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Abstract. Let F be a finite dimensional vectorspace on a field K with K algebraically closed or
K = R and let a and b be two bilinear reflexive forms over E, with a non degenerate. We give
a set of basis of F in which a and b take simultaneously a “preferred” form. This generalizes the
fact that, if K = R and if ¢ and b are symmetric, with a positive definite, some basis make a and
b simultaneously diagonal. Besides, we decompose the subgroup of GL(E) preserving a and b as a
semi-direct product R x N with N nilpotent and, if K = R, R reductive.

Résumé. Soit E un espace vectoriel sur un corps K avec K algébriquement clos ou K = R et a
et b deux formes bilinéaires réflexives sur E, avec a non-dégénérée. Nous donnons un ensemble de
bases de E ou a et b prennent simultanément une forme “préférée”. Ceci généralise le fait que, si
K =R et s1 a et b sont symétriques avec a définie positive, a et b admettent des bases ou elles sont
simultanément diagonales. Par ailleurs, nous décomposons le sous-groupe de GL(F) préservant a et
b en un produit semi-direct R X N avec N nilpotent et, si K = R, R réductif.

1 Introduction

Let @ and b be two bilinear symmetric forms on a finite dimensional real vector space F.
If a is positive definite, then a and b admit a standard simultaneous reduction, given by a
basis # in which Matg(a) = Id and Matg(b) is diagonal. By the way, this shows that the
group O(a) N O(b) is isomorphic to [ ¢, Oq, (R), where A is the set of the eigenvalues of
Matg(b) and d) the dimension of the eigenspace associated to A.

What happens if we drop the assumption “a positive definite” or even assume simply
that @ and b are bilinear reflexive i.e. symmetric or skew-symmetric? It seems that no both
exhaustive and easy to use answer to that question exists in the literature. Many authors
dealt with it in the second half of the nineteenth century. The first, and quite complete,
work on it is due to WeierstraBl [8] but it is difficult to understand and to use, it deals with
the general case (a, b not necessarily reflexive) and no version of it in a modern language
seems to be available. A simultaneous reduction of @ and b is given (§3, formula 38), but to
what it corresponds matricially is a bit hidden. Besides, though he studies, at the end of
his paper (§7.F), the case where a and b are symmetric and the base field is R and makes
coeflicients €y = %1 appear, he does not give their sense and does not bring to the fore
that a system of signatures appears as an invariant of the couple (a, b) (see here Proposition
3.12). Among others, Darboux [2] also worked on the question; he re-obtains and completes
the results of Weierstrall, by another method. A very detailed survey on it can be found in
[7])%, pp. 386-518.

More recently, the problem was partially treated by Klingenberg in [6] and, by the way
as a needed tool by Hua in [3] (two hermitian forms, §7-10 pp. 546-553), [4] (two bilinear
symmetric forms on an algebraically closed field, stated without proof pp. 452-453) and [5]
(a bilinear symmetric form and a hermitian form over C, formula 31 p. 516).
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We treat it here, if the base field is algebraically closed and of characteristic different
from two or is R, and in the (easy) case where a or b is non degenerate. More precisely:

(1) We give the form of the subgroup of GL(E) preserving a and b, by letting this
subgroup act on geometrical objects, and we give the invariants of the couple (a,b) under
conjugation by GL(F). This geometrical treatment of the question is new in the literature.

(i1) We give a set of basis of F in which « and b take simultaneously a “preferred” form.

In case @ and b are both symmetric or both skew-symmetric, [6] gives (ii) —in a different
way than ours— but nothing in the direction of (i). In case the field is C and @ and b are
both hermitian, §8 of [3] gives also (ii) and the invariants of such a couple (a,b) under
conjugation by GL(E): the roots of A — det(Aa + b) and some integers called “the system
of signatures of the pair of forms with respect to [the real roots of A+ det(Aa + b)]”.

In this paper, (i) is given, in the different involved cases, by Theorems 3.11 p. 7, 3.13
p. 8,4.3 p. 13 and 4.7 p. 17; the invariants of the couple (@, b) under conjugation by GL(E)
are given by Propositions 3.12 p. 8, 3.15 p. 11, 4.6 p. 16 and 4.10 p. 21. When the base
field is R, (ii) i.e. the simultaneaous “Weierstra3” matricial reductions of a and b, based
on Proposition 3.6 and its Corollary 3.7, are summed up, in the different cases, in the
appendix of §6 pp. 22-25. This appendiz, useful by ilself, may be consulted independently
of the article.

A natural complement to this work is a similar classification of the pairs of complex
reflexive forms i.e. bilinear symmetric or skew-symmetric, or hermitian. Sesquilinear forms
behave similarly, with some differences however. We hope to provide this complement soon.

1.1 Notation Throughout, a and b stand for bilinear reflexive forms on a finite dimensional
space F over a field K of characteristic different from two; K is algebraically closed or is
R, a is supposed to be non degenerate. Therefore, b can be written as b = a(-, B-) with
B a (skew-)adjoint endomorphism of E. As K is in all case perfect, B admits a unique
decomposition B = S 4+ T with S semi-simple, T nilpotent and ST =TS. The commutant
C(M) of an endomorphism M € End(FE) means here the subgroup {y € GL(E); vM = My}
of GL(E). One denotes by Stab(a) the subgroup of GL(E) preserving a; Stab(a) = O(a) if

a is symmetric, Stab(a) = Sp(a) if @ is skew-symmetric.

Thanks. I thank I. Arzhantsev, L. Bérard Bergery, C. Danthony and E. Ghys for their
help.

2 Recall: the commutant of a nilpotent endomorphism

We recall here classical facts the following is based on.

2.1 Notation If T is a nilpotent endomorphism of a finite dimensional vector space E, we
introduce, for p,q € N, E, ; = ImT"7P N Ker T'? where 7 is the nilpotence index of 7.

The E, , satisfy:

cqz2p= Epg=1Lpy,

eVk e N, I, = Ker Tk and Eir=Im Tk,
e(p<pandg<q)=E,, CEp,d,
oVpge N, T(E,,) = Ep_1,4-1.



So, they are ordered by C in the following way:

Fii =Im 77!

N
E271 C E272 =Im Tn_2
N N
E371 C E372 C E373 =Im7"3
N N
N N
En,l C En,2 C e C Enm =1Im TO =F
| | |
KerT Ker T2 KerT™

2.2 Notation for k < n, we denote by F} the quotient space Ep i/ (En-1k+ Epg-1).

The E, , are natural to introduce: they are the only subspaces of E canonically associ-
ated to T, in the following sense.

2.3 Proposition Let F be a subspace of F, then F is stable by C(T") if and only if it is of
the form F' =+, 3ee By q with € C {(p, q) € [1,n]%p > q}.

Proof. The sense is immediate; to prove [=], let us take an F' which is not of the
form F = +, e¢F,, and build a v € C(T) such that w(F) # F. Suppose that for all
(pyq), Epy C For FNE,, C (Ey_14+ Epqg-1). Then let & be the set of the (p,q)
minimal for C such that E,, ¢ F, then (p,q) € & = FNE,, C (Ep_1,4+ Epq-1) Le.
F =+ geeo(Ep-1,4 + Epg1). So, as F is not of the form +, ,eck), 4, we find a (p,q)
such that £, , ¢ F and FNE,, ¢ (Ey_14+ E,4-1). In other words, we find a (p, ¢) and
z,y € By \ (Ep_1,9+ Epg—1) such that z € Fand y ¢ F.

Then, let us take 2’ € (T™P)"Y(2) C Enginp \ (Foc1gtn—p + Fngin—p—1) and
y' € (Tn_p)_l(y) C En,q-l-n—p\(En—l,q-l-n—p‘i'En,q-l-n—p—l); the family ¢ = ((Tk(w/))?:—g_p_la
(Tk(y’))Zig_p_l), stable by T by construction, can be completed to form a Jordan basis of
T. Let us set Ey = span(y) and denote by E3 a vector space spanned by some additional
Jordan basis vectors. Both E; are T-stable. Now we set u linear and commuting with 7T,
such that u(z’) = ¥/, u(y') = 2’ and wg, = Idg,; v is as wanted: u(F) ¢ F as u(z) =y
and u is bijective. O

Besides, introducing the following notion, we obtain in 2.6 a decomposition of C(T).

