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Abstract. We introduce a class of analytic functions of number theo-
retic interest, namely stammering functions. It has been recently proved
that these functions take transcendental values at some algebraic points.
In the present paper, we establish a general transcendence criterion that
extends these results. Another aim is to underline the main difficulties
arising from the use of the Schmidt Subspace Theorem in this context.

1. Introduction

In 1844, Liouville established that the real number
∑

k≥1 10−k! is transcendental.
With a similar method, it is nowadays an easy exercise to extend his result as follows (see
[8], page 2).

Theorem L. Let α be an algebraic number with 0 < |α| < 1. Then, the complex number
∑

k≥1 αk! is transcendental.

In other words, the analytic function f : z 7→ ∑

k≥1 zk! takes transcendental values
at every non-zero algebraic point in its open disc of convergence.

A similar result was obtained by Mahler [6] for a much wider class of functions f ,

including some classical series such as F(z) =
∑

k≥0 z2k

or the Thue–Morse function

T (z) =
∑

k≥0 tkzk, where tk = 1 (resp. tk = −1), if the sum of digits of the binary
expansion of k is even (resp. odd). His method was subsequently refined and generalized
by several authors including Kubota, Loxton, van der Poorten, Masser and Nishioka,
and the reader is referred to Nishioka’s Lecture Notes [8] for references. Since it always
relies on certain functional equations satisfied by the relevant series (for instance, we have
F(z2) = F(z) − z and T (z) = (1 − z)T (z2)), Mahler’s method does not allow much
flexibility.

The heart of the proof of Theorem L and of Mahler’s results is a lower estimate for the
distance between two distinct algebraic numbers. Thanks to works by Thue, Siegel, Roth
and Schmidt, the seminal result of Liouville has been considerably improved. Thus, it is
not surprising that the use of the Schmidt Subspace Theorem in the present context yields
a considerable improvement of Theorem L. This was recently worked out for lacunary
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functions by Corvaja and Zannier [5], who developed a new approach. We quote below a
particular case of Corollary 5 from [5], which is proved by means of a non-trivial application
of the Schmidt Subspace Theorem.

Theorem CZ. Let (mk)k≥1 be an increasing sequence of positive integers such that
lim infk mk+1/mk > 1. Then, the function f : z 7→ ∑

k≥1 zmk takes transcendental values
at every algebraic point in the open unit disc.

It is likely that Theorem CZ cannot be proved using Mahler’s method or its refine-
ments. Furthermore, the method of [5] offers much more flexibility than Mahler’s. Unfortu-
nately, it does not seem to apply easily to non-lacunary functions such as the Thue–Morse
function T .

In two earlier works [3, 1], we established new transcendence criteria for analytic
functions with special combinatorial properties evaluated at the inverse of positive rational
integers, Pisot and Salem numbers. These results apply to a broad class of functions
including T and the lacunary series occurring in Theorem CZ (see Section 2 for more
details). As in [5], their proofs rest on the Schmidt Subspace Theorem. It is the aim of
the present paper to investigate how our method can be applied to every algebraic point
in the open disc of convergence of these analytic functions. Our main result is a general
transcendence criterion that extends those of [3] and [1].

2. Stammering functions

In this section, we introduce the notion of stammering function.

Let A be a countable set. The length of a word W on the alphabet A, that is, the
number of letters composing W , is denoted by |W |. For every positive integer ℓ, we write
W ℓ for the word W . . .W (the concatenation of the word W repeated ℓ times). More
generally, for every positive real number x, we denote by W x the word W ⌊x⌋W ′, where
W ′ is the prefix of W of length ⌈(x − ⌊x⌋)|W |⌉. Here, and in all what follows, ⌊y⌋ and
⌈y⌉ denote, respectively, the floor and the ceiling of the real number y. Let a = (ak)k≥0

be a sequence of elements from A. We say that a is a stammering sequence if a is not
eventually periodic and if there exist real numbers w′ ≥ 0 and w > 1, and two sequences
of finite words (Un)n≥1, (Vn)n≥1 such that:

(i) For any n ≥ 1, the word UnV w
n is a prefix of the word a;

(ii) The sequence (|Un|/|Vn|)n≥1 is bounded from above by w′;

(iii) The sequence (|Vn|)n≥1 is strictly increasing.

