Linear mod one transformations
and the distribution of fractional parts \{\xi(p/q)^n\}

YANN BUGEAUD (Strasbourg)

Abstract. For coprime integers \(p > q \geq 2\) and for a
positive real number \(s < 1 - 1/p\), let \(Z_{p/q}(s, s + 1/p)\)
be the set of real numbers \(\xi\) such that \(s \leq \{\xi(p/q)^n\} \leq s + 1/p\) holds for all non-negative integers \(n\). Here, \(\{\cdot\}\)
denotes the fractional part. Flatto, Lagarias & Pollington
showed that the set of \(s\) in \([0, 1 - 1/p]\) for which
\(Z_{p/q}(s, s+1/p)\) is empty is a dense set, and they deduced
that \(\limsup_{n \to \infty} \{\xi(p/q)^n\} - \liminf_{n \to \infty} \{\xi(p/q)^n\} \geq 1/p\) holds for all positive real numbers \(\xi\). In the present
work, we give further results on the sets \(Z_{p/q}(s, s+1/p)\).
For instance, we prove that they are empty for almost
all \(s\) in \([0, 1 - 1/p]\).

1. Introduction

It is well known (see e.g. [7], Chapter 1, Corollary 4.2) that for almost
all real numbers \(\theta \geq 1\) the sequence \(\{\theta^n\}\) is uniformly distributed in \([0, 1]\). Here and in the sequel, \(\{\cdot\}\) denotes the fractional part. However, very few
results are known for specific values of \(\theta\), and the distribution of \(\{(p/q)^n\}\)
for coprime positive integers \(p > q \geq 2\) remains an unsolved problem.
Vijayaraghavan [10] showed that this sequence has infinitely many limit
points, but we are unable to decide whether

\[
\limsup_{n \to \infty} \left\{ \left(\frac{p}{q} \right)^n \right\} - \liminf_{n \to \infty} \left\{ \left(\frac{p}{q} \right)^n \right\} > \frac{1}{2}.
\]

A striking progress has been recently made by Flatto, Lagarias & Polling-

2000 Mathematics Subject Classification : 11K31, 58F03.
ton [5], who proved that, for all positive real numbers ξ, we have

$$
\limsup_{n \to \infty} \left\{ \xi \left(\frac{p}{q} \right)^n \right\} - \liminf_{n \to \infty} \left\{ \xi \left(\frac{p}{q} \right)^n \right\} \geq \frac{1}{p}.
$$

They were inspired by a paper of Mahler [8], who studied the hypothetical existence of so-called Z-numbers, i.e. positive real numbers ξ such that $0 \leq \{\xi(3/2)^n\} < 1/2$ for all integers $n \geq 0$. Extending this definition, Flatto et al. introduce, for an interval $[s, s+t]$ included in $[0,1]$, the set

$$
Z_{p/q}(s, s+t) := \left\{ \xi \in \mathbb{R} : s \leq \left\{ \xi \left(\frac{p}{q} \right)^n \right\} < s+t \text{ for all } n \geq 0 \right\}.
$$

To prove (1), they show that the set of s such that $Z_{p/q}(s, s+1/p)$ is empty is dense in $[0,1-1/p]$. Their argument uses Mahler’s method, as explained in a preliminary work by Flatto [4] (for more bibliographical references, we refer the reader to [4] and [5]), and also relies on a careful study of contracting, linear transformations, which are very close to those investigated in [2] and [3].

The purpose of the present work is to show how the methods used in [2] and [3] apply to the transformations considered in [5], and to derive some interesting consequences. For instance, we prove that $Z_{p/q}(s, s+1/p)$ is empty for almost all (in the sense of Lebesgue measure) real numbers s in $[0,1-1/p]$ and we answer both questions posed at the end of [5].

Acknowledgements. I express my gratitude to the referee for pointing out many mistakes and inaccuracies in an earlier draft of this text.

2. Statement of the results

Before stating our results, we have to introduce some notation, which will be used throughout the present paper. Let τ be a real number with $0 \leq \tau < 1$. For any integer k, set

$$
\varepsilon_k(\tau) = \lfloor k \tau \rfloor - \lfloor (k-1) \tau \rfloor,
$$

where $[\cdot]$ denotes the integer part. The sequence $(\varepsilon_k(\tau))_{k \in \mathbb{Z}}$ only takes values 0 and 1 and, for τ irrational, it is usually called the characteristic Sturmian sequence associated to τ. For any non-zero rational a/b, with a and b coprime, the sequence $(\varepsilon_k(a/b))_{k \in \mathbb{Z}}$ is periodic with period b.