2.4 Definition A decomposition D of F of the form F — @;‘:1 @§=1 D, , is called here
adapted to T if
(i) each D, , is a supplement of E,,_y  + Ep, .1 in E, 4, (2.1)
(ii) Vp < n, Vg < p, Dy =1T""F (Dn,q-kn—p)- (2.2)

We denote by D the set of these decompositions.



So, if we mimic the diagram of the F, ,, we have:

Dy

S,

Dyy @ Day

@ @

D31 @ Dsy @ Dass

S S,

S, S,

Dn,l S, Dn,? S, S, Dn,n :E7

the action of T" shifting the D, , of one row upwards and of one column to the left.

2.5 Theorem (following immediately {rom the existence of Jordan basis for T') Such de-
compositions exist.

2.6 Proposition C(T) = Rx N where N = {y € C(T); v acts trivially on all Ey, k < n};
N acts simply transitively on Dy and is nilpotent, R = C(T)/N ~ [[;_; GL(E}).

Proof. It is an easy verification. If v € C(T'), v acts on each Ey; N is the kernel of this
morphism C(T) + [[r_; GL(E}) so is normal. For each k < n, let §; be a basis of Fj;
Let D = (Dpq)q<p<n and A = (A, 1)g<p<n be any two decompositions in Dy. For each
k, the projection E,  — By gives two isomorphisms Dy, j ~ Fj and Ap g Ek; by those
isomorpisms, G is mapped on a basis ﬁ,? of Dy, i, respectively a basis ﬁkA of A, k. By the
different powers of T', those ﬁ,? and ﬂkA are mapped on basis of each D, ,, respectively A, ,
providing a basis 37, respectively 32, of E. The linear application u : 3” — 2 commutes
with 7" by construction, as D and A are T-adapted decompositions, acts trivially on all Ej,
and maps D on A, so N acts transitively on Dp. Finally if ¥ and 4’ in N map D on A,
they map necessarily 3” on 32, so vy =+': N acts simply transitively on Dr.

The group N is nilpotent: let 8 be any basis of £ formed by a basis of £} ;, completed
to form a basis of Fy; ... etc, on a way which preserves the inclusions of the F,,, and
let v be in C(7"). Then, Matg(vy) is upper block-triangular, each block corresponding to a
couple ((p,q),(p',¢')) of indices of the E, , (the block ((p,q), (p,¢’)) is null if and only if
E,, ¢ E, g, in particular the matrix is block-upper triangular) . Now v is in N if and only
if its action on all quotients F, ,/(E,_1,4+ F, ,—1) is trivial i.e. if and only if the diagonal
blocks, corresponding to the couples ((p, q), (p, ¢)), are identity matrices. So, written in j,
N is a subgroup of the upper triangular, unipotent matrices, thus is nilpotent.

To show the announced semi-direct product, let us exhibit a section of the third arrow
in the exact sequence {0} - N — C(T) - R — {0}. Fix any D in Dy and, to each class
pin R = C(T)/N, associate the unique v € p C C(T') such that y(D) = D. This map is a
section as wanted.

Finally, take as above some basis () of the Ej and D € Drp, we take also (hi)i_, €
11, GL(FE}) and denote h(Bg) by ﬁ,’; As above, the datum of the 0, ,ﬁ” and of D
gives two basis 4P and " of E. Consider v linear mapping #” on 8"P; v € C(T)
and the quotient action of ¥ on the Ej is, by construction, that of (hi)i_,- Besides, if
v' € C(T) acts on the Fj, like (hy)7?_,, then y~' o' acts trivially on the Ej i.e. isin N. So
R=C(T)/N ~1[,_; GL(E}). O



3 When a and b are both symmetric or both skew-symmetric

Both these cases are treated simultaneously, as the endomorphism B is then a-selfadjoint.
Besides, in theses cases, the condition “a or b non degenerate” can be replaced without
changing the problem by “for some (A, u) € K*, Aa + pb is non degenerate”. We always
suppose in the following that a is non degenerate.

3.a Preliminaries

3.1 Notation P denotes the minimal polynomial of B and P = Hle P is its de-
composition in a product of powers of mutually prime irreducible polynomials. With
E; = Ker(P"(B)) the characteristic subspace of B associated to P;, £l = @%_, F;.

Before all, we shall do the following standard remark.

3.2 Lemma The sum E = @ F; is a- and b-orthogonal. The group Stab(a) N Stab(b) is
equal to H?:l Stab(E;, ag,) N Stab(E;, bg,) .

Proof. The second part of the statement follows from the fact that Stab(a) N Stab(b)
preserves the F;. For the first part, take ¢ # 5, U,V € K[X] such that UP" + VP;] =1,
x € F; and y € F;. Then:

a(z,y)=a((UF" +VP}°)(B)z,y)
=a(UP"(B)z,y) + a(z, VPjnJ (B)y) as B is a-selfadjoint
=a(0,y) + a(z,0)
=0

and: b(z,y)=a((UP" + VP;J)(B)x, By)
= o(UPP (B)e, ) +ale, VPP (B)By)
=a(0,y) + a(z,0)
=0. g

3.3 Convention Consequently, in the following, we focus on one single of the FE;,

i.e., equivalently, we suppose that the minimal polynomial of B is of the form
P™ with P irreducible.

To go further, we need the following definition. We recall that S and 7" are the semi-
simple and the nilpotent part of B.
3.4 Definition A decomposition D of E of the form FE — @3:1 @521 D, , is called here
adapted to (a,T) if it is adapted to T (see Definition 2.4) and if, with respect to the form
a, F is equal to the following sum:

L L L
E= ©® ( Dp,q @Dn+1—q7n+1—p ) ©® © Dp,n-H—p : (3-1)
p+q<n SN~~~ S— %’—1<p<n S—r
tot. isotropic tot. Isotropic - non degenerate

We denote by D, 1) the set of these decompositions.



So, if D is adapted to (a,T), in the diagram:

Dy

&

Dyy @ Ds 5

@ @

D3, @ D35 @ D33

S S5 S5

& @ @
Dy 921 @ Dypap @ @ - D Dpopn2

S S5 S5
D,_11 @ @ Dpoiz @ - @ Dpipna @ Dypipa
§) @ @ G @
& Dnp & Dpzg @ - & Duny & Dppy @ Dun=E,

each boxed D, , is non degenerate, orthogonal to any other term; the other ones are totally
isotropic and the sum of two D, , symmetrically placed with respect to the boxed diagonal
is non degenerate, orthogonal to any other D, ,.

Such decompositions exist. To show it, we prove a little more, showing by the way
how, by induction, these decompositions are built (see the proof of Proposition 3.6). This
Proposition 3.6 is in fact the result the whole paper is based on.

3.5 Notation The kernel of the reflexive form a(-,7T*-) is Ker T* = E, 1, so this form
induces a non degenerate reflexive form, denoted by b*, on E/KerT*. Besides, T acts on
E/KerT*, we still denote by T this endomorphism of £/ KerT*.

3.6 Proposition If D* = (D£7q)k+1SquSn is a decomposition of E/KerT* adapted to
(a(-,T*-),T), then there exists a decomposition D*=! = (DE71) i _1<4<p<n of E/ Ker TF7!
adapted to (a(-,T*"1.),T), which projects itself, modulo Ker T*, onto D*: if we set 7 :

E/KerT* - E/KerTF ', thenk+1<q¢<p<n= W(D]];’gl) = D£7q.

3.7 Corollary D, 1) # 0.
Proof of the corollary. For k = n, Ker T = E so F/KerT* = {0} and b = 0, so the

trivial decomposition of {0} is adapted to (6", T), thus D 7y # 0. Applying Proposition
3.6 by downward induction on k, we get Do 1) # 0. Now b% = a, so the result. O

Proof of the proposition. Let us take D* and 7 as in the proposition; we set H =
TN D y1 Dng) C B/ Ker TF=1 H is b*~'-non degenerate. Indeed (all orthogonalities are
with respect to b¥71):

e HD (Eur/KerTF 1Y) = (Ep_y 1/ Ker TF1) L so HY C (Eyey 1/ Ker TF1),

e H+ (Ey 1,1/ KerTF 1Y) = E/Ker 757! so HY N (Ep_y 1/ Ker TF 1L = HL N
(En/ Ker TH1) = {0},

Thus, H* N H C H* N (Ep_1n1/Ker T*"YY N H ¢ H* 0 (B, 1/ Ker TF=1) = {0}, this is

=F,_1/KerTk—1
the announced nondegeneracy.




