aq+1[ApX,AY ] − Ap+1[X,AqY ] + Ap+q+1[X,Y ]

= N ′
A,Aq(ApX,Y ) + A

(
N ′

Ap,Aq(X,Y )
)
,hene it holds for p + 1. �Proof of Remark 1.6. Now we an prove Remark 1.6. As NA = 0, eah distribution Im Apis integrable. Let us prove it is involutive, the onlusion follows by the Frobenius riterion.Let us take X and Y any vetor �elds and show: [ApX,ApY ] ∈ ImAp. By Proposition 2.2,

NAp(X,Y ) = 0, so [ApX,ApY ] = Ap[X,ApY ] + Ap[ApX,Y ] − A2p[X,Y ] and we are done.Besides, example 3.7 gives a ounter example to the integrability of ker Ap.2.3 Notation If A satis�es the three onditions of Theorem 1.3, using Remark 1.6, wedenote respetively by Ip and Kp the integral foliation of the distribution Im Np, respetively
ker Np, for any p. We shortly denote I1 by I, and denote by π the projetion V → V/I.2.4 Reall/voabulary If F is some foliation on V, and V some distribution or vetor �eldon V, V is alled basi (for F) if, for any open set U where F is trivial, setting Π : U → U/F ,
Π∗V is onstant along eah leaf of F , and so V �passes to the quotient� on U/F . If V is avetor �eld, this means exatly that its �ow sends eah leaf of F on a leaf of F .To prove the theorem, we already introdue the following, and prove a lemma about it.The two �ags ker A ⊂ ker A2 ⊂ . . . ⊂ ker An−1 ⊂ ker An = TK

d and Im An−1 ⊂ . . . ⊂
Im A ⊂ Im A0 = TK

d satisfy the following inlusion properties:
Im An−1

∩
(Im An−2 ∩ ker A) ⊂ Im An−2

∩ ∩
(Im An−3 ∩ ker A) ⊂ (Im An−3 ∩ ker A2) ⊂ Im An−2

∩ ∩ ∩
. . .... ... ...

ker A ⊂ ker A2 ⊂ ker A3 ⊂ · · · ker An−1 ⊂ TV.3



Any entry of this array is integrable, generating the following foliations:
In−1

∩
(In−2 ∩ K1) ⊂ In−2

∩ ∩
(In−3 ∩ K1) ⊂ (In−3 ∩ K2) ⊂ In−2

∩ ∩ ∩... ... ...
K ⊂ K2 ⊂ K3 ⊂ · · · Kn−1 ⊂ V,2.5 Lemma If the three onditions of Theorem 1.3 are realised, then there exist loaloordinates ((xi,j

α )α)n>i>j>1 adapted to this array of foliations i.e. suh that, for any p ∈

J1, nK and q 6 p, the (xi,j
α )α with i 6 p and j 6 q parametrise the leaves of In−p ∩ Kq. Theoordinates may be hosen of lass Cr+1 in ase K = R, holomorphi in ase K = C.Proof. The lemma is nothing but the fat (∗) that the distributions ker Aq are basi forany of the foliations Ip, or in other words, that the foliations Kq �pass� to the quotient byany of the Ip. Indeed if (∗) holds, take any oordinate system (xi

α)ni=1 suh that the leavesof In−p are the levels of ((xi
α)α)i>p. In partiular, (xn

α)α may be viewed as oordinates of
π(V). By (∗), π(V) is endowed with the foliations π(K) ⊂ π(K2) ⊂ . . . ⊂ π(Kn−1), so (xn

α)αmay be turned into some other system ((xn,1
α )α, . . . , (xn,n

α )α), adapted to this �ag: the leavesof π(Kq) are the levels of ((xn,i
α )α)i>q. Indutively, we build the oordinates of the lemma.Now, (∗) amounts exatly to a stronger version of Remark 1.6: any of the distributions

ker Ap+ImAq is involutive. We prove it and are done. Take X,X ′ vetor �elds in ker Ap and
Y, Y ′ two vetor �elds in Im Aq. Then: [X +Y,X ′+Y ′] = [X,X ′]+[Y, Y ′]+[X,Y ′]+[Y,X ′].As ker Ap, by assumption, and ImAq , by Remark 1.6, are involutive, [X,X ′] ∈ ker Ap and
[Y, Y ′] ∈ Im Aq. We are left with showing, for instane, that [X,Y ′] ∈ ker Ap + Im Aq i.e.that Ap[X,Y ′] ∈ Im Ap+q. Take a �eld Z suh that Y ′ = AqZ:

Ap[X,Y ′] = −N ′
Ap,Aq(X,Y )

