
THE ALGEBRA OF PARALLEL ENDOMORPHISMS OF APSEUDO-RIEMANNIAN METRIC: SEMI-SIMPLE PARTCharles Boubel1November 29th. 2013Abstra
t. On a (pseudo-)Riemannian manifold (M, g), some �elds of endomorphismsi.e. se
tions of End(TM) may be parallel for g. They form an asso
iative algebra e,whi
h is also the 
ommutant of the holonomy group of g. As any asso
iative algebra, eis the sum of its radi
al and of a semi-simple algebra s. Here we study s: it may be ofeight di�erent types, in
luding the generi
 type s = R Id, and the Kähler and hyperkählertypes s ≃ C and s ≃ H. This is a result on real, semi-simple algebras with involution.For ea
h type, the 
orresponding set of germs of metri
s is non-empty; we parametrise it.We give the 
onstraints imposed to the Ri

i 
urvature by parallel endomorphism �elds.Keywords: Pseudo-Riemannian, Kähler, hyperkähler, parakähler metri
s, holonomygroup, parallel endomorphism, nilpotent endomorphism, 
ommutant, Ri

i 
urvature,real algebra with involution, semi-simple asso
iative algebra.M.S.C. 2010: 53B30, 53C29, 16K20, 16W10 se
ondary 53B35, 53C10, 53C12, 15A21.We 
lassify here the germs of (pseudo-)Riemannian metri
, after the semi-simple part oftheir algebra of parallel endomorphism �elds. Our motivation is the following.Motivation. A Kähler metri
 g on some manifold M may be de�ned as a Riemannianmetri
 admitting an almost 
omplex stru
ture J whi
h is parallel: DJ = 0 with D the Levi-Civita 
onne
tion of g. A natural question is to ask whether other �elds of endomorphisms,i.e. se
tions of End(TM), may be parallel for a Riemannian metri
. The answer is nearlyimmediate. First, one restri
ts the study to metri
s that do not split into a non trivialRiemannian produ
t, 
alled here �inde
omposable�. Otherwise, any parallel endomorphism�eld is the dire
t sum of parallel su
h �elds on ea
h fa
tor (
onsidering as a unique fa
torthe possible �at fa
tor). Then a brief reasoning ensures that only three 
ases o

ur: gmay be generi
 i.e. admit only the homotheties as parallel endomorphisms, be Kähler, orbe hyperkähler i.e. admit two (hen
e three) anti
ommuting parallel 
omplex stru
tures.The brevity of this list is due to a simple fa
t: the a
tion of the holonomy group H of aninde
omposable Riemannian metri
 is irredu
ible i.e. does not stabilise any proper subspa
e.In parti
ular, this 
ompels any parallel endomorphism �eld to be of the form λ Id +µJ with
J some parallel, skew adjoint almost 
omplex stru
ture. Now, su
h irredu
ibility fails ingeneral for an inde
omposable pseudo-Riemannian metri
, so that a mis
ellany of otherparallel endomorphism �elds may appear. This gives rise to the question handled here:Whi
h (algebra of) parallel endomorphism �elds may a pseudo-Riemannian metri
 admit ?The interest of this question lies also in the following. When studying the holonomyof inde
omposable pseudo-Riemannian metri
s, the irredu
ible 
ase may be exhaustivelytreated: the full list of possible groups, together with the 
orresponding spa
es of germs ofmetri
s (and possibly 
ompa
t examples) may be provided. After a long story that we donot re
all here, this has been done, even for germs of arbitrary torsion free a�ne 
onne
tions,see e.g. the surveys [7, 15℄. Yet, in general, the representation of H may be non-semi-simple1Institut de Re
her
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and su
h an exhaustive answer is out of rea
h, ex
ept perhaps in very low dimension, seee.g. the already long list of possible groups in dimension four in [1, 10℄. Thus, intermediatequestions are needed: not aiming at the full 
lassi�
ation, but still signi�
ant; see e.g. [9℄ fora survey of su
h works. Investigating the 
ommutant End(TmM)H of H at some point m of
M, instead of H itself � that is to say studying the algebra of parallel endomorphisms �is su
h a question. One may also noti
e that determining all the parallel tensors, not onlythe endomorphisms, would mean determining the algebrai
 
losure of the holonomy group
H. So this work is a step towards this.Now, as any asso
iative algebra, End(TmM)H 
lassi
ally splits into a sum s ⊕ n with sa semi-simple subalgebra � in general not 
anoni
al, but its isomorphism 
lass is � and
n := Rad(End(TmM)H) a nilpotent ideal, its radi
al. The study of s and n involve verydi�erent methods, and ea
h of them is a work in itself. This arti
le is devoted to s; we dealwith n in [2℄ and other future works. The interest of this arti
le is that:We deal with inde
omposable metri
s the holonomy group of whi
h is never supposed tobe irredu
ible or totally redu
ible.As it is 
lassi
al in holonomy problems, the question is twofold: (i) Whi
h algebras sare possible ? (ii) By whi
h sets of metri
s are they produ
ed ? We will handle both,restraining ourselves, for point (ii), to the �rst natural step i.e. to germs of metri
s.Contents and stru
ture of the arti
le. Let (M, g) be a (pseudo-)Riemannian manifoldof dimension d, H its holonomy group, H0 the neutral 
omponent of H and m ∈ M.In Part 1, we introdu
e the de
omposition End(TmM)H = s⊕n in �1.1 and some naturalobje
ts asso
iated with a redu
ible holonomy representation in �1.2, together with a simplebut remarkable 
ommutation property in End(TmM)H , Proposition 1.8. In �1.3, we giveour main theorem: s may be of eight di�erent types, in
luding the generi
, Kähler andhyperkähler types s = R Id, s ≃ C and s ≃ H. See Theorem 1.10 p. 5 and Tables 1 and 2 fordetails. In the �ve non-Riemannian 
ases, the metri
 has ne
essarily a �neutral� signature
(d
2 , d

2) and s 
ontains a �parakähler� stru
ture L i.e. a g-skew adjoint automorphism su
hthat TM = ker(N −Id)⊕ker(N +Id). That is linear algebra: the 
lassi�
ation of some semisimple, g-self adjoint subalgebras of gl(Rd), see Remark 1.12. We also give two 
orollaries.In Part 2, to show that ea
h type given by Theorem 1.10 o

urs, we do a little more:we parametrise the set of germs of metri
s in ea
h of them (expli
itly, or via Cartan-Kählertheory). Here we adapt a 
lassi
al proof the line of whi
h is given by R. Bryant in [7℄ � inparti
ular, in the Riemannian 
ase, this provides an expli
it writing of this proof.In Part 3, we give the 
onsequen
es of the existen
e of any type of parallel endomor-phisms on the Ri

i 
urvature. They are quite simple, hen
e very remarkable.General setting and some general notation. Here M is a simply 
onne
ted manifoldof dimension d and g a Riemannian or pseudo-Riemannian metri
 on it, whose holonomyrepresentation does not stabilise any nondegenerate subspa
e, that is to say does not split inan orthogonal sum of subrepresentations. In parti
ular, g does not split into a Riemannianprodu
t. We set H ⊂ SO0(TmM, g|m) the holonomy group of g at m and h its Lie algebra.AsM is supposed to be simply 
onne
ted, we deal everywhere with h, forgetting H. Let e bethe algebra End(TmM)h of the parallel endomorphisms of g � to 
ommute with h amountsto extend as a parallel �eld �; it is isomorphi
 to some subalgebra of Md(R)h. Noti
e that
e is stable by g-adjun
tion, whi
h we denote by σ : a 7→ a∗. If A is an algebra and B ⊂ A,2



we denote by 〈B〉, (B), and AB the algebra, respe
tively the ideal, spanned by B, and the
ommutant of B in A. When lower 
ase letters: xi, yi et
. stand for lo
al 
oordinates, the
orresponding upper 
ase letters: Xi, Yi et
. stand for the 
orresponding 
oordinate ve
tor�elds. Viewing ve
tor �elds X as derivations, we denote Lie derivatives LXu also by X.u.The matrix diag(Ip,−Iq) ∈ Mp+q(R) is denoted by Ip,q, „

0 −Ip

Ip 0

«

∈ M2p(R) by Jp and
„

0 Ip

Ip 0

«

∈ M2p(R) by Lp. If V is a ve
tor spa
e of even dimension d, we re
all that an
L ∈ End(V ) is 
alled para
omplex if L2 = Id with dim ker(L − Id) = dim ker(L + Id) = d