Now in H, we choose a totally isotropic complement F' of E, i/ Ker Tk=1'in H. This
is possible as, in H, E,/ Ker T%~1 contains its orthogonal: (Enk/ Keer_l)J‘ NH =
(En_lm_l/Keer_l) NH = E,_1/ KerTF-1 Emk/Keer_l. Then 7 provides an
isomorphism 7 : F —» @ngHDk : we set, for ¢ € [k +1,n], DF7! = 7T|}1(D7’th) and, for

n,q) ng

k+1<q¢<p<n, Dﬁ;l = T”_p(Df;q}l_n_p). This is a decomposition adapted to (b1, T),
lacking of the term Df;kl. Let us already prove this, before adding the lacking term.
Property (2.2) is satisfied by construction, property (2.1) is satisfied as, for all ¢ > k+1, fow
is a supplement of (Ep_1q+ Ernq-1)/ Ker T% in E, o/ Ker T* and DE2L = (mp)~H(D¥, n, q).

Finally, (3.1) is satisfied. Indeed, as D* is adapted to (b*,T):

L L L
k
E/KerT" = © ( Dpg D Dntkti—gntkti-p) | © ©® Dy ptkt1-p
p+a<n N~ ntktl <p<n N———r—
Z;: tot. isotropic tot. isotropic 2 - non degenerate

(3.2)

Now take v, w € F and consider 6*~1(T"(v), T™(w)).

e If m > 1, (or I > 1, the roles of m and I are symmetric) b*~1(T'(v), T™(w)) =
V(T (m(v)), T (m (w)).

oIfl=m=0,0"""(v,w)=0as F is totally isotropic.
One checks that this gives relation (3.2) with 6! replacing b*, “n+&” replacing “n+4k+17,
and the term be_kl lacking, which is the wanted result.

To obtain a full decomposition adapted to (6*~',T), we must add Di_kl. This Di_kl

cannot be something else as the b*~'-orthogonal complement of the sum of all the D}’;fql
already built; besides this orthogonal complement is as wanted. O

3.8 Remarks e The proof of Proposition 3.6 shows that the choice of a decomposition
adapted to (a,T) amounts, by induction on k, to the choice of b*-totally isotropic comple-
ments of some subspaces in some quotient spaces.

e As T is a-(skew)adjoint, the E), , are stable by L, in the following sense:

vpv q, E;:q - En—q,n—q + En,n—p-

3.b The form of Stab(a) N Stab(b), when K is algebraically closed

3.9 Recall The endomorphism B is defined in 1.1, the quotients Ej in 2.2 and the set
D(a,r) in 3.4. Besides we recall that we made the convention 3.3.

Here, K is algebraically closed, of characteristic different from two, so the minimal
polynomial of B is of the form P", P = X — Ai.e. B = AId+7T, T nilpotent of index n.

3.10 Notation The form b* = a(-,T*.)is defined on £/ Ker T*, so also on E,, ;4/ Ker T*;
its kernel on £, ;41/ Ker Tk is E,_1 541/ (Ker Tk N E,_1,k+1), s0 it defines a non degenerate
form, denoted by b4, on:

(Engs1/ Ker TF) [ (Entppr/ (Ker TP 0 By 441)) 2 Bt/ (Bng + Enc1k41) = Ergr.

3.11 Theorem Stab(a) N Stab(b) = R x N, where N = {v € Stab(a) N Stab(b) ; v acts
trivially on the Ey, k < n}; N acts simply transitively on D(4,1) and is nilpotent, R =
(Stab(a) N Stab(b))/N =~ [z_, Stab(Ey, b).



Proof. Repeat the proof of Proposition 2.6. The only details to change are the following.
o u: P — 2 commutes with T and preserves a as D and A are (a,T)-adapted.

o At the end, take (hz)7_, € [15=1 Stab(FE}, by); the application 4 mapping 42 on g
commutes with 7" and preseves a as the hy preserve the by and as D is (a,T)-adapted. O

As (a,T)-adapted decompositions exist (Corollary 3.7) follows from what precedes that:

3.12 Proposition Let (a,b) be a couple of K-bilinear forms, K algebraically closed and
CharK # 2, on a finite dimentional vectorspace E, both symmetric or both skew-symmetric;
we take B the endomorphism such thatb=a(-,B-) and P = Hfil P, with P; mutually
prime irreducible polynomials, the minimal polynomial of B. Then, the couple (a,b) is
characterized, up to conjugation by GL(FE), by the invariants of B modulo conjugation by
GL(FE), that is to say its eigenvalues i.e. the roots of P and, for each root, the Jordan
invariants of the nilpotent endomorphism B(B)|Kerpi"i (B) 1€ the dimensions of the E,.

3.¢ The form of Stab(a) N Stab(b), when K =R

For the notation, see the Recall 3.9 above. The minimal polynomial of B is supposed to be
P™ with P irreducible, thus of degree one or two.

3.13 Theorem If a and b are symmetric, then:

o cither deg P = 1, then O(a) N O(b) = R x N, where N = {y € O(a) N O(b); v
acts trivially on the Ey, k < n}; N acts simply transitively on D(4,1) and is nilpotent,
R = (0(a) nO(B))/N ~ [Tf_, O(Ex, br) ~ [Tr_, O(rg, sk) with (rg,sy)?_, the signatures
of the (Bk)zzl; ri + sp = dg := dim Fj.

e or deg P = 2, we denote by EC the complexification of E, by SC that of S and set
P = (X —X\)(X = X) with A € C\R. Let us set E' = Ker(S© — Mdgc), O(a) N O(b) acts
on E'; O(a) N O(b) = R x N, where N = {y € O(a) N O(b) ; v acts trivially on the E!,
k < n}; N acts simply transitively on D(ath&:) and is nilpotent, R = (O(a) N O(b))/N ~

[Tie, O(FL, 8,) ~ TTr_, O(dg, ©) with dy := dim¢ B = L dimg F.

)
If @ and b are skew-symmetric, then:

o cither deg P = 1, then Sp(a) N Sp(b) = R x N, where N = {y € Sp(a) N\ Sp(b); 7y
acts trivially on the Ey, k < n}; N acts simply transitively on D(,,1) and is nilpotent,
R = (Sp(a) N Sp(b))/N ~ 15, Sp(Ek, bx) ~ [T, Sp(2dy, R) with dj := % dim E}.

e or deg P = 2, we denote by EC the complexification of E, by S© that of S and set
P = (X —A)(X —X) with A € C\R. Let us set ' = Ker(S® — Mdgc), Sp(a) N Sp(b) acts
on E'; Sp(a) N Sp(b) = R x N, where N = {v € Sp(a) N Sp(b) ; v acts trivially on the E,
k < n}; N acts simply transitively on D(QIE”T&/) and is nilpotent, R = (Sp(a)NSp(b))/N =~

[Trey Sp(EL, B4) =~ TTrey Sp(2dk, ©) with 2dy, == dimc E}, = % dimpg Ej.
3.14 Remark In the case where deg P = 2 (¢ and b both symmetric or both skew-
symmetric), one can also build the real quotient spaces £y, on which acts Stab(a) NStab(b).

If D' = (D), )q<p<n is an (a®, Tr%,)—adapted decomposition of £’, then D = (D )y<p<n =

(D, @ Dy )g<p<n is a decomposition of EC€ adapted simultaneously to (a®,T®) and to
(a®(-,8%),TC). Taking the real part of D%, one obtains a decomposition D of the real



space I/, adapted simultaneously to (a,T) and to (a(-,S-),T). So D, 1) ND(, 7y # 0;
N acts simply transitively on it. The real dimension of the quotients Fj, is 2d1m@E ie.,
with the notation of the theorem, 2d; if ¢ and b are symmetric and 4d; if @ and b are
skew-symmetric. Besides, the action of S on each Fj is well defined and, denoting it still
by S, R acts on @7_, By as [[r_,(Stab(bx) N C(S)).

If @ and b are symmetric, by, defined on E} is also symmetric, so has a signature, which

is (dg, dy).

The “preferred” basis. Adapted decompositions and the forms by, defined on the quo-
tients Ej, provide a set of “preferred” basis of F, on which Stab(a) N Stab(b) acts simply
transitively, and in which the matrices of @ and b take simultaneously a normal form, the
“Weierstra” simultaneaous reduction of @ and b, as given, with the vectors of the basis
ordered differently, in [8] §3 formula 38. Preferred basis are not unique; they are in par-
ticular Jordan basis of B, but not any of these. Let us exhibit these basis. Like in the
statement of Theorem 3.13, we suppose that the minimal polynomial of B is of the form
P™, P irreducible. In the general case, preferred basis are the concatenation of preferred
basis on each Ker(P"(B)), P running among the prime factors of the minimal polynomial
of B, see Lemma 3.2.

