On the holonomy of Lorentzian metrics

Charles Boubel!

Abstract. Indecomposable Lorentzian holonomy algebras, except so(n,1) and {0}, are not semi-
simple; they possibly belong to four families of algebras. All four families are realized as families of
holonomy algebras: we describe the corresponding set of germs of metrics in each case.

Résumeé. Les algébres d’holonomie lorentziennes indécomposables, exceptées so(n, 1) et {0}, ne sont
pas semi-simples. Elles se classent en quatre familles possibles. Ces quatre familles sont effectivement
réalisées commes familles d’algébres d’holonomie : nous décrivons, pour chacune d’elles, I’ensemble
correspondant de germes de métriques.

1 Introduction

In [BBI93|, L. Bérard Bergery and A. Ikemakhen showed that four families of linear repre-
sentations may be realized as the holonomy representation of an indecomposable Lorentzian
manifold. All four types are realized as such holonomy representations: we express each of
them as a differential condition on the germ of metric. This is Theorem 5.14, proven thanks
to some “adapted” coordinates built by Theorem 3.7. It follows a parametrization of the set
of germs of metrics in each case. In this introduction we recall the context of the question
and its motivation; §2 recalls precisely the result of [BBI93] and adjacent remarks. Then §3
presents the adapted coordinates and §4 builts them; §5 states the main theorem, proven
then in §6. In §7, Corollary 7.2 reformulates Theorem 3.7 in terms of a parametrization of
a set of germs of metrics; together are given additional comments and explicit examples.

1.a The holonomy group: definition, problematics

Let M be a differential manifold. With any affine connection D on M is associated, after
Elie Cartan, see [C24] and [C26], its holonomy group H, as follows. The connection defines
a parallel transport of each vector V' € T, M along any (regular) curve v in (M, D), based
at p: it is the unique vector field 1% along - such that XN/(p) =V and Dyf/ = 0. Denoting by
q the other end of ~, this parallel transport defines a linear isomorphism 7., : T, M + T M.
The restricted holonomy group H g of (M, D) at the point p is defined as the group of the
7., for all the loops v based at p and homotopic to a constant. It is a Lie group immersed
in GL(T,M). For any p’ of M, Hg and H ;?' are conjugated by the parallel transport along
any curve from p to p’, so the holonomy group H® of (M, D) is defined, independently of
the base point, as a conjugacy class of linear representations in R™, where n = dim M. We
do not focus here on the full holonomy group H,, generated by the 7, for all loops « based at
p; it is also a Lie group, Hg is its neutral connected component. The main question linked
with it is to know which representations of a Lie group in R” are realized as a holonomy
representation, and to which geometrical properties of D they correspond.

Actually, every representation can arise as a holonomy representation, see [HO56]. As-
suming, as in the following, that D is torsion free, makes the question non-trivial.

1.b The Riemannian, and more generally irreducible case, is solved

If D is the Levi-Civita connection of a (pseudo-)Riemannian metric, by [dR52| and its
pseudo-Riemannian generalization [W67|, the universal cover of a decomposable (geodesi-
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cally complete) manifold is a Riemannian product, each factor being the exponential of one
term of the holonomy decomposition of T, M. We recall some terminology.

1.1 Terminology If g is a (pseudo-)euclidian product on R™, a g-orthogonal group rep-
resentation in R™ is called (in)decomposable if it is (not) a direct g-orthogonal sum of two
subrepresentations. By an immediate induction, any g-orthogonal representation is a direct
orthogonal sum of indecomposable ones. As usual, a representation stabilizing no proper
subspace is called irreducible. A (pseudo-)Riemannian manifold is called (locally) indecom-
posable, respectively irreducible, if its (restricted) holonomy representation is.

So it is sufficient to study the holonomy of the indecomposable (pseudo-)Riemannian
manifolds; note also that an indecomposable Riemannian manifold is necessarily irreducible.

The irreducible case is now completely understood. Good surveys of the topic are avail-
able, see e.g. [Bes87] ch.10, [SOla| and above all [SO1b] and [Br96]. On the opposite, the
general case, i.e. indecomposable but possibly reducible, remains nearly unexplored; it does
not stem from fundamental reasons, but from technical ones, see [S0la| p. 61 §2.

1.c The Lorentzian case, topic of this work

Now, what are the holonomy representations of Lorentzian indecomposable manifolds, i.e.
pseudo-Riemannian with signature (n — 1,1)7 The classification in the irreducible case
brings no answer. Indeed, indecomposable pseudo-Riemannian manifolds may be reducible:
certainly if F' is a Hg—stable proper subspace of T, M, so is EL but if 9| is degenerate, E+
is not a complement of £ in T, M. In the Lorentzian case, this “reducible-indecomposable”
situation is even the only non-trivial one: it follows from Berger’s classification [Beb5, Be57],
together with Cahen and Parker’s work [CP80] that:

1.2 Proposition Let (M,g) be an indecomposable Lorentzian manifold and H° its re-
stricted holonomy group. Then

e cither HY = 502_171(R) (“generic case”)
e or the representation of H® in T, M is reducible.

See also direct proofs of this in [DOO01], [Z02] or [BZ03]. So in that sense, the behaviour of
the Lorentzian holonomy groups is the opposite of that of the Riemannian ones.

With this in mind, L. Bérard Bergery and A. Ikemakhen classified in four families the
indecomposable representations of a Lie group in R"™, preserving a Lorentzian product, see
[BBI93| and §2.b here. If they are realized as holonomy representations, to which families
of metrics do those families of representations correspond? This is the topic of this paper.

Theorem 5.14 p. 21 answers the question. In coordinates “adapted” to the situation —
built, and this is a quite technical preliminary, by Theorem 3.7 p. 7—, it gives a necessary
and sufficient condition for the metric to be in each of the four families.

This condition involves, in the case of the “exceptional” families with parameters (types
3 and 4 after the terminology given by Theorem 2.1 p. 4), a very peculiar constraint on some
families of Kéhler metrics appearing on a quotient of the manifold (then called “admissible
families, see Definition 5.4 p. 19), as well as a differential link (see Definition 5.9 p. 20)
between those families of Kéhler metrics and a 1-form « appearing in the metric written in
adapted coordinates, see formula (3.1) p. 6. It has to be noticed that this form ~ has an
intrinsic significance given by Remark 7.5 p. 30 and Proposition 7.4.



The condition given by Theorem 5.14 for a metric to be in one of the “exceptional”
families 3 or 4 enables then to give a parametrization of the set of germs of metrics with
holonomy in these families, up to an action of a group of the type [[, SOy, (R) x R™. This
is Corollary 5.15 p. 21. The parameters are some 1-parameter families of metrics on some
quotients of the manifold M and a 1-form given on a submanifold of M.

We give also, similarly, a parametrization of the whole set of the reducible-indecompo-
sable Lorentzian metrics, giving additionally an intrinsic sense to one of the parameters, see
Corollary 7.2 p. 28 and Proposition 7.4 p. 30.

Finally, in a particular case, the differential relation introduced in Definition 5.9 p. 20,
and characterizing the “exceptional” families of metrics, takes a more explicit meaning, see
section 7.b p. 30. Using Theorem 3.7, we also give, in low dimension, explicit examples of
metrics with holonomy of type 3 and 4, see section 7.c p. 31.

1.3 Remarks (i) General “indecomposable-reducible” pseudo-Riemannian manifolds are
very complicated: HY is not semi-simple, an arbitrary number of subspaces may be stabi-
lized, with interlinked inclusion relations. .. No simple classification should be hoped.

(ii) Unlike the irreducible case, solved using high-level classical machineries —Represen-
tation Theory, Exterior Differential Systems and others—, the present reducible-indecompo-
sable case turned out to be solved by (a lot of) elementary Differential Calculus. Another,
unfortunate, difference is that the obtained results cannot be stated in a simple way: the
involved germs of metrics seem to be intrinsically complicated to describe.

(iii) The elementary calculus used here has yet an advantage: it describes sets of germs
of metrics corresponding to a given holonomy type, in the C'*° class instead of the analytic
class, usual framework for such matters.

Thanks. A significant part of this work was done during a Ph.D. [Bo00| supervised by L.
Bérard Bergery whom I thank for having introduced me to that problematics. I thank B.
Sévennec, J.-C. Sikorav and E. Ghys for their help, technical and about the writing. Be also
thanked all relatives and friends who gave a precious human, extra-mathematical support.

2 Precise setup of the problem

A quite detailed local description of Lorentzian reducible-indecomposable metrics follows
from basic standard remarks. It may be not familiar to all reader, and our whole notation
is based on it, so we recall it, together with the algebraic result of [BBI93|.

2.a Basic facts about Lorentzian reducible-indecomposable metrics

Foliations associated with holonomy-stable subspaces. Let (M, g) be a pseudo-Rie-
mannian manifold and m € M. It follows from the definition of the holonomy group in
§1.a that a subspace E of T,, M is holonomy-stable if and only if it induces, by parallel
transport, a parallel distribution E on (M, g) — on any simply connected domain of M in
the case of the restricted holonomy group. As the Levi-Civita connection D is torsion free,
E is integrable; as E is parallel, its integral leaves are totally geodesic.

If (M, g) is indecomposable, by definition, E is necessarily degenerate i.e. g|p is. Con-
sequently, the following spaces are also H-stable (possibly among many others) :

CE

1
{0} CENE { I

}cE+EichM.



The associated foliations with totally geodesic, degenerate leaves play a crucial role in the
geometry of the “reducible-indecomposable” pseudo-Riemannian manifolds.

The Lorentzian case — Notation. Now let g be indecomposable and Lorentzian, i.e.
dim M = n, sign(g) = (n—1,1). Take E as above; ker(gg) = ENE"' is totally isotropic, so
necessarily one-dimensional. If another isotropic line F were also stable, the sum ker(gg) ©F
would be stable and nondegenerate; this is excluded by assumption, except if n = 2 where
the problem of holonomy is trivial. So, a reducible-indecomposable Lorentzian manifold
(n > 2) admits a unique isotropic vectorial line stable by holonomy, now denoted by X,,
Its orthogonal X:- is a degenerate hyperplane of T,, M with signature (n — 2,0); so the
following flag in T,, M is canonical and holonomy-stable:

{0} c X, c XL c T, M. (2.1)

2.b Algebraic situation — Notation

As HY is connected, we focus on its holonomy algebra h. Let 8 = (X, (Y;)'=2, Z) be a basis
of T, M such that span(X) = X,,, span(X, (Y;)?=?) = X;; and moreover that g(Z, X) = 1
and that Z L span((Y;);= 12,Z); in particular, Z is isotropic. The holonomy algebra b is
included in the subalgebra g of so(g) stabilizing X,,,. In such a basis (3:

0 0 1 a L 0
Matg(g) = 0 I,—2 O and heg< Matg(h)=| 0 A —'L
1 0 0 0 0 —a

with (a, L, A) € R x R"2 x s0,,_»(R). Here is the algebraic result this work is based on.

2.1 Theorem [BBI93] Let b be a subalgebra of g. The action of b on T,,, M is reducible
and indecomposable if and only if, written in a (well-chosen, for type 4) basis (3 of the type
described above, b is of one of the four following types:

a L O
0 C —L | with(a,L,C) € R xR" 2 x ¢ » with ¢ asubalgebra of 50,,_»(R),
0 0 —a
0O L 0
0 C L | with (L,C) € R" 2 x ¢ 3 with ¢ a subalgebra of s0,,_5(R),
0 0 -0
Y(R) L 0
0 R L with (L, R) € R""2 x ¢ » with t a reductive subalgebra of
0 0 —¥(R)
$0,—2(R) and ¢ a non zero linear form on it,
0 ¥(R) L 0
t
00 0= "lﬁt(R) with (L, R) € R% x v p with v a reductive subalgebra
0 0 R —L
0 0 0 0
of 504,(R), do > 2, and v a linear map from v onto R%, dy > 1; dy +dy =n — 2.

2.2 Terminology In case , we call here the subspace spanned by the vectors correpond-
ing to the first two blocks of the matrices “the binded subspace” of T,, M.



The problem is not empty: Lorentzian metrics with holonomy algebra of type 1 and
2 may be easily written in local coordinates or built as homogeneous spaces. They are in
some sense generic among reducible-indecomposable Lorentzian metrics. The difficult point
is to understand to which differential property of the metric do holonomy representations of
types 3 or 4 correspond. Particular examples are given in [196], 4.1.3 and 4.1.4. but it does
not answer the question.

2.3 Note A related problem is to determine which subalgebras of so(n—1, 1) are realized as
holonomy representations, i.e. which algebras t, as introduced in Theorem 2.1, may appear.
This problem is now solved. After T. Leistner [L03a, L03b]|, v has to be a Riemannian
holonomy algebra. Conversely, holonomy representations of type 1 or 2 and any arbitrary
Riemannian holonomy algebra t acting on X /X,, may be easily realized by some metrics
in local coordinates, see [BBI93] §5 p.37-38. On his side, A. Galaev provided recently metrics
of type 3 and 4 with any Riemannian holonomy algebra t acting on X /X, for which type
3 and 4 make sense, i.e. such that the dimention of the center of t is greater or equal to one
(for type 3) or to the dimension of the binded subspace (for type 4), see [G05]. Lemma 5.1
p- 18 gives here the form of those algebras.

