
THE ALGEBRA OF PARALLEL ENDOMORPHISMS OF APSEUDO-RIEMANNIAN METRIC: SEMI-SIMPLE PARTCharles Boubel1November 29th. 2013Abstrat. On a (pseudo-)Riemannian manifold (M, g), some �elds of endomorphismsi.e. setions of End(TM) may be parallel for g. They form an assoiative algebra e,whih is also the ommutant of the holonomy group of g. As any assoiative algebra, eis the sum of its radial and of a semi-simple algebra s. Here we study s: it may be ofeight di�erent types, inluding the generi type s = R Id, and the Kähler and hyperkählertypes s ≃ C and s ≃ H. This is a result on real, semi-simple algebras with involution.For eah type, the orresponding set of germs of metris is non-empty; we parametrise it.We give the onstraints imposed to the Rii urvature by parallel endomorphism �elds.Keywords: Pseudo-Riemannian, Kähler, hyperkähler, parakähler metris, holonomygroup, parallel endomorphism, nilpotent endomorphism, ommutant, Rii urvature,real algebra with involution, semi-simple assoiative algebra.M.S.C. 2010: 53B30, 53C29, 16K20, 16W10 seondary 53B35, 53C10, 53C12, 15A21.We lassify here the germs of (pseudo-)Riemannian metri, after the semi-simple part oftheir algebra of parallel endomorphism �elds. Our motivation is the following.Motivation. A Kähler metri g on some manifold M may be de�ned as a Riemannianmetri admitting an almost omplex struture J whih is parallel: DJ = 0 with D the Levi-Civita onnetion of g. A natural question is to ask whether other �elds of endomorphisms,i.e. setions of End(TM), may be parallel for a Riemannian metri. The answer is nearlyimmediate. First, one restrits the study to metris that do not split into a non trivialRiemannian produt, alled here �indeomposable�. Otherwise, any parallel endomorphism�eld is the diret sum of parallel suh �elds on eah fator (onsidering as a unique fatorthe possible �at fator). Then a brief reasoning ensures that only three ases our: gmay be generi i.e. admit only the homotheties as parallel endomorphisms, be Kähler, orbe hyperkähler i.e. admit two (hene three) antiommuting parallel omplex strutures.The brevity of this list is due to a simple fat: the ation of the holonomy group H of anindeomposable Riemannian metri is irreduible i.e. does not stabilise any proper subspae.In partiular, this ompels any parallel endomorphism �eld to be of the form λ Id +µJ with
J some parallel, skew adjoint almost omplex struture. Now, suh irreduibility fails ingeneral for an indeomposable pseudo-Riemannian metri, so that a misellany of otherparallel endomorphism �elds may appear. This gives rise to the question handled here:Whih (algebra of) parallel endomorphism �elds may a pseudo-Riemannian metri admit ?The interest of this question lies also in the following. When studying the holonomyof indeomposable pseudo-Riemannian metris, the irreduible ase may be exhaustivelytreated: the full list of possible groups, together with the orresponding spaes of germs ofmetris (and possibly ompat examples) may be provided. After a long story that we donot reall here, this has been done, even for germs of arbitrary torsion free a�ne onnetions,see e.g. the surveys [7, 15℄. Yet, in general, the representation of H may be non-semi-simple1Institut de Reherhe Mathématique Avanée, UMR 7501 � Université de Strasbourg et CNRS, 7 rueRené Desartes, 67084 STRASBOURG CEDEX, FRANCE



and suh an exhaustive answer is out of reah, exept perhaps in very low dimension, seee.g. the already long list of possible groups in dimension four in [1, 10℄. Thus, intermediatequestions are needed: not aiming at the full lassi�ation, but still signi�ant; see e.g. [9℄ fora survey of suh works. Investigating the ommutant End(TmM)H of H at some point m of
M, instead of H itself � that is to say studying the algebra of parallel endomorphisms �is suh a question. One may also notie that determining all the parallel tensors, not onlythe endomorphisms, would mean determining the algebrai losure of the holonomy group
H. So this work is a step towards this.Now, as any assoiative algebra, End(TmM)H lassially splits into a sum s ⊕ n with sa semi-simple subalgebra � in general not anonial, but its isomorphism lass is � and
n := Rad(End(TmM)H) a nilpotent ideal, its radial. The study of s and n involve verydi�erent methods, and eah of them is a work in itself. This artile is devoted to s; we dealwith n in [2℄ and other future works. The interest of this artile is that:We deal with indeomposable metris the holonomy group of whih is never supposed tobe irreduible or totally reduible.As it is lassial in holonomy problems, the question is twofold: (i) Whih algebras sare possible ? (ii) By whih sets of metris are they produed ? We will handle both,restraining ourselves, for point (ii), to the �rst natural step i.e. to germs of metris.Contents and struture of the artile. Let (M, g) be a (pseudo-)Riemannian manifoldof dimension d, H its holonomy group, H0 the neutral omponent of H and m ∈ M.In Part 1, we introdue the deomposition End(TmM)H = s⊕n in �1.1 and some naturalobjets assoiated with a reduible holonomy representation in �1.2, together with a simplebut remarkable ommutation property in End(TmM)H , Proposition 1.8. In �1.3, we giveour main theorem: s may be of eight di�erent types, inluding the generi, Kähler andhyperkähler types s = R Id, s ≃ C and s ≃ H. See Theorem 1.10 p. 5 and Tables 1 and 2 fordetails. In the �ve non-Riemannian ases, the metri has neessarily a �neutral� signature
(d
2 , d

2) and s ontains a �parakähler� struture L i.e. a g-skew adjoint automorphism suhthat TM = ker(N −Id)⊕ker(N +Id). That is linear algebra: the lassi�ation of some semisimple, g-self adjoint subalgebras of gl(Rd), see Remark 1.12. We also give two orollaries.In Part 2, to show that eah type given by Theorem 1.10 ours, we do a little more:we parametrise the set of germs of metris in eah of them (expliitly, or via Cartan-Kählertheory). Here we adapt a lassial proof the line of whih is given by R. Bryant in [7℄ � inpartiular, in the Riemannian ase, this provides an expliit writing of this proof.In Part 3, we give the onsequenes of the existene of any type of parallel endomor-phisms on the Rii urvature. They are quite simple, hene very remarkable.General setting and some general notation. Here M is a simply onneted manifoldof dimension d and g a Riemannian or pseudo-Riemannian metri on it, whose holonomyrepresentation does not stabilise any nondegenerate subspae, that is to say does not split inan orthogonal sum of subrepresentations. In partiular, g does not split into a Riemannianprodut. We set H ⊂ SO0(TmM, g|m) the holonomy group of g at m and h its Lie algebra.AsM is supposed to be simply onneted, we deal everywhere with h, forgetting H. Let e bethe algebra End(TmM)h of the parallel endomorphisms of g � to ommute with h amountsto extend as a parallel �eld �; it is isomorphi to some subalgebra of Md(R)h. Notie that
e is stable by g-adjuntion, whih we denote by σ : a 7→ a∗. If A is an algebra and B ⊂ A,2



we denote by 〈B〉, (B), and AB the algebra, respetively the ideal, spanned by B, and theommutant of B in A. When lower ase letters: xi, yi et. stand for loal oordinates, theorresponding upper ase letters: Xi, Yi et. stand for the orresponding oordinate vetor�elds. Viewing vetor �elds X as derivations, we denote Lie derivatives LXu also by X.u.The matrix diag(Ip,−Iq) ∈ Mp+q(R) is denoted by Ip,q, „

0 −Ip

Ip 0

«

∈ M2p(R) by Jp and
„

0 Ip

Ip 0

«

∈ M2p(R) by Lp. If V is a vetor spae of even dimension d, we reall that an
L ∈ End(V ) is alled paraomplex if L2 = Id with dim ker(L − Id) = dim ker(L + Id) = d

2 .Finally, take A ∈ Γ(End(TM)), paraomplex i.e. suh that dimker(N−Id) = dim ker(N+
Id) = d