Principle of construction. To build a preferred basis 3, take D = (Dy, 4)q<p<n a decom-
position in D, 7y (non empty by Corollary 3.7) if deg P = 1 or in Dy, )N Da(.,s.),) (nON
empty by Corollary 3.7 and Remark 3.14) if deg P = 2, and a family B, of basis of the Ej,
adapted to by: a (pseuso-)orthonormal basis of (Ey, by) 1f by is symmetric, a symplectic basis
of (Ek, Bk) if by, is skew-symmetric . .. The projection of E, | on E. = Ep i/ (Enp—1+En_1k)
maps D, i bijectively on F, so the pull back of 3; by this projection provides a basis Bk
of D, ;. One sets (8 = (T”_k(ﬁn k)s- s L(Bnk), Brk). Then:

e (3} is a basis of @f 3T (D, k), denoted by Dy,
o =3} Dy = @7 (B T(D,z)) and each Dy is stable by 7.

Now it is sufficient to give the matricial forms for @ and B, in restriction to the Dy, in
a basis fi. It gives the following, when K = R, in each possible case.

Case a and b symmetric, deg P = 1. We remind that d; = dim Fj and that (& Sk)
is the signature of by, defined on FEy 3 Te 4+ Sk = di, dim D = kd. We set P =X — A. We
obtain then the Weierstraf reduction of @ and b:

My, I,
. Irkvsk Aldk
Matﬁk((”Dk) — L . , Matﬁk+1(B|Dk+1) = Idk
kqSk
A,
k blocks
k blocks

The full matrix of a or of B is block-diagonal, with on the diagonal the blocks Matg, (a|p, ),
; Matg, (a|p, ), respectively Matg, (B|p,), ..., Matg, (B|p,)-

Case a and b symmetric, deg P = 2. Weset P = (X —A)(X - A) with A € C\R. We
choose a basis § of each Ej on the following way. Let us, recall that E' = Ker(S® - X 1d);
EC=FE' & F d, =dimcF, =1 dlmR EL. We take (A]) i a aC-orthonormal basis of E’



and set:

. 1—i T+i \%* /141 T—i \%
Or = (—z + —z_) , (—z + —z_) .
2 72 ) 2 702 )

In such a basis, setting A = p+iv with (g, v) € R x R* and still denoting by S the quotient
action of S on Ej:

- (b)) = — 0 Ia, . — [ . —vig,
Matg (bg) = Lq, = ( L. 0 ) and Matg (S) = Ag, = ( vl uly, )

Therefore, in the basis 8 of the subspace Dy, obtained from such a basis 35 of Ej:

Ag, T,
Lq, A,
L k
Matg, (a|p,) = L, ' , Matg, ,, (Bp,,,) = L,
k
A
k blocks de
k blocks

As above, the full matrix of a or of B is block-diagonal, with on the diagonal the blocks
Matg, (a|D1), cey Matgn(awn), respectively Matg, (B|D1), cey Matﬁn(B|Dn)-

Case a and b skew-symmetric, deg P = 1. Weset P= X — X\ with A € C\ R. We
choose a basis 3, of each Ej which is symplectic for by, i.e.:

0 -1

Matﬁk (Bk) = Jdk = ( Idk 0 ) ; besides Matﬁk (S) - /\IQdk’

note that necessarily d, is even, as 3 is a non degenerate skew-symmetric form on Ej. In
the basis 3 of the subspace Dy obtained from such a basis 0y of Fp:

J Aag, Iy,
L Alyg,
Matg, (a|Dk) = Jy . ) Matﬁk+1(B|Dk+1) = 134,
k
[ — /\IQdk
k blocks
k blocks

The full matrix of @ or of B is block-diagonal with these blocks, as explained above.

Case a and b skew-symmetric, deg P = 2. Weset P = (X —)\)(X-A), A € C\R. On
each Fj, is defined the skew-symmetric form by, and the quotient action of S, still denoted
by S. We remind that £’ = Ker(S® — A1d), E® = E'® E’. Then dim¢ E,’g is necessarily
even, as the non degenerate bilinear skew-symmetric form, denoted by B;C, obtained by the
quotient action of ac(-,Tk_l-), is defined on it. So dimp E} is multiple of 4. We set
dp = %dim@ EV}’C = %dimR FEr. We choose a basis Bk of Ej, obtained as follows. We choose

((z)% (Z;)dk ) a bi-symplectic basis of £} i.e. a basis such that

i=10\%j) j=1
. 0 -1
M t b/ = J = k
W (e, (),) O8) = T ( I, 0 )
and we set
3 d d d d .
B = (250, () s (25) 05y () ) with
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. 1 — — ! ! v !
Vi, x; = E(Zj +7z), y; = ﬁ(—z]' +7%), o = E(Zj + zg) and y; = m(zj — z]-).
In such a basis,

- A — P— O _IQdk . _ Adk 0
Matgs (bg) = Jaq, 1= ( I, 0 ) and Matg (S) = ( 0 A

where, setting A = p + iv with (g, v) € R x R¥,

A, ::(’ﬁp —ijp) and Kp:(_’”; ”ﬁp).
p Hip vip  pdp

In the basis 3y of the subspace Dy obtained from such a basis Bk of Ej:

Ag,  Iag,
J2d, A,
- ‘ k
Matg, (a|Dk) = J2d, ‘ ) Matﬁk+1(B|Dk+1) = I4q,
—/_/ K
k blocks du
k blocks

with de = ( Agk K(jl )
k

Eventually follows from what precedes the following characterization of the conjugaison
class of a couple (a,b) under the action of GL(E).

3.15 Proposition Let (a,b) be a couple of bilinear forms on a real vectorspace F, both
symmetric or both skew-symmetric; we denote by B the endomorphism such that b =
a(-,B-) and by Hf\; P, with P; mutually prime irreducible polynomials, the minimal
polynomial of B. Then, the couple (a,b) is characterized, up to conjugation by GL(E), by:

e the (Pi,ni)f\;l,

e the dimensions of the quotients (Fy)}_, (see Notation 2.2), which are, in the notation
previously introduced, denoted by:

* (dy)p., if @ and b are symmetric and for each P; of degree one,

* (2dy) ;L if @ and b are symmetric and for each P; of degree two —they are necessarily
even—,

* (2dg)yL, if a and b are skew-symmetric and for each P; of degree one —they are
necessarily even—,

* (4dy)yL, if a and b are skew-symmetric and for each P; of degree two —they are
necessarily multiple of four— (the (2dy);_, are the complex dimensions of the quotients
() k=)

e additionally, if @ and b are symmetric and for each P; of degree one, the signatures
(rky sk)p, of the forms (by)yi, defined on the (Ex)[,; ri + si = dy. Those are, according
to the terminilogy of [3] §8, “the system of signatures of the pair of forms with respect to
[the root of P;]”.
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4 When one of a,b is symmetric, the other skew-symmetric

We suppose here that one of a, b is symmetric and the other skew-symmetric, so in this case
B is a-skew-adjoint. Like in the previous case, we need a first standard preliminary.