Several classical sequences studied in symbolic dynamics, number theory and combi-
natorics on words turn out to be stammering, as pointed out in [1]. We quote below some
famous examples of stammering sequences:

• Sequences generated by finite automata (these include the Thue–Morse, the Rudin–
Shapiro, the Baum–Sweet, and the regular paperfolding sequences);
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• Most of the morphic sequences (a morphic sequence is a letter-to-letter projection of
a fixed point of an endomorphism from a finitely generated free monoid; for instance,
the Fibonacci word is the fixed point of the binary morphism σ defined by σ(0) = 01
and σ(1) = 0);

• Sturmian (or Beatty) sequences (i.e., sequences (ak)k≥0 such that there exist an ir-
rational real number θ and a real number ρ both in [0, 1] such that either ak =
⌊(k+1)θ+ρ⌋−⌊kθ+ρ⌋ for every non-negative integer k, or ak = ⌈(k+1)θ+ρ⌉−⌈kθ+ρ⌉
for every non-negative integer k);

• Sequences with sublinear block-complexity (these include natural codings of interval
exchange transformations, billard sequences, Arnoux–Rauzy sequences, . . . );

• Characteristic sequences of lacunary sets of integers (i.e., sequences (ak)k≥0 such that
ak = 1 if k belongs to m = (mℓ)ℓ≥1 and ak = 0 otherwise, where m is an increasing
sequence such that lim supℓ→∞ mℓ+1/mℓ > 1).

We refer the reader to [1] and [4] for more details on these sequences.

Throughout the present paper, we denote by h (resp. by H) the logarithmic (resp.
multiplicative) absolute height. Their definitions and main properties are given in Sec-
tion 4. Furthermore, we use the symbols o, O and ≪ with their usual meanings.

We say that a sequence of algebraic numbers (ak)k≥0 satisfies the growth condition
(G) if either

h(a0, . . . , an) = o(n), as n → ∞, (2.1)

or
h(ak) ≪ 1. (2.2)

Obviously, by (2.2), every bounded sequence of rational integers satisfies the growth con-
dition (G).

With a stammering sequence a = (ak)k≥0 of algebraic numbers in a number field L

that satisfies the growth condition (G), we associate the analytic function fa defined on
the open unit disc by

fa(z) =

+∞
∑

k=0

akzk. (2.3)

Such function is called a stammering function. This notation will be kept throughout the
entire paper. We note that all the series mentioned in Section 1 are stammering ones.

3. Results

We are interested in values of stammering functions at algebraic points. In view of the
results mentioned previously, it is likely that such functions essentially take transcendental
values at algebraic points. More precisely, we can expect the following picture: given a
stammering function fa as in (2.3), then fa(α) is transcendental for all but finitely many
algebraic numbers α lying in the open disc of convergence of fa, and the algebraic values
of fa belong to the number field L(α).
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A first result towards this problem was proved in [3].

Theorem ABL. Let b ≥ 2 be a rational integer. If a = (ak)k≥0 is a stammering sequence
on the set {0, 1, . . . , b − 1}, then the stammering function fa takes transcendental values
at the inverse of every positive rational integer.

As worked out in [1], this transcendence criterion is powerful enough to confirm the
Cobham–Loxton–van der Poorten conjecture claiming that the b-adic expansion of an
algebraic irrational real number cannot be generated by a finite automaton. The above is
a result that seems to escape to Mahler’s method.

Subsequently, Theorem ABL was extended in [1] in the following way. Recall that a
Pisot (resp. Salem) number is a real algebraic integer > 1, whose complex conjugates lie
inside the open unit disc (resp. inside the closed unit disc, with at least one of them on
the unit circle).

Theorem AB. Let a = (ak)k≥0 be a stammering, bounded sequence of rational integers.
If β is a Pisot or a Salem number, then fa(1/β) is either transcendental, or belongs to the
number field Q(β).

Note that we cannot avoid the possibility that fa(1/β) belongs to Q(β). Indeed, let
β = (

√
5+1)/2 be the Golden Ratio. Then, starting with a periodic sequence a = (ak)k≥1,

we can use the fact that 1 = 1/β + 1/β2 to construct (using only local perturbation of the
sequence a) a stammering sequence a′ = (a′

k)k≥0 such that

Q(β) ∋
+∞
∑

k=0

ak

βk
=

+∞
∑

k=0

a′
k

βk
·

The proof of Theorem AB rests on a p-adic version due to Schlickewei [9] of the
Schmidt Subspace Theorem. The crucial point to apply the Subspace Theorem is that
the linear form fa(α)X − fa(α)Y − Z takes small values at many algebraic points when
α := 1/β is the inverse of a Pisot or a Salem number. Unfortunately, when α is an arbitrary
complex algebraic number lying in the open unit disc, the values taken by this linear form
are no longer small enough with respect to the height of the relevant algebraic points.
Notice also that a similar difficulty explains the condition imposed on the constant L in
Theorem 3 of Corvaja and Zannier [5].