2 . If it is integrable i.e. if its matrix is onstant in well-hosen loal oordinates, we allit a �paraomplex struture�, like a omplex struture, as opposed to an almost omplex one.Aknoledgements. I thank M. Brion for a few ruial piees of information and referenesin Algebra, P. Baumann for his availability and for the referenes he indiated to me. Ithank M. Audin, P. Mounoud and P. Py for their omments on the writing of ertain partsof the manusript.1 The algebra e = End(TM)H and its semi-simple part s1.1 The deomposition e = s⊕ n of e in a semi-simple part and its radialFirst we need to reall some fats and set some notation. All the results invoked are lassialfor �nite dimensional assoiative algebras; we state them for a unital real algebra A.1.1 Notation If A is a subset of an algebra, A∗ ⊂ A denotes here the subset of its invertibleelements. If σ is an involutive anti morphism of A, then A± = {U ∈ A;σ(A) = ±A} denotesthe subspae of its self adjoint or skew adjoint elements.1.2 Reminder An algebra A is said to be nilpotent if Ak, the algebra spanned by theproduts of k elements of A, is {0} for some k. In partiular, the elements of a nilpotentsubalgebra of Mn(R) are simultaneously stritly upper triangular in some well-hosen basis.1.3 De�nition (See [8℄ �25 or [12℄) The radial Rad A of A is the intersetion of its maximalideals. It is a nilpotent ideal. Equivalently, it is the sum of the nilpotent ideals of A. Thealgebra A is said to be simple if its only proper ideal is {0}, and semi-simple if its radial is
{0} � so a simple algebra is semi-simple, and A/Rad(A) is semi-simple.The deomposition e = s ⊕ n is provided by the following lassial result. The lastassertion is a re�nement due to Taft [16, 17℄. I thank P. Baumann for this referene.1.4 Theorem [Wedderburn � Malčev℄ (see [8℄ �72) Let A be a �nite dimensional R-algebra. Then there exists a semi-simple algebra AS in A suh that A = AS ⊕ Rad(A). Ifmoreover A is endowed with an involutive anti-morphism σ, then AS may be hosen σ-stable.1.5 Notation We set n = Rad e. Being the unique maximal nilpotent ideal of e, n is selfadjoint i.e. stable by g-adjuntion. We take s ≃ e/n some self adjoint semi-simple subalgebraof e provided by Theorem 1.4.
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1.2 Some natural objets assoiated with a reduible holonomy represen-tation; a �quasi-ommutation� property1.6 Remark/Notation We denote by E0 = ∩W∈hker W the (possibly trivial) maximalsubspae of TmM on whih the holonomy group H ats trivially. As TmM is H-orthogonallyindeomposable, E0 is totally isotropi. We set n0 = {N ∈ e ; Im N ⊂ E0}; as the ationsof H and e on TmM ommute, n0 is an ideal of e, moreover self adjoint. So, for any
x, y ∈ TmM, and any N,N ′ ∈ n0, g(N ′Nx, y) = g(Nx,N ′∗y) ∈ g(E0, E0) = {0}, so
N ′N = 0 i.e. n2

0 = {0}.1.7 Remark/Notation The algebra e is naturally endowed with the bilinear symmetriform 〈U, V 〉 = 1
d tr(U∗V ). By Reminder 1.2, n ⊂ ker(〈 · , · 〉). If moreover e admits some selfadjoint omplex struture J , and denoting by eJ the J-omplex algebra {U ∈ e ; UJ = JU},then eJ is endowed with the omplex form 〈U, V 〉J = 1

d (tr(U∗V ) − i tr(U∗JV )).The following proposition is the key of most steps of the lassi�ation 1.10. As it is alsoworth to be notied by itself, we state it apart, here.1.8 Proposition Let U, V be in e and m be any point of M. Then , if U is self adjoint,then for any x, y ∈ TmM, R(x, y)(UV − V U) = 0. Consequently, UV − V U ∈ n0. Inpartiular, in ase E0 = ∩W∈hker W = {0}, all self adjoint elements of e are entral in e.Proposition 1.8 rests on the following remark.1.9 Reminder/Remark We will need the following remark. The Bianhi identity impliesthat, at any point m ∈ M and for any x, y, z, t ∈ TmM, g(R(x, y)z, t) = g(R(z, t)x, y). Thisholds also for any, possibly degenerate, bilinear form g′, parallel with respet to the LeviCivita onnetion of g. The proof does not need nondegeneray, see e.g. Lemma 9.3 in [13℄.So if U is a parallel self adjoint endomorphism, R(Ux, y)z = R(x,Uy)z = R(x, y)Uz. The�rst equality is lassial. For the seond one, take t any fourth vetor and denote by gU thebilinear form = g( · , U · ), whih is parallel, as U is, and symmetri, as U∗ = U . Then:
g(R(x,Uy)z, t) = g(R(z, t)x,Uy) applying the relation to g,

= gU (R(z, t)x, y)

= gU (R(x, y)z, t) applying the relation to gU ,
= g(R(x, y)Uz, t) as U∗ = U , being parallel,ommutes with R(x, y). �Proof of Proposition 1.8. Take U, V ∈ e with U∗ = U and x, y, z, t ∈ TmM. The bilinearform gU := g( · , U · ) is parallel, as U is.

g(R(x, y)z, V Ut)

=g(R(x, y)V ∗z, Ut) as, V ∗, parallel, ommuteswith R(x, y),
=g(R(x,Uy)V ∗z, t) by Remark 1.9, applied to U ,
=g(R(x,Uy)z, V t) as, V ∗ ommutes with R(x, y),
=g(R(x, y)z, UV t) again by Remark 1.9, so the result. �
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1.3 The eight possible forms of sThe types given by Theorem 1.10 are known, but not in full generality for type (3') i.e.with the orresponding set of germs of metris learly stated, and exept (3C) whih I neverenountered expliitly. So Theorem 1.10 loses the list, may the ation of H be totallyreduible or not. The proof rests on the lassial Wedderburn-Artin and Skolem Noethertheorems, and then is elementary. Remark 1.15 below gives the generi holonomy grouporresponding to eah ase of the theorem.1.10 Theorem The algebra s is of one of the following types, where J , J , and L denoterespetively self adjoint omplex strutures and skew adjoint omplex and paraomplexstrutures. Eah ase is preisely desribed in Tables 1 p. 7 and 2 p. 8, whih are part ofthe theorem.(1) generi, s = vect(Id).(1C) �omplex Riemannian� , s = vect(Id, J). Here d > 4 is even, sign(g) = (d
2 , d

2), (M,
J, g(·, ·) − ig(·, J ·)) is omplex Riemannian for a unique omplex struture in s, up to sign.(2) (pseudo-)Kähler, s = vect(Id, J). Here d is even and (M, J, g) is (pseudo-)Kähler,for a unique omplex struture in s, up to sign.(2') parakähler, s = vect(Id, L). Here d is even, sign(g) = (d

2 , d
2), (M, L, g) is parakähler,for a unique paraomplex struture in s, up to sign.(2C) �omplex Kähler� , s = vect(Id, J, L, J). Here d ∈ 4N∗, sign(g) = (d

2 , d
2) and

(M, J , J, L, g) is at one omplex Riemannian, pseudo-Kähler, and parakähler, on a uniqueway in s, up to sign of eah struture.(3) (pseudo-)hyperkähler, s = vect(Id, J1, J2, J3). Here d ∈ 4N
∗, (M, J1, J2, g) is (pseu-do-)hyperkähler, the set of Kähler strutures in s being a 2-dimensional submanifold.(3') �para-hyperkähler� , s = vect(Id, J, L1, L2). Here d ∈ 4N∗, sign(g) = (d