2 .Finally, take A ∈ Γ(End(TM)), para
omplex i.e. su
h that dimker(N−Id) = dim ker(N+
Id) = d

2 . If it is integrable i.e. if its matrix is 
onstant in well-
hosen lo
al 
oordinates, we 
allit a �para
omplex stru
ture�, like a 
omplex stru
ture, as opposed to an almost 
omplex one.A
knoledgements. I thank M. Brion for a few 
ru
ial pie
es of information and referen
esin Algebra, P. Baumann for his availability and for the referen
es he indi
ated to me. Ithank M. Audin, P. Mounoud and P. Py for their 
omments on the writing of 
ertain partsof the manus
ript.1 The algebra e = End(TM)H and its semi-simple part s1.1 The de
omposition e = s⊕ n of e in a semi-simple part and its radi
alFirst we need to re
all some fa
ts and set some notation. All the results invoked are 
lassi
alfor �nite dimensional asso
iative algebras; we state them for a unital real algebra A.1.1 Notation If A is a subset of an algebra, A∗ ⊂ A denotes here the subset of its invertibleelements. If σ is an involutive anti morphism of A, then A± = {U ∈ A;σ(A) = ±A} denotesthe subspa
e of its self adjoint or skew adjoint elements.1.2 Reminder An algebra A is said to be nilpotent if Ak, the algebra spanned by theprodu
ts of k elements of A, is {0} for some k. In parti
ular, the elements of a nilpotentsubalgebra of Mn(R) are simultaneously stri
tly upper triangular in some well-
hosen basis.1.3 De�nition (See [8℄ �25 or [12℄) The radi
al Rad A of A is the interse
tion of its maximalideals. It is a nilpotent ideal. Equivalently, it is the sum of the nilpotent ideals of A. Thealgebra A is said to be simple if its only proper ideal is {0}, and semi-simple if its radi
al is
{0} � so a simple algebra is semi-simple, and A/Rad(A) is semi-simple.The de
omposition e = s ⊕ n is provided by the following 
lassi
al result. The lastassertion is a re�nement due to Taft [16, 17℄. I thank P. Baumann for this referen
e.1.4 Theorem [Wedderburn � Malčev℄ (see [8℄ �72) Let A be a �nite dimensional R-algebra. Then there exists a semi-simple algebra AS in A su
h that A = AS ⊕ Rad(A). Ifmoreover A is endowed with an involutive anti-morphism σ, then AS may be 
hosen σ-stable.1.5 Notation We set n = Rad e. Being the unique maximal nilpotent ideal of e, n is selfadjoint i.e. stable by g-adjun
tion. We take s ≃ e/n some self adjoint semi-simple subalgebraof e provided by Theorem 1.4.
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1.2 Some natural obje
ts asso
iated with a redu
ible holonomy represen-tation; a �quasi-
ommutation� property1.6 Remark/Notation We denote by E0 = ∩W∈hker W the (possibly trivial) maximalsubspa
e of TmM on whi
h the holonomy group H a
ts trivially. As TmM is H-orthogonallyinde
omposable, E0 is totally isotropi
. We set n0 = {N ∈ e ; Im N ⊂ E0}; as the a
tionsof H and e on TmM 
ommute, n0 is an ideal of e, moreover self adjoint. So, for any
x, y ∈ TmM, and any N,N ′ ∈ n0, g(N ′Nx, y) = g(Nx,N ′∗y) ∈ g(E0, E0) = {0}, so
N ′N = 0 i.e. n2

0 = {0}.1.7 Remark/Notation The algebra e is naturally endowed with the bilinear symmetri
form 〈U, V 〉 = 1
d tr(U∗V ). By Reminder 1.2, n ⊂ ker(〈 · , · 〉). If moreover e admits some selfadjoint 
omplex stru
ture J , and denoting by eJ the J-
omplex algebra {U ∈ e ; UJ = JU},then eJ is endowed with the 
omplex form 〈U, V 〉J = 1

d (tr(U∗V ) − i tr(U∗JV )).The following proposition is the key of most steps of the 
lassi�
ation 1.10. As it is alsoworth to be noti
ed by itself, we state it apart, here.1.8 Proposition Let U, V be in e and m be any point of M. Then , if U is self adjoint,then for any x, y ∈ TmM, R(x, y)(UV − V U) = 0. Consequently, UV − V U ∈ n0. Inparti
ular, in 
ase E0 = ∩W∈hker W = {0}, all self adjoint elements of e are 
entral in e.Proposition 1.8 rests on the following remark.1.9 Reminder/Remark We will need the following remark. The Bian
hi identity impliesthat, at any point m ∈ M and for any x, y, z, t ∈ TmM, g(R(x, y)z, t) = g(R(z, t)x, y). Thisholds also for any, possibly degenerate, bilinear form g′, parallel with respe
t to the LeviCivita 
onne
tion of g. The proof does not need nondegenera
y, see e.g. Lemma 9.3 in [13℄.So if U is a parallel self adjoint endomorphism, R(Ux, y)z = R(x,Uy)z = R(x, y)Uz. The�rst equality is 
lassi
al. For the se
ond one, take t any fourth ve
tor and denote by gU thebilinear form = g( · , U · ), whi
h is parallel, as U is, and symmetri
, as U∗ = U . Then:
g(R(x,Uy)z, t) = g(R(z, t)x,Uy) applying the relation to g,

= gU (R(z, t)x, y)

= gU (R(x, y)z, t) applying the relation to gU ,
= g(R(x, y)Uz, t) as U∗ = U , being parallel,
ommutes with R(x, y). �Proof of Proposition 1.8. Take U, V ∈ e with U∗ = U and x, y, z, t ∈ TmM. The bilinearform gU := g( · , U · ) is parallel, as U is.

g(R(x, y)z, V Ut)

=g(R(x, y)V ∗z, Ut) as, V ∗, parallel, 
ommuteswith R(x, y),
=g(R(x,Uy)V ∗z, t) by Remark 1.9, applied to U ,
=g(R(x,Uy)z, V t) as, V ∗ 
ommutes with R(x, y),
=g(R(x, y)z, UV t) again by Remark 1.9, so the result. �
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1.3 The eight possible forms of sThe types given by Theorem 1.10 are known, but not in full generality for type (3') i.e.with the 
orresponding set of germs of metri
s 
learly stated, and ex
ept (3C) whi
h I neveren
ountered expli
itly. So Theorem 1.10 
loses the list, may the a
tion of H be totallyredu
ible or not. The proof rests on the 
lassi
al Wedderburn-Artin and Skolem Noethertheorems, and then is elementary. Remark 1.15 below gives the generi
 holonomy group
orresponding to ea
h 
ase of the theorem.1.10 Theorem The algebra s is of one of the following types, where J , J , and L denoterespe
tively self adjoint 
omplex stru
tures and skew adjoint 
omplex and para
omplexstru
tures. Ea
h 
ase is pre
isely des
ribed in Tables 1 p. 7 and 2 p. 8, whi
h are part ofthe theorem.(1) generi
, s = vect(Id).(1C) �
omplex Riemannian� , s = vect(Id, J). Here d > 4 is even, sign(g) = (d
2 , d

2), (M,
J, g(·, ·) − ig(·, J ·)) is 
omplex Riemannian for a unique 
omplex stru
ture in s, up to sign.(2) (pseudo-)Kähler, s = vect(Id, J). Here d is even and (M, J, g) is (pseudo-)Kähler,for a unique 
omplex stru
ture in s, up to sign.(2') parakähler, s = vect(Id, L). Here d is even, sign(g) = (d

2 , d
2), (M, L, g) is parakähler,for a unique para
omplex stru
ture in s, up to sign.(2C) �
omplex Kähler� , s = vect(Id, J, L, J). Here d ∈ 4N∗, sign(g) = (d

2 , d
2) and

(M, J , J, L, g) is at on
e 
omplex Riemannian, pseudo-Kähler, and parakähler, on a uniqueway in s, up to sign of ea
h stru
ture.(3) (pseudo-)hyperkähler, s = vect(Id, J1, J2, J3). Here d ∈ 4N
∗, (M, J1, J2, g) is (pseu-do-)hyperkähler, the set of Kähler stru
tures in s being a 2-dimensional submanifold.(3') �para-hyperkähler� , s = vect(Id, J, L1, L2). Here d ∈ 4N∗, sign(g) = (d