If |·|j is an Archimedean absolute value, given by the embedding σj , such that |α|j < 1,
then we can consider the complex number fa,j(α) defined by

fa,j(α) := lim
N→+∞

N
∑

k=0

akσj(α
k).

Again, if p is a finite place such that |α|p < 1, then we can consider in the p-adic completion
of the field Q(β) the number fa,p(α) defined by

fa,p(α) := lim
N→+∞

N
∑

k=0

akαk.
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The main novelty of the present paper is to remark that all the linear forms fa,j(α)X −
fa,j(α)Y −Z and fa,p(α)X −fa,p(α)Y −Z also take small values at many algebraic points
constructed in the same way as in the proof of Theorem AB. Actually, when evaluated at
such points the product of all linear forms we consider is just small enough to apply the
Subspace Theorem.

Our main result is the following extension of Theorem AB to any non-zero complex
algebraic number lying in the open unit disc.

Theorem 1. Let a = (ak)k≥0 be a stammering sequence of algebraic numbers in a number
field L and that satisfies (2.1) or (2.2). Let α be a non-zero algebraic number lying in the
open unit disc and assume that α1 = α, α2, . . . , αℓ are all its complex conjugates of modulus
< 1. Let p1, . . . , pℓ′ be all the prime ideals in L(α) such that |α|pj

< 1. Then, either (at
least) one among the numbers fa,1(α) := fa(α), fa,2(α), . . . , fa,ℓ(α), fa,p1

(α), . . . , fa,pℓ′
(α)

is transcendental, or fa,j(α) belongs to L(αj) for j = 1, . . . , ℓ. Furthermore, in this last
case letting σj be some automorphism of the Galois closure of L(α) over Q sending α to
αj , then the relation fa,j(α) = σj(fa(α)) holds for all j = 2, . . . , ℓ.

We stress that Theorem 1 plainly includes Theorems ABL and AB. The proof of
Theorem 1 also rests on the p-adic version of the Schmidt Subspace Theorem given in
[9]. The main interest of Theorem 1 is that it applies to every algebraic value of every
stammering function. However, the price to pay for this (i.e., the introduction of new linear
forms) produces a weaker conclusion than the one expected. We mention that another way
to proceed, worked out in [2], yields a conclusion as strong as in Theorem AB, but the
price to pay is then a strengthening of the stammering condition on a.

We give now two straightforward consequences of Theorem 1.

Corollary 1. Let a = (ak)k≥0 be a stammering sequence of algebraic numbers in a number
field L and that satisfies (2.1) or (2.2). Let β be an algebraic integer such that |β| > 1 and
assume that β1 = β, β2, . . . , βℓ are all its complex conjugates of modulus > 1. If all the
complex numbers

γj :=

+∞
∑

k=0

ak

βk
j

, 1 ≤ j ≤ ℓ,

are algebraic, then γj belongs to the number field L(βj), for j = 1, . . . , ℓ.

Corollary 2. Let a = (ak)k≥0 be a bounded, stammering sequence of rational integers.
Let p and q be positive coprime integers with q > p and p prime. If both the real number

γ :=

+∞
∑

k=0

ak

(

p

q

)k

and the p-adic number
+∞
∑

k=0

ak

(

p

q

)k
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are algebraic, then γ is rational.

We end this section with an application of Theorem 1 to the expansion of algebraic
numbers in a complex quadratic integer base b, which in turn has an amusing application
to the transcendence of alternating stammering numbers.

Theorem 2. Let b be an algebraic integer in an imaginary quadratic field with |b| > 1.
Let a = (ak)k≥0 be a stammering sequence with values in the set {0, 1, . . . , |b|2−1}. Then,
the number

+∞
∑

k=0

ak/bk

is transcendental.

Corollary 3. If b > 1 is a positive integer and a = (ak)k≥0 is a stammering sequence
taking its values in the set {0, 1, . . . , b − 1}, then the number

+∞
∑

k=0

(−1)kak/bk

is transcendental.