2 , d
2) and

(M, J, L1, g) is at one pseudo-Kähler and parakähler, the set of omplex and of paraomplexstrutures in s being eah a 2-dimensional submanifold.(3C) �omplex hyperkähler� , s = vect(Id, J , J, L1, L2, JJ, JL1, JL2) Here d ∈ 8N
∗,

sign(g) = (d
2 , d

2 ) and (M, g) is at one omplex Riemannian (on a unique way up to signin s), and pseudo-Kähler and parakähler. The sets of pseudo- or parakähler strutures are2-dimensional J-omplex submanifolds of s.Eah type is produed by a non-empty set of germs of metris. On a dense open subsetof them, for the C2 topology, the holonomy group of the metri is the ommutant SO0(g)sof s in SO0(g).1.11 Remark The fat that the set of germs of metris in eah ase is non-empty is well-known, exept perhaps for types (3') and (3C). In all ases, �2 gives their parametrisation.1.12 Remark In fat, we proved the following result in plain linear algebra. If g is a(pseudo-)Eulidean produt on R
d and A a semi-simple, g-self adjoint subalgebra of gl(Rd),whose ation on Rd is indeomposable (in an orthogonal sum), then A is one of the eightalgebras of Theorem 1.10 or the algebra A ≃ H ⊕ H of Remark 1.21.1.13 Notation If G is a subgroup of GLd(K), we denote here by V its standard represen-tation in K

d. We denote then by V
∗ : g 7→ (λ 7→ λ ◦ g−1) its ontragredient representationin (Kd)∗ and, if K = C, by V

∗ the omplex onjugate of it.5



1.14 Remark In ases (2'), (2C), (3') and (3C), the existene of a paraomplex struture
L splits TM = ker(L− Id)⊕ker(L+Id) = V ⊕V ′ into a sum of two totally isotropi fators,and the morphism ♭ given by the metri identi�es V ′ with V ∗. Then, H is isomorphi to asubgroup [H] of GLd/2(K), the holonomy representation being V⊕V

∗, if K = R, or V⊕V
∗,if K = C, on ker(L − Id) ⊕ ker(L + Id). Matriially:

H :=

{(
U 0

0 t
( )

U
−1

)
, U ∈ [H]

}
;so if K = R, H ⊂ SO0(d

2 , d
2) and if K = C, H ⊂ U(d

2 , d
2).1.15 Remark For s of eah type, we sum up here: the possible signature(s) of g, the groupin whih H (possibly identi�ed with [H], see Rem. 1.14) is inluded, and to whih it isgenerially equal (proof in �2), and the representation of H or [H]. Notie that eah time,this group is also the ommutant of s in SO0(g). See Notation 1.13 for V.(1) (1C) (2) (2') (2C) (3) (3') (3C)

(p, q) (p, p) (2p, 2q) (p, p) (2p, 2p) (4p, 4q) (2p, 2p) (4p, 4p)SO0(p, q) SO(p, C) U(p, q) GL0(p, R) GL(p, C) Sp(p, q) Sp(2p, R) Sp(2p, C)

V V V V ⊕ V
∗

V ⊕ V
∗

V V ⊕ V
∗

V ⊕ V
∗1.16 Remark In Theorem 1.10, the new ases with respet to the Riemannian frameworkour only for metris g of signature (d

2 , d
2

).1.17 Remark [Justi�ation of the labels in Theorem 1.10℄ The generi holonomygroups orresponding to s of types (1C), (2C) and (3C) are omplexi�ation of those orre-sponding to s of respetive types (1), ((2) or (2')), and ((3) or (3')). Besides, if you onsiderthe di�erent types in a omprehensive sense, type (2) e.g. meaning only �H ⊂ U(p, q)�, andso on, you obtain the following inlusion diagram:PSfrag replaements (1) (1C)(2) (2') (2C)(3) (3') (3C) where the strokes denote theinlusion of the set of metrisbelow into the one above.This justi�es our notation. Another point of view is the following. Suppose that g is areal analyti germ of metri at m. Then h is generated by {DkR(u1, . . . , uk+2), (ui)
k+2
i=1 ∈

TmM}, the urvature tensors at m and their ovariant derivatives at all orders. So theomplexi�ation gC of the germ g has H ⊗ C as holonomy group. Thus here, if g is �oftype (1)�, respetively ((2) or (2')), or ((3) or (3')), its omplexi�ation is �of type (1C)�,respetively (2C) and (3C).1.18 Lemma Take U ∈ e and N ∈ n, µ the minimal polynomial of U and µ′ that of U +N .Then any irreduible fator of µ is also in µ′, and vie versa.Proof. µ(U + N) = µ(U) + NV = NV with V some polynomial in U and N . As n is anideal, NV ∈ n and by Proposition 1.2, NV is nilpotent. So for some k ∈ N, (µk)(U +N) = 0i.e. µ′|µk. Symmetrially, ∃l ∈ N∗ : µ|µ′l, so the result. �6



(1) (1C) (2) (2′) (2C)
R ⊂ R,

R
1,0 ⊂ R

1,0
C ⊂ C,

R
1,1 ⊂ R

1,1
R ⊂ C,

R
1,0 ⊂ R

2,0
R.(1, 1) ⊂ R ⊕ R,

R
1,0 ⊂ R

1,1
C.(1, 1) ⊂ C ⊕ C,

R
1,1 ⊂ R

2,2

〈 〉 〈J〉 〈J〉 〈L〉
〈J,L, J |
J ∈ Z(s),

LJ = JL = J〉

∅ {i} {i} {(1,−1)}
{(i, i), (1,−1),

(i,−i)}

Id IdC z 7→ z (a, b) 7→ (b, a) (a, b) 7→ (b, a)In ase (2C), viewed as a J-omplex algebra, s = 〈L〉 is given as in (2').(3) (3′) (3C) (3C), s given as
R ⊂ H,

R1,0 ⊂ R4,0
R.I2 ⊂ M2(R),

R1,0 ⊂ R2,2
C.I2 ⊂ M2(C),

R1,1 ⊂ R4,4
a J-omplexalgebra

〈J1, J2, J3 |
J[i]J[i+1] = J[i+2],

JiJi′ = −Ji′Ji〉

〈L1, L2, J |
J = −L1L2

= L2L1,
L1 = L2J = −JL2,
L2 = JL1 = −L1J〉

〈J,L1, L2, J |
J ∈ Z(s),

J = −L1L2

= L2L1,
L1 = L2J = −JL2,
L2 = JL1 = −L1J〉

〈L1, L2, L3 |
iL[i]L[i+1]

= L[i+2],

L[i]L[i′]

= −L[i′]L[i]〉the anonial
{i, j, k} ⊂ H

{
„

1 0
0 −1

«

,
„

0 1
1 0

«

,
„

0 −1
1 0

«

}

{
iI2,

„

1 0
0 −1

«

,
„

0 1
1 0

«

,
„

0 −1
1 0

«

}

{
„

1 0
0 −1

«

,
„

0 1
1 0

«

,
„

0 −i
i 0

«

}

z 7→ z(quaternionionjugation) „

a b

c d

«

7→

„

d −b

−c a

«i.e. transpose ofthe omatrix idem idemTable 1: Theorem 1.10 summed up in a table. We give on eah line:� s+ ⊂ s as an inlusion of algebras, then of (pseudo-)eulidian spaes for 〈·, ·〉; R
a,b means

(Ra+b, 〈·, ·〉) with sign(〈·, ·〉) = (a, b),� s as a unital R-algebra generated by 〈·, ·〉-orthogonal omplex and paraomplex strutures,� the orresponding generators of A,� the antimorphism of A onjugated to the adjuntion of s.All letters J denote omplex strutures, and L paraomplex ones. All are g-skew adjoint,exept the g-self adjoint underlined J . Braketed indies [i] denote indies modulo 3.Proof of Theorem 1.10. We denote TmM by E in this proof. We �rst state the announedlassial results in assoiative algebra.1.19 Theorem [Wedderburn � Artin℄ (see [12℄ �3, p. 40). Let A be a �nite dimensionalsemi-simple R-algebra. Then A is isomorphi to a diret sum of matrix algebras:
A ≃

k
⊕
i=1

Mdi
(Ki)with for eah i, di ∈ N∗ and Ki ∈ {R, C, H}.1.20 Theorem [orollary of a theorem of Skolem � Noether℄ (see [4℄ �10, no. 1). Let