︸ ︷︷ ︸
=0 by Prop 2.2 + Ap+q[X,Z]︸ ︷︷ ︸

∈Im Ap+q

+ [ApX,AqZ] − Aq[ApX,Z]︸ ︷︷ ︸
=0 as X∈ker Ap

.Regularity. If A is of lass Cr, the distributions Im Ap and ker Aq are of lass Cr i.e. thefoliations are of lass Cr+1, so are the oordinates. If A is holomorphi, everything is. �Proof of the theorem. If A is integrable, the integrability of ker Ap and the nullity of NAare immediate. Let us prove the onverse. The proof, when diretly written in the generalase An−1 6= An = 0 with n any integer, is a umbersome indution. So we state it in ases
n = 2 and n = 3, where all the arguments are involved. Then we give the struture of theindution for the general ase. We also suppose that A is of lass C∞ and postpone theremarks about regularity when A is analyti or of lass Cr.Proving that A is integrable amounts to building a �eld of basis β on V suh that:(i) Matβ(A) is onstant,(ii) any two vetor �elds of β ommute (in other terms, the �eld β is integrable).Proof for n = 2. Here I ⊂ K ⊂ V; take oordinates ((x1

β)β, (x2
β)β , (x3

β)β) of V, adapted tothis �ag of foliations. Set (Zi)
d1

i=1 the oordinate vetors ( ∂
∂x2

∗

) and (Zi)
d1+d2

i=d1+1 the ( ∂
∂x3

∗

),4



so that Zi ∈ ker A for i 6 d1. Then ((AZi)i>d1
, (Zi)

d1+d2

i=1 ) is a basis �eld on V, the (Zi)
d1

i=1belonging to ker A. Thus, in this basis:
Mat(A) = constant =




0 0 Id2

0 0 0
0 0 0


 .We now replae the Zi by some ommuting Z ′

i, letting the form of Mat(A) unhanged. Allvetor �elds are π-basi (i.e. I-basi), so all brakets are in Im A (the �elds �ommute mod-ulo Im A�). Moreover, as NA = 0, for any i, j, [AZi, AZj ] = A[Zi, AZj ] + A[AZi, Zj ] −
A2[Zi, Zj ] ∈ ImA2 = {0}, so the AZi ommute. Let S be the level {x1 = 0} (transverseto I) and Φt

j be the �ow of AZj , for j > d1. Those �ows ommute and de�ne a di�eomor-phism Φ : (m, (tj)
d1+d2

j=d1+1) 7→ Φ
td1+1

d1+1 ◦ . . . ◦ Φ
td1+d2

d1+d2
from S × B

Kd2 (ε) on a neighbourhoodof S in V. We now set (Z ′
i)i := (Zi)i along S, and push them by the �ows Φt

j. Formally:
Z ′

i(Φ(m, (tj)
d1+d2

i=d1+1)) = d(Φ
td1+1

d1+1 ◦ . . . ◦ Φ
td1+d2

d1+d2
)(m).Zi(m). Then: (a) the Z ′

i are oordinatevetor �elds along S, and are pushed forward on V by ommuting �ows, so they ommuteeverywhere, and by onstrution they ommute with the �elds AZi (apply the Jaobi iden-tity); (b) the �ows Φt
j respet the leaves of I, so Zi−Z ′

i ∈ Im A, so AZi = AZ ′
i; () the �ows

Φt
j respet the leaves of K. To hek (), take Z a vetor �eld in ker A, then as NA = 0,

[AZj , Z] ∈ ker A: A[AZj , Z] = [AZj , AZ] + A2[Zj , Z] − A[Zj , AZ] = 0.Let us onlude. By (a) and (b), the basis �eld β = ((AZ ′
i)i>d1

, (Z ′
i)

d1+d2

i=1 ) onsists ofommuting vetor �elds. By (), the (Z ′
i)

d1

i=1, obtained by pushing the (Zi)
d1

i=1 by the Φt
j,belong still everywhere to ker A, so Matβ(A) is unhanged. We are done.Proof for n = 3. We see here that in general, we will need an indution. This time, let

(xu,v
β ) be a oordinate system given by Lemma 2.5 for the array of foliations we deal with:

I2

∩
(I1 ∩K) ⊂ I1

∩ ∩
K ⊂ K2 ⊂ V.