4.a A preliminary lemma

4.1 Lemma Let K be the algebraic closure of K and E = E @g K. Then, in K[X],
the minimal polynomial of B is of the form X" [[XL, P™ with P; = (X — A\)(X + X,
t#j=XN#EX and i > 1 = A\; # 0. Besides:

e The characteristic subspaces Ker(B;—\; Id)™ of B, associated with nonzero eigenvalues
(t > 1), are a- and b-totally isotropic.

e Denoting Ker P (B) C E by E; and Ker(B™) C E by Eo, then, with respect to a
and to b:

F =

N

B+

0<i

e The subgroup Stab(a) N Stab(b) of GL(E) equals Iy, Stab(E;, a

IN

|Ei) N Stab(E;, |Ez)
Proof. As B is a-skew-adjoint, B and — B are conjugated, so, if P is the minimal polynomial
of B, P(X) = P(—X); the form of P in K[X] follows. Besides, notice that the semi-simple
and nilpotent parts S and T of B are also a-skew-adjoint. Indeed, let S* and T* be the
adjoints of S and 7', S* is semi-simple and 7™ nilpotent, S*1™* = (T'S)* = (ST)* = T*5*
and S* + T* = B*, thus §* and T™ are the semi-simple and nilpotent parts of B* = —B.
But these semi-simple and nilpotent parts are also —$ and =7, s0 5* = =S and T* = —-T.
Take now ¢ > 1 and z and y in Ker(B — A;1d)™ = Ker(S — A; 1d), then:

1 1 1 1
a(z,y) = ya(w, \iy) = ;a(wySy) = ya(—Sx,y) = —ya(m,y) = —a(z,y)

so Ker(B — A;1d)™ is a-totally isotropic. It is also b-totally isotropic as b = a( -, B-) and
BS = SB. This is the first point.
Let us set Py = X € K[X]; take 7,5 € [0,d] with i # j, = € Ker P*(B) and y €
Ker P’ (B). Then:
J
a(z,y) = a((UP" +VP”)(B).z,y)
= a(UP"(B).z,y) + a(z, VP’ (B).y)
=a(0,y) +a(z,0)=0 and:

b(z,y) =b((UP™ + VP;J)(B).B.%, y)
— W(BU P (B).2),y) + alz, BV P (B).4))
= a(0,y) + a(z,0)
=0,
this is the second point. The third one follows immediately. O

4.2 Convention In K[X], the minimal polynomial of B is then of the form Q7° []; Q7" with
Qo = X, the @; mutually prime and, for each 7, Q;(X) = Q;(—X), Q; irreducible or @; of
the form R;(X)R;(—X) with R; irreducible and R;(X)A R;(—X) = 1. As a consequence

12



of the lemma, as in §3, we focus now on one single of the Ker Q?i(B) i.e.,
equivalently, we suppose that the minimal polynomial of B is of the form Q"
with Q irreducible and Q(X) = Q(—X) or Q = R(X)R(—X) with R irreducible
and R(X) and R(—X) mutually prime.

4.b The form of Stab(a) N Stab(b), when K is algebraically closed

For the notation used here, we send back to Recall 3.9. The field K is supposed to be
algebraically closed, so the minimal polynomial of B is of the form P* with P = X or
P = (X = X)(X+X). We always suppose that a is non degenerate. Notice that the nature,
symmetric or skew-symmetric, of the forms by depends now on the parity of k. As by, comes
from a quotient action of a( - Tk ), if & is even, T*1 is a-skew-symmetric so by is as b,
and if k is odd, 75! is a-symmetric so by is as a.

4.3 Theorem e If a is symmetric and b skew-symmetric and degenerate (i.e. P = X),
O(a)NSp(b) = Rx N with N = {y € O(a)NSp(b) ; v acts trivially on the Ey, k < n}; N acts
simply transitively on D(, 7y and is nilpotent, R = (O(a)NSp(b))/N ~ [];_, Stab(Ey, by) ~
HZ:I,k odd O(dr, K) XHZ:l,k oven SP(2dy, K), with dj = dim FE ifk is odd and dj, = %dim E)

il k is even.

o If a is skew-symmetric and b symmetric and degenerate (i.e. P = X ), Sp(a) N O(b) =
Rx N with N = {y € Sp(a) N O(b) ; v acts trivially on the Ey, k < n}; N acts simply
transitively on D, ) and is nilpotent, R = (Sp(a) N O(b))/N ~ [[;_, Stab(Ey, by) ~
ITi=1 .k 0aa SP(2di, K) X [Th—y 4 even O(dr; K), with dj, = % dim E}, if k is odd and dj, = dim E},

il k is even.

o If both forms are non degenerate (i.e. P = (X — A)(X + A), A # 0), then Stab(a) N
Stab(b) acts on ET = Ker(S — A1d). This representation of Stab(a) N Stab(b) in GL(ET)
is faithful and its image is the commutant C(T\g+) C GL(E™) of Tig+.

4.4 Remark In the third case, it follows then that, after Proposition 2.6, Stab(a) N
Stab(b) = R x N where N = {v € C(T); v acts trivially on all £}, k < n}; N acts simply
transitively on the set D"T' of the decompositions of £t adapted to T+ and is nilpotent,
R = (Stab(a) N Stab(b))/N ~ [[r_, GL(E]).

Proof of the theorem. Both first cases are proven on the same way as Theorem 3.11. For
the third case, we must show that p : Stab(a) N Stab(b) — GL(E*) defined by p(y) = vp+
is an isomorphism from Stab(a) N Stab(b) onto C(T|g+). Stab(a) N Stab(b) is mapped by p
in C(Tjg+), indeed, if v € Stab(a) N Stab(b), v commutes with 7" so g+ commutes with
T|E+. Besides the form a induces musical isomorphisms :

b b
E = E*. As ET and E~ are a-totally isotropic by Lemma 4.1: B~ =— E**,
i i
So, to each v+ € GL(EY), we associate canonically a vy~ € GL(E™) by: v~ = o !(yT)~lob.
We set ¥ = (y1,77) € GL(E*') x GL(E™). Then, if y* € GL(E"), 5 € Stab(a) N Stab(b)
and vt = p(7), so p is onto. Let us check it.
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e 7 € Stab(a). As ET and E~ are 3-stable and a-totally isotropic, it is sufficient to
check it with (z,y) € ET x E~.

a(F(),7(2) = a(((H) @ (@)
= (") @)
= a(y, (H) 7 (7 (2)))
= a(y, ).

e 7 commutes with B. As S|p+ = +Aldg+ and as E* and E~ are ¥-stable, we have only
to check that ¥ commutes with 7', i.e. that v~ commutes with Tjp—. T is a-skew-adjoint,

soVz € E,'T(2") = -T(2)". Takey € E~:

so v~ T = T~~, the wanted result.
Finally p is injective, this is immediate: p(y) = ldg+ = yp+ = ldg+ = v =1dg. O

We may also detail a bit the situation in the third case of Theorem 4.3, in the following
corollary.

4.5 Corollary We suppose that both a and b are non degenerate. The set D 1) N
Dyq(.,s.),1) of the decompositions of E simultaneously adapted to (a,T) and to (a(-,S5-),T)
is non empty; it is canonically in bijection with the set D; of the decompositions of ET,
adapted to T, in the following sense: il D = (Dy4)1<q<p<n € DP(a, 1) NV Piq(.,s.),1), then for
each p,q, Dpy = (Dpg NET) & (DpyN E7) and DY := (D, N EY)1<4<p<n € DF. The
bijection is this map D — DT.

With the notation introduced in Remark 4.4, N acts simply transitively on D, ) N
Dia(.,s-)r); B = (Stab(a) N Stab(b))/N ~ []r_, (Stab(Fy,b*) N Stab(Ey, b*(-,S-))) =
[Tr_, (Stab(Ek, b%) N C(S)) ~ [Ii_, GL(E;"). The bijection D ~ D commutes with the
action of N.

Proof. It is a quick checking. Let us give only the key facts. Let D = (D 4)1<q<p<n be
in D(q,1) N Dy(.,s.),1), then each Dy, is stable by S. Now S|+ = £Aldg+ soif z € Dy,
and z = a#* 4+ 2~ is the decomposition of & in (Et,E™), Mat —27) = S(z) € D,, so
et € Dy, and Dy = (Dyy NET) @ (D N E7). Immediately, D¥ = (D,, N E%)1<p<p<n
is a decomposition of E* adapted to Tpt. -
In the converse sense, let DT = (D} )i<g<p<n be in DF and let DT = (DF*)1<g<p<n
be the dual decomposition of the dual space ET* of ET, i.e. the decomposition given by:

D** is the subspace of E** such that V(p',¢') # (p,q), D;’;(D;,’q,) = {0}, that is to say,

Df* = (EB(pr7q/)¢(p7q)Dp/7q/)J-. We set f : Et* — E~ the musical endomorphism associated to
a; one checks then that D™ := D™ = (D)%) 1<4<p<n is a decomposition of E~ adapted
to Tjp- and that D= (D]‘;q © D, )1<g<p<n 18 10 Dig 1y N Dig(. s.),r)- This map Dt — D
is the converse map of D — (DN EY). It commutes with the action of Stab(a) N Stab(b)
so IV, which acts simply transitively on D"T' by the remark 4.4, acts simply stransitively on

Doy N Dia(-,5),1)- O
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On the same principle as in 3.c, thanks to Corollary 3.7, we now introduce “preferred”
basis for a couple of forms (a,b), in the three cases of Theorem 4.3. We send back to 3.¢
for the notation: Dy, Bk, Bk ... Notice that, as T is a-skew-adjoint, and as 3 is a basis of
Dy of the form (T"*(Bky -, T(Bnk), Bnk), the general form of Matg, (a|p,) is:

iMatBk (i)k)
—Matﬁ'k (i)k)
Matg, (a|Dk) = M%Ltﬁvk (br)
—Matﬁ'k (bk)
Matﬁk(bk)
k blocks
Case a symmetric, non degenerate, b skew-symmetric, degenerate (P = X).
If k£ is odd, we take an orthonormal basis 5 of (Ek,bk); if k is even, a symplectic basis
of (Fk,bg); in the former case, d; := dim Ej and in the latter, dim Fj, is even as by is

skew-symmetric, non degenerate, and dy := %dim Ej. Then:

1,
—1Iy,
Matg, (ap,) = 1, for £ odd,
—1Iy,
1,
k blocks
Ja,
—Jy,
Matg, (a|p,) = Ja,, for k even, with Jg, /o = ( 0 Loy 2 ) :
—Jg, Iy 0
Jd,
k blocks
0 Is,
0o for all %,
Matg, (B|p,) = S with & = dy, for k odd
Ok and &, = 2dy, for k even.
k blocks
Case a skew-symmetric, non degenerate, b symmetric, degenerate (P = X).