θ be an automorphism of a �nite dimensional semi-simple R-algebra A. If θ ats triviallyon the enter of A, θ is interior. 7



dimM, sign(g) Matries, in a well-hosen basis(1) any, any Mat(g) = Ip,q(1C) d = 2p, (p, p) Mat(g) = Ip,p, Mat(J) = Jp(2)d = 2p + 2q, (2p, 2q) Mat(g) = diag(Ip,q, Ip,q), Mat(J) = Jd/2(2') d = 2p, (p, p) Mat(g) = Ip,p, Mat(L) = Lp
[1℄(2C) d = 4p,

(2p, 2p)
Mat(g) = L2p, Mat(L) = I2p,2p, Mat(J) = diag(Jp,−Jp)(3) d ∈ 4N

∗,
(4p, 4q),

p + q = d
4

Mat(g) = diag(Ip,q, Ip,q, Ip,q, Ip,q), Mat(J2) = Jd/2,

Mat(J1) = diag(−Jd/4, Jd/4), Mat(J3) =

(
0 Jd/4

Jd/4 0

)(3') d = 4p
(2p, 2p)

Mat(g) = I2p,2p, Mat(L1) = L2p

Mat(J) = diag(−Jp, Jp)
[2℄, Mat(L2) =

(
0 −Jp

Jp 0

)(3C) d = 8p
(4p, 4p)

Mat(g) = diag(I2p,2p,−I2p,2p), Mat(J) = diag(J2p, J2p),
Mat(J) = diag(Jp, Jp,−Jp,−Jp), Mat(L1) = L4p

Mat(L2) =

(
0

− diag(Jp, Jp)
diag(Jp, Jp)

0

)[1℄ or e.g.: Mat(g) = Lp, Mat(L) = Ip,p.[2℄ or e.g.: Mat(g) = L2p, Mat(L1) = I2p,2p, Mat(J) =

(
0 Jp

Jp 0

)
.(1) (1C) (2) (2') (2C) (3) (3') (3C)�Complex Riemannian�strutures ∅ {±J} ∅ ∅ {±J} ∅ ∅ {±J}Kähler strutures ∅ ∅ {±J} ∅ {±J} [3℄ [4℄ [6℄para Kähler strutures ∅ ∅ ∅ {±L} {±L} ∅ [5℄ [7℄[3℄the 2-sphere {αJ1 + βJ2 + γJ3;α

2 + β2 + γ2 = 1} = {U ; 〈U,U〉 = 1}[4℄the two-sheet hyperboloid
{αL1 + βL2 + γJ ;α2 + β2 − γ2 = −1} = {U ; 〈U,U〉 = 1}[5℄the one-sheet hyperboloid
{αL1 + βL2 + γJ ;α2 + β2 − γ2 = 1} = {U ; 〈U,U〉 = −1}[6℄the proper quadri with entre {U ; 〈U,U〉J = 1} =
{αL1 + βL2 + γJ ;α = α′ + α′′J et. α2 + β2 − γ2 = −1}[7℄the proper quadri with entre {U ; 〈U,U〉J = −1} =
{αL1 + βL2 + γJ ;α = α′ + α′′J et. α2 + β2 − γ2 = 1}Cases (3), (3'), and (3C) imply that the metri is Rii-�at.Table 2: Th. 1.10 in a matriial form, with the (para)omplex strutures.As g is orthogonally indeomposable, then if it is �at, dimM = 1 and s = e = R Id isof type (1). We now suppose that g is not �at. The list 1.10 follows from the orthogonalindeomposability of the ation of h, through the laim below. The elimination of only onepossible form for s will also require, through Proposition 1.8, the fat that h is a holonomyalgebra i.e. from the Bianhi identity satis�ed by the urvature tensor.Claim 1. If p ∈ e is self adjoint, its minimal polynomial µp(X) is of the form Qα with Qirreduible � so if p is not invertible, it is nilpotent.Proof. The minimal polynomial reads µp(X) =

∏N
i=1 Qαi

i with irreduible Qi's. As p isself adjoint, the diret sum E = ⊕N
i=1 ker Qαi(p) is g-orthogonal. As p ∈ End(E)h, eah8



ker Qαi(p) is h-stable. Now E is indeomposable, so N = 1 and the laim.By 1.4, e = s ⊕ n where n = Rad(e) and s is a semi-simple, self adjoint subalgebra of
e. As n is the intersetion of the maximal ideals of e and as the adjuntion σ is an anti-morphism, n is also self adjoint. So 1.19 gives an isomorphism ϕ : s

≃
−→ A with A = ⊕k

i=1Iiand Ii = Mδi
(Ki), Ki ∈ {R, C, H}. By a slight abuse, we also denote by σ the onjugateation ϕ ◦ σ ◦ ϕ−1 of σ on A.Claim 2. k 6 2. If k = 2, then σ(I1) = I2. We then denote the δi by δ and the Ki by K.Proof. Let us denote by 1 the unit matrix of any fator of A. As an (anti) automorphismof A, σ ats on the fators Ii of A, permuting them. Take p = (1, 0, . . . , 0) ∈ A. As p2 = p,

ϕ−1(p) is a (non zero) projetion, so by Claim 1, either ϕ−1(p) = 1e and thus k = 1, or
σ(p) 6= p. In the latter ase, σ(I1) 6= I1. Take p′ = p + σ(p). It is self adjoint by onstru-tion, and p′2 = p2 + σ(p)2 = p + σ(p2) = p′ so it is a (non zero) projetion. By Claim 1,
ϕ−1(p′) = 1e so A = I1 ⊕ σ(I1) and then k = 2.Claim 3. If k = 2, then δ = 1 and K = R or K = C.Proof. Suppose k = 2. Take p = (diag(1, 0, . . . , 0), 0) ∈ A and p′ = p + σ(p). By the samereasoning as above, ϕ−1(p′) is a non zero self ajoint projetion so p′ = 1A by Claim 1. Asthe I1-omponent of σ(p) is zero, then in fat p = (1, 0) and σ(p) = (0, 1); in partiular
diag(1, 0, . . . , 0) = 1I1 i.e. δ = 1. Now Proposition 1.8 implies K 6= H. Indeed, suppose that
K = H, denote by i and j two of the three anonial roots of −1 in H, take m ∈ M and
x, y ∈ TmM. Set I = ϕ−1(i, 0) and J = ϕ−1(j, 0) in e = ϕ−1(H ⊕ H). Notie that the I1omponent of σ((i, 0)) is zero, so I∗J = 0, similarly IJ∗ = 0. By onstrution, I + I∗ is selfadjoint, so:

R(x, y).(I + I∗)(J + J∗) = R(x, y).(J + J∗)(I + I∗) by Proposition 1.8,
= R(x, y).(JI + J∗I∗)

= −R(x, y).(IJ + I∗J∗) as in H, ji = −ij,
= −R(x, y).(I + I∗)(J + J∗).So R(x, y).(I +I∗)(J +J∗) = 0. Now (I +I∗)(J +J∗) = IJ +(IJ)∗ = ϕ−1((ij, 0)+σ((ij, 0)))is invertible, so for any m ∈ M and any x, y ∈ TmM, R(x, y) = 0 i.e. (M, g) is �at, inontradition with s ≃ H ⊕ H.Let us suppose k = 1 and �nish the proof. Let τ be the transposition u 7→t u in

A ≃ Mδ(K), and τ its omposition u 7→tu with the onjugation, in ase K ∈ {C, H}. Thenfor K ∈ {R, C}, respetively K ∈ {C, H}, τ , respetively τ , is an anti-morphism (of R-algebra) of A. So either τ ◦ σ or τ ◦ σ is an automorphism of A and, for K ∈ {R, H}, it atstrivially on the enter Z(A) as Z(A) = K.Iδ. If K = C, either σ ◦ τ or σ ◦ τ ats trivially onthe enter Z(A) = C.Iδ. Then Theorem 1.20 gives a v ∈ A suh that σ : u 7→ vtũv−1 with
ũ = u if K = R, ũ = u if K = H and ũ = u or ũ = u if K = C. As σ2 = Ide, vtṽ−1 ∈ Z(A)i.e. tṽ = λv with λ ∈ R if K ∈ {R, H} and λ ∈ C if K = C. Applying τ̃ on both sides, weget that λ = ±1 (in the ase K = C and ũ = u, we get only |λ| = 1, but replaing v by anadequate element of C.v ahieves even λ = 1).If we replae ϕ by cw ◦ ϕ with cw : u 7→ w−1uw, then v is replaed by wvtw̃ i.e. vundergoes a basis hange like the matrix of a bilinear or -̃sesquilinear form. So using asuitable cw, and realling that tṽ = λv with λ = ±1, we may suppose:9