(So the oordinatesparametrising thefoliations are,orrespondingly:) (x1,1
β )β

(x2,1
β )β (x2,2

β )β

(x3,1
β )β (x3,2

β )β (x3,3
β )β.Let us set (Zi)

d1+d2+d3

i=1 the oordinate vetors ∂
∂x3,⋆

⋆

, in a way suh that Zi ∈ ker A for i 6 d1and Zi ∈ ker A2 for i 6 d1 + d2 (a). The �elds Zi are Kq-basi for all q (b); in other words,for any j, as soon as Zi ∈ ker Aq , [Zj, Zi] ∈ ker Aq. By onstrution, the Zi are also π-basi,so for any p, [Zi, A
pZj] ∈ ImA (). The family ((A2Zi)i>d1+d2

, (AZi)i>d1
, (Zi)i) is a basis�eld on V, onsisting of vetor �elds ommuting modulo Im A and in whih, beause of (a):

Mat(A) = constant = M =




0 0 Id3
0 0 0

0 0 0 0 Id2
0

0 0 0 0 0 Id3

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




.We now replae the Zi by some Z ′
i ommuting modulo Im A2, letting the form of Mat(A)unhanged. As above, we take S the level {x2,⋆ = 0, x1,⋆ = 0} (transverse to I), and

(Φt
α)Nα=1 the �ows of the �elds (AZk)k>d1

, (A2Zk)k>d1+d2
, arbitrarily indexed by some α ∈

J1, NK. Beause of () and as NA = 0, [ApZi, A
qZj ] ∈ Im A2 for p > 1 and q > 1 (d),5



so those �ows ommute modulo Im A2. As in the ase n = 2, we build a di�eormorphism
Φ : (m, (tα)Nα=1) 7→ Φt1

1 ◦ . . .◦ΦtN
N from S×BKN (ε) on a neighbourhood of S in V; Φ dependson the arbitrary order of the Φt
α but it does not matter. We de�ne similarly the Z ′

i. As the
Φt

α ommute modulo Im A2, so do the Z ′
i with eah other, and with the AZj and A2Zj :for all (i, j) and p > 1, [Z ′

i, Z
′
j ] ∈ Im A2 (e) and [Z ′

i, A
pZj ] ∈ Im A2 (f).Besides, as the Φt

α preserve eah leaf of I, for any i, Z ′
i ≡ Zi[Im A]. Thus for p > 1, ApZ ′

i ≡
ApZi [Im A2] (g). For p > 1 and q > 1, it omes from (f) and (g): [Z ′

i, A
pZ ′

j] ∈ ImA2, andfrom (d) and (g): [ApZ ′
i, A

qZ ′
j] ∈ ImA2. So the basis �eld ((A2Z ′

i)i>d1+d2
, (AZ ′

i)i>d1
, (Z ′

i)i)is made of vetor �elds ommuting modulo Im A2.We also hek that the Z ′
i still satisfy (a) and (b) i.e. that, if Zi ∈ ker Aq, then Z ′

i ∈
ker Aq, and that the Z ′

i are Kq-basi. The Z ′
i are equal to the Zi along S, and are pushed bythe �ows Φt

α of the ApZj, p > 1. The wanted results follow from the fat that those �owspreserve eah foliation Kq �equivalently, the fat that the ApZj are Kq-basi. Indeed, take
Z any vetor �eld in ker Aq, then, as NAp,Aq = 0, [ApZj, Z] ∈ ker Aq :

Aq[ApZj , Z] = [ApZj , A
qZ︸︷︷︸

= 0

] + Ap+q [Zj , Z]︸ ︷︷ ︸
∈ ker Aq by (b)−Ap[Zj , A

qZ︸︷︷︸
= 0

] = 0.Results at that step, and a remark: we just get a basis �eld ((A2Z ′
i)i>d1+d2

, (AZ ′
i)i>d1

,
(Z ′

i)i), made of vetor �elds ommuting modulo Im A2, and satisfying (a) and (b). Conse-quently, Mat(A) in this basis has the onstant writing M given above. Using again NA = 0,we get moreover that, for p > 1 and q > 1, [ApZ ′
i, A

qZ ′
j] ∈ ImA3 = {0}.End of the proof. Using the remark just above, and iterating the proess, we get new�ows Φ′t

α whih, this time, ommute. It omes a new Φ′, and new �elds Z ′′
i whih, this time,ommute with eah other and with the ApZ ′

i, p > 1. We onlude as for the ase n = 2.Proof for any n. The ase n = 3 ontains all arguments. So here we only state the strutureof the indution. We set da = dim(dπ(ker Aa)/dπ(ker Aa−1)). Remark: with this notation,the invariant fators of A are (X, . . . ,X︸ ︷︷ ︸
d1 times ,X2, . . . ,X2

︸ ︷︷ ︸
d2 times , . . . ,Xn, . . . ,Xn

︸ ︷︷ ︸
dn times ).Take a oordinate system (xu,v

β ) as given by Lemma 2.5 for the array of foliationsdisplayed on page 4. Let us set (Z
(0)
i )d1+...+dn

i=1 the oordinate vetors ∂
∂xn,⋆

⋆
, in a waysuh that Zi ∈ ker A for i 6 d1, Zi ∈ ker A2 for i 6 d1 + d2 et. We set S the level