4. The auxiliary result

Our main auxiliary tool is a version of the P-adic Thue–Siegel–Roth–Schmidt theorem
proved by Schlickewei [9]. We make use of the following notation (see also [7], pp. 182–183).

Let p be a prime number. Let Qp be the completion of Q at p and Cp the completion
of the algebraic closure of Qp for the absolute value | · |p.

Let K be a number field of degree d. Write the ideal (p) in OK as

(p) =

π(p)
∏

j=1

p
e(pj)
j ,

where p1, . . . , pπ(p) are distinct prime ideals in OK. For a non-zero element α in K, set

|α|pj
= p−hj/e(pj),

where hj is the largest integer such that pj is coprime with the fractional ideal p
hj

j × (α).
For j = 1, . . . , π(p), let d(pj) denote the degree of the completion Kpj

of K with respect
to pj . Let r be the unit rank of K. For j = 1, . . . , r + 1, let dj equal to 1 (resp. 2) if the
embedding of K associated with the absolute value | · |j is real (resp. complex).

For any non-zero α in K, we have the product formula

r+1
∏

j=1

|α|dj

j ·
∏

p

|α|d(p)
p = 1.
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The field height HK of β = (β0, . . . , βm) ∈ Km+1 is defined by

HK(β) =

r+1
∏

j=1

max{|β0|dj

j , . . . , |βm|dj

j }
∏

p

max{|β0|d(p)
p , . . . , |βm|d(p)

p },

where the second product is taken over all inequivalent non-Archimedean primes of K.

Let p0 = ∞ denote the Archimedean prime in Q. Denote by K
(0)
1 , . . . ,K

(0)
r+1 the

r + 1 non-isomorphic fields corresponding to the embeddings of K into C. For simplicity,
set π(p0) = r + 1. Let {p1, . . . , pt} be a finite set of rational prime numbers. For i =

1, . . . , t, denote by K
(i)
1 , . . . ,K

(i)
π(pi)

the π(pi) pairwise non-isomorphic fields corresponding

to the embeddings of K into Cpi
. Furthermore, we denote the images of an (m + 1)-tuple

β = (β0, . . . , βm) ∈ Km+1 under these embeddings as follows: for i = 0, . . . , t and for

j = 1, . . . , π(pi), we write β(i)

j
= (β

(i)
0j , . . . , β

(i)
mj) ∈ K

(i)
j

m+1
.

Furthermore, for j = 1, . . . , r + 1, set

|β(0)

j
| = max{|β(0)

0j |, . . . , |β(0)
mj|},

and, for i = 1, . . . , t and j = 1, . . . , π(pi), set

|β(i)

j
|pij

= max{|β(i)
0j |pij

, . . . , |β(i)
mj|pij

}.

With these notations, Theorem 2.1 of [9] combined with Lemma 1F, page 178, of [10] yields
the following version of the Subspace Theorem, that is the key tool for the proof of our
Theorem 1.

Theorem S. For every i = 0, . . . , t and every j = 1, . . . , π(pi), let L
(i)
0j , . . . , L

(i)
mj be m + 1

linearly independent linear forms in m + 1 variables with algebraic coefficients from the
field Cpi

. Then, for any ε > 0, all the solutions β ∈ Pm(K) to the inequality

r+1
∏

j=1

m
∏

k=0

|L(0)
kj (β(0)

j
)|dj

|β(0)

j
|dj

·
t

∏

i=1

π(pi)
∏

j=1

m
∏

k=0

|L(i)
kj (β(i)

j
)|d(pij)

pij

|β(i)

j
|d(pij)
pij

≤ HK(β)−m−1−ε (4.1)

lie in finitely many proper subspaces.

We end this section with a few words on heights. Keep the above notation and let β
be in K. The (multiplicative) absolute height of β is defined by

H(β) :=
(

HK((1, β))
)1/[K:Q]

,

and we set
h(β) = log H(β).

We refer to Chapter 3 of [11] for classical results on these heights.
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We just mention that, for any algebraic numbers a0, . . . , an, β in K and for any place
ν in K we have

|a0 + a1β + . . . + anβn|ν ≤ max{1, |n + 1|ν} × max{|a0|ν , |a1β|ν , . . . , |anβn|ν}
≤ max{1, |n + 1|ν} × max{|a0|ν , . . . , |an|ν}

× max{1, |β|ν}n,

(4.2)

and

h(a0, . . . , an) :=
log

(

HK((a0, . . . , an))
)

[K : Q]
· (4.3)

5. Proof of Theorem 1

This section is devoted to the proof of Theorem 1.