� in ase λ = 1, that v = diag(Iδ′ ,−Iδ′′) with δ′ + δ′′ = δ if K = R or (K ∈ {C, H} and
ũ = u), and that v = Iδ if (K = C and ũ = u),� in ase λ = −1, that δ is even and v =

„

0 −Iδ/2

Iδ/2 0

« if (K ∈ {R, C} and ũ = u), andthat v = Iδ.i if K = H.Now all ases where v is diagonal imply δ = 1. Indeed, if v = diag(Iδ′ ,−Iδ′′) or v = Iδ,set p = diag(1, 0, . . . , 0), and if K = H and v = Iδ.i, set p = diag(j, 0, . . . , 0). Then
p is self adjoint, non nilpotent, so p = 1A or p = 1A.j by Claim 1 i.e. δ = 1. So if
δ > 2, then K ∈ {R, C}, λ = −1, ũ = u, δ is even and v =

„

0 −Iδ/2

Iδ/2 0

«. Setting
p′ = diag(1, 0, . . . , 0) ∈ Mδ/2(K) we get p = diag(p′, p′) a self adjoint non nilpotent elementof A, so p is invertible by Claim 1 i.e. δ′ = 1 i.e. δ = 2. So the only allowed ases are thoselisted in 1.10:� if k = 1 and δ = 1, K = R and σ : u 7→tu = u, or K = C and σ : u 7→tu = u, or K = Cand σ : u 7→tu = u, or K = H and σ : u 7→tu = u,� if k = 1 and δ = 2, (K = R or K = C) and σ : u 7→ vtuv−1 with v =

„

0 −1
1 0

« i.e. σis as desribed in Table 1,� if k = 2 and δ = 1 i.e. A = I1 ⊕ I2 with I1 ≃ I2 ≃ K, (K = R or K = C) and
σ permutes I1 and I2. Composing possibly ϕ with a suitable automorphism of A, we getsimply σ : (a, b) 7→ (b, a).The remaining informations given in Tables 1 and 2 follow from standard alulations.We give only the following details.In Table 1, the given generators are a (pseudo-)orthogonal family of (s, 〈·, ·〉), indeed
1
d tr(L∗L) = 1

d tr(−L2) = 1
d tr(− Id) = −1 or, in ase (2C), 1

d tr(L∗J) = 1
d tr(−J) = 0 as Jis a omplex struture.For the three last olumns of Table 2, we must hek that the di�erent (para)omplexstrutures U announed are indeed the only ones. Notie that if U ∈ s−, U2 = ± Id ⇔

U∗U = ∓ Id ⇒ 〈U,U〉 = ∓1.In ases (3), (3'), and (3C), after Proposition 1.23, the (pseudo-)Kähler manifold
(M, g, J) admits a non zero omplex volume form so is Rii �at. See also another briefproof in Theorem 3.1.Finally, in �2 are built the (non-empty) sets of germs of metris induing eah ase, andProposition 2.4 and Remark 2.11 show Remark 1.15 above and hene the last assertion ofthe theorem. �1.21 Remark In Claim 3 above, the use of the Bianhi identity, through Proposition 1.8, isneessary. Consider the ase E = R

8p ≃ H
p⊕H

p and H′ := {u ∈ GLp(H)2 : u = (u1,
t u1)} ⊂

GL8p(R). Then H ′ preserves the non degenerate real quadrati form (x1, x2)7→
t x1.x2 on E,and its ation is orthogonally indeomposable. Now gl(E)h

′
= (IdH

p .H)2 ⊂ GLp(H)2 ⊂

GL8p(R) and thus gl(E)h
′
≃ H ⊕ H.The following orollary of Theorem 1.10 may be notied.1.22 Corollary A metri g admits parallel self adjoint omplex strutures exatly in ases(1C), (2C) and (3C), and they are: {±J + N ;N ∈ n0 and NJ = −JN}.10



Proof. Suppose that some J0 ∈ e+ satis�es J2
0 = − Id. Take the deomposition J0 = S +Nwith S ∈ s+ and N ∈ n+. By Lemma 1.18, and as the minimal polynomial of J0 is

X2 + 1, irreduible, S2 = − Id so we are in ase (1C), (2C) or (3C) and S = ±J . Now
− Id = J2

0 = (J + N)2 = − Id +JN + NJ + N2. By Proposition 1.8, JN − NJ ∈ n0,so N(2J + N) = JN + NJ + N2 − (JN − NJ) = −(JN − NJ) ∈ n0. By Lemma 1.18,
((2J + N)2 + 4 Id)k = 0 for some k, so 2J + N is invertible, so N ∈ n0, and as then N2 = 0,
N ∈ {U ∈ n0;JU = −UJ}. �Finally, it may be useful to list the di�erent possible parallel tensors.1.23 Proposition In eah ase of Theorem 1.10, the metri admits the nondegenerateparallel multi- or sesquilinear forms of Table 3 p. 11.parallel tensor/exists in ases parametrised by given asPseudo-Riemannianmetri/all ases U ∈ e+ r n+ g( · , U · )Sympleti form/allexept (1) and (1C) U = V + N,

V ∈ (s−)∗, N ∈ n−
g( · , U · )�Complex Riemannian�metri/(1C), (2C), (3C) U ∈ e+ r n+suh that UJ = JU

g
U

=

g( · , U · ) + ig( · , JU · )Hermitian (pseudo-)Kählermetri w. r. to some J ∈ s−(2), (2C), (3), (3'), (3C) U ∈ e+ r n+suh that UJ = JU
hU =

g(·, U ·) + ig(·, JU ·)

J-omplex sympleti form(2C), (3C) U = V + N,
V ∈ (s−)∗, N ∈ n−,suh that NJ = JN

ωU =
g(·, U ·) + ig(·, JU ·)

J-omplex sympleti form(3), (3'), (3C) U = V + N,
V ∈ (s−)∗, N ∈ n−,suh that UJ = −JU

ωU =
g(·, U ·) + ig(·, JU ·)Non null J-omplex volumeform/(1C), (2C), (3C) assoiated with g

U
aboveNon null J-omplex volumeform/(3), (3'), (3C) equal to ω

∧(d/4)
U with ωU as aboveTable 3: The real and omplex parallel tensors existing in the di�erent ases. In ases (3),(3') and (3C), (s−)∗ is the omplement of the isotropi one in s−. The real part of hU isa (pseudo-)Riemannian metri, its imaginary part is a 2-form of type (1,1).Proof. Some lines of Table 3 require a brief heking.(1) Any U ∈ e+ r n+ is nondegenerate. Indeed, any U ∈ s+

r {0} is (see Table 1),so its minimal polynomial µ is not divisible by X; by Lemma 1.18, neither is the minimalpolynomial of U + N for any N ∈ n.(2) If some nondegenerate alternate form is parallel for a torsion-free onnetion, it islosed, thus sympleti. Then proeed as in (1) above.(3) If J is a parallel omplex struture (self- or skew-adjoint), nondegenerate omplexbilinear forms are the g(·, U ·) − ig(·, V ·) suh that (hek it) ker U ∩ ker V = {0}, V = UJ ,
U∗ = U and V ∗ = V . By Proposition 1.2, the �rst ondition implies that U 6∈ n or V 6∈ n, soby Lemma 1.18 and the reasoning of (1), that U or V is nondegenerate, hene both. Now if11