2 , d
2) and

(M, J, L1, g) is at on
e pseudo-Kähler and parakähler, the set of 
omplex and of para
omplexstru
tures in s being ea
h a 2-dimensional submanifold.(3C) �
omplex hyperkähler� , s = vect(Id, J , J, L1, L2, JJ, JL1, JL2) Here d ∈ 8N
∗,

sign(g) = (d
2 , d

2 ) and (M, g) is at on
e 
omplex Riemannian (on a unique way up to signin s), and pseudo-Kähler and parakähler. The sets of pseudo- or parakähler stru
tures are2-dimensional J-
omplex submanifolds of s.Ea
h type is produ
ed by a non-empty set of germs of metri
s. On a dense open subsetof them, for the C2 topology, the holonomy group of the metri
 is the 
ommutant SO0(g)sof s in SO0(g).1.11 Remark The fa
t that the set of germs of metri
s in ea
h 
ase is non-empty is well-known, ex
ept perhaps for types (3') and (3C). In all 
ases, �2 gives their parametrisation.1.12 Remark In fa
t, we proved the following result in plain linear algebra. If g is a(pseudo-)Eu
lidean produ
t on R
d and A a semi-simple, g-self adjoint subalgebra of gl(Rd),whose a
tion on Rd is inde
omposable (in an orthogonal sum), then A is one of the eightalgebras of Theorem 1.10 or the algebra A ≃ H ⊕ H of Remark 1.21.1.13 Notation If G is a subgroup of GLd(K), we denote here by V its standard represen-tation in K

d. We denote then by V
∗ : g 7→ (λ 7→ λ ◦ g−1) its 
ontragredient representationin (Kd)∗ and, if K = C, by V

∗ the 
omplex 
onjugate of it.5



1.14 Remark In 
ases (2'), (2C), (3') and (3C), the existen
e of a para
omplex stru
ture
L splits TM = ker(L− Id)⊕ker(L+Id) = V ⊕V ′ into a sum of two totally isotropi
 fa
tors,and the morphism ♭ given by the metri
 identi�es V ′ with V ∗. Then, H is isomorphi
 to asubgroup [H] of GLd/2(K), the holonomy representation being V⊕V

∗, if K = R, or V⊕V
∗,if K = C, on ker(L − Id) ⊕ ker(L + Id). Matri
ially:

H :=

{(
U 0

0 t
( )

U
−1

)
, U ∈ [H]

}
;so if K = R, H ⊂ SO0(d

2 , d
2) and if K = C, H ⊂ U(d

2 , d
2).1.15 Remark For s of ea
h type, we sum up here: the possible signature(s) of g, the groupin whi
h H (possibly identi�ed with [H], see Rem. 1.14) is in
luded, and to whi
h it isgeneri
ally equal (proof in �2), and the representation of H or [H]. Noti
e that ea
h time,this group is also the 
ommutant of s in SO0(g). See Notation 1.13 for V.(1) (1C) (2) (2') (2C) (3) (3') (3C)

(p, q) (p, p) (2p, 2q) (p, p) (2p, 2p) (4p, 4q) (2p, 2p) (4p, 4p)SO0(p, q) SO(p, C) U(p, q) GL0(p, R) GL(p, C) Sp(p, q) Sp(2p, R) Sp(2p, C)

V V V V ⊕ V
∗

V ⊕ V
∗

V V ⊕ V
∗

V ⊕ V
∗1.16 Remark In Theorem 1.10, the new 
ases with respe
t to the Riemannian frameworko

ur only for metri
s g of signature (d

2 , d
2

).1.17 Remark [Justi�
ation of the labels in Theorem 1.10℄ The generi
 holonomygroups 
orresponding to s of types (1C), (2C) and (3C) are 
omplexi�
ation of those 
orre-sponding to s of respe
tive types (1), ((2) or (2')), and ((3) or (3')). Besides, if you 
onsiderthe di�erent types in a 
omprehensive sense, type (2) e.g. meaning only �H ⊂ U(p, q)�, andso on, you obtain the following in
lusion diagram:PSfrag repla
ements (1) (1C)(2) (2') (2C)(3) (3') (3C) where the strokes denote thein
lusion of the set of metri
sbelow into the one above.This justi�es our notation. Another point of view is the following. Suppose that g is areal analyti
 germ of metri
 at m. Then h is generated by {DkR(u1, . . . , uk+2), (ui)
k+2
i=1 ∈

TmM}, the 
urvature tensors at m and their 
ovariant derivatives at all orders. So the
omplexi�
ation gC of the germ g has H ⊗ C as holonomy group. Thus here, if g is �oftype (1)�, respe
tively ((2) or (2')), or ((3) or (3')), its 
omplexi�
ation is �of type (1C)�,respe
tively (2C) and (3C).1.18 Lemma Take U ∈ e and N ∈ n, µ the minimal polynomial of U and µ′ that of U +N .Then any irredu
ible fa
tor of µ is also in µ′, and vi
e versa.Proof. µ(U + N) = µ(U) + NV = NV with V some polynomial in U and N . As n is anideal, NV ∈ n and by Proposition 1.2, NV is nilpotent. So for some k ∈ N, (µk)(U +N) = 0i.e. µ′|µk. Symmetri
ally, ∃l ∈ N∗ : µ|µ′l, so the result. �6



(1) (1C) (2) (2′) (2C)
R ⊂ R,

R
1,0 ⊂ R

1,0
C ⊂ C,

R
1,1 ⊂ R

1,1
R ⊂ C,

R
1,0 ⊂ R

2,0
R.(1, 1) ⊂ R ⊕ R,

R
1,0 ⊂ R

1,1
C.(1, 1) ⊂ C ⊕ C,

R
1,1 ⊂ R

2,2

〈 〉 〈J〉 〈J〉 〈L〉
〈J,L, J |
J ∈ Z(s),

LJ = JL = J〉

∅ {i} {i} {(1,−1)}
{(i, i), (1,−1),

(i,−i)}

Id IdC z 7→ z (a, b) 7→ (b, a) (a, b) 7→ (b, a)In 
ase (2C), viewed as a J-
omplex algebra, s = 〈L〉 is given as in (2').(3) (3′) (3C) (3C), s given as
R ⊂ H,

R1,0 ⊂ R4,0
R.I2 ⊂ M2(R),

R1,0 ⊂ R2,2
C.I2 ⊂ M2(C),

R1,1 ⊂ R4,4
a J-
omplexalgebra

〈J1, J2, J3 |
J[i]J[i+1] = J[i+2],

JiJi′ = −Ji′Ji〉

〈L1, L2, J |
J = −L1L2

= L2L1,
L1 = L2J = −JL2,
L2 = JL1 = −L1J〉

〈J,L1, L2, J |
J ∈ Z(s),

J = −L1L2

= L2L1,
L1 = L2J = −JL2,
L2 = JL1 = −L1J〉

〈L1, L2, L3 |
iL[i]L[i+1]

= L[i+2],

L[i]L[i′]

= −L[i′]L[i]〉the 
anoni
al
{i, j, k} ⊂ H

{
„

1 0
0 −1

«

,
„

0 1
1 0

«

,
„

0 −1
1 0

«

}

{
iI2,

„

1 0
0 −1

«

,
„

0 1
1 0

«

,
„

0 −1
1 0

«

}

{
„

1 0
0 −1

«

,
„

0 1
1 0

«

,
„

0 −i
i 0

«

}

z 7→ z(quaternioni

onjugation) „

a b

c d

«

7→

„

d −b

−c a

«i.e. transpose ofthe 
omatrix idem idemTable 1: Theorem 1.10 summed up in a table. We give on ea
h line:� s+ ⊂ s as an in
lusion of algebras, then of (pseudo-)eu
lidian spa
es for 〈·, ·〉; R
a,b means

(Ra+b, 〈·, ·〉) with sign(〈·, ·〉) = (a, b),� s as a unital R-algebra generated by 〈·, ·〉-orthogonal 
omplex and para
omplex stru
tures,� the 
orresponding generators of A,� the antimorphism of A 
onjugated to the adjun
tion of s.All letters J denote 
omplex stru
tures, and L para
omplex ones. All are g-skew adjoint,ex
ept the g-self adjoint underlined J . Bra
keted indi
es [i] denote indi
es modulo 3.Proof of Theorem 1.10. We denote TmM by E in this proof. We �rst state the announ
ed
lassi
al results in asso
iative algebra.1.19 Theorem [Wedderburn � Artin℄ (see [12℄ �3, p. 40). Let A be a �nite dimensionalsemi-simple R-algebra. Then A is isomorphi
 to a dire
t sum of matrix algebras:
A ≃

k
⊕
i=1

Mdi
(Ki)with for ea
h i, di ∈ N∗ and Ki ∈ {R, C, H}.1.20 Theorem [
orollary of a theorem of Skolem � Noether℄ (see [4℄ �10, no. 1). Let