2.4 Notation Throughout, we will denote

e vectors or vector fields by light-faced capitals: X, Y,V ... If (z, y,...) are coordinates,

the corresponding uppercase letters denote the associated coordinate vectors: X = %. ..

e distributions of subspaces in the tangent bundle by bold-faced capitals: X, Y; their
fibre over a point p by X,, C T, M, Y,, C T, M; if they are integrable, their integral foliation
by the corresponding cursive capital: X', and by &, its leaf through p.

At any point p, 7 is the projection T, M — T, M /X,,. Points, subsets of, or tensors on,
the quotient TM /X are distinguished by a check: 7(p) = p, X;/Xp = w(Xé) =Xt ..

Canonical sub-foliations — Further notation. The induced metric § on X+ = X+/X
is nondegenerate; as g is Lorentzian, § is even positive definite. The representation of the
restricted holonomy group HY on X is thus totally reducible; we denote by H,, the induced
subgroup of SO(X:, Gm). Moreover:

2.5 Proposition ([BBI93], p. 36) X, and H,, admit respective decompositions

XL— & v (with ibly dim Y2, = T = 78
= " possibly dim Y, = 0) and H,, = H H;, (2.2)
0<s<k

1<s<k

where, for each s € [1,k], H, acts irreducibly on Y3, and trivially on the YT, for r # s.
In particular, H,, acts trivially on YJ,.

This property, known as “Borel-Lichnérowicz property”, is satisfied by the holonomy
representation of the totally orthogonally reducible (pseudo-)Riemannian manifolds. It has
no reason to hold for a quotient holonomy representation on E,,/(E, N E;), except if
dim(E,, N E) = 1; then it follows immediately from the Ambrose-Singer theorem, see
[BBI93| p. 36. Proposition 2.5 gives a first basic but essential fact:

2.6 Corollary Decomposition (2.2) of X+ is canonical: Y9, is the trivial factor of the
action of HY, and (Y3,)%_, the unique strongest HY -stable decomposition of (Y9,)*.



We now set, for each s, ny, = dimY® and Y* = 7~ 1(Y*®) € T,,M. Similarly, the
Y? induce integral foliations, with degenerate, totally geodesic leaves, denoted by V?®. The
projection M — M /X, defined locally around m, is denoted by m, like its infinitesimal
version. Quotient objects are also distinguished by a check: F(X;‘) = /'?pL, (V) = )7; .

2.7 Remark For each s, at each point p, the group Hg contains the holonomy group
H (37; , g|37§) of the quotient manifold 37; but in general, it is not equal to it.
p

3 “Adapted” local coordinates

To achieve our goal, we build “canonical” coordinates on the reducible-indecomposable
Lorentzian manifolds. The choice of such coordinates is divided into three steps.

Step 1. Considering the canonical flag (2.1) and decomposition (2.2) and their integral
foliations, the first property it is natural to require from coordinates is the following.

3.1 Definition A coordinate system (z, (y*)*_o,2) = (2, (y5),) . 2) is called (X,

(V*)E_)-foliated if :
e the coordinate x parametrizes the leaves of X,

e the coordinates (x, (yf)r=

**,) parametrize those of Y*, for each s in [0, k].

It follows from the definition of a foliation and of an atlas of foliation that such systems exist,
come the involved foliations from parallel distributions or not. Notice that the coordinates
(z, ((y3)I)k_,) parametrize the leaves of X. Besides, restricting possibly their domain,
we suppose that the coordinates apply in I", I =] — ¢, ¢ for some £ > 0. We investigate
here germs of metrics, so we now identify this I™ with the manifold M. Before step 2, some
observations shall be made.

3.2 Note In [W49, W50|, A. G. Walker already proposed “adapted coordinates” on (a wider
class of) reducible-indecomposable pseudo-Riemannian manifolds. They are essentially fo-
liated coordinates, with an additional property linked with the first Bianchi identity. They
do not suit our purpose: in such coordinates, the metric depends not only on its intrinsic
properties but also on the (still too) wide arbitrary choice of the coordinates.

We try here to mimic the case of a Riemannian product i.e. by de Rham’s theorem, the
case where a holonomy-stable decomposition T, M = E,, @Efn exists. Let £ and 1 be the
corresponding foliations; (£, £+)-foliated coordinates are product coordinates: once chosen
on each factor &, and &, they are unique. Here, (X, (V*)k_,)-foliated coordinates, fixed
on X+ D X,,, are not unique. We add some constraints to achieve this unicity.

3.3 Remark/Notation In (X, (V*)*_)-foliated coordinates, it follows from the different
orthogonality relations between the involved distributions that the metric g reads

k
g= <Z gs) + 2ydz (3.1)
s=0

where 7 is a 1-form and where, for each s in [0, k], ¢° = 2?5:1 9; ; dy; dy;.

The matrices (g ;);5—; depend on the chosen foliated coordinate system but not the
corresponding Riemannian metrics §° defined on each leaf 37; of the foliation Y* of 7(M).

On the contrary, those §° are important canonical objects of the situation.



Eventually, let us notice the simple but important following property.

3.4 Proposition Let (X,(Y*)*_,) be some distributions as set out above, except they are
not supposed to be parallel, but only integrable. They are parallel if and only if, in (X,
(V*)k_,)-foliated coordinates, the metric g satisfies:

i,j=1

e for each s in [0, k], the matrix (gij)"s depends only on y® and z; (3.2)
o Vs e [0,k], dy(X,Y?®)={0} and: Vr#s, dy(Y",Y*)={0}. '

Proof. Let A, B, C stand for three of the distributions (X, (Y*)*_,); 4, B, C stand for
coordinate-vectors in A, B, C respectively.

A is parallel & VA, B, DpA € A and DzA € A
< VA B,C,CLA=g(DpAC)=0and g(DzA,C)=0
< VA B,C,CLA=Lpg(A,C)+ Lag(B,C)— Lcg(A,B)=0
and Lzg(A,C)+ Lag(Z,C)— Lcg(A,Z) =0.
Now A L C and the coordinates are foliated, so g(A,C) = 0. The last equality is then the

second point of (3.2); in both cases A L B or A = B, the second to last one is the first
point of (3.2). O

If (3.2) holds, we denote each matrix (g; j)Z;:l by g5, seeing it as a one-parameter fam-

ily, in z, of metrics on I™s, identified by the coordinates with plaques of the foliation Y°.
Similarly, for each zp, we denote by g, the metric on the plaque w({z = 2z0}) of the foliation

X+ So, (2)ze1 = (Hf:o 93)zel-

Step 2. We choose to prefer (X, (V*)F_,)-foliated coordinates satisfying the following
additional property, which is always possible.

3.5 Definition An (X, (V%)%_,)-foliated coordinate system (z,(y*)*_,,2) is called here
transversally isotropic if Z = % is g-isotropic.

3.6 Notation In foliated, transversally isotropic coordinates, the 1-form ~ is given by its
restriction ,, to each plaque {z = zo} of Xt. Then (7v,).cs is a I-parameter family of
1-forms on It

Step 3. The “adapted” coordinates we use are given by the following theorem. They are
centered at some point m € M; we denote by m, the point of coordinates (0,...,0, z).

3.7 Theorem (Adapted coordinates) (See also Figure 1 p.8.) (a) There exists, on a
neighbourhood of m, some C*®, (X, (V*)k_,)-foliated, transversally isotropic coordinate
systems (x,(y*)*_,,2), centered at m and in which:

(i) along X;- and along the curve (m.),, v = dx (i.e. vo = dx and Vz, 7,(0) = dz),
i) for each z, v, is closed,
(ii) f h z, 7, is closed

(iii) setting S =Y. N x71({0}), then Vs € [1,k], Vp € S, Y1,ss = 0;

(iv) g(m) = (Z?:o Z?;l(dyf)2) + 2dxdz and at every point, g° = > (dy?)2.
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Figure 1: M =1I" casen=3,n9=0, k=1, X+ =Y.

(b) If two such coordinate systems are equal on their submanifolds S§, for s € [1,k],
and have equal coordinate vectors (X, (Y,?)!%,) at m, then they are equal where they are

both defined. In particular, it is the case if they coincide on X#;.

3.8 Remarks e Conversely, as it should be expected, a metric which, in some coordinates
(z, (y*)k_y, 2), reads as in (3.1) and satisfies (3.2) and the conditions of Theorem 3.7 induces a
holonomy representation stabilizing span(X), span(X, (Y;*);"*,) for each s and acting trivially

on span(X, (V%)™ )/ span(X). This follows from Proposition 3.4 and from a quick checking

(A
for the last assertion.

e In adapted coordinates, as v must satisfy (3.2) and the conditions of Theorem 3.7,
one checks that « is given by its derivatives 7o along B, for each pair (A,B) among the
distributions (X, (Y*)*_,) such that A 1 B or A = B = Y". Relation (3.3) below provides
precisely this data, so in adapted coordinates, it determines ~.

Finally, adapted coordinates will be useful mainly through both following properties.

3.9 Proposition In adapted coordinates, the form -y is such that, for A and B any two of
the distributions (X, (Y*)*_,) and for each pair (A, B) of coordinate-vectors in A x B,

[(ALB)or (A=B=Y"] =~(X)Ly (ﬁLm(B)) = g(R(A,2)Z,B). (3.3)

For the second property, we need a definition. If F is a fibre bundle with a connection
V, a differential dV of any p-form with value in E is associated with it, see e.g. [Bes87| p.24.
A bilinear form b on M is a 1-form with value in T* M, so one defines:

3.10 Definition Let b be a field of bilinear forms on a manifold M endowed with an affine
connection D. The D-differential AP of b is defined as

dPb(U, V,W) = Dyb(V,W) — Dyb(U, W). (3.4)
3.11 Remark If b is symmetric, dPb satisfies a “Jacobi-” or “Bianchi-type” identity:
dPbo(U, V,W) + dPb(W,U, V) + dPb(V,W,U) = 0. (3.5)

3.12 Proposition If, at p e M, Y, Y’ and Y" are in X;, the quantity g(R(Y,Y"\Y",Z)
only depends on the class of Y, Y/ and Y modulo X, and is invariant by parallel transport



along the leaf X,,. So, if (V,Y',Y") = 7(Y,Y',Y"), the quantity g(R(Y,Y")Y", Z) is well-
defined. Now in adapted coordinates, at any point p € m(M), if Y, YY" € Xé and with
D, the Levi-Civita connection of §,:

dP= (=) (v, V", Y") = —29(R(Y,Y')Y", Z). (3.6)

4 Proof of Theorem 3.7 and of its adjacent results

Before using them in section 5 to classify the germ of Lorentzian metrics, we build here
adapted coordinates on some M = I" C R", [ =] —¢,¢[, € > 0, endowed with a reducible-
indecomposable Lorentzian metric g of class C*°. We set m = 0" € I"™ and use the whole
previous notation. Each time it is necessary, € is implicitly decreased .

A first Lemma sums up the few general basic properties, which we use then steadily, of
the degenerate parallel distributions.

4.1 Lemma If a (pseudo-)Riemannian manifold M admits a parallel distribution A and if
p €M, forany A€ A,, any B € A;;, R(A,B) = 0. For any B’ € A;;, R(B,B')|a, = 0.
Therefore, any vector A € A, can be locally extended as a parallel vector field along the
integral leaf .Aj through p of the distribution A*.

If moreover the restricted holonomy group acts trivially on A,/(A,N A;), then for any
A A €A, R(AA)=0.

Proof. With the same notation, for any U,V € T,M: g(R(A,B)U,V) = g(R(U,V)A, B).
As A, is holonomy-stable, R(U,V)A € A, L B; the first claim follows. With the first
Bianchi identity, it gives: R(B,B’)A = R(A,B")B + R(B,A)B' =0, so R(B, B')|a, = 0.
Let £ be a vector bundle with fibre E over some base B, endowed with an affine con-
nection V. By the Ambrose-Singer theorem, the holonomy algebra, at any point p € &, of
(€,V) is spanned by the 77 (R(U,V),), where ¢ runs over B, U and V over the fibre Ey, v
over the paths from p to ¢ and where 7., : E, — E; is the parallel transport along v. We
apply this to the bundle with fibre A along A;: as all the R(B, B")|a, vanish, for g € A;
and B, B’ € TqA; = Aql, the holonomy algebra of that vector bundle is trivial. The next to
last claim of the lemma follows. Finally, adding the last assumption, for any U,V € T, M,
as R(U,V) € by, R(U,V)A C (A, NA;), so g(R(U,V)A, A’) = 0; the last claim follows. [J

4.2 Remark/Notation Let us now denote by 7* each projection M D V3 — )7,; Besides,
as we may always, implicitly, decrease €, thus the size of any domain on which we work, we
always consider that if an f € C™(O,RY) with O any precompact domain of some R f
admits an extension of class C” on some domain O’ D> O. This bounds ||f|cr and hence
will give the existence of some Lipschitz constants in further reasonings.