Our first result concerns the sets $Z_{p/q}(s, s+1/p)$ and complements a result of Flatto et al. who proved in [5] that the set of s in $[0,1-1/p]$ for which $Z_{p/q}(s, s+1/p)$ is empty is a dense set.
Theorem 1. Let \(p > q \geq 2 \) be coprime integers. Then the set \(Z_{p/q}(s, s + 1/p) \) is empty for a set of \(s \) of full Lebesgue measure in \([0, 1 - 1/p]\). More precisely, this set is empty when there exists a rational number \(a/b \), with \(b > a \geq 1 \), such that

\[
\sum_{k=1}^{b-2} \varepsilon_k(a/b) \left(\frac{q}{p} \right)^k + \left(\frac{q}{p} \right)^b \leq (p-q)s \leq \sum_{k=1}^{b-2} \varepsilon_k(a/b) \left(\frac{q}{p} \right)^k + \left(\frac{q}{p} \right)^{b-1}.
\]

Further, if for some real number \(s \) in \([0, 1 - 1/p]\) the set \(Z_{p/q}(s, s + 1/p) \) is nonempty, then there exists an irrational number \(\tau \) in \([0, 1]\) such that

\[
(p - q)s = \frac{p - q}{p} \sum_{k=1}^{\infty} \varepsilon_k(\tau) \left(\frac{q}{p} \right)^k.
\]
(2)

The proof of Theorem 1 is given in Section 3 and relies upon the main result of [2]. It also allows us to answer (in Theorem 3) a problem posed by Flatto et al. at the end of [5].

As an immediate application, we considerably improve Corollary 1.4a of [5].

Corollary 1. The set \(Z_{3/2}(s, s + 1/3) \) is empty if

\[
s \in \{0\} \cup [8/57, 4/19] \cup [4/15, 2/5] \cup [26/57, 10/19] \cup \{2/3\}.
\]

To prove Corollary 1, we check that the three intervals are given by Theorem 1 applied with the rationals 1/3, 1/2 and 2/3. Further, since for any irrational \(\tau \) in \([0, 1]\) there exists \(k \geq 1 \) and \(\ell \geq 1 \) such that \(\varepsilon_k(\tau) = 1 \) and \(\varepsilon_{-\ell}(\tau) = 0 \), we get that \(\frac{1}{\ell} \left(\sum_{k=1}^{\infty} \varepsilon_k(\tau)(2/3)^k \right) \neq 0, 2/3 \), hence, by the last part of Theorem 1, the sets \(Z_{3/2}(0, 1/3) \) and \(Z_{3/2}(2/3, 1) \) are empty (a fact already proved in [5]).

We are not able to determine whether \(Z_{p/q}(s, s + 1/p) \) is empty for all values of \(s \). However, we obtain some additional informations concerning the sets \(Z_{p/q}(s, s + 1/p) \) for exceptional values of \(s \).

Theorem 2. Let \(p > q \geq 2 \) be coprime integers. Let \(s \) in \([0, 1 - 1/p]\) satisfy (2) for some irrational \(\tau \). Then we have

\[
\text{Card}\{\xi : 0 \leq \xi \leq x \text{ and } \xi \in Z_{p/q}(s, s + 1/p)\} = O((\log_q x)^3).
\]

Theorem 2 considerably improves Theorem 1.1 of [5] for \(t = 1/p \), where the estimate \(O(x^\gamma) \) is obtained, with \(\gamma = \log_q \min\{2, p/q\} \). Its
proof is given in Section 4, where we get strong conditions on $[\xi]$ for ξ belonging to $Z_{p/q}(s, s + 1/p)$.

3. Proof of Theorem 1

In all what follows, for a map F and an integer $n \geq 0$, we denote by F^n the map $F \circ \ldots \circ F$, composed n times.