Proof of Theorem 1. Consider a stammering sequence a = (ak)k≥0 of algebraic numbers
in a number field L that satisfies (2.1) or (2.2). We assume that the parameters w and
w′ are fixed, as well as the sequences (Un)n≥1 and (Vn)n≥1 occurring in the definition of a
stammering sequence. Set also rn = |Un| and sn = |Vn|, for every n ≥ 1. Observe that sn

tends to infinity monotonically with n.
We fix a complex algebraic number α in the open unit disc and set β := 1/α. We

point out that |β| > 1. Set K := L(α) = L(β) and δ = [K : Q]/[Q(β) : Q]. Assume
that the conjugates of β are numbered in such a way that β = β1, . . . , βℓ is a subset of the
conjugates of β of modulus > 1 containing exactly one of the two elements of each pair of
complex conjugates.

For any j = 1, . . . , ℓ, set

fa,j(α) := fa(αj) =
+∞
∑

k=0

akαk
j =

+∞
∑

k=0

ak

βk
j

·

Let p1, . . . , pℓ′ be the prime ideals p in K with |α|p < 1 (i.e., with |β|p > 1). For j =
1, . . . , ℓ′, let fa,pj

(α) in Kpj
be defined by

fa,pj
(α) := lim

N→+∞

N
∑

k=0

ak

βk
.

The key fact is the observation that the fa,j(α)’s and the fa,pj
(α)’s defined above

admit infinitely many good approximants in the fields K and Kpj
, respectively. These

approximants are obtained by truncating their associated series and completing them by

periodicity. Precisely, for every positive integer n, we define the sequence (b
(n)
k )k≥0 by

b
(n)
h = ah for 0 ≤ h ≤ rn + sn − 1,

b
(n)
rn+h+jsn

= arn+h for 0 ≤ h ≤ sn − 1 and j ≥ 0.
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The sequence (b
(n)
k )k≥0 is eventually periodic, with preperiod Un and with period Vn. For

j = 1, . . . , ℓ, set

α
(n)
j =

+∞
∑

k=0

b
(n)
k

βk
j

·

Since (ak)k≥0 satisfies (2.1) or (2.2), we have |ak − b
(n)
k | ≪ ck for every real number c > 1.

Throughout the proof of the theorem, all the constants implied by ≪ may depend on c,
but they are independent of n. We thus observe that

∣

∣fa,j(α) − α
(n)
j

∣

∣ =

∣

∣

∣

∣

+∞
∑

k=rn+⌈wsn⌉

ak − b
(n)
k

βk
j

∣

∣

∣

∣

≪ crn+⌈wsn⌉

|βj |rn+⌈wsn⌉
, (5.1)

for every real number c > 1. Likewise, for j = 1, . . . , ℓ′, define α
(n)
pj

in Kpj
by the p-adic

limit

α
(n)
pj

= lim
N→+∞

N
∑

k=0

b
(n)
k

βk
,

and observe that
∣

∣fa,pj
(α) − α

(n)
pj

∣

∣

pj
≪ crn+⌈wsn⌉

|β|rn+⌈wsn⌉
pj

, (5.2)

for every real number c > 1.

Lemma 1. For every integer n, set

Pn(X) =

rn−1
∑

k=0

ak Xrn−k(Xsn − 1) +

sn−1
∑

k=0

arn+k Xsn−k.

Then, for j = 1, . . . , ℓ, we have

α
(n)
j =

Pn(βj)

βrn

j (βsn

j − 1)
·

Proof. This is an easy verification, as in Lemma 1 from [1].

Now, we define the systems of linear forms to which we will apply Theorem S. Let us
assume that fa,1(α) := fa(α), . . . , fa,ℓ(α) and fa,p1

(α), . . . , fa,pℓ′
(α) are all algebraic.

For j = 1, . . . , ℓ, consider the linear forms

L
(0)
0j = X, L

(0)
1j = Y, L

(0)
2j = fa,j(α)X − fa,j(α)Y − Z.