J∗ = −J , the relations give that UJ = −JU and V J = −JV . As U∗ = U , by Proposition1.8, everywhere, R( · , · )(UJ − JU) = 0. As UJ − JU = 2UJ is nondegenerate, M wouldbe �at. So J∗ = J , we denote it by J . This time UJ = JU . After Table 1 and Lemma1.18, the existene of suh a J leads to the announed form of s+. Conlude by the samereasoning as in (1); (4)-(6) are entirely similar.(7) If some parallel J exists, so some omplex Riemannian metri g
J
as on line 3 ofTable 3, take (ei)

d/2
i=1 some g

J
-orthonormal omplex frame �eld, and ν = e∗1 ∧ . . . ∧ e∗d/2. As

g
J
is parallel, so is ν. �2 The spae of germs of metris realising eah form of s2.1 Reminder Metris with s of type (1C) are the real parts of omplex Riemannianmetris i.e. of holomorphi, non degenerate C-bilinear forms on omplex manifolds (M, J).It is well known and easy to hek.As it is also well known, germs of (pseudo-)Kähler metris (type (2)) are parametrisedby a Kähler potential u, whih is a real funtion:

g

(
∂

∂zi
,

∂

∂zj

)
=

∂2u

∂zi∂zj
. (a)Similarly, germs of para Kähler metris (type (2')) are parametrised by a para Kählerpotential (see e.g. �2 of [1℄). The supplementary distributions ker(L ± Id) are integrable.Take ((xi)

d/2
i=1, (yi)

d/2
i=1) oordinates adapted to the orresponding pair of integral (g-isotropi)foliations. Then the metris of type (2') depend on a real potential u through:

g

(
∂

∂xi
,

∂

∂yj

)
=

∂2u

∂xi∂yj
. (b)A metri of type (2C) is given by the omplexi�ation of (a) or (b), indi�erently: take uomplex and replae the real and imaginary parts of the zi, in ase (a), or (xi)i and (yi)i,ase (b), by omplex variables.2.2 Remark Be areful however that a manifold (M, g) of type (2) or (2C) has to beomplex, hene in partiular real analyti, whereas one of type (2') may be only smooth.2.3 Remark We reall also that the �omplex Riemannian� metris de�ned in Table 3 inases (1C), (2C) and (3C) are holomorphi with respet to the self adjoint omplex struture

J . Chek that, if zj = xj + iyj are omplex oordinates, ∂
∂yj

g
k,l

= i ∂
∂xj

g
k,l

for all k, l.2.4 Proposition A generi metri of type (1), (2), (2'), (1C) or (2C) has the holonomyalgebra given in Remark 1.15. More preisely, if the 2-jet at the origin of some metri ofthe wished type satis�es some dense open ondition among suh 2-jets, then its holonomyalgebra is as in Remark 1.15. In partiular, those holonomy groups are obtained on a denseopen subset, for the C2 topology, of the orresponding metris.Proof. It is standard, but we did not �nd any really expliit referene in the literature,and we need suh a referene, as we will generalise it in our work on n. Besides it is short,and makes this paper self-ontained. So we reall it. At the origin, take normal oordinatevetors (Xi)
d
i=1, moreover suh that Xi+1 = JXi or Xi+1 = LXi for i odd, in ase (2)12



or (2'). So for any oordinate vetors U, V , DUV = 0 at 0. For any oordinate vetors
A,B,U, V at the origin, g(R(A,B)U, V ) is equal to (hek it):

1

2

(
A.U.(g(B,V )) − B.U.(g(A,V )) − A.V.(g(B,U)) + B.V.(g(A,U))

)
.In ase (1), g(R(Xi,Xj)|0 · , · ) is the alternate part of the bilinear form:

βi,j : (U, V ) 7→ Xi.U.g(Xj , V ) − Xj .U.g(Xi, V ).The βi,j depend on the seond derivatives of the oe�ients of g at 0, whih are free innormal oordinates. So, on a dense open subset of the 2-jets of metris, their alternate partsare linearly independent and span a d(d−1)
2 -dimensional spae in dim od(R) i.e. od(R) itself.In ase (2) we set, for j odd, Z j+1

2
= Xj − iXj+1 and Z j+1

2
= Xj + iXj+1 in T CM. The

R(Zi, Zj) and R(Zi, Zj) vanish, and the R(Zi, Zj) vanish when evaluated on Λ2T 1,0M or
Λ2T 0,1M. So R is determined at 0 by the βi,j: (Zk, Z l) 7→ g(R(Zi, Zj), Zk, Z l). As:

g(R(Zi, Zj), Zk, Z l) = 1
2 (−Zj .Zk.(g(Zi, Z l)) − Zi.Zl.(g(Zj , Zk))),

R|0 is given by the fourth derivatives of the Kähler potential u. Those are free in normaloordinates, so on a dense open subset of the 2-jets of metris, the (βi,j)
d/2
i,j=1 are linearlyindependent hene span a (d

2

)2-dimensional spae in ud/2, hene ud/2.For (2'), replae (Zi, Zi)
d/2
i=1 by (Xi, Yi)

d/2
i=1, and ud/2 by gld/2(R).For types (1C) and (2C), R is J-omplex; repeat the proofs in omplex oordinates. �Now we desribe the spae of germs of metris of type (3), (3') and (3C). It is lassialfor type (3) (hyperkähler), the other ases are an adaptation of the argument.2.5 Notation Take ε ∈ {−1, 1} and δ ∈ N

∗. We denote by Gε the set of germs at 0 oftriples (g, J, U) with g a (pseudo-)Riemannian metri on R
d = R

4δ and J and U two g-skewadjoint parallel endomorphisms �elds suh that εU2 = −J2 = Id, and JU = −UJ . Wede�ne GC similarly, with g a omplex Riemannian metri on C
4δ and similar J and U (withe.g. ε = −1, but this makes no di�erene on C).Using Cartan-Kähler theory (see [6, 11℄), we parametrise Gε and GC in the real analytiategory. We proeed as R. Bryant did in [7℄ �2.5 pp. 122�126 for hyperkähler metris i.e.for ε = −1, detailing the alulations to show that the ase ε = 1 works alike, and to allowanother generalisation of this onstrution in our work on n. The omplex ase GC follows.This provides in partiular an expliit writing of R. Bryant's line of proof given in [7℄; wedid not �nd this in the literature.2.6 Remark/Notation Let ω0 be some omplex sympleti form on some open set O of

C
2δ. Then any 2-form ω of type (1,1), real, may be written as ω = ℑ (ω0( · , Uω · )), with

Uω an ω0-self adjoint omplex antimorphism �eld. The orrespondene is bijetive betweensuh forms ω and suh Uω, so we use this notation Uω in the following.2.7 Remark The set Gε is in bijetion with the set G′
ε of germs of ouples (ω0, ω), with

ω0 a omplex sympleti form on C2δ and ω a losed 2-form of type (1,1), real, suh that
U2

ω = ε Id, through the following.� Let (g, J, U) be given. Then on C
2δ := (R4δ, J) set:

ω0 := g( · , U · ) + ig( · , JU · ) and ω := εg( · , J · ) = ℑ (ω0( · , U · )) .13



As DJ = DU = 0, immediately dω0 = dω = 0.� Let (ω0, ω) be given. Then on (R4δ , J) := (C2δ, i) set:
g := −εω( · , i · ) and U := Uω.As dω0 = dω = 0, DJ = DU = 0. This is standard, see e.g. [14℄ �11.2.In this new point of view, up to a biholomorphism of C

2δ, ω0 may be onsidered, by theDarboux theorem, as the anonial sympleti form:
ω0 =

δ∑

j=1

dzi ∧ dzδ+i =
1

2
tdz ∧ Ω0 ∧ dz with Ω0 =

(
0 Iδ

−Iδ 0

)
,dz denoting the olumn (dzi)

2δ
i=1. From now on, we onsider that ω0 is this anonial form.Then the elements of Gε, seen up to di�eomorphism of R

4δ, are in bijetion with those of G′
ε,seen up to sympletomorphism of (C2δ, ω0). Now we use Cartan-Kähler theory to desribe

