
An integrability 
ondition for �eldsof nilpotent endomorphismsCharles Boubel1, Mar
h 28th. 2011.Abstra
t. We give a ne
essary and su�
ient 
ondition on the 1-jet of a �eld ofnilpotent endomorphisms to be integrable. Together with the well known 
orresponding
ondition for an almost 
omplex stru
ture, the nullity of its Nijenhuis tensor, this givesan integrability 
ondition for any �eld of endomorphisms.MSC 2010: 53C15, 53A55, (53C10).Key words: integrability, equivalen
e, nilpotent endomorphism, Nijenhuis tensor.It is a 
lassi
al question to ask whether (the germ of) an almost 
omplex stru
ture Jis (the germ of) a 
omplex stru
ture i.e. if it is integrable: does it exist lo
al 
oordinatesin whi
h J be
omes a 
onstant matrix, namely „

0 I

−I 0

«? A well known ne
essary andsu�
ient 
ondition on the 1-jet of J is that the Nijenhuis torsion tensor NJ of J vanishes[6℄. We address here the same question for a �eld of nilpotent endomorphisms A: instead of�J2 = − Id�, we take �An = 0� for some n. More pre
isely, we suppose that A is 
onjugate, atevery point, to some �xed nilpotent endomorphism � this is ne
essary to hope integrability.Immediately, the nullity of the Nijenhuis tensor NA is ne
essary. Simple examples showthat this 
ondition is not su�
ient, see se
tion 3, see also [4℄. We show here that it be-
omes su�
ient, together with the additional 
ondition that ea
h distribution of the �ag
(ker Ap)n−1

p=1 is involutive. The proof, unlike that of [6℄, follows essentially from the Cau
hy-Lips
hitz theorem and some standard di�erential 
al
ulus.In 
ombination with the integrability 
ondition for 
omplex stru
tures, this immediatelygives an integrability 
ondition for any smooth endomorphism �eld M : M is integrable ifand only if it has 
onstant invariant fa
tors, NM = 0 and ker(P (M)), for ea
h invariantfa
tor P of M , is involutive.A general viewpoint on this type of problems, that we do not use here, is given in [1℄.Thanks. I thank R. Bryant, T. Delzant, É. Ghys, A. Oan
ea, and E. Opshtein for theirqui
kly answering my questions.Everywhere, A is a germ of endomorphism �eld of TK
d around 0 in K

d, with K = R or
K = C, i.e. a smooth (holomorphi
 if K = C) se
tion of EndK(TK

d) on a neighbourhood Vof 0. All obje
ts: 
oordinates, tangent bundles et
. are real if K = R and 
omplex if K = C.Se
tion 1 re
alls the requisite de�nitions and states the results, se
tion 2 gives the proofsand se
tion 3 provides some additional results, 
omments and examples.1 De�nitions and resultsWe re
all the two following de�nitions.1.1 De�nition The Nijenhuis torsion tensor of A is the ve
tor valued 2-form de�ned by:
NA(X,Y ) = [AX,AY ] − A[X,AY ] − A[AX,Y ] + A2[X,Y ].We let the reader 
he
k that it is a tensor, see e.g. [3℄, 
h. 1 prop. 3.12, where the torsiontensor SA,B of some 
ouple (A,B) of �elds of endomorphisms is introdu
ed. Our NA isequal to 1

2SA,A. The fa
t that K = R or K = C plays no role here.1Institut de Re
her
he Mathématique Avan
ée, UMR 7501 � Université de Strasbourg et CNRS, 7 rueRené Des
artes, 67084 STRASBOURG CEDEX, FRANCE1



1.2 De�nition The �eld A is 
alled integrable if there exists, on a neighbourdood V of theorigin, a 
oordinate system in whi
h Mat(A) is 
onstant i.e. a di�eomorphism, or a biholo-morphism ϕ : V → U ⊂ K
d su
h that ϕ∗A is the restri
tion to U of a linear transformationof K

d.Here we show the following result.1.3 Theorem Let A be a germ of �eld of nilpotent endomorphisms of order n > 1 on K
d. If

K = C, we take A holomorphi
. If K = R, we take A of 
lass Cω, C∞ or Cr with r > n− 1.Then A is integrable if and only if the three following 
onditions are satis�ed:� the invariant fa
tors of A are 
onstant,� NA = 0,� ea
h distribution ker Ap, for p ∈ N, is involutive � hen
e integrable.If A is analyti
 or of 
lass C∞, the integral 
oordinates have the same regularity. If A if of
lass Cr with n−1 6 r < ∞, they are at least, and possibly not more than, of 
lass Cr−n+2.If A satis�es the three 
onditions but is not of 
lass Cn−1, it is non integrable in general.1.4 Remark The regularity 
ondition �
lass Cn−1�, though minor, has to be mentioned. Inother equivalen
e problems of G-stru
tures of order 1 (see [1℄), with G redu
tive, and solvedas P.D.E. problems, su
h a strong regularity 
ondition does not seem to appear (see e.g. [5℄or Theorem II of [8℄). In th. 1.3, the group G is the 
entraliser of Id + A in GLd(K), whi
his not redu
tive as soon as A 6= 0. The regularity 
ondition seems to be linked to that fa
t.The present 
oordinates are not the solution of an ellipti
 P.D.E., see Remark 3.4. In-stead, they arise naturally as the solution of O.D.E.'s integrated by indu
tion. In that sensethe proof of Theorem 1.3 is similar to that of the Frobenius 
riterion given in [2℄, C.1.1.Together with the 
lassi
al integrability 
ondition for 
omplex stru
tures, the presentresult gives easily the following 
orollary.1.5 Corollary If A is any �eld of endomorphisms of 
lass C∞ on R
d, with 
onstant invariantfa
tors, then A is integrable if and only if the three following 
onditions are realised:� the invariant fa
tors of A are 
onstant,� NA = 0,� the distribution ker(P (A)), for ea
h invariant fa
tor P of A, is involutive.Of 
ourse, the minimal regularity 
ondition in general is that A is of 
lass Cn−1 along ea
hintegral leaf of ker(P (A)), with P = Qn, Q irredu
ible. Eventually, a little remark, provenin se
tion 2, is worth to be pointed out autonomously.1.6 Remark If A is nilpotent, the nullity ofNA implies the integrability of ea
h distribution