θ be an automorphism of a �nite dimensional semi-simple R-algebra A. If θ a
ts triviallyon the 
enter of A, θ is interior. 7



dimM, sign(g) Matri
es, in a well-
hosen basis(1) any, any Mat(g) = Ip,q(1C) d = 2p, (p, p) Mat(g) = Ip,p, Mat(J) = Jp(2)d = 2p + 2q, (2p, 2q) Mat(g) = diag(Ip,q, Ip,q), Mat(J) = Jd/2(2') d = 2p, (p, p) Mat(g) = Ip,p, Mat(L) = Lp
[1℄(2C) d = 4p,

(2p, 2p)
Mat(g) = L2p, Mat(L) = I2p,2p, Mat(J) = diag(Jp,−Jp)(3) d ∈ 4N

∗,
(4p, 4q),

p + q = d
4

Mat(g) = diag(Ip,q, Ip,q, Ip,q, Ip,q), Mat(J2) = Jd/2,

Mat(J1) = diag(−Jd/4, Jd/4), Mat(J3) =

(
0 Jd/4

Jd/4 0

)(3') d = 4p
(2p, 2p)

Mat(g) = I2p,2p, Mat(L1) = L2p

Mat(J) = diag(−Jp, Jp)
[2℄, Mat(L2) =

(
0 −Jp

Jp 0

)(3C) d = 8p
(4p, 4p)

Mat(g) = diag(I2p,2p,−I2p,2p), Mat(J) = diag(J2p, J2p),
Mat(J) = diag(Jp, Jp,−Jp,−Jp), Mat(L1) = L4p

Mat(L2) =

(
0

− diag(Jp, Jp)
diag(Jp, Jp)

0

)[1℄ or e.g.: Mat(g) = Lp, Mat(L) = Ip,p.[2℄ or e.g.: Mat(g) = L2p, Mat(L1) = I2p,2p, Mat(J) =

(
0 Jp

Jp 0

)
.(1) (1C) (2) (2') (2C) (3) (3') (3C)�Complex Riemannian�stru
tures ∅ {±J} ∅ ∅ {±J} ∅ ∅ {±J}Kähler stru
tures ∅ ∅ {±J} ∅ {±J} [3℄ [4℄ [6℄para Kähler stru
tures ∅ ∅ ∅ {±L} {±L} ∅ [5℄ [7℄[3℄the 2-sphere {αJ1 + βJ2 + γJ3;α

2 + β2 + γ2 = 1} = {U ; 〈U,U〉 = 1}[4℄the two-sheet hyperboloid
{αL1 + βL2 + γJ ;α2 + β2 − γ2 = −1} = {U ; 〈U,U〉 = 1}[5℄the one-sheet hyperboloid
{αL1 + βL2 + γJ ;α2 + β2 − γ2 = 1} = {U ; 〈U,U〉 = −1}[6℄the proper quadri
 with 
entre {U ; 〈U,U〉J = 1} =
{αL1 + βL2 + γJ ;α = α′ + α′′J et
. α2 + β2 − γ2 = −1}[7℄the proper quadri
 with 
entre {U ; 〈U,U〉J = −1} =
{αL1 + βL2 + γJ ;α = α′ + α′′J et
. α2 + β2 − γ2 = 1}Cases (3), (3'), and (3C) imply that the metri
 is Ri

i-�at.Table 2: Th. 1.10 in a matri
ial form, with the (para)
omplex stru
tures.As g is orthogonally inde
omposable, then if it is �at, dimM = 1 and s = e = R Id isof type (1). We now suppose that g is not �at. The list 1.10 follows from the orthogonalinde
omposability of the a
tion of h, through the 
laim below. The elimination of only onepossible form for s will also require, through Proposition 1.8, the fa
t that h is a holonomyalgebra i.e. from the Bian
hi identity satis�ed by the 
urvature tensor.Claim 1. If p ∈ e is self adjoint, its minimal polynomial µp(X) is of the form Qα with Qirredu
ible � so if p is not invertible, it is nilpotent.Proof. The minimal polynomial reads µp(X) =

∏N
i=1 Qαi

i with irredu
ible Qi's. As p isself adjoint, the dire
t sum E = ⊕N
i=1 ker Qαi(p) is g-orthogonal. As p ∈ End(E)h, ea
h8



ker Qαi(p) is h-stable. Now E is inde
omposable, so N = 1 and the 
laim.By 1.4, e = s ⊕ n where n = Rad(e) and s is a semi-simple, self adjoint subalgebra of
e. As n is the interse
tion of the maximal ideals of e and as the adjun
tion σ is an anti-morphism, n is also self adjoint. So 1.19 gives an isomorphism ϕ : s

≃
−→ A with A = ⊕k

i=1Iiand Ii = Mδi
(Ki), Ki ∈ {R, C, H}. By a slight abuse, we also denote by σ the 
onjugatea
tion ϕ ◦ σ ◦ ϕ−1 of σ on A.Claim 2. k 6 2. If k = 2, then σ(I1) = I2. We then denote the δi by δ and the Ki by K.Proof. Let us denote by 1 the unit matrix of any fa
tor of A. As an (anti) automorphismof A, σ a
ts on the fa
tors Ii of A, permuting them. Take p = (1, 0, . . . , 0) ∈ A. As p2 = p,

ϕ−1(p) is a (non zero) proje
tion, so by Claim 1, either ϕ−1(p) = 1e and thus k = 1, or
σ(p) 6= p. In the latter 
ase, σ(I1) 6= I1. Take p′ = p + σ(p). It is self adjoint by 
onstru
-tion, and p′2 = p2 + σ(p)2 = p + σ(p2) = p′ so it is a (non zero) proje
tion. By Claim 1,
ϕ−1(p′) = 1e so A = I1 ⊕ σ(I1) and then k = 2.Claim 3. If k = 2, then δ = 1 and K = R or K = C.Proof. Suppose k = 2. Take p = (diag(1, 0, . . . , 0), 0) ∈ A and p′ = p + σ(p). By the samereasoning as above, ϕ−1(p′) is a non zero self ajoint proje
tion so p′ = 1A by Claim 1. Asthe I1-
omponent of σ(p) is zero, then in fa
t p = (1, 0) and σ(p) = (0, 1); in parti
ular
diag(1, 0, . . . , 0) = 1I1 i.e. δ = 1. Now Proposition 1.8 implies K 6= H. Indeed, suppose that
K = H, denote by i and j two of the three 
anoni
al roots of −1 in H, take m ∈ M and
x, y ∈ TmM. Set I = ϕ−1(i, 0) and J = ϕ−1(j, 0) in e = ϕ−1(H ⊕ H). Noti
e that the I1
omponent of σ((i, 0)) is zero, so I∗J = 0, similarly IJ∗ = 0. By 
onstru
tion, I + I∗ is selfadjoint, so:

R(x, y).(I + I∗)(J + J∗) = R(x, y).(J + J∗)(I + I∗) by Proposition 1.8,
= R(x, y).(JI + J∗I∗)

= −R(x, y).(IJ + I∗J∗) as in H, ji = −ij,
= −R(x, y).(I + I∗)(J + J∗).So R(x, y).(I +I∗)(J +J∗) = 0. Now (I +I∗)(J +J∗) = IJ +(IJ)∗ = ϕ−1((ij, 0)+σ((ij, 0)))is invertible, so for any m ∈ M and any x, y ∈ TmM, R(x, y) = 0 i.e. (M, g) is �at, in
ontradi
tion with s ≃ H ⊕ H.Let us suppose k = 1 and �nish the proof. Let τ be the transposition u 7→t u in

A ≃ Mδ(K), and τ its 
omposition u 7→tu with the 
onjugation, in 
ase K ∈ {C, H}. Thenfor K ∈ {R, C}, respe
tively K ∈ {C, H}, τ , respe
tively τ , is an anti-morphism (of R-algebra) of A. So either τ ◦ σ or τ ◦ σ is an automorphism of A and, for K ∈ {R, H}, it a
tstrivially on the 
enter Z(A) as Z(A) = K.Iδ. If K = C, either σ ◦ τ or σ ◦ τ a
ts trivially onthe 
enter Z(A) = C.Iδ. Then Theorem 1.20 gives a v ∈ A su
h that σ : u 7→ vtũv−1 with
ũ = u if K = R, ũ = u if K = H and ũ = u or ũ = u if K = C. As σ2 = Ide, vtṽ−1 ∈ Z(A)i.e. tṽ = λv with λ ∈ R if K ∈ {R, H} and λ ∈ C if K = C. Applying τ̃ on both sides, weget that λ = ±1 (in the 
ase K = C and ũ = u, we get only |λ| = 1, but repla
ing v by anadequate element of C.v a
hieves even λ = 1).If we repla
e ϕ by cw ◦ ϕ with cw : u 7→ w−1uw, then v is repla
ed by wvtw̃ i.e. vundergoes a basis 
hange like the matrix of a bilinear or -̃sesquilinear form. So using asuitable cw, and re
alling that tṽ = λv with λ = ±1, we may suppose:9