Keeping the notation of Part 3 of [5], we define for any real numbers $\beta > 1$ and $0 \leq \alpha < 1$ the map $f_{\beta, \alpha}$ by

$$f_{\beta, \alpha}(x) = \{\beta x + \alpha\} \text{ for } x \in [0, 1].$$

We set

$$S_{\beta, \alpha} := \{x \in [0, 1]: 0 \leq f^n_{\beta, \alpha}(x) < 1/\beta \text{ for all } n \geq 0\}.$$

Theorem 3.4 of [5] asserts that $S_{\beta, \alpha}$ is finite as soon as $0 \notin S_{\beta, \alpha}$, which is the case for a dense set of values of α in $[0, 1]$ (see Theorem 3.5 of [5]). The problem of the existence of values of α such that $S_{\beta, \alpha}$ is infinite is left open in [5]. Indeed, setting

$$E_\beta := \{\alpha \in [0, 1]: S_{\beta, \alpha} \text{ is an infinite set}\},$$

Flatto et al. conjecture that, for all $\beta > 1$, the set E_β is non empty and perfect, and has Lebesgue measure zero. The present section is concerned with the study of this problem, which we solve in Theorem 3 below.

In the rest of this section, f stands for $f_{\beta, \alpha}$.

Lemma 1. Assume that there exists an integer $N \geq 1$ with $f^N(0) = 0$ and such that $f^k(0) \notin \{0\} \cup [1/\beta, 1]$ for any integer $1 \leq k \leq N - 1$. Then $S_{\beta, \alpha}$ is the finite set $\{0, f(0), \ldots, f^{N-1}(0)\}$.

Proof. We use the notation of Lemmas 3.1, 3.2 and 3.3 of [5], and we only point out which slight changes should be made in their proofs to get our lemma. A continuity argument shows that α is the right endpoint of the interval $I_{N-1} = [\cdot, \alpha]$. It follows that R_{-1} is empty, whence all the R_k’s, $k \geq 0$, are empty. Arguing as in [5], we denote by p_n the left endpoint of L_n for $n \geq 0$, and we set

$$q_k := \lim_{j \to \infty} p_{k + jN}, \quad 0 \leq k \leq N - 1.$$

Each q_k coincides with a right endpoint of some I_j, $0 \leq j \leq N - 1$. It follows that $S_{\beta, \alpha} = \{q_0, \ldots, q_{N-1}\} = \{0, f(0), \ldots, f^{N-1}(0)\}$, as claimed.

\[\square \]
Lemma 2. Let $\beta > 1$. Then, for each α in $[0, 1[$, the set $S_{\beta, \alpha}$ is infinite if, and only if, $f^N_{\beta, \alpha}(0) \notin \{0\} \cup [1/\beta, 1[$ for all integers $N \geq 1$.

Proof. The ‘only if’ parts follows from Lemma 1 and Theorem 3.4 of [5], which states that $f^N(0) \geq 1/\beta$ implies that $S_{\beta, \alpha}$ is a finite set. To prove the “if” part, we assume that

$$0 < f^N(0) < 1/\beta \quad \text{for all integers } N \geq 1,$$

and we show by contradiction that the $f^k(0)$’s, $k \geq 1$, are distinct. To this end, assume that $1 \leq k < \ell$ are minimal with $f^k(0) = f^\ell(0)$. Then there is an integer j with $0 \leq j \leq \lfloor \beta \rfloor$ such that

$$f^{k-1}(0) = f^{\ell-1}(0) + \frac{j}{\beta}.$$

By (3), we must have $j = 0$, which, by minimality of k, yields $k = 1$. It follows that $f^{\ell-1}(0) = 0$, a contradiction with (3).

Lemma 3. Let $\beta > 1$ and put $\gamma = 1/\beta$. Set $J^1_{\beta}(\gamma) = [\gamma, 1[$ and, for coprime integers $b > a \geq 1$,

$$J^a_{b}(\gamma) = \left[\frac{\sum_{k=1}^{b-1} \varepsilon_k(a/b) \gamma^k + \gamma^b}{1 + \gamma + \cdots + \gamma^{b-1}}, \frac{\sum_{k=1}^{b-1} \varepsilon_k(a/b) \gamma^k + \gamma^{b-1}}{1 + \gamma + \cdots + \gamma^{b-1}} \right].$$