Im Ap, but not that of the kernel distributions ker Ap.2 Proof of the resultsIf A is integrable, it is 
onjugate, at any point, to some �xed nilpotent matrix, so it has
onstant invariant fa
tors. So the �rst 
ondition of Theorem 1.3 and of Corollary 1.5 is the
0-order integrability 
ondition for A, and is ne
essary. From now on we suppose it holds.We introdu
e the following te
hni
al torsion-related tensor, and one of its properties.2



2.1 De�nition If B is another endomorphism �eld on V and if A and B
 ommute, weintrodu
e:
N ′

A,B(X,Y ) = [AX,BY ] − A[X,BY ] − B[AX,Y ] + AB[X,Y ].The reader may 
he
k it is a tensor; the sum SA,B = N ′
A,B + N ′

B,A is the torsion of (A,B)
ited in Def. 1.1, well-de�ned even if AB 6= BA. So here NA = N ′
A,A = 1

2SA,A.2.2 Proposition All N ′
Ap,Aq for p, q ∈ N

∗ depend only on NA, through both followingrelations:(i) for all 
ouple (X,Y ) of ve
tors, N ′
A,Aq(X,Y ) =

∑q
k=1 Aq−kNA(X,Ak−1Y ),(ii) for all 
ouple (X,Y ) of ve
tors, N ′

Ap,Aq(X,Y ) =
∑p

k=1 Ap−kN ′
A,Aq(X,Ak−1Y ).In parti
ular, if NA = 0, then all N ′

Ap,Aq and all NAp = N ′
Ap,Ap also vanish.Proof. As N ′

A,Aq(X,Y ) = −N ′
Aq,A(Y,X), (i) is a spe
ial 
ase of (ii). Let us prove (ii) byindu
tion on p. It is trivial for p = 1. Suppose it holds for some p.

N ′
Ap+1,Aq(X,Y ) = [Ap+1X,AqY ] − Aq[Ap+1X,Y ] − Ap+1[X,AqY ] + Ap+q+1[X,Y ]

= [Ap+1X,AqY ] − Aq[Ap+1X,Y ] − A[ApX,AqY ] + Aq+1[ApX,AY ]

+ A[ApX,AqY ] − Aq+1[ApX,AY ] − Ap+1[X,AqY ] + Ap+q+1[X,Y ]

= N ′
A,Aq(ApX,Y ) + A

(
N ′

Ap,Aq(X,Y )
)
,hen
e it holds for p + 1. �Proof of Remark 1.6. Now we 
an prove Remark 1.6. As NA = 0, ea
h distribution Im Apis integrable. Let us prove it is involutive, the 
on
lusion follows by the Frobenius 
riterion.Let us take X and Y any ve
tor �elds and show: [ApX,ApY ] ∈ ImAp. By Proposition 2.2,

NAp(X,Y ) = 0, so [ApX,ApY ] = Ap[X,ApY ] + Ap[ApX,Y ] − A2p[X,Y ] and we are done.Besides, example 3.7 gives a 
ounter example to the integrability of ker Ap.2.3 Notation If A satis�es the three 
onditions of Theorem 1.3, using Remark 1.6, wedenote respe
tively by Ip and Kp the integral foliation of the distribution Im Np, respe
tively
ker Np, for any p. We shortly denote I1 by I, and denote by π the proje
tion V → V/I.2.4 Re
all/vo
abulary If F is some foliation on V, and V some distribution or ve
tor �eldon V, V is 
alled basi
 (for F) if, for any open set U where F is trivial, setting Π : U → U/F ,
Π∗V is 
onstant along ea
h leaf of F , and so V �passes to the quotient� on U/F . If V is ave
tor �eld, this means exa
tly that its �ow sends ea
h leaf of F on a leaf of F .To prove the theorem, we already introdu
e the following, and prove a lemma about it.The two �ags ker A ⊂ ker A2 ⊂ . . . ⊂ ker An−1 ⊂ ker An = TK

d and Im An−1 ⊂ . . . ⊂
Im A ⊂ Im A0 = TK

d satisfy the following in
lusion properties:
Im An−1

∩
(Im An−2 ∩ ker A) ⊂ Im An−2

∩ ∩
(Im An−3 ∩ ker A) ⊂ (Im An−3 ∩ ker A2) ⊂ Im An−2

∩ ∩ ∩
. . .... ... ...

ker A ⊂ ker A2 ⊂ ker A3 ⊂ · · · ker An−1 ⊂ TV.3



Any entry of this array is integrable, generating the following foliations:
In−1

∩
(In−2 ∩ K1) ⊂ In−2

∩ ∩
(In−3 ∩ K1) ⊂ (In−3 ∩ K2) ⊂ In−2

∩ ∩ ∩... ... ...
K ⊂ K2 ⊂ K3 ⊂ · · · Kn−1 ⊂ V,2.5 Lemma If the three 
onditions of Theorem 1.3 are realised, then there exist lo
al
oordinates ((xi,j

α )α)n>i>j>1 adapted to this array of foliations i.e. su
h that, for any p ∈

J1, nK and q 6 p, the (xi,j
α )α with i 6 p and j 6 q parametrise the leaves of In−p ∩ Kq. The
oordinates may be 
hosen of 
lass Cr+1 in 
ase K = R, holomorphi
 in 
ase K = C.Proof. The lemma is nothing but the fa
t (∗) that the distributions ker Aq are basi
 forany of the foliations Ip, or in other words, that the foliations Kq �pass� to the quotient byany of the Ip. Indeed if (∗) holds, take any 
oordinate system (xi