The matrices are the same, except that the form of Matg, (a|p, ) and of Matg, (B|p, )in the
cases “k odd” and “k even” are swapped.

Case a symmetric, non degenerate, b skew-symmetric, non degenerate (P =

(X — A)(X + A)). In this case, for each k, F}, = E} @ E with S|E$ =+ IdEki and by

is symmetric if k is odd, skew-symmetric if k is even. For all k, dj is even. Remind that
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di = dim E: = %dim F. We choose a basis Bk of Ek, formed by a basis of E: and a basis
of Ek_ and in which:

5 o 0 Iy

Matg (bi) = Lq, = ( I, Ok ) for the odd £,

0 -1

I, 0
My, 0

0 —Ay,

Matﬁvk(l;k) =Jg, = ( k ) for the even £,

Matg (S) = Alay a, = ( ) for all k.

Then, in a basis §; of Dy built, as in 3.c, after such a §;, we get:

Matg, (a|p,) = Lg, for the odd £,

k blocks

Matg, (a|p,) = Ja, for the even £,

k blocks
Mg, 4, 124,
Mg, 4,
Matg, (B|p,) = for all k.

Iyq,
Aldkvdk

k blocks

As at the end of the previous section follows from what precedes a characterization of
the conjugaison class of a couple (@,b) under the action of GL(F).

4.6 Proposition Let (a,b) be a couple of bilinear forms on a K-vectorspace E, K alge-
braically closed, ¢ symmetric and b skew-symmetric. We denote by B the endomorphism
such that b= a(-,B-) and by [['x, P, with Py = X and, fori > 1, P, = (X = \)(X 4+ X))
(t# j = Ai # £X;), the minimal polynomial of B. Then, the couple (a,b) is characterized,
up to conjugation by GL(FE), by:

e the (Pi,ni)f\;l,

o if ng # 0, the (even) dimensions, denoted above by (2dy);", , .. ©Of the quo-
tients (Eg)7%, ;. oo (See Notation 2.2), the dimensions, denoted above by (dg)72, ;. a4 Of

the quotients (Ex)7%, . oqq @nd the signatures (ry, s;)7%, . .qq Of the corresponding forms
@HZiu“ﬁdddmedonthe@ﬂﬂﬁﬂkoml&k+5k:‘h%
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e fori > 1, the (even) dimensions, denoted above by (2dy)}_,, of the quotients (Fj)}L,,

or equivalently the dimensions (dy)}_,, of the quotients (E;F)7L,.

Besides, if a is skew-symmetric and b symmetric, the same statement holds with “even”
and “odd” swapped in the second point.

4.¢ The form of Stab(a) N Stab(b), when K =R

For the notation used here, we send back to Recall 3.9. As indicated in the Convention 4.2,
we may suppose that the minimal polynomial of B is of the form Q" with:

(1) Q irreducible and Q(X) = Q(—X)
(ii) or @ = R(X)R(—X) with R irreducible and R(X) and R(—X) mutually prime.
In the case K = R, this gives four possible forms for Q). In case (i), ) may be equal to X

or to (X — A)(X — ) with A € iR in case (ii), ) may be equal to (X — A)(X + A) with
AeR*orto (X —A)(X = A)(X +A)(X+ ) with A € C\ (RUIR). In turn, this gives five

cases in the next theorem.

4.7 Theorem e If a is symmetric and b skew-symmetric and degenerate (i.e. P = X),
O(a)NSp(b) = Rx N with N = {y € O(a)NSp(b) ; v acts trivially on the Fy, k < n}; N acts
simply transitively on D(, 7y and is nilpotent, R = (O(a)NSp(b))/N ~ [];_, Stab(Ey, by) ~
szl,k odd Ok, 5) X szl,k even SP(2dr, R) with (ry, si) the signatures of the by, on Ep, k
odd; d := dim FEy for k odd, dj, = 1dim FE} for k even.

=2
o If a is skew-symmetric and b symmetric and degenerate (i.e. P = X ), Sp(a) N O(b) =
R x N with N = {v € Sp(a) N O(b) ; v acts trivially on the E, k < n}; N acts simply
transitively on D(, ) and is nilpotent, R = (Sp(a) N O(b))/N =~ [[;_, Stab(£y,by) =~
[Ti=1k 0da SP(2dk, R) XTIy & even O(rks k) with (rk, si) the signatures of the by, on Ey, k
even; di := %dim Ey. for k odd, d := dim Ey. for k even.

e If both forms are non degenerate and if P = (X — X)(X 4+ X), A € R*, then Stab(a) N
Stab(b) acts on ET = Ker(S — AId). This representation of Stab(a) N Stab(b) in GL(EY)
is faithful and its image is the commutant C(T|g+) C GL(E™T) of Tig+.

e If both forms are non degenerate and if P = (X — X)(X — X), A € iR*, then Stab(a) N
Stab(b) acts on E' = Ker(S® — Mdge) € E€ := E ®@g C, which is endowed with the
non degenerate sesquilinear form a : zy,z3 +—= aC(Zl,E). We denote by Dza T) the set

of the decompositions of E' adapted to (a,T) and by ék the non degenerate hermitian
form defined on the quotient EY by b, = a(-,T*~'.) for the k such that a(-,T*'.) is
symmetric and by b, = —ia(-,T*"'.) for the k such that a(-,T*'.) is skew-symmetric.
Then Stab(a) N'Stab(b) = R X N with N = {7 € Stab(a) N Stab(b) ; v acts trivially on the
Ey, k < n}; the representation of Stab(a) N Stab(b) in GL¢(E") is faithful; N acts simply
transitively on ng,T) and is nilpotent, R = (Stab(a) N Stab(b))/N =~ [[;_, Stab(E!, b,) ~

[1ie; U(rk, sk) with (rk,sg) the signature of by, defined on .

e If both forms are non degenerate and if P = (X — A\)(X — A)(X + A)(X +A), A €
C\ (RUIR), Stab(a) N Stab(b) acts faithfully on BT = Ker(S® — A1d); the image of this
representation is the commutant C(T|g+) C GLe(ET) of Tig+.

4.8 Remark In the third case of Theorem 4.7, Stab(a) N Stab(b) is isomorphic to the
commutant of a the real endomorphism Tjg+; In the fifth case of Theorem 4.7, Stab(a) N

17



Stab(b) is isomorphic to the commutant of a the complex endomorphism T|g+. Proposition
2.6 gives the structure of such groups (see also remark 4.4).

Proof of the theorem. The first three cases behave as when K is algebraically closed.

For the fourth case, we have to show that p : Stab(a) N Stab(b) — (U(E’, a) N C(T\g/))
defined by p(y) = g is bijective. We have F = £’ @ E’; by Lemma 4.1, £ and E' are
a-totally isotropic, so @ : z1, 22 — a(z1,%3) is non degenerate on E’ thus Stab(a) N Stab(b)
preserves I and @ and commutes with Tjg.. So p maps Stab(a) N Stab(b) in U(E’,a) N
C(T|gr). Conversely, if v € U(E',a) N C(T|g), ¥ = ¥ where 7 is defined by 7z = 7 and,
on ', 5(z) = W; besides 7 is the only antecedent of v by p, which is hence bijective.