{x1,⋆ = 0, . . . , xn−1,⋆ = 0, }, transverse to I.This builds vetor �elds Z
(0)
i satisfying the following indution hypothesis, at step k = 0:(Hk)  (1) the Z

(k)
i are equal to the Z

(0)
i along S,(2) the Z

(k)
i are Kq-basi for all q,(3) For any q and for i 6 d1 + . . . + dq, Z

(k)
i ∈ ker Aq,(4) for any (a, b) ∈ N

2, for any (i, j), [AaZ
(k)
i , AbZ

(k)
j ] ∈ ImAk+1,(5) for any (a, b) ∈ (N∗)2, for any (i, j), [AaZ

(k)
i , AbZ

(k)
j ] ∈ Im Ak+2.Setting β(k) = (ApZ

(k)
i )i,p, it follows from (Hk) that β(k) is a basis �eld on V, in whihMat(A) has a onstant Jordan form, of the type given for the ase n = 3.If �elds Z

(k)
i are built, satisfying (Hk), then you introdue the �ows (Φ

(k)t
α )Nα=1 of the�elds ApZ(k) for p > 1, you set Z

(k+1)
i = Z

(0)
i along S and then push the Z

(k+1)
i on the6



whole V by the �ows Φ
(k)t
α , in an arbitrary order. The very arguments given for the ase

n = 3 show that the Z
(k+1)
i satisfy (Hk+1). The indution propagates.Conlusion and regularity questions. If A is of lass C∞, the basis �eld β(n−1) onsists ofommuting vetor �elds, so we are done. If K = R and r = ω, or K = C, the �ows Φt

i aregiven by the Cauhy-Kovalevskaya theorem, so all remains analyti and we are also done.In ase A is only of lass Cr, r < ∞, eah step of the indution loses one order ofregularity. Indeed, if Φt
i is the �ow of some ApZ

(k−1)
i of lass Cr, Φt

i is also Cr, so the Z
(k)
j ,de�ned as the Z

(k−1)
j pushed by the di�erential of the Φt

i, are only Cr−1. So we may lose norders of regularity. Modifying slightly the end of the proof, we see that we lose only n− 1.Carrying on the indution up to (Hn−1) would provide some Cn−r+1 �elds Z
(n−1)
i , butas possibly n − r + 1 = 0, this is useless: ommuting �elds of lass C0 but not C1 do notprovide orresponding oordinate funtions, in general. Instead, we use diretly the Cr−n+2-di�eomorphism Φ : (m, (ti)

N
i=1) 7→ ΦtN

N ◦ . . . ◦ Φt1
1 (m) of this (n − 1)th step of the indution.As the �elds AaZ

(n−2)
i , with a > 0, ommute, and parametrising m ∈ S by its oordinates

(xn,i
α )i,α, Φ is nothing but a loal parametrisation of V by a system of oordinates of lass

Cn−r+2, with oordinate vetors all the AaZ
(n−1)
i with a > 0. These oordinate vetorsform a basis �eld in whih Mat(A) has a onstant Jordan form. We are done.Eventually, the ondition that A is of lass Cn−1 is neessary, and the given regularityof the integral oordinates is optimal: this follows from Example 3.5 in the next setion. �Proof of Corollary 1.5. The integrability of the harateristi subspaes of A amountsto their involutivity, through the Frobenius riterion. In turn this is implied by the nullityof NA. First, let us build integral oordinates on the integral leaf of eah harateristisubspae, through the origin. On eah harateristi subspae, take A = S + N the �semi-simple + nilpotent� deomposition of A.On the integral leaf of the spaes relative to some real eigenvalue λ, S = λ Id, so applyingTheorem 1.3 to the nilpotent part N gives the oordinates.On the integral leaf of the other spaes, S = λ Id+µJ for some J with J2 = − Id. Forany ommuting endomorphisms U and V , NU+V = NU + NV + N ′

U,V + N ′
V,U , so usingProposition 2.2, we get that, for any P ∈ K[X], NP (A) = 0 as soon as NA = 0. So here

NJ = NN = 0, J is integrable by the integrability ondition for omplex strutures, and N ,viewed as a omplex endomorphism, is integrable by Theorem 1.3.Finally, take the unique �produt� oordinate system extending the oordinates builtabove, on R
d: it is integral for A. Indeed, for eah harateristi subspae E of A, you maytake Q ∈ R[X] suh that Q(A)|E = A|E on E if A|E is invertible, Q(A)|E = A|E + IdE on Eif A|E is nilpotent, and Q(A)|F = 0 on the sum F of the other harateristi subspaes. Toprove that the matrix of A is onstant in our oordinates, we must hek that (LY A)(X) = 0,i.e. that [Y,AX] = 0, for any oordinate vetor �elds X tangent to E and Y tangent to F .Now, as N ′