The key lemma, on which Theorem 3.7 is based, is the following. We prove it immediately
and then use it to show Theorem 3.7, but you can also admit it in a first time an go directly
to Remark 4.8 and Theorem 3.7’s proof following it p. 12.

k
s=1

4.3 Lemma In M, let be given a k-tuple o = (0°)*_, of sections of class C" of the (7*)
and U,V vector fields of class C", defined along X;- and such that:

DxU c X and DxV C X and for any s, DysU C Y® and DysV C Y°. (4.1)



Then there exists on Xé a unique 1-form o, y,v such that, at any point p, for any A, B
among (X, (Y*)*_,) and any A € A, B € B:

(ALBorA=B=Y")= Da,yv(A,B) = Da,yv(B,A) = g(R(A,U)V,B), (4.2)

aU,va(quj) = {0} and, for each s, (0°)*aq v = 0.

Moreover o, v is closed, is of class C" and its components depend multilinearly and con-
tinuously, so on a Lipschitzian way, for the C" norms, on (o,U, V). Besides, the holonomy
group acts trivially on X if and only if, for any (o,U, V'), as v is the pull back 7 (¢ v)
of some closed form &7,y on M.

Lemma 4.3 follows itself from both Bianchi Identities; the first one through Lemma 4.4
and the second one through Lemma 4.5. Lemma 4.6 provides auxiliary coordinates in which
the arguments of the proof of Lemma 4.3 are simplified.

4.4 Lemma At any point p € M, for any U,V € T,M, for any A, and B, among
(X, (Y;)i?zo) and any A € A, and B € By:

(Ap LB, or A, =B, =Y)) = g(R(U,A)V, B) = g(R(U, B)V, A). (4.4)
Proof. With the notation of the lemma:

g(R(U7 A)Vv) B) = _g(R(U7 A)Bv V)
=g(R(A,B)U,V)+ g(R(B,U)A,V) (the “ first Bianchi Identity”).

Now if A, L B, or A, =B, =Y R(A,B) =0 by Lemma 4.1. So the result. O

4.5 Lemma Let A be a parallel distribution on a (pseudo-)Riemannian manifold (M, g),
.Alf be the integral leaf of the distribution A+ through some point p. Let A € A, be a
vector, extended as a parallel vector field along A; (possible by lemma 4.1) and U and V
any vector fields along .Alf such that Da1U C A+ and Dy V C At. The 1-form defined
on .A; by B — g(R(U, B),V, A) is closed.

If moreover the restricted holonomy group acts trivially on A,/(A, N Alf), all claims
hold also with A+ and .Alf replaced by A + A+ and the integral leaf of it through p.

Proof. It follows from the “second Bianchi Identity”. It is sufficient to work, at each point
q€ Aé, with two normal coordinate-vector fields B and B'; at ¢: DgB’ = DB = 0.

Lp(9(R(U, B")V, 4))
= g(DpR(U,B")V,A) + g(R(DpU, B")V, A) + g(R(U, B")DgV, A)
= g(DpR(U,B)V, A) + g(DuR(B,B")V, A)
+9(R(DpU, B")V, A) + g(R(U,A) DV, B')
(The Bianchi identity for the first term, Lemma 4.4 for the last one)
= 9(DpR(U,B)V,A) — g(DuR(B,B")A,V)
—g(R(DpU,B")A,V) — g(R(DpV,B")A,U).

Now by Lemma 4.1, as both last terms are in g(R(A+, AL)A, -), they vanish; for the same
reason, so does the second term (as A and A are parallel, Dy R(A+, AL)A also vanishes).
By symmetry, Lg(g(R(U, B")V,A)) = Lp/(9(R(U, B)V, A)) and we are done. The last claim
follows from the same calculations together with the last claim of Lemma 4.1. O

10



4.6 Lemma (i) X5 C M admits a (X, (V*)k_)-foliated coordinate system (T, (7°)*_,) =
@, (F5)=)k_)), of class C*°, such that, for any (r,s), any i < ns and j < n,:

s=1
DyY; = D7§7 =0 and (r#sorr=s5s=0) = Dyf?;f =0, (4.5)
at m, g(Y3,Y}) = 0if (s,i) # (r,j) and g(Y},Y;) = 1. (4.6)

(if) M admits a (X, (Y*)F_,)-foliated coordinate system (z, (¥*)*_1,2) = (&, (¥5)=)k 1,
z), of class C™, satisfying (4.5) and (4.6).

Proof. (i) It follows immediately from Lemma 4.1. For clarity, let us however detail the
construction. By Lemma 4.1, we may choose a parallel vector field 0 # X € X on X%,
Take, on a neighbourhood of 1 € X+ ~ [1, Vs, a product coordinate system @8)78"’:1. As

)7% is flat, one can choose it such that the ?? are affine coordinates, i.e. such that the ??
are parallel. For each s, take then any section o® of 7% : Y3, — Y5 ; for s = 0, take o°

affine, i.e. such that D ?Q(ao)*?(; = 0, which is possible as the holonomy group of X;:

(09)«
acts trivially on YU,. Consider the vector fields Y3 = (0%),Y?, defined along the tangent
bundle TS?® of the image S° of each o®. By construction, S° intersects each leaf of the
integral foliation Y+ of the distribution Y+ = +,2sY" in exactly one point. Thus, at
each such point p, by Lemma 4.1, (Y3 )p is extended as a parallel vector field Y along ygl.

This provides fields Y¢ on the whole choseg neighbourlgod_of m. They commute, as D is
torsion free: for r # s, by definition, Dy Y7 = 0, so [Y;-,Yf] = 0. Along S°, the Y7 are
J

coordinate-vector fields for the coordinates () (7") so they commute. Finally, for A any
vector among (X, ((Y7)iZy)rzs): DalY7,Y35] = DaDy,Y5 — DADV;Y?’. Now: DaDy, Y5 =
R(A, Y)Y + Dy DAY + Diyye Y5 = 0; R(A,Y7)Y; = 0 by the first point of Lemma
4.1, DAY5 = 0 by construction and we have just shown that [A,Y?] = 0. Symmetrically,
DADyij = 0s0 Da[Y7,Y5] = 0; s0 [Y§,Y7] = 0 and we are done. The induced integral

coordinates (7, (7°)*_,) are as wished; they are immediately of class C'.

(ii) Choose any regular path (m.).cz, transverse to the leaves of XX and with mg = m;
this gives the last coordinate, set constant, equal to z, on each plaque Xéz. Choose then,
for each s, a regular family (03).cs of sections of 75 : )y, — V5, and apply point (i). O

4.7 Remark It follows from the proof of Point (i) that a coordinate system as in (i) is
uniquely determined by the choice of the basis (X, (Y?)",) of T,, M and of the sections
(0)k_, of the m* : Y5, — V%, These basis and sections may be chosen arbitrarily.
Moreover, the reader can check that coordinates of X as in (i) satisfy exactly what is
required from adapted coordinates by Theorem 3.7, in restriction to X;-.
So, coordinates of X as in (i) range all possible values of adapted coordinates (if such
exist), restricted to X;-. This remark will be important in the proof of Theorem 3.7.

Proof of Lemma 4.3. Let (¢°)%_, be the sections given in the statement of Lemma 4.3,
and 0¥ any affine section of 7¥ i.e. such that ¢¥()°) is totally geodesic, flat, in X (possible
as the holonomy group of X, acts trivially on Y?). Lemma 4.6 (i) provides coordinates
(T, (¥°)F_,) satisfying (4.5) and (4.6) and such that o*(I") = N,s{y" = 0} N {ZT = 0}. To
build a7y, let us build the functions o, 7y (X) and, for each s € [0, %] and i < ng, the
functions 0407U,v(7: ), respectively denoted by f§ and f?.

e On the one hand, let us define, on each leaf of the integral foliation Y+ of the dis-
tribution Y**, for s > 1, and on X, for s = 0, the 1-form 07 = g(R(?f,U)V, -), with
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conventionally 09 = g(R(X,U)V, -). We recall that the Y; are the coordinate-vectors asso-
ciated with the (77); s. Each 67 is closed by Lemma 4.5. As the ( . (T7)i,s) satisty (4.5), for
r#sorr=s=0, DaUUV(Y Y)) =Ly ’“Oéng( N = deY Be81des by Lemma 4.4,

Qf(vj) = HT(Y ). Thus aq v satisfies (4. 2) if and only if:

{ Vs > 1, Vi € [1,ng], dffy.. =6; wn
Vi € [0,ns], dff =69

e On the other hand, a, v satisfies (4.3) if and only if, for i € [0,n0], f) = 0 at m
and, for each s > 1, i < ns, ff =0o0on & = Y3 Naz~1(0). Now each 8%, for s > 1, intersects
each leaf of Y*1 in exactly one point, so, as all 6?7 are closed, Equations (4.7) determine the
>, 82> 0, in a unique way. This defines aq .

Each f7 is of class C": along the leaves of Vst or along X1, for s = 0, it is the integral
of a closed 1-form of class C" (so it seems to be C™*!, but the sections ¢® and hence the
coordinates (T, (7°)s) are only of class C"), transversely to them, it is also C" as the functions
ef(?;“) are C" (in all directions). So o v is of class C".

Besides, the integration of closed 1-forms, with prescribed initial condition, is a linear
continuous operator from the set of the functions of class C" into itself (from C” into C"**
actually, but the coordinates are C"), so a,,p,y depends linearly and continuously for the C”
norm, on the 67, i.e. on the fields U and V. Eventually, a possible change of the sections o°
induces a coordinate change T ~ ®((0*)*_,)(%), ® being an affine and continuous fonction
of the (¢%)k_,, for the C" norms. So ay, v depends multilinearly and continuously (so is
Lipschitzian), for the C" norms, on (o, U, V).

To check that dag. 7,1y = 0, it remains to check that, for s > 1, the day, UV(YS )% ) van-

ish. It holds on §%. So, taking any r # s and | < n,, let us check that LY? dag v (Y, Y;’) =
0. This is immediate: Lerys ay UV(?“?) = L75 Lyr ay UV(?“?) = L75 Lys aeuv(YT) =
L+, LYS Qg UV(Y ); this expression being symmetric in ¢ and j, we are done.

The last claim of Lemma 4.3 follows easily from the Ambrose-Singer theorem. [l

4.8 Remark So, because of the Bianchi identities, the bilinear form g(R(-,U)V, -) can be
“integrated” in the sense of Lemma 4.3; o v is this integral. This holds for any pseudo-
Riemannian metric g the holonomy group of which preserves a totally degenerate space X
and acts totally reducibly on X+ /X. Now we will use that dim X = 1.

Proof of Theorem 3.7. The coordinate systems of Theorem 3.7 appear as solutions of
an O.D.E. in an open subset G of some (infinite dimensional) Banach space F. To simplify
the reasoning, let us first parametrize M = I™ with coordinates (7, (7°)*_,, %) of the type
provided by Lemma 4.6; such a parametrization is in particular (X, (Y*)k_,)-foliated, so at
any point, X = span(X ) and Y* = span(X, (Y$)I,). We identify M and I" through these
coordinates. In particular, the leaves of X1 are the hypersurfaces {Z =%y}, we denote each
such leaf by X;O. The leaves of X1 are parametrized by T, so the projection 7 : M +— M /X
)n—l

i

is simply the dropping of the first coordinate: I™ — I™~!. Let us take a copy of (%I
with the canonical coordinates denoted by (z, ((y¢)1*,)%_,) and let us introduce:

af
85

this is a closed subspace of the Banach space C"((31)"~!,I"~1). Then we introduce

F = {fEC”"((% I Vs < Ky Vi < ng, == € YO,

G ={f € F; fis a diffecomorphism on its image},
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which is an open subset of F, for the C'" norm. A foliated parametrization of an open
subset of I" (of class C" and, transversely to the leaves of X+, of class C™) is given by a
pair ((f.).rer, ¢) with (f,),.cpr a curve of class C* in G and ¢ a C*°-diffeomorphism from I’
onto I, with I’ some interval. Indeed, such a pair gives an embedding Fy¢ : (31)" "' xI' — I"

defined by Fy¢(z, (y )5 1:2) = (fa(z, (y )8 1),¢(2)).

4.9 Remark In fact, we look for an adapted parametrization of a neighbourhood of m, such
as defined in Theorem 3.7. So, by Remark 4.7, to prove Theorem 3.7, we are led back to
show the existence (Th. 3.7 (a)) and uniqueness (Th. 3.7 (b)), of adapted coordinates,
equal on X;: to the fixed (T, (7°)*_,), given by Lemma 4.6. So in the following we suppose,
without loss of generality, that fj is the identity embedding (%I y=t el

Besides, by the following lemma, we get rid of the determination of ¢ and have only to
focus on (f,).,cp. The (easy) proof is postponed to the end of the proof of the Theorem.