Then, the intervals $J^a_{b}(\gamma)$ are disjoint for different choices of coprime integers $b > a \geq 1$. Further, the set $S_{\beta, \alpha}$ is finite if, and only if, there exist coprime integers $b > a \geq 1$ such that $\alpha \in J^a_{b}(\gamma)$. Moreover, $S_{\beta, \alpha}$ is empty if, and only if, α is the left endpoint of some $J^a_{b}(\gamma)$, and otherwise $S_{\beta, \alpha}$ has exactly b elements, which are cyclically permuted under the action of f, if α is in $J^a_{b}(\gamma)$, but is not its left endpoint. Finally, $S_{\beta, \alpha}$ is infinite if, and only if, there exists some irrational number τ in $[0, 1[$ such that

$$\alpha = (1 - \gamma) \sum_{k=1}^{\infty} \varepsilon_k(\tau) \gamma^k.$$

The proof of Lemma 3 depends heavily on results obtained in [2] (see also [3]) concerning the function

$$T_{\gamma, \alpha} : x \rightarrow \{\gamma x + \alpha\},$$

where $0 < \gamma \leq 1$ and $0 \leq \alpha < 1$ are real numbers such that $\gamma + \alpha > 1$. The map $T_{\gamma, \alpha}$ is piecewise linear, contracting and is continuous except on the left at $\theta := (1 - \alpha)/\gamma$. For $n \geq 1$, we put

$$T^n_{\gamma, \alpha}(1) = T^{n-1}_{\gamma, \alpha}(\gamma + \alpha - 1) = T^{n-1}_{\gamma, \alpha} \left(\lim_{x \to 1-} T_{\gamma, \alpha}(x) \right).$$

We have obtained in [2] a precise description of the dynamic of $T_{\gamma, \alpha}$.
\textbf{Proposition 1.} Let α and γ be real numbers with $0 < \gamma < 1$ and $0 \leq \alpha < 1$. Let a and b be coprime integers with $b \geq a \geq 1$ and define the interval $I_b^a(\gamma)$ by

$$I_b^a(\gamma) = \left[\frac{P_b^a(\gamma)}{1 + \gamma + \ldots + \gamma^{b-1}}, \frac{P_b^a(\gamma) + \gamma^{b-1} - \gamma^b}{1 + \gamma + \ldots + \gamma^{b-1}} \right],$$

where P_b^a is the polynomial

$$P_b^a(\gamma) = \sum_{k=0}^{b-1} \epsilon^{-k}(a/b)\gamma^k.$$

Then the map $T_{\gamma,\alpha}$ has an attractive, periodic orbit with the same dynamics as the rotation $T_{1,a/b}$ if, and only if, $\alpha \in I_b^a(\gamma)$.

\textbf{Proof.} This is Théorème 1.1 of [3]. Observe that, in the case $b = a = 1$ of the proposition, the attractive orbit of $T_{\gamma,\alpha}$ is equal to \{0\} when $\gamma + \alpha \leq 1$. \hfill \Box

\textbf{Remark 1.} Let γ be a real number with $0 < \gamma < 1$. It follows from Proposition 1 that the intervals $I_b^a(\gamma)$ are disjoint for different choices of a, b. Indeed, for distinct rational numbers a/b and a'/b', the rotations $T_{1,a/b}$ and $T_{1,a'/b'}$ have different dynamics.

\textbf{Remark 2.} In [2] and [3], we gave two different proofs of Theorem 1: one dynamical (see [2]) and one algebraic (see [3]). The dynamical proof rests on the study of the position of the critical point $\theta := (1 - \alpha)/\gamma$ of $T_{\gamma,\alpha}$, which lies in $[0, 1]$, since $\gamma + \alpha > 1$. We assumed that $\theta \notin T_{\gamma,\alpha}^n([0, 1])$ for some integer $n \geq 1$, and we set

$$b := \inf\{n \mid \theta \notin T_{\gamma,\alpha}^n([0, 1])\} + 1.$$

Since θ is the only discontinuity of $T_{\gamma,\alpha}$, it is easy to see that for any $n \geq b$ the set $T_{\gamma,\alpha}^n([0, 1])$ is the union of b disjoint intervals, whose lengths tend to zero when k goes to infinity. To give a more precise result, it is convenient to introduce some notation.

\textbf{Notation.} For any real numbers $x < y$ in $[0, 1]$, we write $\langle x, y \rangle$ for the closed interval $[x, y]$ if $y < 1$ and $x > 0$, we set $\langle x, 1 \rangle$ for $\{0\} \cup [x, 1]$ and $\langle 0, x \rangle$ for $[0, x]$. Moreover, for any increasing function f on $[x, 1]$, we write $f(\langle x, 1 \rangle)$ for $\langle f(x), f(1) \rangle$.