Q(A),A = 0: Q(A)[Y,AX] = [Q(A)Y,AX]−A[Q(A)Y,X]+Q(A).A[Y,X] = 0. As
[Y,AX] ∈ E and as Q(A)|E is invertible, we are done. �3 Some additional results and examples3.1 Proposition [A higher partial regularity of the oordinates, when K = R℄ Inrestrition to eah integral leaf Ik of Im Ak, for eah k 6 n − 1, the oordinates built byTheorem 1.3 are of lass Cr−n+2+k, and in general not more. Besides, The oordinates thatare onstant along the leaves of Ik are of lass Cr+2−k, and in general not more.7



Proof. The optimality: �in general not more� follows from Example 3.5 below. To provethe announed regularities, reall that the (AaZ
(n−1)
i )a,i are the oordinate vetors �nallyobtained in Theorem 1.3. In the proof of Theorem 1.3, eah vetor �eld AaZ

(n−1)
i iswell-determined modulo Im Aa+k+1 from the moment that AaZ

(k)
i is de�ned i.e. AaZ

(k)
i ≡

AaZ
(k+1)
i ≡ . . . ≡ AaZ

(n−1)
i [Im Aa+k+1]. In partiular:(i) The (AaZ

(n−1)
i )a>n−k−1 are well-determined from step k of the indution i.e. AaZ

(n−1)
i

= AaZ
(k)
i . But the Z

(k)
i are of lass Cr−k, so the (AaZ

(k)
i )a>n−k−1 are of lass Cr−k.(ii) As the Z

(k)
i are of lass Cr−k, and as for any a > 0, AaZ

(n−1)
i ≡ AaZ

(k−1)
i [Im Ak]then the [AaZ

(n−1)
i mod Im An−k] are all of lass Cr+1−k.Now, the AaZ
(n−1)
i with a > n−k−1 are the oordinate vetors along the leaves of In−k−1.So by (i), the oordinates are of lass Cr−k+1 along those leaves, the �rst laim. For the lastlaim, denote the oordinates given by Theorem 1.3 by (yi)

n
i=1 = ((yi,j)

Ni

j=1)
n
i=1, on suh away that the leaves of Ik are the levels of the N -tuple (yi)i>n−k. Then the ( ∂

∂yi
)i>n−k are the

((AaZ
(n−1)
i )i)a<k and we have to show that the (yi)i>n−k are of lass Cr+2−k for any k > 1.Take any oordinate system (y′i)

n
i=1 = ((y′i,j)

Ni

j=1)
n
i=1 of lass Cr+1 suh that the leaves of Ikare the levels of the N -tuple (y′i)i>n−k. As the (yi)

n
i=1 share the same property, the matrix

M = (dyi(
∂

∂y′

j
))ni,j=1 is upper blok triangular, as well as Mat(∂/∂y′

j)
n
j=1

( ∂
∂yi

)ni=1 = M−1.Thus, for eah k > 1, (dyi(
∂

∂y′

j
)
)

i>n−k,j6n−k
= 0 and:

(dyi

(
∂

∂y′j

))

i,j>n−k

=

[Mat(∂/∂y′

j
)j>n−k

(
∂

∂yi
mod Im Ak

)

i>n−k

]−1

.By (ii), the matrix on the right side is of lass Cr+1−k so the (dyi)i>n−k are of lass Cr+1−kand the (yi)i>n−k are of lass Cr+2−k. �For the next proposition, we introdue the following terminology.3.2 Voabulary A setion σ of π : V → V/I is said here to respet the foliations K1 ⊂
. . . ⊂ Kn−1 if for all p ∈ N, dσ.(dπ(ker Ap)) ⊂ ker Ap. This amounts to saying that the imageof σ is the level {x1,⋆ = 0, . . . , xn−1,⋆ = 0, } of some oordinate system given by Lemma 2.5.3.3 Proposition [Uniqueness of the integral oordinates℄ Let A be an integrable �eldof nilpotent endomorphisms, I be the integral foliation of the distribution ImA, Kp be thatof eah ker Ap for p ∈ N, and π be the projetion V → V/I. Then a system of integraloordinates for A, in whih Mat(A) is a onstant Jordan matrix, is uniquely given by theindependent hoie of:� a setion σ of π, respeting the foliations K1 ⊂ . . . ⊂ Kn−1, in the sense of Voabulary3.2,� oordinates ((z1,α)d1