4.10 Lemma Let (z, (y*)*_,, z) be an adapted system of coordinates, centered at m. Then
the curve m, parametrized by (0, ...,0,z) is a geodesic. In particular, as the tangent vector
Z to this geodesic is, at m, determined by: g(Z,X) =1,Vs,i, g(Z,Y,?) =0 and g(Z,Z) =0,
the coordinate z is determined by the data of the basis (X, ((Y;*)1,)*_,) of Xi.

2

Therefore, after a possible reparametrization, we suppose that the coordinate z of I is
such that Z +— (0,...,0,%) is a geodesic; I’ C I and ( is the identity embedding I’ — T.

Now let f = (f.).er be a curve of class C* in G with fy the identity embedding
(A"t — I"~1; we associate some objects with it.

o Fp: (z,(y*)*_1,2) = (fo(z,(y®)k_,),2) is a foliated parametrization of some open
subset of M = I"" — we have now dropped (.

e For each value zp of z, with f] = (%f)lm € TG = F is associated the vector field
Z),, defined along f-,((51)"™") x {20} by Z1.,(f2(p)) = (f2,(p),1); Z|, is the last coordi-
nate-vector field of Fy, along (f2,, 20).

e Along the whole image of F'y, this defines a vector field Z; for each value zq of z, its
covariant derivative (DzZ),,,, which is, as well as Z|,, a vector field along (f-,, 20), depends
only on f.,, fl,, fi and zp, through the Christoffel symbols of the metric g along (f.,, 20);
this dependence is lipschitzian for the C” norm. In the converse sense, fI is also determined,

on a Lipschitzian way for the C" norm, by the quadruple (f.,, f7,, (DzZ)),, 20)-

Besides, for each value g of z, the hypersurface f., ({0} x (51)"7%)) of I"! is transverse
to the first factor I, i.e. to the leaves of X, i.e. to the fibres of e XZLO — XZLO/X. So, for
each s > 1, a section o°(f,) of 75 : Vineg = Vi /X is associated with f,,; more precisely,
0°(f=,) is defined on the image of w3 o f.,. Figure 2 above gives a drawing in low dimension.
Moreover, as (f.).cy is a curve in G, its derivative (f).cp is in TG = F so the associated
vector field Z satisfies (4.1) — both conditions are equivalent, it comes from the fact that
the distributions X and Y* are parallel. Therefore, with (f,,, f’(20), 20) is associated the
one-form oy, ) 7,z given by Lemma 4.3. We denote it by o fz0, fLy5 20)-

Now Theorem 3.7 is based on Remark 4.9 and on both following lemmas, the first of
which is already nearly proven by all that precedes.

4.11 Lemma There exists, for small values of |z|, a unique curve (f,), in G such that:

DzZ = a(fzm f;m Zo)t1 [X]

oforallzo,{ 9(D22,2) =0 ,

(4.8)
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Fy(31m1 x I'),
embedded in M = I"

leaves of X,
in X = f.(31)"?)

ol(f.),section of 7l

WOFf(%In_l X I’), )
embedded in 7(M) = M ~ ["~!

wlo £(3D")

leaves of X+

Figure 2: definition of the o, drawing with n =3, ng =0, k = 1, X+ =Y,

e at z = 0, fy is the identity embedding of(%])”_l in I"~! and Z|,—q, thus f§, is defined
along fo by: g(Zj0, X) = 1; Vs,i,9(Z)0,Y;®) = 0 and g(Z)o, Z)y) = 0.

4.12 Lemma Let (T, (7°)%_,) be some coordinates of a neighbourhood of m in X;;, as given
in Lemma 4.6, (i). A system of foliated coordinates of M, given as a curve (f,),ep in G, is
adapted, as defined in Theorem 3.7, and, in restriction to X;:, equal to (%, (7°)k_,), if and
only if it satisfies the conditions of Lemma 4.11.

The lemmas’ proofs are postponed. Let us end the Theorem’s proof. For each r > 3,
both last lemmas give the existence of an adapted system of coordinates of a neighbourhood
of m, of class C" (and, transversely to the leaves of X', of class C°°). They give also the
unicity of such a system, once it is fixed on X;-. Hence in particular, for a given initial value
of class C™ on X:-, the solutions in each space C" coincide: this unique solution is thus C”
for all r, i.e. C*° and Theorem 3.7 is proven. We are left with proving Lemmas 4.10, 4.11
and 4.12. O

Proof of Lemma 4.10. Let (z,(y*)*_,, 2) be an adapted coordinate system centered at
m. Let us show that (m.), is a geodesic. By theorem 3.7 (a) (i), along (m,)., v = dz i.e.
9(Z,X) = 0 and for all s,i, g(Z,Y;®) = 0. Thus along (m;),, 9(DzZ,X) = Lz9(Z,X) —
%Lxg(Z, Z) =0, as g(Z,Z) = 0 everywhere; similarly, for all s,i, g(DzZ,Y;*) = 0. Finally

as g(Z, Z) vanishes everywhere, g(DzZ, Z) too, so along (m;)., DzZ = 0. O

Proof of Lemma 4.11. Let us clarify the meaning of “= a(f.,, f7, 20)f [X]”: the 1-form

o(fz, f1y, 20) is defined along XZLO, s0 afz, f;o,zo)ﬁ, given by the musical isomorphism
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induced by g, is, along on, a section of TM/(TXZLO) = TM/X; in other terms, it is a
vector field defined modulo X. As, by construction, Z is never orthogonal to X, both
conditions of the system (4.8) define (DzZ)|., as a function of a(f.,, f1,,20) and Z|,,. As,
in turn, a(fs, f1,,%0) is a Lipschitzian function of its arguments, for the C" norms (see
Lemma 4.3) and f is a Lipschitzian function of (DzZ)\.,, f.,, fz and 2, for the C”

norms, the system (4.8) is of the form:
" = ®(fL, f., z), with ® Lipschitzian from TG x G x I' to C"((3)"" 1, 1" 1)).  (4.9)

To obtain an O.D.E. in G, we must check that ® applies in TG = F C C"((31)"~1, 1" 1).
We have seen that a curve f = (f.). in C"((31)""!,I""!) is a curve in F if and only if
fo € F and for every z, Z), satisfies (4.1). So it is a curve in F if and only if fo € F, f € F
and the following derivative in z of Relation (4.1) holds:

Dz(DXz) € X and Vs < k, Dz(DYsZ) eY? (4.10)

Now, for each s and any vector Y* € Y® Dz(DysZ) = R(Z,Y*)Z + Dys(DzZ), and
similarly for X, so (4.10) is equivalent to:

VX € X,Dx(DzZ)=R(X,2)Z [X] (4.11)
Vs < k,VY® € Y*, Dy+(DyZ) = R(Y*, Z)Z [Y*] '
So, we are done if and only if, replacing DzZ by af(f., f,,2), in (4.11), the relation is
still satisfied. It is immediately the case as, by (4.2) in Lemma 4.3, for any z € X,
Dx(a(fz, f1,2)%) = R(X,Z)Z and for any s < k and Y* € Y*, Dy:s(a(f., f,,2)%) =

R(Y*®, Z)Z.
So Relation (4.8) is an O.D.E. of order two in F, with initial condition in G x TG given
by the second point of the lemma. The Cauchy-Lipschitz theorem gives the result. g

Proof of Lemma 4.12. We have to prove “(f,), satisfies the conditions of Lemma 4.11 <
it is as claimed by Lemma 4.12”. Notice first that, if

DzZ = a(sz,f;O,Zo)ﬁ [X]> (4'12)

then for each two distributions A, B among {X,Y*; 0 < s < k} and for each coordinate-
vectors A € A and B € B,

(ALBorA=B=Y" = g(Dz;DaZ B) =0. (4.13)

Indeed, g(DzDaZ,B) = g(R(Z,A)Z,B) + g(DaDzZ,B) and in turn ¢g(DaDzZ, B) =
o fz, f1y,20)(A, B) = g(R(A, Z)Z, B). In fact, (4.13), together with some limit conditions
on Dz Z along the submanifolds {y* = 0} N{z = 2¢}, is equivalent to (4.12). Lemma 4.12 is
based essentially on this remark — the form «(f~,, f,,, 20) was built in order to let Lemma
4.12 work. We detail the most part of the direct sense of the equivalence and leave the rest

to the reader.

We prove that for each z, ~, is closed and that ¢° is everywhere the identity matrix.
Along X;-. vo vanish, so is closed. Let us show that Lz(d~y,) = 0; let A and B be two
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coordinate-vectors among (X, ((Y;*)7,)%_,).

Lo((d72)(A, B)) = Ly(Lag(Z. B) — Lig(Z, A)
= Lz(g(DaZ,B) —g(DpZ,A)) as DaB = DpA
=g(DzDaZ,B) — g(DzDpZ,A) as DaZ = DzA and DpZ = DzB
— §(R(Z, )7, B) + ¢(DaD7 7, B) — (R(Z, B)Z, A) — g(DpD7 7, A)
=9(DaDzZ,B) —g(DpDzZ, A)
=Lag(DzZ,B)— Lpg(DzZ,A) again as DoB = DA
= Laalfr f122)(B) — Lpalf, £, 2)(A)

=0 asa(f,, fl,2) is closed.

So Lz(dv,) =0, so for all z, v, is closed. Similarly, on Xn#, 92:0 is constant, equal to the
identity matrix, as the coordinates on X,-, given by Lemma 4.6, satisfy (4.5) and (4.6). We
show finally that for all z, % g% = 0. For each value of z, let us consider (D z)yo as a field
of endomorphisms of Y?, defined along X;-. On the one hand, at z =0, (Dz)yo = 0:

9(DzYLYP) = g(DyoZ,Y) = Lyag(Z.Y,) — 9(Z. DysYP) = 0,

as, by the second point of Lemma 4.11, Z L Y]-O along X;-, and by (4.5), Dy_onO =0on X;.
On the other hand, when the parameter z runs, (D Z)|Yo satisfies a homogeneous O.D.E.
Indeed:

Lzg(DzY?, YD) = g(DzDzY?,Y}) + g(DzY?, DzY})
=g(DzDyoZ, V) 4+ g(DzY?,DzY))
g

(DzY?,DzY}) as, by (4.13), g(DzDyoZ,Y)) =0

Now g(DZYZ.O,DZYjO) = g(t(DZ)DZYZ-O,YjO) where '(Dy) is the g-adjoint of Dz. Hence,
Lz((Dz)jyo) = ®((Dz)yo,2) for ® some bilinear continuous operator. So (Dz)jyo) = 0
for all z; it follows quickly that L,(g?) = 0 for all z. We are done. O

4.13 Remark Notice that by construction, in adapted coordinates, Lzvy = a(f,, fL, z). In-
deed, take any coordinate-vector Y € X+, Lzy(Y) = Lzg(Y,Z) = g(DzY, Z) +g(Y,DzZ),
now g(DzY,Z) = g(DyZ,Z) = §Lyg(Z,Z) = 0 and, by (4.8), (Y, DzZ) = a(f, f1,2)(Y).

Proof of Proposition 3.9. Notice that for any coordinate-vector YZ-O, Y'Z.O is parallel i.e. for
all V, DyY? € X. We take the notation of the proposition and set a = a(f., 1, 2).
YX)Lz (55 Lav(B))
=LzLaY(B) = 55x7Lzv(X)Lav(B)
=Laa(B) — 557X )(9(DaZ, B) + g(Z,DaB)) as DzZ = a[X]

=(Daa)(B) —a(DaB) — mg(DZZ,X)g(Z, DsB)
as,if A#B,DsZeA1Band, if A=B=Y" D,Z=DzAecX

—=g(R(A,2)Z,B) — g(D3Z,DAB) — 42248) y(p, 7. x)

9(Z2,X)
Besides, if A # B, DuB = DgA € ANB = X so in all cases Da4B € X, thus
DpB = 9(ZDab) x Replacing in the last line above gives the result. O

9(Z,X)
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Proof of Proposition 3.12. It is a long but not tricky calculation. First it is sufficient
to prove the equality for Y, Y’ Y"” € Y* for each s € [1,k]; else, the left side vanishes as §
is the product of the g° which satisfy the first point of (3.2) and the right side vanishes by
Lemma 4.1. Then it suffices to prove it along )Vanz = {g" = 0;7 # s}. Indeed, for any vector

field Y” in Y", with r # s or r = 0, Ly (d”( le’f )Y, Y, Y")) = 0 (straightforward) and:

Ly g(R(Y, YY", Z) = (Dyrg)(R(Y,Y')Y", Z) + 2

where 3 is a sum of terms which vanish by Lemma 4.1,

= (Dyg)(RY",Y')Y",Z) + (Dy.g)(R(Y, YY", Z)
by the second Bianchi identity
=0 again by Lemma 4.1 or, if r = 0, directly, as Dyog = 0.