G′
ε.2.8 Notation Set V := Mat(U), U is an antimorphism so U(z) = V.z. As ω0(U · , · ) =

−ω0( · , U · ), we get Ω0V = − tV Ω0. A 2-form ω is in G′
ε if and only if it is losed and:

ω = ℑ(ω0( · , U · )) = 1
2i

tdz ∧ Ω0V ∧ dz with V V = ε Idi.e., setting H := −Ω0V , if and only if:
ω = i

2
tdz ∧ H ∧ dz with tH = H and HΩ0H = −εΩ0.Let Hε ⊂ M2δ(C) be the spae of suh matries H. The (1,1)-forms ω suh that U2

ω = ε Idare exatly given by the funtions H : C2δ → Hε, through: ωH := i
2

tdz ∧ H(z) ∧ dz.Denoting by (z,H) the points in C
2δ × Hε, suh an ωH is losed if and only if the 3-form

λ := tdz ∧ dH ∧ dz vanishes along the graph S of H. So we are looking for the integralmanifolds S of the exterior di�erential system I = (λ) on C
2δ ×Hε, with the independeneondition that dz1 ∧ . . . ∧ dz2δ never vanishes (i.e. S is the graph of some H : C2δ → Hε).Then the Cartan-Kähler theorem parametrises G′

ε, hene Gε, providing:2.9 Proposition The elements of Gε, onsidered up to di�eomorphism, are parametrisedby d
2 = 2δ real analyti funtions of 2δ+1 real variables. Those of GC, up to biholomorphism,are parametrised by d

4 = 2δ holomorphi funtions of 2δ + 1 omplex variables.2.10 Remark The generality of the elements of Gε and GC ensures that their orrespondingalgebra s is indeed, generially, in ases (3), (3') or (3C) (and e.g. not the full End(TM)).In fat, their holonomy group itself is generially that of Remark 1.15, see Remark 2.11.Proof. The writing of I in C
2δ × Hε does not depend on z, so we have only to performCartan's test on some arbitrary �bre {z0} × H, say with z0 = 0. Moreover, over that point

z0, the sympleti group Sp(2δ, C) ats transitively on { i
2

tdz∧H ∧ dz;H ∈ Hε

}, preserving
I, so we have only to perform Cartan's test at some spei� element H0 ∈ Hε, say:� if ε = −1, H0 = Ip,q,p,q = diag(Ip,−Iq, Ip,−Iq) with p + q = n,� if ε = 1, H0 = iIn,n. 14



Remark. As it appears in [7℄, the onneted omponent Hp,q
−1 of Ip,q,p,q in H−1 = ⊔p+q=nH

p,q
−1is anonially isomorphi to Sp(n, C)/Sp(p, q). So hoosing some funtion H : C2δ → Hp,q
−1amounts to hoosing a redution to Sp(p, q), whih is a real form of Sp(n, C), of the prinipalbundle Sp(n, C)×C2δ. Similarly here, H1 ≃ Sp(n, C)/Sp(n, R) so hoosing some H : C2δ →

H1 is hoosing a redution of it to Sp(n, R), whih is another real form of Sp(n, C).Let us set ∂zj = ∂xj + i∂yj. If a subspae E of Tm0M is horizontal i.e. tangent to thefator C
2δ, λ|E = 0 so E is an integral element of I. Let us de�ne (Ek)

4δ
k=0 by:

Ek = span
(
(ej)

k
j=1

) with, for 1 6 j 6 δ: ej = (∂xj, 0) and
eδ+j =

(
∂xδ+j +

j − 1

δ
∂yδ+j , 0

)
, and for 1 6 j 6 2δ: e2δ+j = (∂yj, 0) .Eah Ek is horizontal so (Ek)

4δ
k=0 is an integral �ag of I at m0. We lassially set H(Ek) :={

v; span(v,Ek) is an integral element of I
}, and sk := codimH(Ek−1) H(Ek) the kth. har-ater of I (indeed this �ag is ordinary, as we will see). We will hek:(1) for all k, sk = k − 1, and sk = 0 for k > 2δ + 1,(2) dim V4δ(I) > 2C3

2δ+2, with V4δ(I) the variety of integral elements of I in the grass-mannian G4δ(T (C2δ ×Hε)).After Cartan's riterion, dim V4δ(I) 6
∑4δ

k=1 ksk, and if equality holds then E4δ is ordi-nary. So here:
dim V4δ(I) 6

4δ∑

k=1

ksk =
2δ+1∑

k=1

k(k − 1) =
8

3
δ3 + 4δ2 +

4

3
δ = 2C3

2δ+2.As 2C3
2δ+2 6 dim V4δ(I), equality holds, hene E4δ is ordinary and after the Cartan-Kählertheorem, I admits an integral manifold S through (0,H0) with TS = E4δ, and the spae ofgerms of integral manifolds passing by z0 depends on sk funtions of k variables, with sk thelast non vanishing harater, so here 2δ funtions of 2δ + 1 variables. This parametrisationof the set Gε is done up to the hoie of omplex Darboux oordinates for ω0, and suhoordinates depend on one sympleti generating funtion of 2δ variables. As 2δ < 2δ + 1,this does not interfer and Gε itself is parametrised by 2δ funtions of 2δ + 1 variables, theproposition. We are left with showing (1) and (2).We introdue Wε := TH0Hε, then:

W1 =

{(
a b

b a

)
; a, b ∈ Mδ(C), ta = a, tb = b

}and: W−1 =

{(
a Ip,qb

bIp,q −Ip,qaIp,q

)
; a, b ∈ Mn(C), ta = a, tb = b

}
.Then Tm0Mε = T0C

2δ ⊕ Wε ≃ C
2δ ⊕ Wε and the subset of the grassmannian G4δ(Tm0M)on whih the independene ondition holds is anonially identi�ed with (C2δ)∗ ⊗ Wε.(1) follows from the fat that for k > 2δ, H(Ek) = C

2δ ⊕ {0}, and for 1 6 k 6 δ:� H(Ek) = C
2δ ⊕ {ℑai,j = 0 for 1 6 i < j 6 k} ⊂ C

2δ ⊕ Wε, so codimH(Ek−1) H(Ek) =
k − 1,� H(En+k) = C

2δ ⊕
{
ℜai,j = ℜbi,j = 0 for 1 6 i < j 6 k and ℑbk,j + k−1

δ ℜbk,j = 0 for
k 6 j 6 δ

}
⊂ C2δ ⊕ Wε, so codimH(Eδ+k−1) H(Eδ+k) = δ + k − 1.15



To hek (2), we introdue some notation. We denote the basis vetors (∂xi)
2δ
i=1 of C

2δby ((ui)
k
i=1, (u

′
i)

k
i=1) (the ui and u′

i are ω0-dual), then (∂yi)
2δ
i=1 = ((Jui)

k
i=1, (Ju′

i)
k
i=1). We de-note by H(1) a generi element of (C2δ)∗⊗Wε. If a funtion H : C

2δ → Hε with H(0) = H0 issuh that dH|0 = H(1), then, at 0, dωH is determined by dωH = λ|m0
(H(1) · ,H(1) · ,H(1) · ),that we denote by λH(1) . In onrete terms, for the alulations below, λH(1)(u, v,w) is equalto:

ω0

(
u,H(1)(v).w

)
+ ω0

(
v,H(1)(w).u

)
+ ω0

(
w,H(1)(u).v

)
.At (0,H0), V4δ(I) is the set of the 1-jets of losed 2-forms ωH as wanted. An H(1) is in

V4δ(I) if and only if λH(1) = 0, whih may be written as the two following onditions:(a) for any three {u, v,w} ⊂ {ui, Jui}
k
i=1, λH(1)(u(′), v(′), w(′)) = 0,(b) for any two {u, v} ⊂ {ui, Jui}

k
i=1,

λH(1)(u, u′, v(′)) = λH(1)(v, v′, u(′)) = 0.The parenthesised primes enable to denote several equations at one, so (a) onsists of 8C3
2δequations and (b) of 4C2

2δ . Now the equations of (a) are redundant. Indeed the reader mayhek the following. Take any H(1) and any {i, j, k} ⊂ J1, δK and {α, β, γ} ⊂ {0, 1} suh that
♯{Jαui, J

βuj , J
γuk} = 3 (so, C3

2δ possibilities). Set (u, v,w) := (Jαui, J
βuj , J

γuk) and, inase ε = 1, η1 := (−1)γ−β , η2 := (−1)α−γ and η3 := (−1)β−α, and in ase ε = −1, η1 :=
(−1)γ−β(−1)χ{k6p}+χ{j6p} , η2 := (−1)α−γ(−1)χ{i6p}+χ{k6p} , η3 := (−1)β−α(−1)χ{j6p}+χ{i6p} .We denote by χP the harateristi funtion of the set P , equal to 1 on P and null else-where. Expliitly, χ{i6p} + χ{j6p} is even if and only if (i, j) ⊂ J1, pK2 ∪ Jp + 1, δK2. Thenthe following sets of relations (say respetively (i), (ii), (iii) and (iv)) hold.