α=1, . . . , (zn,α)dn
α=1)) of π(V) respeting the foliations π(K1) ⊂ . . . ⊂

π(Kn−1) i.e. suh that the leaves of eah π(Kp) are the levels of {((zp+1,α)α, . . . , (zn,α)α}.More preisely, there is a unique �Jordan� oordinate system ((z′), (z1), . . . , (zn)) for A,haraterised by the fat that:� ((z1), . . . , (zn)) = π∗(z1, . . . , zn), (the levels of this k-tuple are the leaves of I),8



� the oordinates (z′) are determined by the fat that {(z′) = 0} is the image of σ andthat the k-tuple ( ∂
∂z′i

)i is equal to that of the non null (Aa ∂
∂zn,j

)n,j. (The oordinates (z′)parametrise the leaves of I.) Expliitly, the �elds of oordinate vetors are the k-tuple:
(
(An−1 ∂

∂zn,j
)dn

j=1, ((A
n−2 ∂

∂zn−i,j
)
dn−i

j=1 )2i=1, ((A
n−3 ∂

∂zn−i,j
)
dn−i

j=1 )3i=1, . . . , ((
∂

∂zn−i,j
)dn

j=1)
n−i
i=1

)
.Proof. We show that, one the image S of σ and the �elds Zi along it are hosen, theextension of the Zi satisfying Theorem 1.3 is unique. Take Z̃i another suh extension. As

Z̃i = Zi along S and as both �elds are I-basi, Z̃i ≡ Zi [Im A] on V. So for a > 0,
AaZ̃i ≡ AaZi [Im A2] on V. Now [Z̃i, A

aZ̃i] = 0, so [Z̃i, A
aZi] ∈ ImA2. As Z̃i = Zi along

S, and as the saturation of S by the �ows of the (AaZi)i,a>0 is the whole V, it omes that
Z̃i ≡ Zi [Im A2] everywhere. By indution, Z̃i ≡ Zi [Im Ak] for all k and we are done. �3.4 Remark Let us onsider the partiular ase of an endomorphism �eld A, onstant inthe natural oordinates of the ompat manifold T = R

d/Z
d. It follows from Proposition 3.3that the spae of (global) integral oordinates for A is in�nite dimensional. This shows thatsuh oordinates are not the solution of an ellipti problem. Instead, they appear naturallyas the solution of a system of O.D.E., with an �initial ondition� arbitrarily hosen in somein�nite dimensional funtion spae. This holds as soon as the minimal polynomial of Aontains a fator (X − a), a ∈ R, may A be invertible or not.The following example shows that, in Theorem 1.3, A has to be of lass Cn−1, and thatthe integral oordinates may be not more regular than laimed in it and in Proposition 3.1.3.5 Example Consider Rn with oordinates denoted by (xi)

n
i=1, take r ∈ N∗ and (α) =

(αi)
n−1
i=1 an (n − 1)-tuple of funtions in Cr(Rn, R), with αn−1 > 0 . Set A = A(α) de�nedby A(α)(

∂
∂x1

) = 0, A(α)(
∂

∂xi
) = ∂

∂xi−1
for all i ∈ J2, n − 1K and A(α)(

∂
∂xn

) =
∑n−1

i=1 αi
∂

∂xi
. Byonstrution, eah ker Ap = ∩n

i=p+1dxi is integrable, and we hek that NA = 0 if and onlyif:
∀i, k ∈ J1, n − 2K,

∂αi

∂xk
=

∂αi+1

∂xk+1
and ∂αi

∂x1
= 0.We assume that this ondition is satis�ed, so Theorem 1.3 applies. Notie that then, theknowledge of αn−1 determines all the other αi, up to a additive onstant. Let us buildthe integral oordinates (yi)

n
i=1 determined by an arbitrary hoie of σ and by the hoie�zn = xn� i.e. by yn = xn (see Proposition 3.3). Notie that neessarily, yn = yn(xn), as thelevels of both xn and yn are the integral leaves of ker An−1. So, a reparametrisation yn(xn)of the last oordinate amounts to multiply all the αi by 1/y′n(xn), thus if αn−1 annot bymade independent of xn by a multipliation by some funtion of xn � we now assumethis �, we do not lose any generality by taking diretly yn = xn. Similarly, a di�erenthoie of σ amounts to add to eah xi with i 6 n− 1, some funtion f(xn). This lets all the

( ∂
∂xi

)n−1
i=1 unhanged and adds some linear ombination of them to ∂

∂xn
. In turn this lets the

αi unhanged, up to additive onstants. So we do not lose generality.Now the oordinates yi are determined by the above initial ondition and the system:
M.A(α).M