In the fifth case, let us set E* = Ker(S® F Adgc) C EC, as A ¢ RUIR, E®¢ =
FEt@E-@FE+@®E-. By Lemma 4.1, a is non degenerate on F+ @& F~ and Stab(a)NStab(b)
stabilizes this subspace. As the action of Stab(a) N Stab(b) on E® commutes with z + Z,
the restriction Stab(a) N Stab(b) 3 v +— ¥|g+gp- is faithfull. Let us denote by b and 4 both
converse musical isomorphisms F~Z= (E™)*. Then, as it was shown in the proof of Theorem
4.3, v € Stab(a) NStab(b) if and only if yp+qp- is of the form (y+,77) € GL(ET) x GL(7)
with

L4 ’7+ € C(T|E+)7
e 17 =10 () ob.

So the restriction Stab(a) N Stab(b) > v + 7|+ is faithful and maps Stab(a) N Stab(b)
onto C(T|g+). O

As is the case K algebraically closed, we can detail the action of Stab(a) N Stab(b) in
the case where a and b are non degenerate. The proof, straightforward and very similar to
that of Corollary 4.5, is left to the reader.

4.9 Corollary e In the third case of Theorem 4.7, the set D, 1y N D(a(.,s.),1) 0f the
decompositions of E simultaneously adapted to (a,T) and to (a(-,S-),T) is non empty; it
is canonically in bijection with the set D"T' of the decompositions of Et, adapted to T'; the
bijection is the same as the one given in Corollary 4.5. N acts simply transitively on D, 7)N
Di(.,s-)r); B = (Stab(a) N Stab(b))/N ~ []r_; (Stab(Fy,b*) N Stab(Ey, b*(-,S-))) =
[T5; (Stab(Ey, 5%) 0 C(S)) =~ [Tz, GL(E]).

e In the fourth case of Theorem 4.7, the set D, 1y N D(y(. s.),1) of the decompositions
of F simultaneously adapted to (a,1") and to (a(-,S-),T) is non empty; it is canonically
in bijection with the set D@T) of the decompositions of ' = Ker(SC — Adge), adapted to
(a,T). I D € D(q1)ND(g(. s.),1) and DT is the complexification of D, the bijection is given
by D — D€ E’. The converse map is D' — D = R(D,,, @ m)lﬁfﬁpﬁn' N acts simply
transitively on D1y N D(a(.,s.),r) and R =~ [[p_, Stab(Ey, by) N Stab(Ey, bi(-,S-)) =
[T, Stab(Ey, bx) N C(S) = [Tj—, U(EL, by).

e In the fifth case of Theorem 4.7, the set D, 7y N D(4(. s.) 1) Of the decompositions of
E simultaneously adapted to (a,T) and to (a(-,S-),T) is non empty; it is canonically in
bijection with the set D; of the decompositions of Et = Ker(SC—/\ ldgc), adapted to Tig+-
It D € D1y Diag.,s.),r) and DT is the complexification of D, the bijection is given by
D — DN E*. The converse map is Dt s D = (R(Df, @ D, @ Dy ® Dy g)1<q<p<n With
(Dp ) 1<q<p<n = ((D;q)lﬁqﬁpﬁn)*ﬁ' N acts simply transitively on D1y N D(q(. s.),1) and
R =~ [[}_, Stab(Ey, bg)NStab(Ex, bi( -, S+)) = [1r_; Stab(Ey, bx)NC(S) =~ [Tr—, GLc(E).
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We finally introduce the preferred basis for the couple (a, B), thanks to Corollary 3.7.
We send back to 3.c for the notation: Dy, Bk, O ...

Cases a skew-symmetric, b symmetric, degenerate or a skew-symmetric, b sym-
metric, degenerate (P = X) or a symmetric, b skew-symmetric, non degenerate
and P = (X — A)(X 4+ A), A € R*. The obtained matrices are nearly the same as in
the case where K is algebraically closed, so see pp. 15 sq. The two only changes are in the
case P = X, a skew-symmetric, non degenerate, b symmetric, where, for the odd k:

Irmsk
_Ir'rysk
Matg, (ale) = L, s, )
_Irrysk
Irrysk
k blocks

and in the case P = X, a skew-symmetric, non degenerate, b symmetric, where a similar

change, a replacement of the I3, by I,, ., occurs for the even k.

Case a symmetric, non degenerate, b skew-symmetric, non degenerate and P =

(X — A)(X — X)), X € iR*. In this case, for each k, Ef = E} & E! with S|E2 = /\IdEé

and S|E = XIdE—,. We choose a basis (22)521 of E]’C, ﬁk—pseudo—orthonormal, i.e. in which
k k

Mat(zz‘)flﬁl (by) = Ir,,s,- We then set 85 = ((xj);lil, (yj);lil) with: Vj, z; = %(zj + %) and

yj = ﬁ(—z]- +%). In Bk, one checks that:

Matﬁk(i)k) =1, sprpse = ( Ir’b’sk I 0 ) if k is odd i.e. if by is symmetric,
TkySk
i 0 _Irk Sk . . . . M . .
Matﬁvk(bk) =Jr 5 = I O’ if k is even i.e. if by is skew-symmetric,
Tk Sk
0 —vliyg, . . "
Matg (S) = Aqg, = ol 0 =wvJg, with A =iy, v € R*, for all £.
dg

Then, in a basis 3, of Dy, built, as in 3.c¢, after such a 3, we get:

—I_Irkvskvrkvsk

_If‘mskﬂ’hsk

Matg, (ap,) = RN A for the odd F,
-1

TksSkTkySk

—I_Irkvsk TkySk

k blocks

Tk,Sk

—J

—J

TksSk
Matg, (ap,) = +Jrp s for the even k,
_Jf’ké‘k

‘l‘Jrk,sk

k blocks
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Ag, 1ag,

Ag

L . 0 —vI
Matg, (B|p,) = Dy, for all k, with Ay, =vJg, = ( VI, Odk ) .
k
Aq,

k blocks
Case a symmetric, non degenerate, b skew-symmetric, non degenerate and P =
(X = 2A)(X = X)(X +X)(X +X), XA € C\ (RUIR). In this case, for each k, Ef =

E,;" D E,;" D Ek_ & E; with S|Eki =4 IdEki and S|E = iXIdE. After Lemma 4.1, each

Evfct or E—;C is Z)k—totally degenerate and E,j fasy E,; and E—k_@ E—k_ are each Z)k—non degenerate
and orthogonal to each other. We choose any basis (Z]‘-F);lil of E;f, and set (Zj_);lil the basis
?f E such that by (27, z]‘") =6 (so bi(zf, z;) = 6, if k is such that by, is symmetric, else
b (21, z;) = —6;;). We finally set:

Bk = ((‘r;—)?zh (y‘;l_);l:h (‘rj_)(]i:h (y]_);lZI)? VJ, x;t =

One checks then that:

iy . 0 Igap \ .o - C e q .
Matﬁk(bk) = La, 4, == ( Li o 0 if k is odd i.e. if by is symmetric,

. b4 _ L 0 _Idkvdk . . . or 1 . .
Matﬁk(bk) = Jap dp, 1= ( Tua, 0 if k is even i.e. if b is skew-symmetric,

. — Adk 0 : L :u]dk _VIdk . . *
Matg (S) = ( ) with Ag, = ( vl ol where A = u +iv, u,v € R™.

Then, in a basis §; of Dy built, as in 3.c, after such a §;, we get:

+Ldk7dk
_Ldkvdk
Matg, (ap,) = +La, 4, for the odd &,
_Ldkvdk
+Ldk7dk
k blocks
_Jdmdk
_Jdlmdk
Matg, (a|p,) = +J4, .4, for the even k,
_Jd;mdk
+Jdk7dk
k blocks
de Iyq,
A = Ay, O
Matg, (B|p,) = Ll | forall K, with Ay, = ( gk A )
= k
Ag,
k blocks
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As usual follows from what precedes a characterization of the conjugaison class of a
couple (a,b) under the action of GL(E).