� in 
ase λ = 1, that v = diag(Iδ′ ,−Iδ′′) with δ′ + δ′′ = δ if K = R or (K ∈ {C, H} and
ũ = u), and that v = Iδ if (K = C and ũ = u),� in 
ase λ = −1, that δ is even and v =

„

0 −Iδ/2

Iδ/2 0

« if (K ∈ {R, C} and ũ = u), andthat v = Iδ.i if K = H.Now all 
ases where v is diagonal imply δ = 1. Indeed, if v = diag(Iδ′ ,−Iδ′′) or v = Iδ,set p = diag(1, 0, . . . , 0), and if K = H and v = Iδ.i, set p = diag(j, 0, . . . , 0). Then
p is self adjoint, non nilpotent, so p = 1A or p = 1A.j by Claim 1 i.e. δ = 1. So if
δ > 2, then K ∈ {R, C}, λ = −1, ũ = u, δ is even and v =

„

0 −Iδ/2

Iδ/2 0

«. Setting
p′ = diag(1, 0, . . . , 0) ∈ Mδ/2(K) we get p = diag(p′, p′) a self adjoint non nilpotent elementof A, so p is invertible by Claim 1 i.e. δ′ = 1 i.e. δ = 2. So the only allowed 
ases are thoselisted in 1.10:� if k = 1 and δ = 1, K = R and σ : u 7→tu = u, or K = C and σ : u 7→tu = u, or K = Cand σ : u 7→tu = u, or K = H and σ : u 7→tu = u,� if k = 1 and δ = 2, (K = R or K = C) and σ : u 7→ vtuv−1 with v =

„

0 −1
1 0

« i.e. σis as des
ribed in Table 1,� if k = 2 and δ = 1 i.e. A = I1 ⊕ I2 with I1 ≃ I2 ≃ K, (K = R or K = C) and
σ permutes I1 and I2. Composing possibly ϕ with a suitable automorphism of A, we getsimply σ : (a, b) 7→ (b, a).The remaining informations given in Tables 1 and 2 follow from standard 
al
ulations.We give only the following details.In Table 1, the given generators are a (pseudo-)orthogonal family of (s, 〈·, ·〉), indeed
1
d tr(L∗L) = 1

d tr(−L2) = 1
d tr(− Id) = −1 or, in 
ase (2C), 1

d tr(L∗J) = 1
d tr(−J) = 0 as Jis a 
omplex stru
ture.For the three last 
olumns of Table 2, we must 
he
k that the di�erent (para)
omplexstru
tures U announ
ed are indeed the only ones. Noti
e that if U ∈ s−, U2 = ± Id ⇔

U∗U = ∓ Id ⇒ 〈U,U〉 = ∓1.In 
ases (3), (3'), and (3C), after Proposition 1.23, the (pseudo-)Kähler manifold
(M, g, J) admits a non zero 
omplex volume form so is Ri

i �at. See also another briefproof in Theorem 3.1.Finally, in �2 are built the (non-empty) sets of germs of metri
s indu
ing ea
h 
ase, andProposition 2.4 and Remark 2.11 show Remark 1.15 above and hen
e the last assertion ofthe theorem. �1.21 Remark In Claim 3 above, the use of the Bian
hi identity, through Proposition 1.8, isne
essary. Consider the 
ase E = R

8p ≃ H
p⊕H

p and H′ := {u ∈ GLp(H)2 : u = (u1,
t u1)} ⊂

GL8p(R). Then H ′ preserves the non degenerate real quadrati
 form (x1, x2)7→
t x1.x2 on E,and its a
tion is orthogonally inde
omposable. Now gl(E)h

′
= (IdH

p .H)2 ⊂ GLp(H)2 ⊂

GL8p(R) and thus gl(E)h
′
≃ H ⊕ H.The following 
orollary of Theorem 1.10 may be noti
ed.1.22 Corollary A metri
 g admits parallel self adjoint 
omplex stru
tures exa
tly in 
ases(1C), (2C) and (3C), and they are: {±J + N ;N ∈ n0 and NJ = −JN}.10



Proof. Suppose that some J0 ∈ e+ satis�es J2
0 = − Id. Take the de
omposition J0 = S +Nwith S ∈ s+ and N ∈ n+. By Lemma 1.18, and as the minimal polynomial of J0 is

X2 + 1, irredu
ible, S2 = − Id so we are in 
ase (1C), (2C) or (3C) and S = ±J . Now
− Id = J2

0 = (J + N)2 = − Id +JN + NJ + N2. By Proposition 1.8, JN − NJ ∈ n0,so N(2J + N) = JN + NJ + N2 − (JN − NJ) = −(JN − NJ) ∈ n0. By Lemma 1.18,
((2J + N)2 + 4 Id)k = 0 for some k, so 2J + N is invertible, so N ∈ n0, and as then N2 = 0,
N ∈ {U ∈ n0;JU = −UJ}. �Finally, it may be useful to list the di�erent possible parallel tensors.1.23 Proposition In ea
h 
ase of Theorem 1.10, the metri
 admits the nondegenerateparallel multi- or sesquilinear forms of Table 3 p. 11.parallel tensor/exists in 
ases parametrised by given asPseudo-Riemannianmetri
/all 
ases U ∈ e+ r n+ g( · , U · )Symple
ti
 form/allex
ept (1) and (1C) U = V + N,

V ∈ (s−)∗, N ∈ n−
g( · , U · )�Complex Riemannian�metri
/(1C), (2C), (3C) U ∈ e+ r n+su
h that UJ = JU

g
U

=

g( · , U · ) + ig( · , JU · )Hermitian (pseudo-)Kählermetri
 w. r. to some J ∈ s−(2), (2C), (3), (3'), (3C) U ∈ e+ r n+su
h that UJ = JU
hU =

g(·, U ·) + ig(·, JU ·)

J-
omplex symple
ti
 form(2C), (3C) U = V + N,
V ∈ (s−)∗, N ∈ n−,su
h that NJ = JN

ωU =
g(·, U ·) + ig(·, JU ·)

J-
omplex symple
ti
 form(3), (3'), (3C) U = V + N,
V ∈ (s−)∗, N ∈ n−,su
h that UJ = −JU

ωU =
g(·, U ·) + ig(·, JU ·)Non null J-
omplex volumeform/(1C), (2C), (3C) asso
iated with g

U
aboveNon null J-
omplex volumeform/(3), (3'), (3C) equal to ω

∧(d/4)
U with ωU as aboveTable 3: The real and 
omplex parallel tensors existing in the di�erent 
ases. In 
ases (3),(3') and (3C), (s−)∗ is the 
omplement of the isotropi
 
one in s−. The real part of hU isa (pseudo-)Riemannian metri
, its imaginary part is a 2-form of type (1,1).Proof. Some lines of Table 3 require a brief 
he
king.(1) Any U ∈ e+ r n+ is nondegenerate. Indeed, any U ∈ s+

r {0} is (see Table 1),so its minimal polynomial µ is not divisible by X; by Lemma 1.18, neither is the minimalpolynomial of U + N for any N ∈ n.(2) If some nondegenerate alternate form is parallel for a torsion-free 
onne
tion, it is
losed, thus symple
ti
. Then pro
eed as in (1) above.(3) If J is a parallel 
omplex stru
ture (self- or skew-adjoint), nondegenerate 
omplexbilinear forms are the g(·, U ·) − ig(·, V ·) su
h that (
he
k it) ker U ∩ ker V = {0}, V = UJ ,
U∗ = U and V ∗ = V . By Proposition 1.2, the �rst 
ondition implies that U 6∈ n or V 6∈ n, soby Lemma 1.18 and the reasoning of (1), that U or V is nondegenerate, hen
e both. Now if11