−1 = A(0,...,0,1) with M =

(
∂yi

∂xj

)n

i,j=1

.As the yi must respet the foliations Ip, notie that yk = yk(xk, . . . , xn). We let the reader9



hek that the system, with the initial onditions, is equivalent to:
(∗)





yn = xn and for i 6 n − 1, yi = 0 along {x1 = . . . = xn−1 = 0},
∂yn−k

∂xn−1
=
∑k

i=1 Pi
∂yn−k+i

∂xn
for all k ∈ J1, n − 1K,

∂yk

∂xn−i
=

∂yk+i−1

∂xn−1
for all k ∈ J1, n − 2K and i ∈ J2, n − 1K,where the Pi are the rational frations in the αi indutively de�ned by: P1 = 1

αn−1
and

Pi = −
∑i−1

j=1
αn−i+j−1

αn−1
Pj . This system is overdetermined but, by Theorem 1.3, and as wehave assumed that NA = 0, we now it is holonomi i.e. it admits a (here unique) solution.This solution is determined by the relation yn−1 = P1 = 1

αn−1
and, by indution on k, bythe equations, diretly given by integration of (∗):

(∗∗) yn−k =

∫ xn−1

0

k∑

i=1

(Pi
∂yn−k+i

∂xn
)(x1, . . . , xn−2, t, xn)dt

+

n−1∑

i=2

∫ xn−i

0

∂yn−k+i−1

∂xn−1
(x1, . . . , xn−i−1, t, 0, . . . , 0, xn)dt.We have announed an e�etive example, so let us provide a simple one. Take αn−1 =

1/(1 + xn−1θ(xn)) with θ(t) = tr+1 for t > 0 and else θ(t) = 0. This αn−1 is of lass Cr andnot of lass Cr+1. This gives: yn−1 = 1 + xn−1θ(xn) and, by indution left to the reader:� for k 6 r + 1, yn−k =
(
1 +

x2
n−1

2

)
θ(k−1)(xn) + zn−k, with zn−k of lass Cr−k+2,� for k > r + 2, yn−k is not de�ned.In Theorem 1.3, we want the yi to be of lass (at least) C1 � else writing A in them makesno sense �, so we must require here that y1 is well de�ned and of lass C1 i.e. that r > n−1.Moreover, y1 is of lass Cr−n+2 and not of lass Cr−n+3, so the regularity given in Theorem1.3 is optimal. Similarly, the example shows also the optimality of Proposition 3.1.3.6 Remark We may add that if a vetor �eld V is of lass Cs, its �ow Φt

V is of lass Csand, for a generi V , is not of lass Cs+1. Thus if W is another vetor �eld, of lass Cs′ with
s′ > s, its image (Φt

V )∗W for t 6= 0 is of lass Cs−1 and, for a generi V , is not of lass Cs.Used indutively in the proof of Theorem 1.3, this remark shows that, for a generi �eld A,the vetor �elds Z
(k)
i,j are of lass Cr−k and not more. So for a generi A, the oordinatesare not more regular than announed in Theorem 1.3 and Proposition 3.1.The two little ounter-examples 3.7 and 3.8 ensure the independane of both last ondi-tions of Theorem 1.3.3.7 Example Here is a �eld A suh that NA = 0 and ker A is non involutive, with minimalnilpotene index of A (2) and ambient dimension (4). In K

4 with oordinates (xi)
4
i=1, de�ne

A by A( ∂
∂x1

) = A( ∂
∂x2

) = 0, A( ∂
∂x3

) = exp(x2)
∂

∂x1
and A( ∂

∂x4
) = ∂

∂x1
. All [Aa ∂

∂xi
, Ab ∂

∂xj
] for

{a, b} ⊂ {0, 1} vanish exept [A ∂
∂x3

, ∂
∂x2

] = − exp(x2)
∂

∂x1
, hene NA = 0. But ker A = ker αwith α = dx4 + x2dx3, and α ∧ dα = dx2 ∧ dx3 ∧ dx4 6= 0 so ker A is not involutive.3.8 Example Here is a �eld A suh that NA 6= 0 and ker A is involutive, with minimalambient nilpotene index of A (again 2) and dimension for it (again 4). Similarly, de�ne Aby A( ∂

∂x1
) = A( ∂

∂x2
) = 0, A( ∂

∂x3
) = exp(x2)

∂
∂x1

and A( ∂
∂x4

) = ∂
∂x2

. All [Aa ∂
∂xi

, Ab ∂
∂xj

] for
{a, b} ⊂ {0, 1} vanish exept [A ∂

∂x3
, ∂

∂x2
] = [A ∂

∂x3
, A ∂

∂x4
] = − exp(x2)