α)ni=1 su
h that the leavesof In−p are the levels of ((xi
α)α)i>p. In parti
ular, (xn

α)α may be viewed as 
oordinates of
π(V). By (∗), π(V) is endowed with the foliations π(K) ⊂ π(K2) ⊂ . . . ⊂ π(Kn−1), so (xn

α)αmay be turned into some other system ((xn,1
α )α, . . . , (xn,n

α )α), adapted to this �ag: the leavesof π(Kq) are the levels of ((xn,i
α )α)i>q. Indu
tively, we build the 
oordinates of the lemma.Now, (∗) amounts exa
tly to a stronger version of Remark 1.6: any of the distributions

ker Ap+ImAq is involutive. We prove it and are done. Take X,X ′ ve
tor �elds in ker Ap and
Y, Y ′ two ve
tor �elds in Im Aq. Then: [X +Y,X ′+Y ′] = [X,X ′]+[Y, Y ′]+[X,Y ′]+[Y,X ′].As ker Ap, by assumption, and ImAq , by Remark 1.6, are involutive, [X,X ′] ∈ ker Ap and
[Y, Y ′] ∈ Im Aq. We are left with showing, for instan
e, that [X,Y ′] ∈ ker Ap + Im Aq i.e.that Ap[X,Y ′] ∈ Im Ap+q. Take a �eld Z su
h that Y ′ = AqZ:

Ap[X,Y ′] = −N ′
Ap,Aq(X,Y )

︸ ︷︷ ︸
=0 by Prop 2.2 + Ap+q[X,Z]︸ ︷︷ ︸

∈Im Ap+q

+ [ApX,AqZ] − Aq[ApX,Z]︸ ︷︷ ︸
=0 as X∈ker Ap

.Regularity. If A is of 
lass Cr, the distributions Im Ap and ker Aq are of 
lass Cr i.e. thefoliations are of 
lass Cr+1, so are the 
oordinates. If A is holomorphi
, everything is. �Proof of the theorem. If A is integrable, the integrability of ker Ap and the nullity of NAare immediate. Let us prove the 
onverse. The proof, when dire
tly written in the general
ase An−1 6= An = 0 with n any integer, is a 
umbersome indu
tion. So we state it in 
ases
n = 2 and n = 3, where all the arguments are involved. Then we give the stru
ture of theindu
tion for the general 
ase. We also suppose that A is of 
lass C∞ and postpone theremarks about regularity when A is analyti
 or of 
lass Cr.Proving that A is integrable amounts to building a �eld of basis β on V su
h that:(i) Matβ(A) is 
onstant,(ii) any two ve
tor �elds of β 
ommute (in other terms, the �eld β is integrable).Proof for n = 2. Here I ⊂ K ⊂ V; take 
oordinates ((x1

β)β, (x2
β)β , (x3

β)β) of V, adapted tothis �ag of foliations. Set (Zi)
d1

i=1 the 
oordinate ve
tors ( ∂
∂x2

∗

) and (Zi)
d1+d2

i=d1+1 the ( ∂
∂x3

∗

),4



so that Zi ∈ ker A for i 6 d1. Then ((AZi)i>d1
, (Zi)

d1+d2

i=1 ) is a basis �eld on V, the (Zi)
d1

i=1belonging to ker A. Thus, in this basis:
Mat(A) = constant =




0 0 Id2

0 0 0
0 0 0


 .We now repla
e the Zi by some 
ommuting Z ′

i, letting the form of Mat(A) un
hanged. Allve
tor �elds are π-basi
 (i.e. I-basi
), so all bra
kets are in Im A (the �elds �
ommute mod-ulo Im A�). Moreover, as NA = 0, for any i, j, [AZi, AZj ] = A[Zi, AZj ] + A[AZi, Zj ] −
A2[Zi, Zj ] ∈ ImA2 = {0}, so the AZi 
ommute. Let S be the level {x1 = 0} (transverseto I) and Φt

j be the �ow of AZj , for j > d1. Those �ows 
ommute and de�ne a di�eomor-phism Φ : (m, (tj)
d1+d2

j=d1+1) 7→ Φ
td1+1

d1+1 ◦ . . . ◦ Φ
td1+d2

d1+d2
from S × B

Kd2 (ε) on a neighbourhoodof S in V. We now set (Z ′
i)i := (Zi)i along S, and push them by the �ows Φt

j. Formally:
Z ′

i(Φ(m, (tj)
d1+d2

i=d1+1)) = d(Φ
td1+1

d1+1 ◦ . . . ◦ Φ
td1+d2

d1+d2
)(m).Zi(m). Then: (a) the Z ′

i are 
oordinateve
tor �elds along S, and are pushed forward on V by 
ommuting �ows, so they 
ommuteeverywhere, and by 
onstru
tion they 
ommute with the �elds AZi (apply the Ja
obi iden-tity); (b) the �ows Φt
j respe
t the leaves of I, so Zi−Z ′

i ∈ Im A, so AZi = AZ ′
i; (
) the �ows

Φt
j respe
t the leaves of K. To 
he
k (
), take Z a ve
tor �eld in ker A, then as NA = 0,

[AZj , Z] ∈ ker A: A[AZj , Z] = [AZj , AZ] + A2[Zj , Z] − A[Zj , AZ] = 0.Let us 
on
lude. By (a) and (b), the basis �eld β = ((AZ ′
i)i>d1

, (Z ′
i)

d1+d2

i=1 ) 
onsists of
ommuting ve
tor �elds. By (
), the (Z ′
i)

d1

i=1, obtained by pushing the (Zi)
d1

i=1 by the Φt
j,belong still everywhere to ker A, so Matβ(A) is un
hanged. We are done.Proof for n = 3. We see here that in general, we will need an indu
tion. This time, let

(xu,v
β ) be a 
oordinate system given by Lemma 2.5 for the array of foliations we deal with:

I2

∩
(I1 ∩K) ⊂ I1

∩ ∩
K ⊂ K2 ⊂ V.