4.10 Proposition Let (a,b) be a couple of bilinear forms on a real vectorspace E, a sym-
metric and b skew-symmetric. We denote by B the endomorphism such that b= a(-,B")
and by Hﬁo P the minimal polynomial of B; by Lemma 4.1, Py = X (with possibly
ng=0) and, fori > 1, P, = (X = A)(X +X), s € R*or B, = (X — ) (X = X)), \; € iR*
or P, = (X = A)(X = A) (X + M) (X +X), A € C\ (RUIR). Then, the couple (a,b) is
characterized, up to conjugation by GL(F), by:

e the (Pi,ni)f\;l,

o if ng # 0, the (even) dimensions, denoted above by (2dy);°, , ... ©f the quo-
tients (Eg)7%, ;. oo (See Notation 2.2), the dimensions, denoted above by (dg)72, | qq Of

the quotients (Ex)7%, , oqq @nd the signatures (ry, s;)7%, . .qq Of the corresponding forms
(bk)zozm odd defined on the (Ek)zozm odd (Tk+ 5K = di),

e for each Q; of the form (X — X;)(X 4+ X;), A; € R*, the (even) dimensions (2dy),-,
of the quotients (Ey)}, (see Notation 2.2), or equivalently the dimensions (dy)}_,, of the
quotients (E; )i,

e for each Q; of the form (X — X\;)(X — X;), A\; € iR*, the dimensions (2dy);*, of the

quotients (Ek)z;l, or equivalently the complex dimensions (dy),., of the quotients (El/c)kzl’
and the signatures (ry, s),-, of the hermitian forms b, defined on them (ry, + s = dy),

e for each Q; of the form (X — \)(X — X)(X + X)) (X + i), A € C\ (RUIR), the

(multiple of four) dimensions (4dy) L, of the quotients (Ey),.,, or equivalently the complex
n;

dimensions (dy)}., of the quotients (E;)}.,.

Besides, if a is skew-symmetric and b symmetric, the same statement holds with “even”
and “odd” swapped in the second point.

5 Some last general remarks

5.1 Remark This work is based on the decomposition B =S + T of B in its semi-simple
and nilpotent parts. So, similar results could be obtained by the same way for any perfect
base field K, as such a decomposition B = S + T exists over such base fields.

5.2 Remark One may distinguish the cases where Stab(a) N Stab(b) is simply isomorphic
to the commutant of some nilpotent endomorphism 7" from those where Stab(a) NStab(b) =
R x N, N acting simply transitively on some D, 1) or D(q1) N Diy(.,5.),1)- When K =R,
the first case happens when one of a, b is symmetric, the other skew-symmetric and:

o P= (X —X)(X+X), A € R* (then Stab(a) N Stab(b) is isomorphic to the commutant
of a real nilpotent endomorphism),

e P =(X-XNX-XNX+XX+2A), e C\(RUIR) (then Stab(a) N Stab(b) is

isomorphic to the commutant of a complex nilpotent endomorphism).

The second case consists of all other cases.

5.3 Remark J. Milnor proposed an autonomous proof of the following fact: in finite di-
mension, if two real bilinear symmetric forms have no common isotropic vector, they are
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simultaneously diagonalizable. This result can also be seen as a corollary of the simultane-
ous matricial reduction of two real bilinear symmetric forms given in 3.c. Indeed if ¢ and
b have no common isotropic vector, ¢ admits no B-stable isotropic subspace, so d; = 0 for
kE > 1 —see the matrices—; the FEj are {0} except F;. The normal form given in 3.c is
then a simultaneous diagonalization.

5.4 Remark Let us suppose that @ and b are both symmetric or both skew-symmetric and
that deg P = 1; besides we denote Stab(a) N Stab(b) by Q; Q acts on each £/ KerTF = E*,
k < n, we denote by QF the image of Q by this representation in GL(FE*). We remind that
b* is the form al- JTF -) defined on E*. Tt follows easily from Proposition 3.6 that:

5.5 Corollary (of Proposition 3.6) For all k < n:

QF = Stab(b¥) N Stab(b*(-,T-))
= {v € Stab(b¥); Ker T**!/ Ker T* is stable by v

and the action of ¥ modulo Ker T*! js in Q**1}

In turn, this corollary enables, by a downward induction on k, to detail the structure of Q2
more precisely than the decomposition Q = R x N given here. This is done in [1] chapter 2
§11.7. The results are clumbersome so we do not detail them here; they can be established
by the reader if needed. A similar work can be done in the general case a, b reflexive.

6 Appendix: table of the obtained matrices
6.1 Proposition Let (a,b) be a couple of reflexive forms on a finite dimensional real vector
space E. We suppose that a is non degenerate and set b= a( -, B-). Then, with respect to
a and b, F splits in a sum F = EJé Ep with P a finite subset of R[X] such that, on each
FEp, the minimal polynomial of 1561':]3. Moreover:

e the polynomials of P are of the types given in table 2,

e there is a basis § of each Ep in which the following matrices are block-diagonal:
Matg(a|g,) = diag(Ay, ..., A,) and Matg(B|g,) = diag(By,. .., B,), with the blocks Ay
and By given, for each possible type of polynomial P, in table 2. The principle of this
simultaneous reduction is due to Weierstraf [8].

o [,e M,(R)is the identity matrix of order p,

I. 0
L4 Ir’,s — ( 0 —1, ) € MT’+S(R)7

I, O
o Ir757t7u = ( d I ) € Mr-l—s-}-t-}-u (R)v
0 -1
o J;= ( d ) € Myq(R),
0 _Ir,s
* JT,S = (Irs 0 ) € M2(r+s)(R)7

o I,= ( 0 14 ) € Myy(R),

(Continued on the next page)
TABLE 1 — Notation of the employed matrices.
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0 Ir,s
o L= (17’78 0 ) € M2(7’+5)(R)7

o IfA=pu+iveC (uv)eR? onesets A, = uly, +vJ, = ply —vi, €
v, ply,
My, (R). Similarly, A,

o If A, is as above: x Kp = ( [Bp KO ) € Myy(R)
P

is the matrix associated to A = p — iv.

= A 0
* Ap = ( Op _Ap ) € M4p(R)

TABLE 1 — Notation of the employed matrices.

In the following table, the matrices Ay and By have k blocks, as indicated in the first
line ; dy may be any integer.

@ and b symmetric

/ /\Idk Idk
TksSk Aldk ..
P=X-A, A B, —
AeR k= Irkysk k= Idk
A,
k blocks
k blocks
with ri + s, = dg.
Ag, Iz,
P (XN (X—N) L Agy
Ldk . IQdk
Ag,

with Ag, a matrix corresponding to one of the eigenvalues A of P, see table 1.

a and b skew-symmetric

J Mg, 1o,
dg
P=X 2\ Ay = By, = Mz,
Jq IQdk
’ A,
de 144,
szk v Addy

Aqg

k

with de a matrix corresponding to one of the eigenvalues A of P, see table 1.

a symmetric, b skew-symmetric

(Continued on the next page)
TABLE 2 — Different possible forms for P € P; form of the Ay and By in each case.
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‘|’Irk,sk

P=X

(b degenerate) For k odd: Ay = +1, s, , for k even:
_If’msk
—I_Irkvsk
-‘ 0
A = +J4, and for all k: By, =
—Jq, Is,
—I_Jdk 0

with r; + s = di and, for k odd, é; = di and for k even, & = 2dy.

+Lg,
P=(X V(XA :
( N e 3&(* +4) For k odd: A = +Lg, , for k even:
— Ly,
+Lg,
_Jdk Aldkvdk IQdk
Ap = +Ja, and for all k: B = My
_Jdk Igdk
+Ja, A, dy,
—I_]T’k,Sk,T’k,Sk
P=(X-N\)(X-N),
(/\ c i%lé* ) For k odd: A = S , for k even:
_If‘kﬁkﬂ‘kﬁk
—I_Irkvskvrkvsk
_Jf’lmsk Adk IQdk
. Adk
A = Ty 5 and for all k: B, = ‘
_JT’k7’Sk - I2dk
—I_Jf’kﬁk Adk

with 7, 4+ s, = dj, and with A4, a matrix corresponding to one of the eigenvalues
A € iR* of P, see table 1.

+ L, 4y,
P=(X-\)(X-)\)
(XA (XHN), For k odd: Ay = +La, 4, , for k even:
AeC\ (RUIR). —Lg, 4,
+Ldj, 4y

(Continued on the next page)

TABLE 2 — Different possible forms for P € P; form of the Ay and By in each case.
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with de a matrix corresponding to one of the eigenvalues A of P, see table 1.

' . de
A, = +Ja, d, and for all k: By = ‘
_Jdk,dk T Iédk
+J 4, Ag,

a skew-symmetric, b symmetric and P = X (b degenerate)

Same blocks Ay and By as in the case a symmetric, b skew-symmetric, P = X,
swapping the forms of Ax and By for k odd and even.

TABLE 2 — Different possible forms for P € P; form of the Ay and By in each case.
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