∂
∂x1

. So NA 6= 0 as
NA( ∂

∂x3
, ∂

∂x4
) = − exp(x2)

∂
∂x1

. But ker A = ker(dx3) ∩ ker(dx4) is involutive.10



3.9 Remark However, in Theorem 1.3, for some similarity types of endomorphisms A,the seond ondition may be omitted or relaxed, as it is (partially) implied by the �rstone. For instane, if A is yli, then for every p, ker Ap = Im An−p is involutive. Moregenerally, if for some p, dim(ker Ap/ Im An−p) = 1, then ker Ap is involutive. Indeed, take
(Yi)i a basis �eld of Im An−p and X a �eld suh that (X, (Yi)i) spans ker Ap. As NA =
0, [Yi, Yj] ∈ Im An−p ⊂ ker Ap, besides [X,X] = 0. Take Zi suh that Yi = An−pZi,then Ap[X,Yi] = −N ′

Ap,An−p(X,Zi) + [ApX,An−pZi] − An−p[ApX,Zi] + An[X,Zi] = 0 so
[X,Yi] ∈ ker Ap, thus ker Ap is involutive.3.10 Remark If A is nilpotent, NA = 0 does not imply that the ker Ap are involutive. Itgives however a weaker fat: if X,Y ∈ ker Ap, then [X,Y ] ∈ ker A2p. Indeed, by Proposition2.2, NAp(X,Y ) = 0, so A2p[X,Y ] = −[ApX,ApY ] + Ap[X,ApY ] + Ap[ApX,Y ] = 0.3.11 Remark In Theorem 1.3, if A is de�ned on V = K

d, the integral oordinates may bein fat built on the whole K
d. Indeed, Theorem 1.3 builds oordinates on some ball B(p,Rp),around any point p of V, with Rp depending only on the oe�ients of the matrix A around

p, through the �ows Φi appearing in the proof of the theorem. So on any preompat set of
V, this Rp is bounded from below by a positive onstant. Now take any domain of the type
] − α,α[d, on whih integral oordinates are de�ned; by what preedes and by the uniityresult 3.3, these oordinates may be extended on some ]−α′, α′[d with α′ > α. We are done.3.12 Example/Remark A onsequene of Corollary 1.5 is that, if (M,∇) is a manifoldwith a torsion free a�ne onnetion, any parallel endomorphism �eld A on M is integrable.More generaly, an endomorphism �eld is integrable if and only if it is parallel for sometorsion free a�ne onnetion ∇ (ompare [5℄ Th. 6.1). Indeed, if A is integrable, de�ne ∇by ∇ ∂

∂vi
= 0 in some integral oordinate system (vi)

d
i=1. It is torsion free and immediately

∇A = 0. Conversely, suppose ∇A = 0 with ∇UV − ∇V U = [U, V ] for all vetor �elds Uand V . Then NA = 0 and, by the Frobenius riterion, eah distribution ker Ap is integrable.Besides, ∇A = 0 implies that A has onstant invariant fators so Corollary 1.5 applies.I do not know other signi�ant examples where endomorphism �elds satisfying naturallythe assumptions of Corollary 1.5 appear.Referenes[1℄ M. Gromov, Rigid transformations groups. In: Géométrie di�érentielle (Paris, 1986), 65�139,Travaux en Cours 33, Hermann, Paris, 1988.[2℄ L. Hörmander, The analysis of linear partial di�erential operators III. Pseudo-di�erentialoperators. Grundlehren der Mathematishen Wissenshaften 274. Springer-Verlag, Berlin, 1985.[3℄ S. Kobayashi, K. Nomizu, Foundations of Di�erential Geometry, vol. I, Intersiene Publ.,1969.[4℄ J. Lavandier, Tenseur de Nijenhuis et intégralité des G-strutures dé�nies par une 1-formevetorielle, 0-déformable. (Frenh) C. R. Aad. Si. Paris, Sér. I 318 (1994), No.2, 135-138.[5℄ P. Libermann, Sur le problème d'équivalene de ertaines strutures in�nitésimales. (Frenh)Ann. Mat. Pura Appl. (4) 36 (1954), 27�120.[6℄ S. Newlander, L. Nirenberg, Complex analyti oordinates in almost omplex manifolds.Ann. Math. (2) 65 (1957), 391-404.[7℄ A. Nijenhuis, Xn−1-forming sets of eigenfuntions, Indag. Math. 13 (1951), 200-212.[8℄ A. Nijenhuis, W. B. Woolf, Some integration problems in almost-omplex and omplexmanifolds. Ann. Math. (2) 77 (1963) 424�489.11