(So the 
oordinatesparametrising thefoliations are,
orrespondingly:) (x1,1
β )β

(x2,1
β )β (x2,2

β )β

(x3,1
β )β (x3,2

β )β (x3,3
β )β.Let us set (Zi)

d1+d2+d3

i=1 the 
oordinate ve
tors ∂
∂x3,⋆

⋆

, in a way su
h that Zi ∈ ker A for i 6 d1and Zi ∈ ker A2 for i 6 d1 + d2 (a). The �elds Zi are Kq-basi
 for all q (b); in other words,for any j, as soon as Zi ∈ ker Aq , [Zj, Zi] ∈ ker Aq. By 
onstru
tion, the Zi are also π-basi
,so for any p, [Zi, A
pZj] ∈ ImA (
). The family ((A2Zi)i>d1+d2

, (AZi)i>d1
, (Zi)i) is a basis�eld on V, 
onsisting of ve
tor �elds 
ommuting modulo Im A and in whi
h, be
ause of (a):

Mat(A) = constant = M =




0 0 Id3
0 0 0

0 0 0 0 Id2
0

0 0 0 0 0 Id3

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




.We now repla
e the Zi by some Z ′
i 
ommuting modulo Im A2, letting the form of Mat(A)un
hanged. As above, we take S the level {x2,⋆ = 0, x1,⋆ = 0} (transverse to I), and

(Φt
α)Nα=1 the �ows of the �elds (AZk)k>d1

, (A2Zk)k>d1+d2
, arbitrarily indexed by some α ∈

J1, NK. Be
ause of (
) and as NA = 0, [ApZi, A
qZj ] ∈ Im A2 for p > 1 and q > 1 (d),5



so those �ows 
ommute modulo Im A2. As in the 
ase n = 2, we build a di�eormorphism
Φ : (m, (tα)Nα=1) 7→ Φt1

1 ◦ . . .◦ΦtN
N from S×BKN (ε) on a neighbourhood of S in V; Φ dependson the arbitrary order of the Φt
α but it does not matter. We de�ne similarly the Z ′

i. As the
Φt

α 
ommute modulo Im A2, so do the Z ′
i with ea
h other, and with the AZj and A2Zj :for all (i, j) and p > 1, [Z ′

i, Z
′
j ] ∈ Im A2 (e) and [Z ′

i, A
pZj ] ∈ Im A2 (f).Besides, as the Φt

α preserve ea
h leaf of I, for any i, Z ′
i ≡ Zi[Im A]. Thus for p > 1, ApZ ′

i ≡
ApZi [Im A2] (g). For p > 1 and q > 1, it 
omes from (f) and (g): [Z ′

i, A
pZ ′

j] ∈ ImA2, andfrom (d) and (g): [ApZ ′
i, A

qZ ′
j] ∈ ImA2. So the basis �eld ((A2Z ′

i)i>d1+d2
, (AZ ′

i)i>d1
, (Z ′

i)i)is made of ve
tor �elds 
ommuting modulo Im A2.We also 
he
k that the Z ′
i still satisfy (a) and (b) i.e. that, if Zi ∈ ker Aq, then Z ′

i ∈
ker Aq, and that the Z ′

i are Kq-basi
. The Z ′
i are equal to the Zi along S, and are pushed bythe �ows Φt

α of the ApZj, p > 1. The wanted results follow from the fa
t that those �owspreserve ea
h foliation Kq �equivalently, the fa
t that the ApZj are Kq-basi
. Indeed, take
Z any ve
tor �eld in ker Aq, then, as NAp,Aq = 0, [ApZj, Z] ∈ ker Aq :

Aq[ApZj , Z] = [ApZj , A
qZ︸︷︷︸

= 0

] + Ap+q [Zj , Z]︸ ︷︷ ︸
∈ ker Aq by (b)−Ap[Zj , A

qZ︸︷︷︸
= 0

] = 0.Results at that step, and a remark: we just get a basis �eld ((A2Z ′
i)i>d1+d2

, (AZ ′
i)i>d1

,
(Z ′

i)i), made of ve
tor �elds 
ommuting modulo Im A2, and satisfying (a) and (b). Conse-quently, Mat(A) in this basis has the 
onstant writing M given above. Using again NA = 0,we get moreover that, for p > 1 and q > 1, [ApZ ′
i, A

qZ ′
j] ∈ ImA3 = {0}.End of the proof. Using the remark just above, and iterating the pro
ess, we get new�ows Φ′t

α whi
h, this time, 
ommute. It 
omes a new Φ′, and new �elds Z ′′
i whi
h, this time,
ommute with ea
h other and with the ApZ ′

i, p > 1. We 
on
lude as for the 
ase n = 2.Proof for any n. The 
ase n = 3 
ontains all arguments. So here we only state the stru
tureof the indu
tion. We set da = dim(dπ(ker Aa)/dπ(ker Aa−1)). Remark: with this notation,the invariant fa
tors of A are (X, . . . ,X︸ ︷︷ ︸
d1 times ,X2, . . . ,X2

︸ ︷︷ ︸
d2 times , . . . ,Xn, . . . ,Xn

︸ ︷︷ ︸
dn times ).Take a 
oordinate system (xu,v

β ) as given by Lemma 2.5 for the array of foliationsdisplayed on page 4. Let us set (Z
(0)
i )d1+...+dn

i=1 the 
oordinate ve
tors ∂
∂xn,⋆

⋆
, in a waysu
h that Zi ∈ ker A for i 6 d1, Zi ∈ ker A2 for i 6 d1 + d2 et
. We set S the level