So let us take p € V5, . To simplify the next calculations, we take a system (¥;)/*; of normal
coordinates of yfhz, centered at p, so at p: Vi, j, Dyfiffj = 0. Setting y; = ¢; o w and adding
on Y, the coordinate x given by the adapted system of coordinates, we obtain a coordinate
system (z, (y;);i=,) of Yy, with the following properties: along S, Vi, g(Y;,Z) = 0 and at
the point p of S such that 7(p) = p, Vi, j, Dy,Y; € X,,. Then we propagate those coordi-
nates, from p, on U.¢1);,. by the flow of the coordinate vector field Z = % of the adapted
coordinates. This flow preserves Y?, so for all 4, DzY; = Dy, Z € Y*.

It is sufficient to show (3.6) for Y, V', Y among the Y; at p. Let h be the bilinear
form C}ig;; Dyh(Y',)Y") = g(DyDzY",Y") + g(DyDzY",Y’). Indeed, Dyh(Y',Y") =
Lyh(Y'.Y") — h(DyY",Y") — h(Y', Dy Y") and:

° Lyh(Y')Y")
=LyLzg(Y',Y")
=9(DyDzY".Y") +9(DzY, DyY") + 9(DyY', DzY") + g(Y", Dy DzY"),
€Y;  €X, €X, €Y
° h(DyY’, Y”)
=Lzg9(DyY'.Y") = g([Z, DyY'],Y")
=g(DzDyY',Y") + 9(&/}:} &}Z) —(9(DzDyY",Y") = g(Dpyy 2, X" ) =0,
€X, €Y xDxZeX, €Y7
esymmetrically, h(Y', DyY") = 0.

So: dPh(y, Y’ Y")
=g(DyDzY",Y") 4+ g(DyDzY",Y') = (9(Dy'DzY,Y") + g(Dy' DzY",Y'))
=g(R(Y,Y")Z,Y") + g(DyDynZ,Y') — g(Dy'Dyn Z,Y'))
=—g(RY, YY", Z) + g(R(Y,Y")Z,Y') — g(DynDy Z,Y")
—9(R(Y'",Y")Z,Y) + g(Dy» Dy Z,Y)

By the first Bianchi identity, g(R(Y,Y")Z,Y")—g(RY',Y")Z,Y) = —g(R(Y,Y")Y", Z). Fi-
nally as, along S¢, for all i, g(Y;, Z) = 0, one checks that: g(Dy»DzY,Y’) = Lyng(DzY,Y")
= 5LynLzg(Y,Y"), 50 —g(DynDy Z,Y')+g(DynDy: Z,Y ) = 5 LynLz(—=g(Y,Y")+g(Y',Y))
= 0. We are done. ([
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4.14 Remark So, adapted coordinates appear as solutions of an O.D.E. in an infinite
dimensional Banach space. This O.D.E. cannot be “factored”, to be turned into an O.D.E.
on I"! itself, unless the holonomy group acts trivially on X. In this particular case, the
problem becomes a lot easier to solve, see [Bo00]. Notably, if ng = 0 and £ = 1 (only
“one block” Y!) the O.D.E. on the field Z is exactly the equation of the geodesics: along
XL Z 1 span(Yi),, 9(Z,Z) = 0 and g(Z, X) = 1; then everywhere, DzZ = 0 gives the
adapted coordinates in this case, with moreover v = 0. The reader can check it immediately.
So all the difficulty, in Theorem 3.7, comes from the case where H® acts non trivially on X.

5 The metrics giving each type of holonomy representation

5.a A more detailed description of the algebras “of type 3 and 4”

First, if a holonomy algebra § is of type 3 or 4, as defined in Theorem 2.1, the nature of the
Lie algebra t and of the map ¢ appearing in that theorem follows quickly from Proposition
2.5; we give it in Lemma 5.1 below, left to the reader. Based on the notation of Proposition
2.5, we denote by h* the Lie algebra of H*.

Here we call reductive a Lie algebra t which is the direct sum of two ideals v = s ® t with
s semi-simple and t abelian, be the subgroup exp(t) closed or not in exp(t). In that sense,
all subalgebra of so, (R) is reductive, as SO, (R) is compact.

5.1 Lemma Let b, be a holonomy algebra of type 3 or 4 and b,,, = s+t be its decomposition
into its semi-simple and abelian ideals. As SO, (R) is compact, every Lie subalgebra of
50, (R) admits indeed such a decomposition (the subgroup exp(t) being not necessarily closed
in exp(t)). For each s,

e cither h%, C s

e or b3, =, ® &3, where £, = tN b2, and 55, = s N h3, are commuting ideals.

In the second case, dim Y&, is even and there exists a complex structure J%, € SO(Y?,, 35,)
ie. (J5)? = —1d, such that 55, C su(Y3,, 0%, JS,) and that &5, = span(J3,) ~ R is the
center of W(Y%,, G5, J5,)-

5.2 Consequence/Notation Reordering possibly the indices s, we suppose that the l‘v)iI
are in the second case if and only if s € [1,£]. Besides, for each s < k', the map t — t.J5,
provides a canonical isomorphism from R to t%,. By this means, t = @I;':l{fﬁ is canonically
identified with R¥. Therefore, if b, is of type 3, the map v is of the form:

t~ RV — R

w (t t ) Zk/ £ for a certain >\(¢) = ()\S)I;’Zl c Rk/ (k‘/ < /{) (5'1)
: 1yeeey Ukt — i—1ts

If b, is of type 4, let us denote by Y the binded subspace of T,, M, according to Ter-
minology 2.2 (notice that Y¥ € YY), and as usual Y% = Y% /X,,. With that notation,
independent of the chosen coordinates, 1) maps 1" onto Yg{* ®X,,. Once (arbitrarily) chosen
a nonzero vector X € X,,, ¢ can be seen with values in Y?;’L*. So, If b, is of type 4, ¥ is of
the form:

t~RV R

v o(h te) Zk/ LA for a certain A(y) = (AS)isf/zl c (Y%*)k’ K < k)
. ge ey ! 7,:1 s

(5.2)
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Eventually, reordering again the indices s and decreasing possibly k' to let apart the null
As or Ag, we can suppose that none of them vanishes. Notice that, as v is onto, the (\* )’;,:1
and (AS)]S"J:]L span, respectively, R —so k¥’ > 1-— and Y¥* —so0 k' > dim Y¥*.

5.3 Remark Despite their similar appearence, representations of type 3 and 4 are quite

different. Indeed, with a representation of type 3 is associated the family of scalars (\* )];,,:1

This corresponds, by exponentiation in the holonomy group, to a family of angles: an element
e € exp(h), acting trivially on all Y*® except Y" for some r € [1, k'], magnifies X,,, by 2 if
and only if it “rotates” the space (Y7 ,J"), of the angle T2 je. if e = exp(h) with h of

m>Ym 2 A"
complex trace tr Jr(leT ) = 1;\‘—3 Nothing similar appears for type 4.

5.b Some auxiliary definitions

To state Theorem 5.14, we need some auxiliary concepts. If I/ is an open subset of RY, N
even, we view here a Kdhler metric on U as a pair (J, g) with J a complex structure on U
i.e. an integrable field of endomorphisms such that J? = —1Id and g a Riemannian metric
on U such that J is g-orthogonal and parallel for the Levi-Civita connection of g.

5.4 Definition A one-parameter family (J;, gt)tc; of Kédhler metrics on U is called admis-
sible if, denoting by D; the Levi-Civita connection of g;:

e The field of endomorphisms %Jt is g¢-selfadjoint, (5.3)
e The 1-form U — trgt[th(%)t( -, J¢+,U)] do not everywhere vanish on U. (5.4)

5.5 Remark Any family (J;, g;)ier of Kéhler metrics can be written ((¢¢)«Jo, (got_l)*gt)tg,
where (o)t is a family of diffeomorphisms mapping Jy-complex coordinates on J;-complex
coordinates: (¢t)«J, = Ji, and where (gt)tg = ((¢t)*g¢)ter 1s a family of Jy-Kéahler metrics.
So the set of families (J¢,g¢)ier of Kahler metrics is parametrized by the set of families
(gt, ot)ter, with (¢¢)ier a family of diffeomorphisms from U to ¢ (U) and (gt)tg a family of
Jo-Kéhler metrics on Y. In turn, (¢¢)er can be seen as the (non autonomous) flow of some
vector field (V;)wer on o (U): %gpt = Vi 0 . The datum of (¢)ier is equivalent to that of
(V)ter or to that of (Wy)ier = %g@t = (dgpt_l.Vt)tE], family of vector fields on /.

5.6 Proposition We use here the notation introduced in Remark 5.5.

(a) The set K of the families (Ji,gt)tcr of Kéhler metrics on U satisfying (5.3) is
parametrized by the datum of Jo and by the families (g o Wi)ter where:

° (gt)tg is a family of Jy-Kéhler metrics,

o (Wi)er = ((Oft +8—ft)ﬁt)t€1 where (fi)ter Is any family of functions f; € C*°(U,C), 0
is the Jy-complex derivative and ﬁt is the musical isomorphism associated with g .
In particular, such families exist; besides, for each t, g; is Ricci-flat if and only if g , Is.

(b) On K, (5.4) is the negation of an algebraic condition on the 2-jet of each (J,gt),
which is satisfied by at least one element of IC, moreover Ricci-flat for all t. So “almost all”
(Ricci-flat or not) elements of IC satisfy (5.4) i.e. are adapted. More precisely, these elements
form a residual set in the Kéhler Ricci-flat metrics, for example in the C'? topology.

5.7 Remark In other words, the latter point of (a) in Proposition 5.6 means that W, is
the sum of a gradient and of a symplectic gradient, with respect to the Jyg-Kéhler symplectic
form. This always holds in real dimension 2, but is a strong condition in greater dimension.
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5.8 Remark With the notation of Remark 5.5, the set of the families (Jy, g¢)ier of Kéhler
metrics, with Jy fixed, is, more precisely, in bijection with £/ ~, where £ is the set of the
families (g,, pt)ter as in 5.5, and (g,,¢t) ~ (g, ¥}) if @) o @7 ! is Jo-holomorphic and and
Q; = (p} o gpt_l)*gt. So, in 5.5, (p¢)ter can be seen as “defined up to right composition with
a Jp-biholomorphism?”.

5.9 Definition We now consider again a metric g on M ~ I", written in adapted coordi-
nates. We suppose that, for some k' € [1, k], the metrics (§%)¥_, are Kéhler with respect to
some complex structure J3.

Take A = (\s)*_, € R¥'; a function f on M is called ((§.).er, )-binded if:
k/

s=

e f only depends on the coordinates (y°)
o Vs € [LK], f (LysLzin f)") = X (g (423 (L) (-, I3+, V) )

In case ng > 0, let Y be a subspace of YO, and A = (A*)*_, € (YY) a K'-tuple of
vectors of the dual space of Y%, with k' < k. As the holonomy group acts trivially on Y?h,
YY gives rise, by parallel transport, to a parallel distribution Y. If & is a one-form with
variable in Y, defined along M, i.e. a section of Y"* M, ¢& is called ((§.).e1, \)-binded if:

k'

, and z,

Ns

i=1

e & only depends on the coordinates (y*®)s_, and z,
o Vs € [L K], (LyLya)is, = (trgs(a (hg) (- 72 Vo)as)

5.10 Remarks e The terms Ly;sLZd‘Yo/, apparently very dependent on the coordinates
in which they are expressed, are a second derivative of & in an intrinsic sense. Indeed, in
adapted coordinates, the coordinate-vector fields (Yio)?:‘)l are parallel —which is possible as
the holonomy group acts trivially on Y?h—, SO LY;LZOVQYO' = LZLY;d\YO' = DYf DZd|Y0"

e Proposition 7.7 makes more explicit, in some cases, the terms trgs(...).

Eventually, the following lemma gives the link between “admissible” families of metrics
and our topic: Lorentzian holonomy algebras.

5.11 Lemma For any s € [1,k], there is a complex structure J* € SO(Y%,Q%) such that
b Cu(Y5 g5, Ji) (5.5)

if and only if there exists a one-parameter family J3 of complex structures of )v/;%z, such that
J§ = J*® and that (g3, J3).cr satifies Condition (5.3) of definition 5.4. If moreover, for each
z, g5 is Ricci-flat, then

b & su(Y5, g5 J) (5.6)

if and only if (g5, J%).er is admissible, i.e. satisfies also Condition (5.4) of Definition 5.4.
5.c¢ The germs of metrics, classified according to their holonomy repre-
sentation

5.12 Notation In this section, g is a reducible-indecomposable Lorentzian metric given by
(((92)2e1)k_g; (72)ze1) in adapted coordinates applying in I™, identified with the manifold.