J∗ = −J , the relations give that UJ = −JU and V J = −JV . As U∗ = U , by Proposition1.8, everywhere, R( · , · )(UJ − JU) = 0. As UJ − JU = 2UJ is nondegenerate, M wouldbe �at. So J∗ = J , we denote it by J . This time UJ = JU . After Table 1 and Lemma1.18, the existen
e of su
h a J leads to the announ
ed form of s+. Con
lude by the samereasoning as in (1); (4)-(6) are entirely similar.(7) If some parallel J exists, so some 
omplex Riemannian metri
 g
J
as on line 3 ofTable 3, take (ei)

d/2
i=1 some g

J
-orthonormal 
omplex frame �eld, and ν = e∗1 ∧ . . . ∧ e∗d/2. As

g
J
is parallel, so is ν. �2 The spa
e of germs of metri
s realising ea
h form of s2.1 Reminder Metri
s with s of type (1C) are the real parts of 
omplex Riemannianmetri
s i.e. of holomorphi
, non degenerate C-bilinear forms on 
omplex manifolds (M, J).It is well known and easy to 
he
k.As it is also well known, germs of (pseudo-)Kähler metri
s (type (2)) are parametrisedby a Kähler potential u, whi
h is a real fun
tion:

g

(
∂

∂zi
,

∂

∂zj

)
=

∂2u

∂zi∂zj
. (a)Similarly, germs of para Kähler metri
s (type (2')) are parametrised by a para Kählerpotential (see e.g. �2 of [1℄). The supplementary distributions ker(L ± Id) are integrable.Take ((xi)

d/2
i=1, (yi)

d/2
i=1) 
oordinates adapted to the 
orresponding pair of integral (g-isotropi
)foliations. Then the metri
s of type (2') depend on a real potential u through:

g

(
∂

∂xi
,

∂

∂yj

)
=

∂2u

∂xi∂yj
. (b)A metri
 of type (2C) is given by the 
omplexi�
ation of (a) or (b), indi�erently: take u
omplex and repla
e the real and imaginary parts of the zi, in 
ase (a), or (xi)i and (yi)i,
ase (b), by 
omplex variables.2.2 Remark Be 
areful however that a manifold (M, g) of type (2) or (2C) has to be
omplex, hen
e in parti
ular real analyti
, whereas one of type (2') may be only smooth.2.3 Remark We re
all also that the �
omplex Riemannian� metri
s de�ned in Table 3 in
ases (1C), (2C) and (3C) are holomorphi
 with respe
t to the self adjoint 
omplex stru
ture

J . Che
k that, if zj = xj + iyj are 
omplex 
oordinates, ∂
∂yj

g
k,l

= i ∂
∂xj

g
k,l

for all k, l.2.4 Proposition A generi
 metri
 of type (1), (2), (2'), (1C) or (2C) has the holonomyalgebra given in Remark 1.15. More pre
isely, if the 2-jet at the origin of some metri
 ofthe wished type satis�es some dense open 
ondition among su
h 2-jets, then its holonomyalgebra is as in Remark 1.15. In parti
ular, those holonomy groups are obtained on a denseopen subset, for the C2 topology, of the 
orresponding metri
s.Proof. It is standard, but we did not �nd any really expli
it referen
e in the literature,and we need su
h a referen
e, as we will generalise it in our work on n. Besides it is short,and makes this paper self-
ontained. So we re
all it. At the origin, take normal 
oordinateve
tors (Xi)
d
i=1, moreover su
h that Xi+1 = JXi or Xi+1 = LXi for i odd, in 
ase (2)12



or (2'). So for any 
oordinate ve
tors U, V , DUV = 0 at 0. For any 
oordinate ve
tors
A,B,U, V at the origin, g(R(A,B)U, V ) is equal to (
he
k it):

1

2

(
A.U.(g(B,V )) − B.U.(g(A,V )) − A.V.(g(B,U)) + B.V.(g(A,U))

)
.In 
ase (1), g(R(Xi,Xj)|0 · , · ) is the alternate part of the bilinear form:

βi,j : (U, V ) 7→ Xi.U.g(Xj , V ) − Xj .U.g(Xi, V ).The βi,j depend on the se
ond derivatives of the 
oe�
ients of g at 0, whi
h are free innormal 
oordinates. So, on a dense open subset of the 2-jets of metri
s, their alternate partsare linearly independent and span a d(d−1)
2 -dimensional spa
e in dim od(R) i.e. od(R) itself.In 
ase (2) we set, for j odd, Z j+1

2
= Xj − iXj+1 and Z j+1

2
= Xj + iXj+1 in T CM. The

R(Zi, Zj) and R(Zi, Zj) vanish, and the R(Zi, Zj) vanish when evaluated on Λ2T 1,0M or
Λ2T 0,1M. So R is determined at 0 by the βi,j: (Zk, Z l) 7→ g(R(Zi, Zj), Zk, Z l). As:

g(R(Zi, Zj), Zk, Z l) = 1
2 (−Zj .Zk.(g(Zi, Z l)) − Zi.Zl.(g(Zj , Zk))),

R|0 is given by the fourth derivatives of the Kähler potential u. Those are free in normal
oordinates, so on a dense open subset of the 2-jets of metri
s, the (βi,j)
d/2
i,j=1 are linearlyindependent hen
e span a (d

2

)2-dimensional spa
e in ud/2, hen
e ud/2.For (2'), repla
e (Zi, Zi)
d/2
i=1 by (Xi, Yi)

d/2
i=1, and ud/2 by gld/2(R).For types (1C) and (2C), R is J-
omplex; repeat the proofs in 
omplex 
oordinates. �Now we des
ribe the spa
e of germs of metri
s of type (3), (3') and (3C). It is 
lassi
alfor type (3) (hyperkähler), the other 
ases are an adaptation of the argument.2.5 Notation Take ε ∈ {−1, 1} and δ ∈ N

∗. We denote by Gε the set of germs at 0 oftriples (g, J, U) with g a (pseudo-)Riemannian metri
 on R
d = R

4δ and J and U two g-skewadjoint parallel endomorphisms �elds su
h that εU2 = −J2 = Id, and JU = −UJ . Wede�ne GC similarly, with g a 
omplex Riemannian metri
 on C
4δ and similar J and U (withe.g. ε = −1, but this makes no di�eren
e on C).Using Cartan-Kähler theory (see [6, 11℄), we parametrise Gε and GC in the real analyti

ategory. We pro
eed as R. Bryant did in [7℄ �2.5 pp. 122�126 for hyperkähler metri
s i.e.for ε = −1, detailing the 
al
ulations to show that the 
ase ε = 1 works alike, and to allowanother generalisation of this 
onstru
tion in our work on n. The 
omplex 
ase GC follows.This provides in parti
ular an expli
it writing of R. Bryant's line of proof given in [7℄; wedid not �nd this in the literature.2.6 Remark/Notation Let ω0 be some 
omplex symple
ti
 form on some open set O of

C
2δ. Then any 2-form ω of type (1,1), real, may be written as ω = ℑ (ω0( · , Uω · )), with

Uω an ω0-self adjoint 
omplex antimorphism �eld. The 
orresponden
e is bije
tive betweensu
h forms ω and su
h Uω, so we use this notation Uω in the following.2.7 Remark The set Gε is in bije
tion with the set G′
ε of germs of 
ouples (ω0, ω), with

ω0 a 
omplex symple
ti
 form on C2δ and ω a 
losed 2-form of type (1,1), real, su
h that
U2

ω = ε Id, through the following.� Let (g, J, U) be given. Then on C
2δ := (R4δ, J) set:

ω0 := g( · , U · ) + ig( · , JU · ) and ω := εg( · , J · ) = ℑ (ω0( · , U · )) .13



As DJ = DU = 0, immediately dω0 = dω = 0.� Let (ω0, ω) be given. Then on (R4δ , J) := (C2δ, i) set:
g := −εω( · , i · ) and U := Uω.As dω0 = dω = 0, DJ = DU = 0. This is standard, see e.g. [14℄ �11.2.In this new point of view, up to a biholomorphism of C

2δ, ω0 may be 
onsidered, by theDarboux theorem, as the 
anoni
al symple
ti
 form:
ω0 =

δ∑

j=1

dzi ∧ dzδ+i =
1

2
tdz ∧ Ω0 ∧ dz with Ω0 =

(
0 Iδ

−Iδ 0

)
,dz denoting the 
olumn (dzi)

2δ
i=1. From now on, we 
onsider that ω0 is this 
anoni
al form.Then the elements of Gε, seen up to di�eomorphism of R