{x1,⋆ = 0, . . . , xn−1,⋆ = 0, }, transverse to I.This builds ve
tor �elds Z
(0)
i satisfying the following indu
tion hypothesis, at step k = 0:(Hk)  (1) the Z

(k)
i are equal to the Z

(0)
i along S,(2) the Z

(k)
i are Kq-basi
 for all q,(3) For any q and for i 6 d1 + . . . + dq, Z

(k)
i ∈ ker Aq,(4) for any (a, b) ∈ N

2, for any (i, j), [AaZ
(k)
i , AbZ

(k)
j ] ∈ ImAk+1,(5) for any (a, b) ∈ (N∗)2, for any (i, j), [AaZ

(k)
i , AbZ

(k)
j ] ∈ Im Ak+2.Setting β(k) = (ApZ

(k)
i )i,p, it follows from (Hk) that β(k) is a basis �eld on V, in whi
hMat(A) has a 
onstant Jordan form, of the type given for the 
ase n = 3.If �elds Z

(k)
i are built, satisfying (Hk), then you introdu
e the �ows (Φ

(k)t
α )Nα=1 of the�elds ApZ(k) for p > 1, you set Z

(k+1)
i = Z

(0)
i along S and then push the Z

(k+1)
i on the6



whole V by the �ows Φ
(k)t
α , in an arbitrary order. The very arguments given for the 
ase

n = 3 show that the Z
(k+1)
i satisfy (Hk+1). The indu
tion propagates.Con
lusion and regularity questions. If A is of 
lass C∞, the basis �eld β(n−1) 
onsists of
ommuting ve
tor �elds, so we are done. If K = R and r = ω, or K = C, the �ows Φt

i aregiven by the Cau
hy-Kovalevskaya theorem, so all remains analyti
 and we are also done.In 
ase A is only of 
lass Cr, r < ∞, ea
h step of the indu
tion loses one order ofregularity. Indeed, if Φt
i is the �ow of some ApZ

(k−1)
i of 
lass Cr, Φt

i is also Cr, so the Z
(k)
j ,de�ned as the Z

(k−1)
j pushed by the di�erential of the Φt

i, are only Cr−1. So we may lose norders of regularity. Modifying slightly the end of the proof, we see that we lose only n− 1.Carrying on the indu
tion up to (Hn−1) would provide some Cn−r+1 �elds Z
(n−1)
i , butas possibly n − r + 1 = 0, this is useless: 
ommuting �elds of 
lass C0 but not C1 do notprovide 
orresponding 
oordinate fun
tions, in general. Instead, we use dire
tly the Cr−n+2-di�eomorphism Φ : (m, (ti)

N
i=1) 7→ ΦtN

N ◦ . . . ◦ Φt1
1 (m) of this (n − 1)th step of the indu
tion.As the �elds AaZ

(n−2)
i , with a > 0, 
ommute, and parametrising m ∈ S by its 
oordinates

(xn,i
α )i,α, Φ is nothing but a lo
al parametrisation of V by a system of 
oordinates of 
lass

Cn−r+2, with 
oordinate ve
tors all the AaZ
(n−1)
i with a > 0. These 
oordinate ve
torsform a basis �eld in whi
h Mat(A) has a 
onstant Jordan form. We are done.Eventually, the 
ondition that A is of 
lass Cn−1 is ne
essary, and the given regularityof the integral 
oordinates is optimal: this follows from Example 3.5 in the next se
tion. �Proof of Corollary 1.5. The integrability of the 
hara
teristi
 subspa
es of A amountsto their involutivity, through the Frobenius 
riterion. In turn this is implied by the nullityof NA. First, let us build integral 
oordinates on the integral leaf of ea
h 
hara
teristi
subspa
e, through the origin. On ea
h 
hara
teristi
 subspa
e, take A = S + N the �semi-simple + nilpotent� de
omposition of A.On the integral leaf of the spa
es relative to some real eigenvalue λ, S = λ Id, so applyingTheorem 1.3 to the nilpotent part N gives the 
oordinates.On the integral leaf of the other spa
es, S = λ Id+µJ for some J with J2 = − Id. Forany 
ommuting endomorphisms U and V , NU+V = NU + NV + N ′

U,V + N ′
V,U , so usingProposition 2.2, we get that, for any P ∈ K[X], NP (A) = 0 as soon as NA = 0. So here

NJ = NN = 0, J is integrable by the integrability 
ondition for 
omplex stru
tures, and N ,viewed as a 
omplex endomorphism, is integrable by Theorem 1.3.Finally, take the unique �produ
t� 
oordinate system extending the 
oordinates builtabove, on R
d: it is integral for A. Indeed, for ea
h 
hara
teristi
 subspa
e E of A, you maytake Q ∈ R[X] su
h that Q(A)|E = A|E on E if A|E is invertible, Q(A)|E = A|E + IdE on Eif A|E is nilpotent, and Q(A)|F = 0 on the sum F of the other 
hara
teristi
 subspa
es. Toprove that the matrix of A is 
onstant in our 
oordinates, we must 
he
k that (LY A)(X) = 0,i.e. that [Y,AX] = 0, for any 
oordinate ve
tor �elds X tangent to E and Y tangent to F .Now, as N ′

Q(A),A = 0: Q(A)[Y,AX] = [Q(A)Y,AX]−A[Q(A)Y,X]+Q(A).A[Y,X] = 0. As
[Y,AX] ∈ E and as Q(A)|E is invertible, we are done. �3 Some additional results and examples3.1 Proposition [A higher partial regularity of the 
oordinates, when K = R℄ Inrestri
tion to ea
h integral leaf Ik of Im Ak, for ea
h k 6 n − 1, the 
oordinates built byTheorem 1.3 are of 
lass Cr−n+2+k, and in general not more. Besides, The 
oordinates thatare 
onstant along the leaves of Ik are of 
lass Cr+2−k, and in general not more.7