We determine which g5 and v, let the holonomy algebra h of g be of type 1, 2, 3 or 4.
First, the Ambrose-Singer theorem gives a translation of Theorem 2.1 in terms of relations,
at every point, between some components of the curvature tensor.
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5.13 Proposition The holonomy algebra b of g is of type 3, with k'-tuple A\(¢)) = ()\s)’;/zl €
R*" if and only if:

e for every s € [1,k'] and every z, there is a complex structure J¢ € SO(Y*, §°),

such that the field J; (denoted also by J*) is parallel on M; (5.7)

besides for every z, g; is J;-Kéhler, Ricci-flat, (5.8)
s=0ors>k = g(R(Y,, 2)X,Z) = {0}

v YL I ) e 2y O

e for any s € [1,k'], at some point ¢: 3Y € Y : trys(R(Y, Z)iys) # 0, (5.10)

with tr s standing for the J*-complex trace of the J*-complex endomorphisms R(x, *)\Ys-
The algebra b is of type 4, with k'-tuple A(y)) = (A*)*_, € (Y*)*" if and only if the
holonomy group acts trivially on X,,, (5.7), (5.8) and (5.10) hold and, instead of (5.9):

Js=0o0rs>k = g(R(Y 2)Y),Z) = {0} 511
*atanypiy g < s <K = VY € Y3, g(R(Y, D)o+ 2) = (e (R(Y, Z) 3. A* (5.11)
Now here is the theorem itself. The terms “admissible” and “((g, )., A)-binded” are defined

in the next paragraph.

5.14 Theorem With the notation of this section and of Theorem 2.1:

(a) b is of type 2 or 4 if and only if (y — dz) is the pull back 7*% by m of a 1-form ¥ of
M. 1t is of type 4, with binded subspace Y% and with k'-tuple A(¢)) = (A*)F_, € (YO*)¥
(see Formula (5.2)) if and only if, additionally:

o for 1 < s <k, each (¢5)er is an admissible family of J$-Kéhler, Ricci-flat Riemannian
metrics,

® Yy is ((9z)ze1, A(v))-binded, this condition being satisfied, for a given ((§.).e1, A(¥)),
by a unique form yor.

(b) Else, b is of type 1 or 3. It is of type 3, with k'-tuple A()) = (A*)¥_, € (R*)* (see
Formula (5.1)) if and only if, additionally:

o for 1 < s <k, each (g5)er is an admissible family of J$-Kéhler, Ricci-flat Riemannian
metrics,

o v(X) is ((¢2)zer, AN(¥))-binded, this condition being satisfied, for a given ((§.).cr1, AN(¥)),
by a unique function v(X).

5.15 Corollary Theorem 5.14 parametrizes, up to the action of a subgroup of GL(n—1,R),
the set of germs of metrics of the “exceptional” types 3 and 4.

Indeed, in adapted coordinates and if you choose moreover, for each s > 1, the coordina-
te-vectors (Y;°)1*,, in the hypersurface Xol, equal to the exponential of linear orthonormal
coordinate-vectors on T,,Y; (equivalently, if you choose each submanifold S§ = {x =0,z =
0,y" = 0 for r # s} such that S§ = exp(T,,S3), and each set of coordinates ()1, of V§

i
as normal coordinates centered at ), then:

(a) A metric of type 3 (respectively 4), with prescribed k'-tuple \(1)), (respectively with
prescribed k'-tuple A(v)) is given by the independent and arbitrary data of:
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e a nonzero vector X of X,,, = T,,X,

mannian metrics, such that, at z = 0, each g is given in normal coordinates centered at

e a k'-tuple of 1-parameter families ((Qi)ze]—a,e[)gl 1 of admissible, Ricci-flat Kéhler Rie-

zero and that, if r is the normal radius vector in R™s, di _agi(r,r)=0,
z|2=07%

e a k-tuple of 1-parameter families ((g5).e]—c,c[)%_;/., of Riemannian metrics, satisfying
at z = 0 the same condition as the (g%)*_, just above,

e [for a metric of type 3] the value of the closed form ~y on each submanifold {x =
0,z = zp} Le. the value of the (Y;®) along this manifold (with the constraints given
by Theorem 3.7 i.e. for each s and i < ns, Y(Y;®) = 0 along each S and v = 0 on
X = {z=0}).

e [respectively, for a metric of type 4] the value of the closed form % on each
hypersurface {z = 29} of the quotient M = M/X i.e. the value of the ¥(Y;®) along this
hypersurface (with the constraints given by Theorem 3.7 i.e. for each s andi < ng, y(Y;?) =0
along each V¢ and v = 0 on Xg- = {z = 0}).

(b) If X is replaced by uX, u € R*, to obtain the same germ of metric, one must replace
the ((gi)zé]—a,e[)lgzl by (g%z)ze}—,ue,p,s[ and MN(z,y0, ...y, 2) by %’Y\(pz,yo,...,yk,(l/,u)z)'

(c) For a given choice of X, two data as described in (&) give isometric germs if and only
if the ((gi)ze}_ayg[)fj:l and y are on the same orbit of an action of Hle SO(ng, R) x R™s.

Proof. We do it for the case of a metric of type 3. Type 4 is similar. In adapted coordinates,
a germ of metric is given by the independent and arbitrary data of the 1-form v and of the
quotient families of metrics ((g5).e]—ce[)h—;. Prescribing moreover that the coordinate-ve-
ctors Y,® are the exponential of linear coordinate-vectors of TmXOL amounts to require that,
for each s:

® g; is given in normal coordinates centered at zero,

. %\z:ogg(?’ 7) =0, with 7 is the normal radius vector in R™s.

The first point is immediate, as the ()", are normal coordinates of Y2, if and only if

go is given in normal coordinates centered at zero. For the second point, notice that:
Ss =exp(T,,S;,)
&g(D-7,Z) =0 along Y,
\Z) + (1/2)Lzg(r,7) = 0 along Yy,
?) = 0 along ), as, by definition of adapted

T
< L-g(r
<:>ng(?

coordinates, Z L S;, so g(?, Z) =0 along S;,

— —

g‘zzogi(r’ ’I") =0.
To achieve the proof of (a), it remains to check that the datum of « on each submanifold
{zx =0,z = 29} and the fact that v(X) is ((¢.).er, A(¥))-binded determine uniquely ~ on
M. Tt follows immediately from Definition 5.9 and from the fact that for each z, v, is closed
so Lxy(Y;") = Lysy(X) for every s < k and i < ns. So (a) is proved.

Point (b) follows from the fact that, in adapted coordinates, the replacement of X by
uX at the origin turns the coordinate x into %:13 and the coordinate z into pz.
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Finally, for a given germ of metric, an adapted system of coordinates is determined
by its data on {z = 0}; if moreover you prescribe that the coordinate-vectors Y;* are the
exponential of linear orthonormal coordinate-vectors on X = TmXOl, an adapted system
of coordinates is determined by the choice of the basis (X, ((Y;*)1*,)*_,) of T, &Xs-. The
vector X being fixed, for each s, the group SO(ng, R) x R™s acts simply transitively on the
set of basis (X, (Y;*),) of T, )5, with (Y;*)?¢, orthonormal: SO(ns,R) acts on the basis
(V)1 of Ty V5, /Xm and R™ on the choice of the supplement of X,, in Y§, = TYs,. In
turn, the set (X, ((Y;*)7*,)%_,) of those basis is the initial condition of the O.D.E. giving
the adapted coordinates. Hence, for a given germ of metric, Hf::o SO(ns,R) x R™ acts
simply transitively on the set of such adapted coordinates, so on the families ((g3) ze}—e,s[){:zo
and on 7. The orbits of this action correspond to equivalence classes of metrics, up to
diffeomorphism. In other words, to germs are isometric if and only if they are given by two

data (((95)se]—c.e)_g,7) on the same orbit of this action. This is (c).

This action of Hl;:o SO(ns, R) x R™s, which is the natural action on the initial condition
of an O.D.E., cannot be described explicitely on the solutions of the O.D.E. themselves, so
on the datum (((gg)ze}—e,s[){:zm 7)' U

6 Proof of Theorem 5.14 and of its adjacent results

Proof of Lemma 5.11. By definition of the holonomy group, b3, C u(Y%,, 9%, J%,) if and
only if JZ can be locally extended as a parallel field of endomorphisms of Y*. In turn this
can be formulated as:

e cach leaf 375% is endowed with a parallel complex structure J2,
e this J; is also parallel in the direction Z, i.e. DzJ; = 0.

The first condition says simply that there exists a one-parameter family J; of complex
structures of Y%, , such that for all z, (V5,_, g5, J¢) is Kéhler. The latter is equivalent to
Condition (5.3) of Definition 5.4. Indeed, let us take 7,5 € [1,ns]; besides we may suppose
that the coordinates are complex, i.e. that or all 4, j, [JZY;*, YJS] = 0. Moreover we propagate
these coordinates by the flow of Z, so [Z,Y;*] = 0. We denote by Y and Y' any Y;* and Y}’
and J? by J. Note that J is parallel if and only if, for any Y, Dz(JY) = J(DzY). Now:

1
g(DZ(JY)7Y,) = §(LZ9(JY7Y,) + LJYg(Zvyl) - LY’g(Z7 JY)

=0 as dy=0
N—— S~—— —
=0 =0 —g(Y'(LzJ)Y) as [2,Y]=0

A symmetric computation gives:
JIDY),Y') = —g(D7Y, JY") = 5(~Lag(¥, JY') + g(¥, (Lz)Y")).
As gV, JY') = —g(JY,Y"), LzJ = %J; is g3-selfadjoint if and only if Dz J: = 0.
This proves the first part of Lemma 5.11. Let us deal with the second one. We now

suppose that for every z, (Y,‘%, g3.) is Ricci-flat. By the Ambrose-Singer theorem, l‘v)iI 4
su(Y3, g%, J5) if and only if, at some point p € M, for some A, B € T M, R(AvB)h?s
p

has nonvanishing J*-complex trace, i.e. trgs (g(R(A,B)Ws g )) # 0, with trgs the real
P
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trace of a real bilinear form, with respect to the metric g*. Now if A or B is in +,.,Y,
by Lemma 4.1, R(A, B)|Ys = 0. Besides, for every z, g7 is supposed to be Ricci-flat, i.e.
p

precisely, if A,B € Y, the J*-complex trace of R(AaB)h?s vanishes. So if this trace is
p

nonzero for some A, B € T, M, it is with B = Z and A € Y. But now, by Proposition

3.12:

trgs(g(R(Av Z)|Y; ) AR )) = trgs(g(R( i) J5- )A7 Z)) = trgs(dDg%)( K AR )A))7
which proves Lemma 5.11. O

Proof of Proposition 5.6. (a) We use the notation of Remark 5.5. In local coordinates,
we set Gy = Mat(g:), G, = Mat(g,), P» = Mat(dy:) and identify J; with its matrix; a prime
after a symbol stands for its derivative in t. *M stands for the transpose of a matrix M.
Then:

J, is gp-selfadjoint
& GyJ]  is symmetric
< (PG, PY (Pl JyPTt — Py P PP is symmetric
& G, JoP7 P, — G,P7'PJy is symmetric (multiply left by Py, right by P;)
& G, PP - G,P7 PlJy  is symmetric, as Jp is g,-skew-adjoint,
o LA+ Aydy =tAL T 4+ JéAt is symmetric, with A; = QtPt_lpt’
e LTg(Ay —tAy) = —(Ay —'A) Ty
s ay(Jo-, )= —ay(-,Jo-), with a; the 2-form the matrix of which is A; —'A;
< ay is of type (1,1), with respect to the complex structure Jy.

t
Claim. oy = dw% , with b’ the musical isomorphism associated with g,

Indeed, let us choose a point p € M, any basis 3 of T, M and let us prove that Mat g( dw't”) =
A;—*A; = G, P P/ (G, P, ' P]). By the g,-exponential map, § gives a system of g -normal
coordinates in a neighbourhood of p. Let B and C' be two normal coordinate-vectors.
dw;' (B, C) = Lp(g,(we, ©)) — Le(g, (wr, B))
= (Lpyg,)(wt,C) + g,([B,wi], C) + g,(wy, [B, C)
= (Leg,)(wi, B) — g,([C,wy], B) — g, (wy, [C, B]). (6.1)

Now [B,C] =0 and, at p, Lpg, = Lcg, = 0. Besides:

[B,wi = Lp(& (e 02)
= & (Loleren)

= %‘s:t(d@t_l' dyps.B)

— dnpt_l.(%‘sztdgos).B,

which is exactly saying that at p, Matg([B,w;]) = P, ' P/Matg(B). As dw’* is a tensor, we
can replace in (6.1), and obtain an equality only depending on the value of B and C at p.
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This gives Matﬁ(dwgt) = G, P, P, (G, P ' P}), which proves the claim. Therefore:
(g, Ji)rer satisty (5.3)
& thht is of Jy-type (1,1)
& AW + Oy s of Jo-type (1,1), setting Wtht = 10 4 O
& 9w 4 9w 4 5,10 9,0 s of Jy-type (1,1)

type (2,0) type (1,1) type (0, 2)

& w0 =5, — ¢

& w0 =0 as, Wtht being real, w(®1) = w(1.0)

s w0 =95 fi, where f; is a complex function, as 0 is locally exact
o W =0f, +3f, = dRf) + (d(Sf)) 0 Jo which proves (a). (6.2)

6.1 Remarks e About the meaning of the last line, see also Remark 5.7 p. 19.

e We can check the coherence of the result with the particular case J; = Jy for all £. Then
%Jt = 050 (Jt, gt)ters satisfies (5.3); besides (¢¢)ter is a family of Jy-biholomorphisms. It is
the case if and only if Wy, or equivalently V4, is a family of holomorphic vector fields, which

t R
can be checked to be equivalent to I/VtE = Ofy + Of; with f; holomorphic from (RN Jy) to
C. So, considering ¢, as in 5.8, as defined up to right composition by a Jg-biholomorphism,
is equivalent to considering f; in the same way.