4δ, are in bije
tion with those of G′
ε,seen up to symple
tomorphism of (C2δ, ω0). Now we use Cartan-Kähler theory to des
ribe

G′
ε.2.8 Notation Set V := Mat(U), U is an antimorphism so U(z) = V.z. As ω0(U · , · ) =

−ω0( · , U · ), we get Ω0V = − tV Ω0. A 2-form ω is in G′
ε if and only if it is 
losed and:

ω = ℑ(ω0( · , U · )) = 1
2i

tdz ∧ Ω0V ∧ dz with V V = ε Idi.e., setting H := −Ω0V , if and only if:
ω = i

2
tdz ∧ H ∧ dz with tH = H and HΩ0H = −εΩ0.Let Hε ⊂ M2δ(C) be the spa
e of su
h matri
es H. The (1,1)-forms ω su
h that U2

ω = ε Idare exa
tly given by the fun
tions H : C2δ → Hε, through: ωH := i
2

tdz ∧ H(z) ∧ dz.Denoting by (z,H) the points in C
2δ × Hε, su
h an ωH is 
losed if and only if the 3-form

λ := tdz ∧ dH ∧ dz vanishes along the graph S of H. So we are looking for the integralmanifolds S of the exterior di�erential system I = (λ) on C
2δ ×Hε, with the independen
e
ondition that dz1 ∧ . . . ∧ dz2δ never vanishes (i.e. S is the graph of some H : C2δ → Hε).Then the Cartan-Kähler theorem parametrises G′

ε, hen
e Gε, providing:2.9 Proposition The elements of Gε, 
onsidered up to di�eomorphism, are parametrisedby d
2 = 2δ real analyti
 fun
tions of 2δ+1 real variables. Those of GC, up to biholomorphism,are parametrised by d

4 = 2δ holomorphi
 fun
tions of 2δ + 1 
omplex variables.2.10 Remark The generality of the elements of Gε and GC ensures that their 
orrespondingalgebra s is indeed, generi
ally, in 
ases (3), (3') or (3C) (and e.g. not the full End(TM)).In fa
t, their holonomy group itself is generi
ally that of Remark 1.15, see Remark 2.11.Proof. The writing of I in C
2δ × Hε does not depend on z, so we have only to performCartan's test on some arbitrary �bre {z0} × H, say with z0 = 0. Moreover, over that point

z0, the symple
ti
 group Sp(2δ, C) a
ts transitively on { i
2

tdz∧H ∧ dz;H ∈ Hε

}, preserving
I, so we have only to perform Cartan's test at some spe
i�
 element H0 ∈ Hε, say:� if ε = −1, H0 = Ip,q,p,q = diag(Ip,−Iq, Ip,−Iq) with p + q = n,� if ε = 1, H0 = iIn,n. 14



Remark. As it appears in [7℄, the 
onne
ted 
omponent Hp,q
−1 of Ip,q,p,q in H−1 = ⊔p+q=nH

p,q
−1is 
anoni
ally isomorphi
 to Sp(n, C)/Sp(p, q). So 
hoosing some fun
tion H : C2δ → Hp,q
−1amounts to 
hoosing a redu
tion to Sp(p, q), whi
h is a real form of Sp(n, C), of the prin
ipalbundle Sp(n, C)×C2δ. Similarly here, H1 ≃ Sp(n, C)/Sp(n, R) so 
hoosing some H : C2δ →

H1 is 
hoosing a redu
tion of it to Sp(n, R), whi
h is another real form of Sp(n, C).Let us set ∂zj = ∂xj + i∂yj. If a subspa
e E of Tm0M is horizontal i.e. tangent to thefa
tor C
2δ, λ|E = 0 so E is an integral element of I. Let us de�ne (Ek)

4δ
k=0 by:

Ek = span
(
(ej)

k
j=1

) with, for 1 6 j 6 δ: ej = (∂xj, 0) and
eδ+j =

(
∂xδ+j +

j − 1

δ
∂yδ+j , 0

)
, and for 1 6 j 6 2δ: e2δ+j = (∂yj, 0) .Ea
h Ek is horizontal so (Ek)

4δ
k=0 is an integral �ag of I at m0. We 
lassi
ally set H(Ek) :={

v; span(v,Ek) is an integral element of I
}, and sk := codimH(Ek−1) H(Ek) the kth. 
har-a
ter of I (indeed this �ag is ordinary, as we will see). We will 
he
k:(1) for all k, sk = k − 1, and sk = 0 for k > 2δ + 1,(2) dim V4δ(I) > 2C3

2δ+2, with V4δ(I) the variety of integral elements of I in the grass-mannian G4δ(T (C2δ ×Hε)).After Cartan's 
riterion, dim V4δ(I) 6
∑4δ

k=1 ksk, and if equality holds then E4δ is ordi-nary. So here:
dim V4δ(I) 6

4δ∑

k=1

ksk =
2δ+1∑

k=1

k(k − 1) =
8

3
δ3 + 4δ2 +

4

3
δ = 2C3

2δ+2.As 2C3
2δ+2 6 dim V4δ(I), equality holds, hen
e E4δ is ordinary and after the Cartan-Kählertheorem, I admits an integral manifold S through (0,H0) with TS = E4δ, and the spa
e ofgerms of integral manifolds passing by z0 depends on sk fun
tions of k variables, with sk thelast non vanishing 
hara
ter, so here 2δ fun
tions of 2δ + 1 variables. This parametrisationof the set Gε is done up to the 
hoi
e of 
omplex Darboux 
oordinates for ω0, and su
h
oordinates depend on one symple
ti
 generating fun
tion of 2δ variables. As 2δ < 2δ + 1,this does not interfer and Gε itself is parametrised by 2δ fun
tions of 2δ + 1 variables, theproposition. We are left with showing (1) and (2).We introdu
e Wε := TH0Hε, then:

W1 =

{(
a b

b a

)
; a, b ∈ Mδ(C), ta = a, tb = b

}and: W−1 =

{(
a Ip,qb

bIp,q −Ip,qaIp,q

)
; a, b ∈ Mn(C), ta = a, tb = b

}
.Then Tm0Mε = T0C

2δ ⊕ Wε ≃ C
2δ ⊕ Wε and the subset of the grassmannian G4δ(Tm0M)on whi
h the independen
e 
ondition holds is 
anoni
ally identi�ed with (C2δ)∗ ⊗ Wε.(1) follows from the fa
t that for k > 2δ, H(Ek) = C

2δ ⊕ {0}, and for 1 6 k 6 δ:� H(Ek) = C
2δ ⊕ {ℑai,j = 0 for 1 6 i < j 6 k} ⊂ C

2δ ⊕ Wε, so codimH(Ek−1) H(Ek) =
k − 1,� H(En+k) = C

2δ ⊕
{
ℜai,j = ℜbi,j = 0 for 1 6 i < j 6 k and ℑbk,j + k−1

δ ℜbk,j = 0 for
k 6 j 6 δ

}
⊂ C2δ ⊕ Wε, so codimH(Eδ+k−1) H(Eδ+k) = δ + k − 1.15



To 
he
k (2), we introdu
e some notation. We denote the basis ve
tors (∂xi)
2δ
i=1 of C

2δby ((ui)
k
i=1, (u

′
i)

k
i=1) (the ui and u′

i are ω0-dual), then (∂yi)
2δ
i=1 = ((Jui)

k
i=1, (Ju′

i)
k
i=1). We de-note by H(1) a generi
 element of (C2δ)∗⊗Wε. If a fun
tion H : C

2δ → Hε with H(0) = H0 issu
h that dH|0 = H(1), then, at 0, dωH is determined by dωH = λ|m0
(H(1) · ,H(1) · ,H(1) · ),that we denote by λH(1) . In 
on
rete terms, for the 
al
ulations below, λH(1)(u, v,w) is equalto:

ω0

(
u,H(1)(v).w

)
+ ω0

(
v,H(1)(w).u

)
+ ω0

(
w,H(1)(u).v

)
.At (0,H0), V4δ(I) is the set of the 1-jets of 
losed 2-forms ωH as wanted. An H(1) is in

V4δ(I) if and only if λH(1) = 0, whi
h may be written as the two following 
onditions:(a) for any three {u, v,w} ⊂ {ui, Jui}
k
i=1, λH(1)(u(′), v(′), w(′)) = 0,(b) for any two {u, v} ⊂ {ui, Jui}

k
i=1,

λH(1)(u, u′, v(′)) = λH(1)(v, v′, u(′)) = 0.The parenthesised primes enable to denote several equations at on
e, so (a) 
onsists of 8C3
2δequations and (b) of 4C2

2δ . Now the equations of (a) are redundant. Indeed the reader may
he
k the following. Take any H(1) and any {i, j, k} ⊂ J1, δK and {α, β, γ} ⊂ {0, 1} su
h that
♯{Jαui, J

βuj , J
γuk} = 3 (so, C3

2δ possibilities). Set (u, v,w) := (Jαui, J
βuj , J

γuk) and, in
ase ε = 1, η1 := (−1)γ−β , η2 := (−1)α−γ and η3 := (−1)β−α, and in 
ase ε = −1, η1 :=
(−1)γ−β(−1)χ{k6p}+χ{j6p} , η2 := (−1)α−γ(−1)χ{i6p}+χ{k6p} , η3 := (−1)β−α(−1)χ{j6p}+χ{i6p} .We denote by χP the 
hara
teristi
 fun
tion of the set P , equal to 1 on P and null else-where. Expli
itly, χ{i6p} + χ{j6p} is even if and only if (i, j) ⊂ J1, pK2 ∪ Jp + 1, δK2. Thenthe following sets of relations (say respe
tively (i), (ii), (iii) and (iv)) hold.