Proof. The optimality: �in general not more� follows from Example 3.5 below. To provethe announ
ed regularities, re
all that the (AaZ
(n−1)
i )a,i are the 
oordinate ve
tors �nallyobtained in Theorem 1.3. In the proof of Theorem 1.3, ea
h ve
tor �eld AaZ

(n−1)
i iswell-determined modulo Im Aa+k+1 from the moment that AaZ

(k)
i is de�ned i.e. AaZ

(k)
i ≡

AaZ
(k+1)
i ≡ . . . ≡ AaZ

(n−1)
i [Im Aa+k+1]. In parti
ular:(i) The (AaZ

(n−1)
i )a>n−k−1 are well-determined from step k of the indu
tion i.e. AaZ

(n−1)
i

= AaZ
(k)
i . But the Z

(k)
i are of 
lass Cr−k, so the (AaZ

(k)
i )a>n−k−1 are of 
lass Cr−k.(ii) As the Z

(k)
i are of 
lass Cr−k, and as for any a > 0, AaZ

(n−1)
i ≡ AaZ

(k−1)
i [Im Ak]then the [AaZ

(n−1)
i mod Im An−k] are all of 
lass Cr+1−k.Now, the AaZ
(n−1)
i with a > n−k−1 are the 
oordinate ve
tors along the leaves of In−k−1.So by (i), the 
oordinates are of 
lass Cr−k+1 along those leaves, the �rst 
laim. For the last
laim, denote the 
oordinates given by Theorem 1.3 by (yi)

n
i=1 = ((yi,j)

Ni

j=1)
n
i=1, on su
h away that the leaves of Ik are the levels of the N -tuple (yi)i>n−k. Then the ( ∂

∂yi
)i>n−k are the

((AaZ
(n−1)
i )i)a<k and we have to show that the (yi)i>n−k are of 
lass Cr+2−k for any k > 1.Take any 
oordinate system (y′i)

n
i=1 = ((y′i,j)

Ni

j=1)
n
i=1 of 
lass Cr+1 su
h that the leaves of Ikare the levels of the N -tuple (y′i)i>n−k. As the (yi)

n
i=1 share the same property, the matrix

M = (dyi(
∂

∂y′

j
))ni,j=1 is upper blo
k triangular, as well as Mat(∂/∂y′

j)
n
j=1

( ∂
∂yi

)ni=1 = M−1.Thus, for ea
h k > 1, (dyi(
∂

∂y′

j
)
)

i>n−k,j6n−k
= 0 and:

(dyi

(
∂

∂y′j

))

i,j>n−k

=

[Mat(∂/∂y′

j
)j>n−k

(
∂

∂yi
mod Im Ak

)

i>n−k

]−1

.By (ii), the matrix on the right side is of 
lass Cr+1−k so the (dyi)i>n−k are of 
lass Cr+1−kand the (yi)i>n−k are of 
lass Cr+2−k. �For the next proposition, we introdu
e the following terminology.3.2 Vo
abulary A se
tion σ of π : V → V/I is said here to respe
t the foliations K1 ⊂
. . . ⊂ Kn−1 if for all p ∈ N, dσ.(dπ(ker Ap)) ⊂ ker Ap. This amounts to saying that the imageof σ is the level {x1,⋆ = 0, . . . , xn−1,⋆ = 0, } of some 
oordinate system given by Lemma 2.5.3.3 Proposition [Uniqueness of the integral 
oordinates℄ Let A be an integrable �eldof nilpotent endomorphisms, I be the integral foliation of the distribution ImA, Kp be thatof ea
h ker Ap for p ∈ N, and π be the proje
tion V → V/I. Then a system of integral
oordinates for A, in whi
h Mat(A) is a 
onstant Jordan matrix, is uniquely given by theindependent 
hoi
e of:� a se
tion σ of π, respe
ting the foliations K1 ⊂ . . . ⊂ Kn−1, in the sense of Vo
abulary3.2,� 
oordinates ((z1,α)d1

α=1, . . . , (zn,α)dn
α=1)) of π(V) respe
ting the foliations π(K1) ⊂ . . . ⊂

π(Kn−1) i.e. su
h that the leaves of ea
h π(Kp) are the levels of {((zp+1,α)α, . . . , (zn,α)α}.More pre
isely, there is a unique �Jordan� 
oordinate system ((z′), (z1), . . . , (zn)) for A,
hara
terised by the fa
t that:� ((z1), . . . , (zn)) = π∗(z1, . . . , zn), (the levels of this k-tuple are the leaves of I),8



� the 
oordinates (z′) are determined by the fa
t that {(z′) = 0} is the image of σ andthat the k-tuple ( ∂
∂z′i

)i is equal to that of the non null (Aa ∂
∂zn,j

)n,j. (The 
oordinates (z′)parametrise the leaves of I.) Expli
itly, the �elds of 
oordinate ve
tors are the k-tuple:
(
(An−1 ∂

∂zn,j
)dn

j=1, ((A
n−2 ∂

∂zn−i,j
)
dn−i

j=1 )2i=1, ((A
n−3 ∂

∂zn−i,j
)
dn−i

j=1 )3i=1, . . . , ((
∂

∂zn−i,j
)dn

j=1)
n−i
i=1

)
.Proof. We show that, on
e the image S of σ and the �elds Zi along it are 
hosen, theextension of the Zi satisfying Theorem 1.3 is unique. Take Z̃i another su
h extension. As