(b) We have to find one admissible and Ricci-flat family (g¢, J¢)wer. In fact, we exhibit
a non-empty collection of such families. Let us choose (gg, Jy) any Ricci-flat Kéhler metric,
(ft)ter some family of functions f; € C°°(M,C) and (¢¢)ier the family of diffeomorphisms
associated with it as above; we set g; = (¢, 1)*90. By Lemma 6.4, independent of the rest
of the paper, with g . = 90, bs the musical isomorphism associated with g, Dy its Levi-Civita
connection, Ry its curvature and V; the vector field such that ¢, is the flow of V;:

dPt(4e)(A, B,C) = —Dy(dV;")(C, A, B) + 2g,(Ri(C, V;) A, B) (6.3)
So:
trg, (AP (4)(, Ty, U0)) = —trg, (De(AV? )T, -, ) = 200 (Ri(C, Vi) o)
= Ly tr, (dvft( T )) C2tr (Ri(C, V) o ) (6.4)
As go is Ricci-flat, so are every gy, so tr(R:(C,V;) o J;) = 0. So (gs, Ji)ser satisfy (5.4) if

and only if trg, (thbt( e )) is not constant over ¢(M), ie. try (thht( - Jo - )) is not
constant over M. Now:

Claim. try (AW (-, Jo)) = Ay (Sf2). (6.5)

Therefore, in our case, (g, Jt)ter satisfies (5.4) if and only if S f; has not a constant
g t—laplacian. (Lots of) germs of such functions exist, so we are left with proving the claim.

AW = (9 +9)(0f, + )
= 00f, + 90 f,
= (90 + 99)(Rf;) — (00 — DD)(S fr)
=2i100(Sf;) as 99 + 00 = 0.
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Eventually, for a Kahler metric, Agt(% f¢) is equal to the symplectic trace of 2i 90(S f;), i.e.
precisely to trgt(det( -+, Jo+)), see e.g. [LB70], p. 32. We are done. O

Proof of Proposition 5.13. The existence of the complex structures .J® is given by Lemma
5.1. Now, as defined in Theorem 2.1, b is of type 3 with k’-tuple ()\“”)’7;,:1 if and only if:

k/
VH € b, g(H(X),Z) =Y (trys Hg)X*  and: Vs € [1,K], trys Hygs #0,
s=1
i.e., by the Ambrose—Singer theorem, if and only if:
k/
Vpe M, VA, B € TyM, g(R(A,B)X,Z) = Z(trjs R(A, B)‘Ys))\s and (6.6)

s=1

for every s € [1,k'], there is a point ¢, A, B € T;M with: tr;s R(A, B)\Ys #0. (6.7)

By Lemma 4.1, A, B € X; = R(AB)X =0and, ifr #s, (A€ Y orBeY") =
R(A, B)jys = 0. So (6.6) is equivalent to:

Vp e M, Vs € [0,k], VY € Y, 9(R(Y,2)X,Z) = Zflzl(tsz R(Y, Z)‘Yr))\’“
_ (trys R(Y, Z)‘YS))\S if s € [1,K]
0 else,

1
and: Vp € M, Vs € [1,K'], VY, Y' € Y,, tryr R(Y, Y/)|Ys = Fg(R(Y, YNX,Z)=0.

Proposition 5.13’s part dealing with type 3 algebras follows. The second part is similar. [

Proof of Theorem 5.14. (a), first claim. The algebra b is of type 2 or 4 if and only if the
holonomy group acts trivially on X. In turn, this is equivalent to the fact that, along any
leaf of X+, the form Qg(f),z,7z introduced in Lemma 4.3 is the pull back 7*¢& of a one-form
& defined on X+. Now by Remark 4.13, Ly = Qo (f),2,z and, on {z =0}, v = du=.

(b) We now show (b), postponing the end of the proof of (a). We have to translate
Proposition 5.13 in terms of properties of the metric, in adapted coordinates. This is nothing
but putting together the previous results. By Proposition 3.4 applied to the terms of the
type g(R(x,Z)*,7Z) and Proposition 3.12 applied to those of the type trjs R(*, ) and as,
for a J®-complex endomorphism A, trys A = trgs g(-,J*-), (5.9) is equivalent to, at any p:

s=0ors>k =VY e€Y?® LzLy(lny(X))=0

1<s <Kk = VY eY* vX)LzLy(Iny(X)) = trgs (AP (ZE) (-, J5 -, Y))A*  (6.8)
and VYY" € Y*, trys (R(Y,Y");¢s) = 0.

By the Ambrose-Singer theorem, points (5.7) and (5.10) of Proposition 5.13 imply that
for each s € [1,k'], b5, C w(Y%,05%,J%) and b3, & su(Y%,,9%,J5). In particular, for
s € [1,K'], each g5 is Kéhler. Moreover, again by the the Ambrose-Singer theorem applied
to each leaf of Y* for s € [1,k'], the last point of (6.8) holds if and only if for each z, the
metric ¢¢ is Ricci-flat. So, by Lemma 5.11, Properties (5.7) and (5.10) and the last point of
(6.8) hold if and only if for each s € [1,k], (JZ, (d5).er) is Ricci flat, admissible.

Besides, both first claims of (6.8) correspond exactly to the fact that the function v(X)
is ((g2)zer, A)-binded, see Definition 5.9.
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We are left with showing that, for a given (g, ).er = (H];:o J3)zer such that, for each s €
[1, K], (32).er is Ricci-flat and admissible, and for each given k/-tuple A = (A*)%_, € (R*)*
one and only one function f on M, equal to 1 on X,;- and along (m.).cr, is ((J2).er, M-
binded. We need the following lemma, proven just after the present proof’s end.
6.2 Lemma Let s be in [1,k']. The one-form 7, : Y Z’;lzl A trys (R(Y, Z)ys), defined
along any leaf X;- of X+, is closed.

Now, with F' = In f, defined at least for small values of z:
fis ((g2)zer, A)-binded
SV, d(%)p“ =e Fr,, with 7, the one-form introduced in Lemma 6.2

S(LzF)x1(= %p@) =TZ(e 1) (6.9)

with Z the operator associating, with a closed one-form « on X'}, its integral vanishing at

m,. For any r > 1, 7 is continuous and even Lipschitzian on C", for the C" norms. Besides,
(6.9) makes sense, i.e. is an O.D.E., in the Banach space E” = {F € C"(I""},R); F(0) =
0 and e~F'7, is closed}. Indeed, the map F — Z(e~F7.), maps E” in E":

d(e_I(eiFTz)Tz) = (—e_z(eiFTz) d(I(e_FTz)) AT, as T, is closed, by Lemma 6.2
(—e_I(E_FTZ)e_FTZ) ATy

0.

So, by the Cauchy Lipschitz theorem applied in E”, (6.9) admits a unique solution with
value F' =0 at z = 0; as it is thus of class C" for all r, it is of class C*°. We are done.

(a), end. The arguments of (b) applied to each function v(Y?), 1 < i < n{, with

(Yio)?ﬁl the coordinate-vectors spanning Y%, give the result. The last step, using Lemma
6.2, is even simpler, as the O.D.E. one gets is Lz f = Z(7,). So we omit the details. O

Proof of Lemma 6.2. In fact, for each s € [1,k], Y + trs(R(Y, Z)}ys) is closed. Notice
that, as ¢° is Ricci-flat, trys(R(Y*,Y?)jys) = {0}; besides, by Lemma 4.1, for r # s,
R(Y",Y")ys = {0}, so trys(R(X+,X*)ys) = {0}. Let Y, Y be two adapted coordinate-
vectors of X+, We denote below by ¥ and ¥’ some sums of terms in tr s (R(X+, X+)ys),
thus vanishing.

Ly trys(R(Y', Z)jys) — Ly trys (R(Y, Z) =)
= tr((DyR)(Y', 2)ys — (Dy' R)(Y,Z)jys) + X
= trys(DzR)(Y',Y)ys) by the second Bianchi identity
= Lytrss(ROY,Y)ys) + 5/
= 0. O

The last remaining work is to state and prove Lemma 6.4, independent of the rest of the
article. We need the following definition.

6.3 Definition If A is a (p, q)-tensor on a manifold M with a connection D, 6*A is the
symmetrization of DA, i.e. the (p + 1, q)-tensor defined by:

1
Gl 2 DA o) (6.10)
0€G, 1

5*A(X17 s 7Xp+1) =
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6.4 Lemma Let (¢;)ier be a one-parameter family of diffecomorphisms from an open set
U of R" to pi(U), (Vi)ier the one-parameter family of vector fields on ¢:(U) such that
%got =V, 0 and (gt)tg a family of Riemannian metrics on U. We set g; = (gpt_l)*gt, and
denote by D, the Levi-Civita connection of g;, by 0] its symmetrization, by R; its curvature
tensor and by b; musical isomorphism of g;. Then:

Lo =26 (V) + (0 )" 59, (6.11)
th(%)(A,B,C) = 2gt(Rt(Av B)Ca W)_Dt(d‘/tbt)(chv B)+ th((th_l)*(%))(A,B,C)
(6.12)

Proof. (6.11) is standard and follows from Lemma 1.60 p. 35 of [Bes87|. For (6.12), we
may suppose that g . is constant; we also drop everywhere the index t. Take A, B,C any
three normal coordinate-vectors at any point p. At p, DaB = DpA =D C = ... =0, so:

—D(S)(A, B,C) = —La(%)(B,C)
= 2L,6*(V°)(B,C) by (6.11)
= Lag(DpV,C) + Lag(DcV, B)
= g(DaDBV,C)+ LaLcg(V,B) — Lag(V, D¢ B)
= g(DaDBV,C) + LcLag(V,B) — g(V,DaD¢cB)
= g(DADBV,C) + Lo LAV®(B) — g(V, DADgC).

So: —dP(%9)(A, B,C) = g(R(A, B)V,C) + Lo(dV? (A, B)) — g(R(A, B)C, V)
= —29(R(A,B)C, V) + (Dc dV°)(A, B). O

7 Additional comments

7.a A parametrization of the set of germs of Lorentzian reducible metrics

We parametrize, using Theorem 3.7, the set of germs of Lorentzian reducible-indecomposa-
ble metrics, and by the way, understand them a bit better. To obtain such a metric, one
must first choose the parallel distributions (X, (Y*)*_;). So in this paragraph, (X, (Y*)*_,)
are subspaces of R” such that X = R x {0}, dim(+*_,Y*) =n -1, forall s, X C Y?*
and ®F_,(Y*/X) = R"/X. We set ny = dimY*/X. We focus on the germs at 0 € R”
of Lorentzian metrics g such that, identifying R™ with the tangent space at the origin and
denoting by h the holonomy algebra of g:

g(X,X) = {0}, +*_,Y® =X, p stabilizes (X, (Y*)*_,) and acts trivially on Y°. (7.1)

7.1 Recall If Z is any vector such that ¢(Z,X) =1 and (Y,Y’) € Y* x Y" with r # s or
r = s = 0, then the quantity g(R(Y,Z)Y’, Z) is independent of the choice of Z, it follows
from Lemma 4.1.

7.2 Corollary [of Theorem 3.7 Let g be a germ of Lorentzian metric satisfying (7.1). Then
g is given by the independent and arbitrary data of:
(i) A nonzero vector X of X at the origin,

(ii) The quotient metrics ((§).e1)*_, it induces on ((¥$)*_,).er1, given as one-parameter
families of germs of Riemannian metrics on R™s,
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(iii) A function f € C*°(R™,R). This function satisfies, at any point, for any Z such
that g(Z,X) =1, for all Y)Y in Y* x Y" withr #sorr=s=0, LyLy/f = Ly:Ly f =
g(R(Y,Z)Y', Z) =: B(Y,Y"). See Proposition 7.4 and Remark 7.5 (ii) below for details. In
fact besides, f is naturally defined up to addition of a function of the form Zle 5 f°

depending only on the coordinates (y*)*_, and z.

If X is turned into pX, p € R*, the same germ g is given by (ii) the families (§1,).epur
m

and (iii) the function f, : (x, (y*)F_y,2) — %f(,ux, (y*)r_,, %z)

The vector X chosen in (i) being fixed, two data of (ii)+(iii) give the same germ g,
up to diffeomorphism, if and only if for each s > 1, both families (§3).c; are on the same
orbit of an action of G(R™,0) x G((R™,R),0) and both functions f on the same orbit of
an action of the product on s of these groups. Here, G(R™s,0) is the group of germs of
diffeomorphisms of R at 0 and G((R"¢,R),0) that of germs of functions R"* — R at 0.