η1λH(1)(u′, v, w) + η2λH(1)(u, v′, w)
+η3λH(1)(u, v,w′) + ελH(1)(u′, v′, w′) = 0

η1λH(1)(Ju′, v, w) + η2λH(1)(u, Jv′, w)
+η3λH(1)(u, v, Jw′) + ελH(1)(Ju′, Jv′, Jw′) = 0

η1λH(1)(u, v′, w′) + η2λH(1)(u′, v, w′)
+η3λH(1)(u′, v′, w) + ελH(1)(u, v,w) = 0

η1λH(1)(u, Jv′, Jw′) + η2λH(1)(Ju′, v, Jw′)
+η3λH(1)(Ju′, Jv′, w) + ελH(1)(u, v,w) = 0.So the 8C3

2δ linear forms of the type H(1) 7→ λH(1)((J)u(′), (J)v(′), (J)w(′)) are linearly depen-dent, through the 4C3
2δ equations above. In turn, those equations are linearly independent.Counting the number of primes appearing in them, one sees that equations of types (i)�(ii)on the one hand, and types (iii)�(iv) on the other hand, span subspaes in diret sum. Nowany dependene relation would involve some �xed triple (i, j, k). For suh a triple, equationsof type (i) may be seen as expressing the forms H(1) 7→ λH(1)((J)u′

i, (J)u′
j , (J)u′

k) as ombi-nation of the other ones, and then equations of type (i)�(ii), doing the same with the forms
H(1) 7→ λH(1)((J)u′

i, (J)uj , (J)uk). Equations of types (iii)�(iv) are similar, so all the 4C3
2δequations are independent, and the 8C3

2δ forms span a spae of dimension 6 8C3
2δ − 4C3

2δ =
4C3

2δ . So (a) and (b) onsist of not more than 4C3
2δ +4C2

2δ = 4C3
2δ+1 independent equations,so dim V4δ(I) > dim[C2δ ⊗ Wε] − 4C3

2δ+1 = (4δ).(2δ2 + δ) − 4C3
2δ+1 = 2C3

2δ+2. This is (2).We �nally treat GC. In all that preedes, see all omplex variables x+iy as real matries
„

x y
−y x

«. Then, omplexifying everything i.e. replaing the real entries x, y by omplexnumbers amounts to parametrise GC; so the same reasoning gives the proposition for GC.�16



2.11 Important Remark Among real analyti germs of metris with holonomy H in-luded in H0 = Sp(p, q), H0 = Sp(2δ, R) or H0 = Sp(2δ, C), orresponding to ases (3), (3')and (3C), a dense open subset for the C2 topology has its holonomy equal to H0. Indeed, the�rst prolongation I
(1) of the ideal I satis�es also Cartan's riterion; this enables to show thatany 2-jet of metri, integrable at the order 1 and suh that {R(X,Y );X,Y ∈ T0M} ⊂ h0,is the 2-jet of a metri with holonomy inluded in H0. The reasoning is presented, in thease H = G2, in Proposition 3 p. 556 of [5℄. It may be adapted here, as indiated in [7℄ �2.5p. 126. So as, among suh 2-jets, those satisfying {R(X,Y );X,Y ∈ T0M} = h0 are generi,we get the result.3 Parallel endomorphisms and Rii urvatureThe Rii form ric( · , J · ) has remarkable properties on Kähler manifolds. Let us determinethe properties of the orresponding forms when g admits other parallel endomorphism �eldsthan a Kähler struture.3.1 Theorem Suppose U is a parallel endomorphism �eld for a pseudo-Riemanian metri

g; (a, b) denote any two tangent vetors at some point.(i) If U is self adjoint:a) ric(a,Ub) = ric(Ua, b) = tr(U(R(a, ·)b)); U and R(a, ·)b ommute,b) (standard result) if U = J is a omplex struture, g is the real part of the J-omplexmetri gC := g(·, ·) − ig(·, J ·), and the Rii urvature of gC is ricC = ric(·, ·) − i ric(·, J ·),) if U =N 6= 0 is nilpotent, ri is degenerate and Im N ⊂ ker ric.(ii) If U is skew adjoint:a) ric(a,Ub) = − ric(Ua, b) = 1
2 tr(U ◦ R(a, b)),b) if U =N 6= 0 is nilpotent, ri is degenerate and Im N ⊂ ker ric,) if V is another skew symmetri parallel endomorphism with V U = −UV , and if Uand V are invertible, then ric = 0. So (standard result) ases (3), (3'), (3C) of Theorem1.10 are Rii-�at.Proof. Take U self adjoint, then the whole of a) follows from Remark 1.9. Point b) isstandard and for ), after a), ric(a,Nb) = tr(N(R(a, ·)b)), and as N and R(a, ·)b ommute,their produt is also nilpotent, so trae free. Now take U skew adjoint.

ric(a,Ub) = tr(R(a, ·)Ub)

= tr(U(R(a, ·)b)) as U , being parallel, ommutes with R(a, ·),
= tr(R(a,U ·)b) as tr(UV ) = tr(V U),
= − tr(R(Ua, ·)b).For the last line, take any u, v, w: g(R(Ua, u)v,w) = g(R(v,w)Ua, u) = g(UR(v,w)a, u) =

−g(R(v,w)a,Uu) = −g(R(a,Uu)v,w). So �nally, ric(a,Ub) = − ric(Ua, b). Besides:
ric(Ua, b) = ric(b, Ua)

= tr(U(R(b, ·)a))

= − tr(U(R(·, a)b)) − tr(U(R(a, b)·)) by the Bianhi identity,
= tr(R(a, ·, )Ub) − tr(U ◦ R(a, b)) as U ommutes with
= ric(a,Ub) − tr(U ◦ R(a, b)). R(a, ·) = −R(·, a),17



As ric(Ua, b) = − ric(a,Ub), we get a). Point b) follows: ric(a,Nb) = 1
2 tr(N ◦ R(a, b)) = 0as N ◦ R(a, b) = R(a, b) ◦ N is nilpotent. Point ) is only a way to re-�nd that ric = 0in ases (3), (3'), (3C), using a). Indeed, if U and V are as announed, any b an bewritten b = UV c, and: ric(a, b) = ric(a,UV c) = − ric(Ua, V c) = −1
2 tr(V ◦ R(Ua, c)) =

1
2 tr(V ◦ R(a,Uc)) = ric(a, V Uc) = − ric(a,UV c) = − ric(a, b). �3.2 Corollary Let Ric be the endomorphism suh that ric = g( · ,Ric · ). If the metri isindeomposable (in a loal Riemannian produt) and suh that ric is parallel, then Ric iseither semi-simple or 2-step nilpotent.Proof. As g is indeomposable, the minimal polynomial of Ric is of the form Pα with Pirredutible, see Claim 1 p. 8 in the proof of Theorem 1.10. So Ric is either invertible ornilpotent. Apply Theorem 3.1 (i) ) to the nilpotent part NRic of Ric: if Ric is invertible,
ker ric = {0} so NRic = 0, else Ric2 = N2
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