With these notations, we have

$$T_{\gamma,\alpha}^{b-1}([0, 1]) = [0, 1] \setminus \bigcup_{k=1}^{b-1} \langle T_{\gamma,\alpha}^k(1), T_{\gamma,\alpha}^k(0) \rangle.$$
and $\theta \in \langle T_{\gamma,\alpha}^{-1}(1), T_{\gamma,\alpha}^{-1}(0) \rangle$. As shown in [2], the critical point θ is in
$\langle T_{\gamma,\alpha}^{-1}(1), T_{\gamma,\alpha}^{-1}(0) \rangle$ if, and only if, there exists a positive integer $a < b$, coprime with b, such that α is in $I_{b}^{a}(\gamma)$.

We have now all the tools to prove Lemma 3.

Proof of Lemma 3. Let $\beta > 1$ and $0 \leq \alpha < 1$. Put $\gamma = 1/\beta$. We readily verify that the conclusion of the lemma holds when α is in $J_{1}^{1}(\gamma)$, by Lemma 2. Thus, we assume now that $0 \leq \alpha < \gamma$. We recall that f stands for $f_{\beta,\alpha}$. We observe that f is a bijection from $[0, 1/\beta]$ onto $[0, 1]$, and we denote by $g := g_{\beta,\alpha}$ the inverse of this restriction, i.e. for $x \in [0, 1]$,

$$g_{\beta,\alpha}(x) = \begin{cases} \frac{1}{\beta} x + \frac{1-\alpha}{\beta}, & 0 \leq x < \alpha, \\ \frac{1}{\beta} x - \frac{\alpha}{\beta}, & \alpha \leq x < 1. \end{cases} \tag{5}$$

Thus g is piecewise linear, contracting and continuous, except on the left at α.

The maps $T_{\gamma,1-\alpha}$ and $g_{1/\gamma,\alpha}$ are closely related. Namely, for any real number x in $[0, 1]$, we have

$$\{T_{\gamma,1-\alpha}(x) + \alpha\} = g_{1/\gamma,\alpha}(\{x + \alpha\}) = \gamma x. \tag{6}$$

Assume now that the set $S_{\beta,\alpha}$ is finite. In view of Lemma 2, there exists a positive integer N such that $f_{\beta,\alpha}^{N}(0) \in \langle 1/\beta, 1 \rangle$. Denote by b the smallest positive integer with this property. Then we have $0 \in g_{b}^{b}(\langle \gamma, 1 \rangle)$, or, equivalently, $\alpha \in g_{b}^{-1}(\langle \gamma, 1 \rangle)$. Since $\alpha < \gamma$, we have $b \geq 2$. According to Lemma 3.1 of [5], the sets $g_{b}^{k}(\langle \gamma, 1 \rangle)$ for $0 \leq k \leq b-1$ are nonempty intervals. It follows from (6) and (4) that

$$g_{b}^{-1}(\langle \gamma, 1 \rangle) = \langle T_{\gamma,1-\alpha}^{-1}(\gamma - \alpha) + \alpha, T_{\gamma,1-\alpha}^{-1}(1 - \alpha) + \alpha \rangle$$

$$= \langle T_{\gamma,1-\alpha}^{-1}(1) + \alpha, T_{\gamma,1-\alpha}^{-1}(0) + \alpha \rangle.$$

Consequently, α belongs to $g_{b}^{-1}(\langle \gamma, 1 \rangle)$ if, and only if, 0 is in $\langle T_{\gamma,1-\alpha}^{-1}(1) + \alpha, T_{\gamma,1-\alpha}^{-1}(0) + \alpha \rangle$, which, since $\alpha < \gamma$, is equivalent to say that α/γ belongs to $\langle T_{\gamma,1-\alpha}^{-1}(1), T_{\gamma,1-\alpha}^{-1}(0) \rangle$. Setting $u := 1 - \alpha$, we have shown that

$$\alpha \in g_{b}^{-1}(\langle \gamma, 1 \rangle)$$

if, and only if,

$$\frac{1 - u}{\gamma} \in \langle T_{\gamma,u}^{-1}(1), T_{\gamma,u}^{-1}(0) \rangle. \tag{7}$$
Notice that the condition \(\alpha < \gamma \) is equivalent to \(\gamma + u > 1 \). According to the remark following Proposition 1, we know that (7) holds if, and only if, there exists a positive integer \(a < b \), coprime with \(b \), such that

\[
u \in I_a^b(\gamma).\]