This action cannot be described explicitly. The adapted coordinates are the solution
of an O.D.E in an infinite dimensional Banach space, see the proof of Theorem 3.7. This
action is the natural action on the initial conditions of this O.D.E., which cannot be described
simply on the solution of the O.D.E. themselves.

The holonomy algebra acts trivially on X,,, if and only if f does not depend on .

Proof. The proof is the same as that of Corollary 5.15 p. 22, except for two points:

e Here, one does not prescribe that the coordinate-vectors Y,*, on XOL, are the exponential
of coordinate-vectors of TmXOL, so the choice of the adapted coorinates depends on the
choice, for each s, of the sections o of 7§ : V§ — 375 , on which G((R",R),0) acts simply
transitively, and of the coordinates (¢7)7*, of Y2, on which G(R™,0) acts simply transitively.
So R"™s is replaced by G((R™s,R),0) and SO(ngs, R) by G(R™s,0).

e We will see in Proposition 7.4 that the choice of v amounts to that of (iii). Some
comments about the meaning of v lead to that proposition, which completes the proof. [J

A simple means to obtain a reducible-indecomposable Lorentzian metric as described
in (7.1) is to take g = ¢° + 2521 g5 + 2dxzdz. Such a germ of metric is a Riemannian
fibration over B = {(z,0,...,0,2)/(x,z) € I?}, 2dz dz being the (Lorentzian) metric of B,
and the (Riemannian) metric on each fibre depending only on the point in the fibre and
the coordinate z of B. Not any Lorentzian reducible-indecomposable metric can be written
in this form. The obstruction is exactly the bilinear form 3 : (Y,Y') — g(R(Y,2Z)Y', Z)
involved in Corollary 7.2, (iii).

Now in adapted coordinates, this obstruction is also exactly given by =, which conversely
corresponds only to this obstruction. Let g be a metric satisfying (7.1). Let us set Y =
+rts or r=s=0Y* ® Y" and at some p, take Y @ Y’ € Y, ie. Y € Y, and Y’ € Y, with
r#sorr =s =0. By Lemma 4.1, g(R(Y,Z)Y’,Z) only depends on the class of Z
modulo X;. So, along each leaf X;* of X+, a bilinear symmetric form 3, is defined, up to
proportionality, by: 3.(Y,Y') = g(R(Y,Z)Y', Z). Along X}, 3. is a symmetric section of
Y* = +r7és or r=s=0Y " @Y.

7.3 Remark By Lemma 4.3, there exists a closed 1-form «, such that 3, = (Daz)‘?.
This covariant derivative of «, is independent of the choice of g; indeed, by (7.1) and by
Lemma 4.1, the Y* are parallel along the integral leaves of Y® + (+,5Y"), so if at some
p, Y @Y € Y, a parallel extension of Y (resp. Y') in the direction of Y’ (resp. Y) is
independent of g. With such extensions, Dy a,(Y') = Lya(Y’) and, if f is a function,
Ly Ly f does not depend on the choice of g. With f, such that df, = a,, in that sense,
Bz(Yv Y/) = LyLy/f, = Ly/ Ly f,.
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7.4 Proposition By Lemma 4.3, the forms (3, must be of the form 3,(Y,Y') = Ly Ly f, =
Ly Ly f, with f, some function. This is the only constraint, i.e. f, may be any function.
Recall that as (Y,Y') € Y® x Y" with r # s or r = s = 0, the operator “Ly Ly+” is tensorial
inY and Y’, by Remark 7.3 above.

Proof. The family (f,).er being given, you must adjust, in adapted coordinates, the family
of 1-forms (7,).er, so that g(R(Z,Y)Y', Z) = Ly Ly f, for Y @ Y’ € Y. The wished family
(72)zer satisfies an O.D.E. of the type of (6.9), which has a solution by the same argument
as that given at the end of the proof of Theorem 5.14 (b), after Lemma 6.2 p. 27. O

7.5 Remarks (i) Each f., so the (local) failure of g to be a Riemannian fibration as said
above, is defined up to a function f, = Zf 1 fz, where each fz depends only on y°.

(ii) This local failure is parametrized by f,, or equivalently by 3,. In turn, + is given
by (. through Relation (3.3). So v parametrizes also exactly this local failure.

(iii) As in Corollary 5.15, we could also take, in Corollary 7.2, the families ((§5).e1)k_,
such that at z = 0, y® are normal coordinates for g§ and that ( )‘t o7, 7) = 0, with 7
the normal radius vector of R™. If so, the group Q(R”S 0) x G ((R"S R),0) is replaced by
SO, (R) x R™ in the following.

(iv) We could also give a version of Corollary 5.15 involving the family of functions f,
instead of the family of forms ~v,. We let it to the reader.

7.b A simpler formulation of Theorem 5.14 in a particular case

Using Ebin’s Slice Theorem, we can also make the terms trgg(dD (L) (-, T8 Y) ap-
pearing in Definition 5.9 a bit more explicit. We recall the infinitesimal part of Ebin’s

Theorem.

7.6 Theorem (Ebin, [E68]) If (M,g) is a Riemannian manifold, S*(T*M) = Im&* @
ker §, where 9, called divergence, is the formal adjoint of 0* defined in 6.3.

Therefore, if g; is a variable metric and h; = dgt , at each t, hy may be viewed as the sum

of a deformation by a diffeomorphism (of the form —26;V; by (6.11)) and of an “intrinsic
deformation”; in the sense “divergence-free deformation”™ there exists a vector field Vi such
that hy = —20; Vi + hy with 6:hy = 0; §f and 0; being associated with g;. If the (Jy, g¢) are
Kahler, applying this to trgt(th(%gt)( - Ji, U)), we get:

7.7 Proposition We take V; such that hy = —26;V; + hy with 6;hy = 0. Then:

trg, dPhy(-, s -, U) = — Ly (trg, he), (7.2)
trg, (dPthy( -, Jy-,U)) = Ly trg, (dV (-, J; ) = 2tr (Ry(U, ;) 0 J) — Ly (trg, hy). (7.3)

Relation (7.2) has two interests: the meaning of the right-hand side is clearer than that
of the left-hand side and, in case we deal not only with germs of metrics, but with metrics
on some glven manifold, and if the quotient metric g® is a metric on some compact manifold,

then trgs h = 0. Indeed, h is an infinitesimal deformation of a (Ricci-flat, thus) Einstein
compact manlfold accordlng to Definition 12.29 of [Bes87|, thus is trace free by Theorem

12.30 of the same book. So in this case, the term trgs (d”=( dzgg)( -, J5-,Y#)) depends only

=S
ddg; on Im ¢*, not on the intrinsic deformation

on the vector field V., i.e. on the projection of
of g,.
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Proof. (7.3) Follows from (7.2) and Lemma 6.4. Let us show (7.2) i.e., dropping the tilde
on h and the index t: 0h = 0 = try dPh(-,J-,U) = Ljy(tryh). Let h = hy + hs the
decomposition of h into its hermitian part: hy(J-,J-) = hy(-, -) and skew-hermitian
part: hs(J-,J-) = —hs(-, -). Immediately, try hs = 0; besides, as éh = 0 and by Lemma
12.94 of [Bes87|, 0hy = 0hs = 0. Let E be the space on which g is defined; dim E = 2d. By
definition of §, and recalling that 6h(U) = —try0*h(-, -,U):

2d
(X;)#, is g-orthonormal = Jh(U) = — (LU(trg h)+2 Z(DXih)(Xz', U)> . (7.4)
i=1

Let (Y;)%, be an orthonormal basis of (F,J) as a hermitian space. As tr, dPh(-, -, U)
is R-bilinear, skew-symmetric, it comes that tr, dPh(-,J-,U) = 22?:1 dPh(Y;, JY;, U).
Now:

dPh(Y;, JY;,U)
=Dy,hui(JY;,U) — Dyy;hn (Y3, U) + Dy, hs(JY5,U) — Dyy;hs (Y3, U)
= — (Dyl.hH(YZ', JU) + D(]yihH(JY{, JU)) + (Dyihs(Yi, JU) + Dinhs(JY{, JU))

So, by (7.4) and as ((Y;)L,, (JY;)%,) is g-orthonormal, tr, dPh(-,J-,U) = (L trg hn +
dhn(JU)) — (Lju trg hs + 0hs(JU)). As Shy = 6hs = 0 and try hs = 0, we are done. O

7.c A look on some low-dimensional cases; explicit examples

If g is a metric with holonomy representation of type 3 or 4 and if for some s € [1,k'],
dimY*® = 2, then for any z, §¢ is Ricci-flat hence flat so g5 = (p71)*gs with g0 the flat
metric of R?, written for example in the canonical coordinates. As R, vanishes, and by (6.2)
and (6.5): trgs (A7 (532) (-, 2, U)) = L1 AgSfz, with fo € C(R?,C) such that
% = (0f.+0f.) = gradg(s) Rf.+ gradw(s) S f., where gradw(s) is the symplectic gradient with
respect to the canonical symplectic form @ = g§( -, J§ ). One may also notice that if V; is
the vector field of which (¢,).es is the flow, trgg(debi( -, JJ+)) = rotgs V. by definition of
the rotational.

We may then end, by this means, with an explicit family of examples of reducible-inde-
composable Lorentzian metrics on R®, with holonomy representation of “exceptional” type 4.
In adapted coordonates (z,yo,y1,y?, 2), here simply denoted by (z,%0,y1,2, 2), the metric
g reads:

0| 0 0 0 1

0|1 0 0 |7 . .
Mat(g)=1| 0| 0 | 11 Gi2 |m |; besides we denote G = < g; g;z > ,

010 |g21 922 |72 ’ ’

Il | 7|0

with, at 2 =0, 70 =7y =7 =0 and G = I and, on {z = yy = 0}, 71 = 72 = 0. (Caution:
to simplify the notation, we turned it into: 7o = 1, 74 ~ 70, 71 ~ 71, 7% ~ 72.) The
only —arbitrary— datum to provide is that of the one-parameter family (WW,).cr of vector
fields on R? = span(Y71,Ys), derivative in z of the one-parameter family of diffeomorphisms
(¢2)zer. Indeed, according to all that precedes —Theorems 3.7 and 5.14, Relation (6.11)
of Lemma 6.4, Proposition 7.7 and the remarks opening this paragraph— h(g) is of type 4,
with factor A € R* if and only if
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(i) if p € {z = 0} = A", for any z, for i € {1,2}, (Ly,;Lz70)|p. () = MLy, rot W), # 0
(ii) if p € {z =0} = A", for any 2, (£ G) = —20%(W?)

0= (p) lp>

(iii) On {z = 0}, for all 4, 7; = 0 and G = I»; moreover 79 = 0 on the subspace
{y1 = y2 = 0} and {71 = 2 = 0} on the subspace {yo = 0}. Besides, for all i € {1, 2}, the
value on R® of the ; is given by: 0v;/9yo = 0v0/0;.

Let us now take for example a (W,).er of the form W, = (a(y2)b(z),0). Then if

p € span(Yy, Y2) has coordinates (y1,%2), ¢-(p) = ©-(y1,¥2) = (y1 + a(y2)B(z),y2), where
B(z) = [ b(t)dt, as dgfzz‘q = (W.)|q- Notice also that, as o = 0 on 11 = 72 = 0, (i)
becomes: (Lz70)|e,(p) = A(rot W), # 0 and rot W, # const. Let us also recall that, in our
flat, 2-dimensional framework:

0 e
oot W, = Gt Gz

o 25 SRt gR

* _

) Wz ) owq _:lM y228w2 vt .
y2 0y1 Jy2

Simple computations show then that (i), (ii) and (iii) above are respectively equivalent to:

(1) 70 = Ad’(y2)B(2) and a”(y2) Z 0 (notice that, by definition, B(0) = 0),

S 1 a'(y2)B(z)
@ 6= (e 1)
(iii) 1 = 0 and 2 = \ypa” (y2)B(2).

7.8 Proposition Consequently, let g be a Lorentzian metric on R® given as above in
adapted coordinates, and such that its characteristic vector field (W,),cr is of the form
(a(y2)b(2),0). Its holonomy algebra is of type 4, with characteristic coefficient A € R*, if
and only if the three points above are satisfied.

Similarly, let g be the metric on R* given (in adapted coordinates (z,y1,y2,2)) by:

0] 0 0 |
01d11 di2|m

Mat = oy
(9) 0 13d12 92272
Y| 2|0

at z=0,%=1,m=7=0
, with ¢ and G = I (same notation as above);
atx=0,v =7 =0.

We suppose that, as above, G is the identity I pushed by a family diffeomorphism (¢.).cr,
the derivative (W,).cr of which is of the form (a(y2)b(2),0). One checks that:

7.9 Proposition The holonomy algebra of g is of type 3, with coefficient A € R*, if and
only if:
e v = u(ye2,2), with u the unique solution of u%anyg = Ad/(y2)b(z) equal to 1 on
{z = 0}U{y2 = 0} (see the end of the proof of Theorem 5.14 (b) p. 27), and with a” (y2) # 0,
e G is as in (ii) above,

071£0and72:x%.
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