η1λH(1)(u′, v, w) + η2λH(1)(u, v′, w)
+η3λH(1)(u, v,w′) + ελH(1)(u′, v′, w′) = 0

η1λH(1)(Ju′, v, w) + η2λH(1)(u, Jv′, w)
+η3λH(1)(u, v, Jw′) + ελH(1)(Ju′, Jv′, Jw′) = 0

η1λH(1)(u, v′, w′) + η2λH(1)(u′, v, w′)
+η3λH(1)(u′, v′, w) + ελH(1)(u, v,w) = 0

η1λH(1)(u, Jv′, Jw′) + η2λH(1)(Ju′, v, Jw′)
+η3λH(1)(Ju′, Jv′, w) + ελH(1)(u, v,w) = 0.So the 8C3

2δ linear forms of the type H(1) 7→ λH(1)((J)u(′), (J)v(′), (J)w(′)) are linearly depen-dent, through the 4C3
2δ equations above. In turn, those equations are linearly independent.Counting the number of primes appearing in them, one sees that equations of types (i)�(ii)on the one hand, and types (iii)�(iv) on the other hand, span subspa
es in dire
t sum. Nowany dependen
e relation would involve some �xed triple (i, j, k). For su
h a triple, equationsof type (i) may be seen as expressing the forms H(1) 7→ λH(1)((J)u′

i, (J)u′
j , (J)u′

k) as 
ombi-nation of the other ones, and then equations of type (i)�(ii), doing the same with the forms
H(1) 7→ λH(1)((J)u′

i, (J)uj , (J)uk). Equations of types (iii)�(iv) are similar, so all the 4C3
2δequations are independent, and the 8C3

2δ forms span a spa
e of dimension 6 8C3
2δ − 4C3

2δ =
4C3

2δ . So (a) and (b) 
onsist of not more than 4C3
2δ +4C2

2δ = 4C3
2δ+1 independent equations,so dim V4δ(I) > dim[C2δ ⊗ Wε] − 4C3

2δ+1 = (4δ).(2δ2 + δ) − 4C3
2δ+1 = 2C3

2δ+2. This is (2).We �nally treat GC. In all that pre
edes, see all 
omplex variables x+iy as real matri
es
„

x y
−y x

«. Then, 
omplexifying everything i.e. repla
ing the real entries x, y by 
omplexnumbers amounts to parametrise GC; so the same reasoning gives the proposition for GC.�16



2.11 Important Remark Among real analyti
 germs of metri
s with holonomy H in-
luded in H0 = Sp(p, q), H0 = Sp(2δ, R) or H0 = Sp(2δ, C), 
orresponding to 
ases (3), (3')and (3C), a dense open subset for the C2 topology has its holonomy equal to H0. Indeed, the�rst prolongation I
(1) of the ideal I satis�es also Cartan's 
riterion; this enables to show thatany 2-jet of metri
, integrable at the order 1 and su
h that {R(X,Y );X,Y ∈ T0M} ⊂ h0,is the 2-jet of a metri
 with holonomy in
luded in H0. The reasoning is presented, in the
ase H = G2, in Proposition 3 p. 556 of [5℄. It may be adapted here, as indi
ated in [7℄ �2.5p. 126. So as, among su
h 2-jets, those satisfying {R(X,Y );X,Y ∈ T0M} = h0 are generi
,we get the result.3 Parallel endomorphisms and Ri

i 
urvatureThe Ri

i form ric( · , J · ) has remarkable properties on Kähler manifolds. Let us determinethe properties of the 
orresponding forms when g admits other parallel endomorphism �eldsthan a Kähler stru
ture.3.1 Theorem Suppose U is a parallel endomorphism �eld for a pseudo-Riemanian metri


g; (a, b) denote any two tangent ve
tors at some point.(i) If U is self adjoint:a) ric(a,Ub) = ric(Ua, b) = tr(U(R(a, ·)b)); U and R(a, ·)b 
ommute,b) (standard result) if U = J is a 
omplex stru
ture, g is the real part of the J-
omplexmetri
 gC := g(·, ·) − ig(·, J ·), and the Ri

i 
urvature of gC is ricC = ric(·, ·) − i ric(·, J ·),
) if U =N 6= 0 is nilpotent, ri
 is degenerate and Im N ⊂ ker ric.(ii) If U is skew adjoint:a) ric(a,Ub) = − ric(Ua, b) = 1
2 tr(U ◦ R(a, b)),b) if U =N 6= 0 is nilpotent, ri
 is degenerate and Im N ⊂ ker ric,
) if V is another skew symmetri
 parallel endomorphism with V U = −UV , and if Uand V are invertible, then ric = 0. So (standard result) 
ases (3), (3'), (3C) of Theorem1.10 are Ri

i-�at.Proof. Take U self adjoint, then the whole of a) follows from Remark 1.9. Point b) isstandard and for 
), after a), ric(a,Nb) = tr(N(R(a, ·)b)), and as N and R(a, ·)b 
ommute,their produ
t is also nilpotent, so tra
e free. Now take U skew adjoint.

ric(a,Ub) = tr(R(a, ·)Ub)

= tr(U(R(a, ·)b)) as U , being parallel, 
ommutes with R(a, ·),
= tr(R(a,U ·)b) as tr(UV ) = tr(V U),
= − tr(R(Ua, ·)b).For the last line, take any u, v, w: g(R(Ua, u)v,w) = g(R(v,w)Ua, u) = g(UR(v,w)a, u) =

−g(R(v,w)a,Uu) = −g(R(a,Uu)v,w). So �nally, ric(a,Ub) = − ric(Ua, b). Besides:
ric(Ua, b) = ric(b, Ua)

= tr(U(R(b, ·)a))

= − tr(U(R(·, a)b)) − tr(U(R(a, b)·)) by the Bian
hi identity,
= tr(R(a, ·, )Ub) − tr(U ◦ R(a, b)) as U 
ommutes with
= ric(a,Ub) − tr(U ◦ R(a, b)). R(a, ·) = −R(·, a),17



As ric(Ua, b) = − ric(a,Ub), we get a). Point b) follows: ric(a,Nb) = 1
2 tr(N ◦ R(a, b)) = 0as N ◦ R(a, b) = R(a, b) ◦ N is nilpotent. Point 
) is only a way to re-�nd that ric = 0in 
ases (3), (3'), (3C), using a). Indeed, if U and V are as announ
ed, any b 
an bewritten b = UV c, and: ric(a, b) = ric(a,UV c) = − ric(Ua, V c) = −1
2 tr(V ◦ R(Ua, c)) =

1
2 tr(V ◦ R(a,Uc)) = ric(a, V Uc) = − ric(a,UV c) = − ric(a, b). �3.2 Corollary Let Ric be the endomorphism su
h that ric = g( · ,Ric · ). If the metri
 isinde
omposable (in a lo
al Riemannian produ
t) and su
h that ric is parallel, then Ric iseither semi-simple or 2-step nilpotent.Proof. As g is inde
omposable, the minimal polynomial of Ric is of the form Pα with Pirredu
tible, see Claim 1 p. 8 in the proof of Theorem 1.10. So Ric is either invertible ornilpotent. Apply Theorem 3.1 (i) 
) to the nilpotent part NRic of Ric: if Ric is invertible,
ker ric = {0} so NRic = 0, else Ric2 = N2

Ric = 0. We re-�nd here the result of [3℄. �Referen
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