Z̃i = Zi along S and as both �elds are I-basi
, Z̃i ≡ Zi [Im A] on V. So for a > 0,
AaZ̃i ≡ AaZi [Im A2] on V. Now [Z̃i, A

aZ̃i] = 0, so [Z̃i, A
aZi] ∈ ImA2. As Z̃i = Zi along

S, and as the saturation of S by the �ows of the (AaZi)i,a>0 is the whole V, it 
omes that
Z̃i ≡ Zi [Im A2] everywhere. By indu
tion, Z̃i ≡ Zi [Im Ak] for all k and we are done. �3.4 Remark Let us 
onsider the parti
ular 
ase of an endomorphism �eld A, 
onstant inthe natural 
oordinates of the 
ompa
t manifold T = R

d/Z
d. It follows from Proposition 3.3that the spa
e of (global) integral 
oordinates for A is in�nite dimensional. This shows thatsu
h 
oordinates are not the solution of an ellipti
 problem. Instead, they appear naturallyas the solution of a system of O.D.E., with an �initial 
ondition� arbitrarily 
hosen in somein�nite dimensional fun
tion spa
e. This holds as soon as the minimal polynomial of A
ontains a fa
tor (X − a), a ∈ R, may A be invertible or not.The following example shows that, in Theorem 1.3, A has to be of 
lass Cn−1, and thatthe integral 
oordinates may be not more regular than 
laimed in it and in Proposition 3.1.3.5 Example Consider Rn with 
oordinates denoted by (xi)

n
i=1, take r ∈ N∗ and (α) =

(αi)
n−1
i=1 an (n − 1)-tuple of fun
tions in Cr(Rn, R), with αn−1 > 0 . Set A = A(α) de�nedby A(α)(

∂
∂x1

) = 0, A(α)(
∂

∂xi
) = ∂

∂xi−1
for all i ∈ J2, n − 1K and A(α)(

∂
∂xn

) =
∑n−1

i=1 αi
∂

∂xi
. By
onstru
tion, ea
h ker Ap = ∩n

i=p+1dxi is integrable, and we 
he
k that NA = 0 if and onlyif:
∀i, k ∈ J1, n − 2K,

∂αi

∂xk
=

∂αi+1

∂xk+1
and ∂αi

∂x1
= 0.We assume that this 
ondition is satis�ed, so Theorem 1.3 applies. Noti
e that then, theknowledge of αn−1 determines all the other αi, up to a additive 
onstant. Let us buildthe integral 
oordinates (yi)

n
i=1 determined by an arbitrary 
hoi
e of σ and by the 
hoi
e�zn = xn� i.e. by yn = xn (see Proposition 3.3). Noti
e that ne
essarily, yn = yn(xn), as thelevels of both xn and yn are the integral leaves of ker An−1. So, a reparametrisation yn(xn)of the last 
oordinate amounts to multiply all the αi by 1/y′n(xn), thus if αn−1 
annot bymade independent of xn by a multipli
ation by some fun
tion of xn � we now assumethis �, we do not lose any generality by taking dire
tly yn = xn. Similarly, a di�erent
hoi
e of σ amounts to add to ea
h xi with i 6 n− 1, some fun
tion f(xn). This lets all the

( ∂
∂xi

)n−1
i=1 un
hanged and adds some linear 
ombination of them to ∂

∂xn
. In turn this lets the

αi un
hanged, up to additive 
onstants. So we do not lose generality.Now the 
oordinates yi are determined by the above initial 
ondition and the system:
M.A(α).M

−1 = A(0,...,0,1) with M =

(
∂yi

∂xj

)n

i,j=1

.As the yi must respe
t the foliations Ip, noti
e that yk = yk(xk, . . . , xn). We let the reader9




he
k that the system, with the initial 
onditions, is equivalent to:
(∗)





yn = xn and for i 6 n − 1, yi = 0 along {x1 = . . . = xn−1 = 0},
∂yn−k

∂xn−1
=
∑k

i=1 Pi
∂yn−k+i

∂xn
for all k ∈ J1, n − 1K,

∂yk

∂xn−i
=

∂yk+i−1

∂xn−1
for all k ∈ J1, n − 2K and i ∈ J2, n − 1K,where the Pi are the rational fra
tions in the αi indu
tively de�ned by: P1 = 1

αn−1
and

Pi = −
∑i−1

j=1
αn−i+j−1

αn−1
Pj . This system is overdetermined but, by Theorem 1.3, and as wehave assumed that NA = 0, we now it is holonomi
 i.e. it admits a (here unique) solution.This solution is determined by the relation yn−1 = P1 = 1

αn−1
and, by indu
tion on k, bythe equations, dire
tly given by integration of (∗):

(∗∗) yn−k =

∫ xn−1

0

k∑

i=1

(Pi
∂yn−k+i

∂xn
)(x1, . . . , xn−2, t, xn)dt

+

n−1∑

i=2

∫ xn−i

0

∂yn−k+i−1

∂xn−1
(x1, . . . , xn−i−1, t, 0, . . . , 0, xn)dt.We have announ
ed an e�e
tive example, so let us provide a simple one. Take αn−1 =

1/(1 + xn−1θ(xn)) with θ(t) = tr+1 for t > 0 and else θ(t) = 0. This αn−1 is of 
lass Cr andnot of 
lass Cr+1. This gives: yn−1 = 1 + xn−1θ(xn) and, by indu
tion left to the reader:� for k 6 r + 1, yn−k =
(
1 +

x2
n−1

2

)
θ(k−1)(xn) + zn−k, with zn−k of 
lass Cr−k+2,� for k > r + 2, yn−k is not de�ned.In Theorem 1.3, we want the yi to be of 
lass (at least) C1 � else writing A in them makesno sense �, so we must require here that y1 is well de�ned and of 
lass C1 i.e. that r > n−1.Moreover, y1 is of 
lass Cr−n+2 and not of 
lass Cr−n+3, so the regularity given in Theorem1.3 is optimal. Similarly, the example shows also the optimality of Proposition 3.1.3.6 Remark We may add that if a ve
tor �eld V is of 
lass Cs, its �ow Φt