(8)

As \(u = 1 - \alpha \), Proposition 1 implies that (8) can be rewritten as

\[
\sum_{k=0}^{b-1} (1 - \varepsilon_k(a/b))\gamma^k + \gamma^b - \gamma^{b-1} \leq \alpha \leq \sum_{k=0}^{b-1} (1 - \varepsilon_k(a/b))\gamma^k
\]

(9)

\[
1 + \gamma + \ldots + \gamma^{b-1}
\]

Since \(\varepsilon_k(1 - a/b) = 1 - \varepsilon_k(a/b) \) for any integer \(k \) not multiple of \(b \) and not congruent to one modulo \(b \) (to see this, it suffices to note that \(\lfloor ja/b \rfloor = \lfloor ja/b \rfloor - 1 \) if \(b \) does not divide \(j \)), (9) becomes

\[
\sum_{k=1}^{b-1} \varepsilon_k(1 - a/b)\gamma^k + \gamma^b \leq \alpha \leq \sum_{k=1}^{b-1} \varepsilon_k(1 - a/b)\gamma^k + \gamma^{b-1}
\]

which proves that the set \(S_{\beta,\alpha} \) is finite if, and only if, there exist coprime integers \(b \geq a \geq 1 \) such that \(\alpha \in J_a^b(\gamma) \).

Further, for \(\alpha \in J_a^b(\gamma) \), a direct calculation shows that \(S_{\beta,\alpha} \) is empty if \(\alpha \) is the left endpoint of \(J_a^b(\gamma) \) and has exactly \(b \) elements otherwise.

Moreover, we infer from Lemma 2 and (8) that \(S_{\beta,\alpha} \) is infinite if, and only if,

\[
1 - \alpha \in [0, 1[\setminus \bigcup_{1 \leq a \leq b \atop (a,b)=1} I_a^b(\gamma),
\]

that is (see [2, Théorème 2](*) or [3, page 207]) if, and only if, there exists some irrational number \(\tau \) in \([0,1[\) such that

\[
1 - \alpha = (1 - \gamma) \sum_{k=0}^{\infty} \varepsilon_{-k}(\tau)\gamma^k,
\]

and the last assertion of the lemma follows since \(\varepsilon_0(\tau) = 1 \) and \(\varepsilon_{-k}(\tau) = 1 - \varepsilon_{-k}(1 - \tau) \) for any integer \(k \geq 1 \).

Finally, the fact that the intervals \(J_a^b(\gamma) \) are disjoint follows from (8), (9), and Remark 1.

\[
\square
\]

Theorem 3. For any real number \(\beta > 1 \), the set

\[
E_\beta := \{ \alpha \in [0,1[: S_{\beta,\alpha} \text{ is an infinite set} \}
\]

\[
= [0,1[\setminus \bigcup_{1 \leq a \leq b \atop (a,b)=1} J_a^b(\gamma)
\]

(*) There is a misprint in the statement of [2, Théorème 2]: one should read \((S(\alpha))_{-k}\) instead of \((S(\alpha))_k\).
has measure zero, is uncountable and is not closed.

Proof. Denote by \(\mu \) the Lebesgue measure. It follows from Lemma 3 that

\[
\mu(E_\beta) = 1 - \sum_{b=1}^{\infty} \frac{\varphi(b)(\gamma^{b-1} - \gamma^b)}{1 + \gamma + \ldots + \gamma^{b-1}},
\]

where \(\varphi \) is Euler totient function, i.e. \(\varphi(b) \) counts the number of integers \(a, 1 \leq a \leq b \), which are coprime with \(b \). Since

\[
\frac{\gamma^{b-1} - \gamma^b}{1 + \ldots + \gamma^{b-1}} = (1 - \gamma)^2 \frac{\gamma^{b-1}}{1 - \gamma^b}, \quad \text{for } b \geq 1,
\]

and

\[
\sum_{b=1}^{\infty} \varphi(b) \frac{\gamma^{b-1}}{1 - \gamma^b} = \frac{1}{(1 - \gamma)^2},
\]

we infer from Theorem 309 of [6] that \(\mu(E_\beta) = 0 \).