V is of 
lass Csand, for a generi
 V , is not of 
lass Cs+1. Thus if W is another ve
tor �eld, of 
lass Cs′ with
s′ > s, its image (Φt

V )∗W for t 6= 0 is of 
lass Cs−1 and, for a generi
 V , is not of 
lass Cs.Used indu
tively in the proof of Theorem 1.3, this remark shows that, for a generi
 �eld A,the ve
tor �elds Z
(k)
i,j are of 
lass Cr−k and not more. So for a generi
 A, the 
oordinatesare not more regular than announ
ed in Theorem 1.3 and Proposition 3.1.The two little 
ounter-examples 3.7 and 3.8 ensure the independan
e of both last 
ondi-tions of Theorem 1.3.3.7 Example Here is a �eld A su
h that NA = 0 and ker A is non involutive, with minimalnilpoten
e index of A (2) and ambient dimension (4). In K

4 with 
oordinates (xi)
4
i=1, de�ne

A by A( ∂
∂x1

) = A( ∂
∂x2

) = 0, A( ∂
∂x3

) = exp(x2)
∂

∂x1
and A( ∂

∂x4
) = ∂

∂x1
. All [Aa ∂

∂xi
, Ab ∂

∂xj
] for

{a, b} ⊂ {0, 1} vanish ex
ept [A ∂
∂x3

, ∂
∂x2

] = − exp(x2)
∂

∂x1
, hen
e NA = 0. But ker A = ker αwith α = dx4 + x2dx3, and α ∧ dα = dx2 ∧ dx3 ∧ dx4 6= 0 so ker A is not involutive.3.8 Example Here is a �eld A su
h that NA 6= 0 and ker A is involutive, with minimalambient nilpoten
e index of A (again 2) and dimension for it (again 4). Similarly, de�ne Aby A( ∂

∂x1
) = A( ∂

∂x2
) = 0, A( ∂

∂x3
) = exp(x2)

∂
∂x1

and A( ∂
∂x4

) = ∂
∂x2

. All [Aa ∂
∂xi

, Ab ∂
∂xj

] for
{a, b} ⊂ {0, 1} vanish ex
ept [A ∂

∂x3
, ∂

∂x2
] = [A ∂

∂x3
, A ∂

∂x4
] = − exp(x2)

∂
∂x1

. So NA 6= 0 as
NA( ∂

∂x3
, ∂

∂x4
) = − exp(x2)

∂
∂x1

. But ker A = ker(dx3) ∩ ker(dx4) is involutive.10



3.9 Remark However, in Theorem 1.3, for some similarity types of endomorphisms A,the se
ond 
ondition may be omitted or relaxed, as it is (partially) implied by the �rstone. For instan
e, if A is 
y
li
, then for every p, ker Ap = Im An−p is involutive. Moregenerally, if for some p, dim(ker Ap/ Im An−p) = 1, then ker Ap is involutive. Indeed, take
(Yi)i a basis �eld of Im An−p and X a �eld su
h that (X, (Yi)i) spans ker Ap. As NA =
0, [Yi, Yj] ∈ Im An−p ⊂ ker Ap, besides [X,X] = 0. Take Zi su
h that Yi = An−pZi,then Ap[X,Yi] = −N ′

Ap,An−p(X,Zi) + [ApX,An−pZi] − An−p[ApX,Zi] + An[X,Zi] = 0 so
[X,Yi] ∈ ker Ap, thus ker Ap is involutive.3.10 Remark If A is nilpotent, NA = 0 does not imply that the ker Ap are involutive. Itgives however a weaker fa
t: if X,Y ∈ ker Ap, then [X,Y ] ∈ ker A2p. Indeed, by Proposition2.2, NAp(X,Y ) = 0, so A2p[X,Y ] = −[ApX,ApY ] + Ap[X,ApY ] + Ap[ApX,Y ] = 0.3.11 Remark In Theorem 1.3, if A is de�ned on V = K

d, the integral 
oordinates may bein fa
t built on the whole K
d. Indeed, Theorem 1.3 builds 
oordinates on some ball B(p,Rp),around any point p of V, with Rp depending only on the 
oe�
ients of the matrix A around

p, through the �ows Φi appearing in the proof of the theorem. So on any pre
ompa
t set of
V, this Rp is bounded from below by a positive 
onstant. Now take any domain of the type
] − α,α[d, on whi
h integral 
oordinates are de�ned; by what pre
edes and by the uni
ityresult 3.3, these 
oordinates may be extended on some ]−α′, α′[d with α′ > α. We are done.3.12 Example/Remark A 
onsequen
e of Corollary 1.5 is that, if (M,∇) is a manifoldwith a torsion free a�ne 
onne
tion, any parallel endomorphism �eld A on M is integrable.More generaly, an endomorphism �eld is integrable if and only if it is parallel for sometorsion free a�ne 
onne
tion ∇ (
ompare [5℄ Th. 6.1). Indeed, if A is integrable, de�ne ∇by ∇ ∂

∂vi
= 0 in some integral 
oordinate system (vi)

d
i=1. It is torsion free and immediately

∇A = 0. Conversely, suppose ∇A = 0 with ∇UV − ∇V U = [U, V ] for all ve
tor �elds Uand V . Then NA = 0 and, by the Frobenius 
riterion, ea
h distribution ker Ap is integrable.Besides, ∇A = 0 implies that A has 
onstant invariant fa
tors so Corollary 1.5 applies.I do not know other signi�
ant examples where endomorphism �elds satisfying naturallythe assumptions of Corollary 1.5 appear.Referen
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