Further, the last assertion of Lemma 3 combined with Théorème 2 of [2] implies that \(E_\beta \) is uncountable. Moreover, if the irrational number \(\tau \) tends to a rational number, then \((1 - \gamma) \sum_{k=1}^{\infty} \varepsilon_{-k}(\tau) \gamma^k \) tends to an endpoint of some interval \(J^a_b(\gamma) \). Hence, \(E_\beta \) is not closed. \(\square \)

Remark 3. An interesting open problem would be to determine the Hausdorff dimension of the sets \(E_\beta \).

To complete the proof of Theorem 1, we recall a crucial result of [5].

Proposition 2. Let \(p > q \geq 2 \) be coprime integers, and let \(s \) in \([0,1-1/p]\). If the set \(S_{p/q}\{\langle p-q \rangle s \} \) is finite, then \(Z_{p/q}(s, s + 1/p) \) is empty.

Proof. This is Theorem 3.2 of [5]. \(\square \)

Proof of Theorem 1. This statement easily follows from Lemma 3 and Theorem 3, combined with Proposition 2. \(\square \)

4. Proof of Theorem 2

We now investigate the behaviour of \(f := f_{\beta, \alpha} \) when \(\alpha \) is in \(E_\beta \). Recall that \(g_{\beta, \alpha} \) is defined in (5). The following lemmas answer a question posed by Flatto et al. at the end of [5].

Lemma 4. Let \(\beta > 1 \) and \(\alpha \in E_\beta \). For \(n \geq 0 \), put

\[
I_n := g^n_{\beta, \alpha}([1/\beta, 1[).
\]
Then we have
\[S_{\beta, \alpha} := [0, 1] \setminus \bigcup_{n \geq 0} I_n. \]

In particular, \(S_{\beta, \alpha} \) has measure zero.

Proof. Arguing as in Lemma 3.1 of [5], we use that \(f^n(0) \notin [1/\beta, 1] \) for all \(n \geq 0 \) to deduce that the \(I_n \)'s, \(n \geq 0 \), are mutually disjoint. If \(x \in [0, 1] \) is in some \(I_n \) with \(n \geq 0 \), we get that \(f^n(x) \in [1/\beta, 1] \), whence \(x \notin S_{\beta, \alpha} \).

Otherwise, it is clear that \(x \in S_{\beta, \alpha} \). Further,
\[
\mu\left(\bigcup_{n \geq 0} I_n \right) = \left(1 - \frac{1}{\beta}\right) \sum_{n \geq 0} \frac{1}{\beta^n} = 0,
\]
as claimed. \(\square \)

As in [5], we associate to \(f = f_{\beta, \alpha} \) the natural symbolic dynamics, which assigns to each \(x \) in \([0, 1] \) the integer
\[S_f(x) = [\beta x + \alpha], \]
and we call the sequence
\[a_n := S_f(f^n(x)), \quad n \geq 0, \]
the \(f \)-expansion of \(x \). If \(x \) is in \(S_{\beta, \alpha} \), then \(0 \leq f^n_{\beta, \alpha}(x) < 1/\beta \) for all \(n \geq 0 \), and its \(f \)-expansion is uniquely composed of 0's and 1's.

Lemma 5. Let \(\beta > 1 \) and \(\alpha \in E_{\beta} \). Let \(\tau \) in \(]0, 1[\) be defined by
\[
\alpha = \left(1 - \frac{1}{\beta}\right) \sum_{k=1}^{\infty} \frac{\varepsilon_{-k}(\tau)}{\beta^k}.
\]
The set \(S_{\beta, \alpha} \) is uncountable, not closed and, for any \(x \) in \(S_{\beta, \alpha} \), there exists \(0 \leq \eta < 1 \) such that the \(f \)-expansion of \(x \) is the Sturmian sequence \((a_n)_{n \geq 0} \) given by
\[a_n = [(n + 1)\tau + \eta] - [n\tau + \eta]. \]

Proof. We point out that \(\tau \) is irrational. We first show that \(g \) and the (irrational) rotation\n\[R_{1-\tau} : x \mapsto \{x + 1 - \tau\}, \quad x \in [0, 1], \]
are semi-conjugate.
We claim that the intervals I_n, $n \geq 0$, are ordered as the sequence \((\{n(1 - \tau)\})_{n \geq 0}\). To see this, for any $\beta' > 1$, we define
\[
\Psi_{\beta'}(\tau) = \left(1 - \frac{1}{\beta'}\right) \sum_{k=1}^{\infty} \frac{\varepsilon_{-k}(\tau)}{\beta'^k},
\]
and we observe that, for any $n \geq 0$, the function
\[
\beta' \mapsto \inf\left(g_{\beta', \Psi_{\beta'}(\tau)}([1/\beta', 1]) \right)
\]
is continuous on $]1, +\infty[$ and tends to $\{n(1 - \tau)\}$ when β' tends to 1.

We set $\Phi(0) = 0$ and, for $n \geq 1$, $\Phi(I_n) = \{n(1 - \tau)\}$. The map Φ is monotone and, by Lemma 4, is defined on a dense subset of $[0, 1[$, thus, we can extend it by continuity to $[0, 1]$. Consequently, the set $S_{\beta, \alpha}$ is uncountable and not closed. For all $y \in [0, 1[$, we have
\[
\Phi \circ g_{\beta, \alpha}(y) = R_{1 - \tau} \circ \Phi(y),
\]
hence,
\[
R_{\tau} \circ \Phi(z) = \Phi \circ f_{\beta, \alpha}(z),
\]
for $z \in [0, 1/\beta]$. Since $\Phi(0) = 0$ and $f((1 - \alpha)/\beta) = 0$, we get from (10) that $\Phi((1 - \alpha)/\beta) = 1 - \tau$. It follows that
\[
0 \leq z < \frac{1 - \alpha}{\beta} \quad \text{if and only if} \quad 0 \leq \Phi(z) < 1 - \tau.
\]
By induction, (10) yields for any integer $n \geq 1$ that
\[
0 \leq f^n(z) < \frac{1 - \alpha}{\beta} \quad \text{if and only if} \quad 0 \leq R^n_{\tau}(\Phi(z)) < 1 - \tau. \tag{11}
\]

Let $x \in S_{\beta, \alpha}$ and denote by $(a_n)_{n \geq 0}$ its f-expansion. It follows from (11) that $a_n = 0$ if, and only if, $0 \leq R^n_{\tau}(\Phi(z)) < 1 - \tau$. Hence, we get that
\[
a_n = [(n + 1)\tau + \Phi(z)] - [n\tau + \Phi(z)],
\]
and the proof of Lemma 5 is complete. \qed

We need to recall an important result of [5]. For the definition of T-expansion, we refer the reader to [5].
Proposition 3. Let \(p > q \geq 2 \) be coprime integers. Then a positive real number \(\xi \) is in \(Z_{p/q}(s, s + 1/p) \) if, and only if, both conditions (C1) and (C2) hold, with

(C1) \[
0 \leq f^n \left(q(\{\xi\} - s) \right) < q/p \text{ for all } n \geq 0,
\]

and (C2): the \(T \)-expansion \((a_n) \) of \([\xi] \) and the \(f \)-expansion \((b_n) \) of \(q(\{\xi\} - s) \) are related by

\[
\sigma(a_n) = b_n \text{ for all } n \geq 0,
\]

where \(\sigma \) is the permutation of \(\{0, 1, \ldots, q - 1\} \) given by

\[
\sigma(i) \equiv -pi - [(p - q)s] \pmod q.
\]

Further, the set \(Z_{p/q}(s, s + 1/p) \) contains at most one element in each unit interval \([m, m + 1]\), where \(m \) is a non-negative integer.

Proof. This follows from Proposition 2.1 and Theorem 1.1 of [5].

Proof of Theorem 2. Let \(\xi \) be in \(Z_{p/q}(s, s + 1/p) \). By Proposition 3 and Lemma 5, the \(T \)-expansion of \([\xi] \) is an infinite Sturmian word. It has been shown by Mignosi [9] (see [1] for an alternative proof) that, for any integer \(m \geq 1 \), there are \(O(m^3) \) Sturmian words of length \(m \) (recall that any subword of a Sturmian sequence is called a Sturmian word). Since Lemma 2.2 of [5] asserts that the first \(m \) terms of the \(T \)-expansion of an integer \(g \) are uniquely determined by \(g \) modulo \(q^m \), we conclude that at most \(O(m^3) \) integers less than \(q^m \) may have a Sturmian \(T \)-expansion, and Theorem 2 is proved.

References

Yann Bugeaud
Université Louis Pasteur
U. F. R. de mathématiques
7, rue René Descartes
67084 STRASBOURG
FRANCE

bugeaud@math.u-strasbg.fr