For the remaining Archimedean absolute values, that is, for j = ℓ + 1, . . . , r + 1, where r
denotes the unit rank of Q(β), take simply

L
(0)
0j = X, L

(0)
1j = Y, L

(0)
2j = Z.
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Let p1, . . . , pt be the prime numbers p such that there exists an ideal p above p with
|β|p 6= 1. Each of the prime ideals p1, . . . , pℓ′ divides one of the pi’s. For j = 1, . . . , ℓ′, let
pi be the rational prime above pj and consider the linear forms

L
(i)
0j = X, L

(i)
1j = Y, L

(i)
2j = fa,pj

(α)X − fa,pj
(α)Y − Z.

For all the other prime ideals p below one of the pi’s, we consider the linear forms

L
(i)
0j = X, L

(i)
1j = Y, L

(i)
2j = Z.

We evaluate the product of these linear forms at the algebraic points β(i)

j
, where

β =
(

βrn+sn , βrn , Pn(β)
)

.

Obviously, β and the β(i)

j
’s depend on n; however, we choose not to indicate this dependence

for sake of simplicity.
We first establish an upper bound for the height of β.

Lemma 2. For every real number c > 1, we have

HK(β) ≪
(

c

ℓ
∏

j=1

|βj |dj ·
ℓ′

∏

j=1

|β|dpj

pj

)rn+sn

,

where the constant implied by the Vinogradov symbol ≪ is independent of n.

Proof. Let c > 1 be arbitary. By definition,

HK(β) =

r+1
∏

j=1

max{|βrn+sn

j |dj , |βrn

j |dj ,|Pn(βj)|dj}

·
∏

p

max{|βrn+sn |d(p)
p , |βrn |d(p)

p , |Pn(β)|d(p)
p }.

On the one hand, we infer from the fact that a satisfies (2.1) or (2.2) and from Lemma 1
that

r+1
∏

j=1

max{|βrn+sn

j |dj , |βrn

j |dj , |Pn(βj)|dj} ≪
( ℓ

∏

j=1

|βj |dj

)rn+sn

·
r+1
∏

j=ℓ+1

max{1 , |Pn(βj)|dj}

≪
( ℓ

∏

j=1

|βj |dj

)rn+sn

c(rn+sn)/2.

On the other hand, we have

∏

p

max{|βrn+sn |d(p)
p , |βrn |d(p)

p , |Pn(β)|d(p)
p } ≪

( ℓ′
∏

j=1

|β|d(pj)
pj

)rn+sn

·
∏

p∈P

|Pn(β)|d(p)
p ,
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where the latter product is taken over the set P of all the prime ideals p that do not divide
p1 . . . pℓ′ and are such that |Pn(β)|p > 1. Furthermore, we have

∏

p∈P

|Pn(β)|d(p)
p ≪ c(rn+sn)/2. (5.3)

Indeed, we infer from (2.1), inequality (4.2), Lemma 1 and inequality (4.3) that

∏

p∈P

|Pn(β)|d(p)
p ≤

∏

p∈P

(

max{1, |rn + sn|d(p)
p } · max{|a0|d(p)

p , . . . , |arn+sn−1|d(p)
p }

)

≤ (rn + sn) HK(a0, . . . , arn+sn−1)

≪ (rn + sn) exp
{

[K : Q] · h(a0, . . . , arn+sn−1)
}

≪ c(rn+sn)/2.

The same upper bound holds under the assumption (2.2) since, in this case, the product

∏

p∈P

max{|a0|d(p)
p , . . . , |arn+sn−1|d(p)

p }

is bounded by a constant independent of n. This ends the proof.

Observe that our choice of p1, . . . , pt implies that |β|p = 1 for any prime p which does
not lie above one of the pi’s. Consequently, we get

r+1
∏

j=1

|β(0)

j
|dj ·

t
∏

i=1

π(pi)
∏

j=1

|β(i)

j
|d(pij)
pij

= HK(β) ·
∏

p∈P′

|Pn(β)|−d(p)
p , (5.4)

where the latter product is taken over the set P ′ of all the prime ideals p that do not divide
p1 . . . pt and are such that |Pn(β)|p > 1. Obviously, we infer from (5.3) that

∏

p∈P′

|Pn(β)|d(p)
p ≤

∏

p∈P

|Pn(β)|d(p)
p ≪ c(rn+sn)/2, (5.5)

for every real number c > 1.
By the product formula, we have

r+1
∏

j=1

|L(0)
kj (β(0)

j
)|δdj ·

t
∏

i=1

π(pi)
∏

j=1

|L(i)
kj (β(i)

j
)|d(pij)

pij
= 1, (5.6)

for k = 0, 1.

It remains to evaluate the expressions |L(i)
2j (β(i)

j
)|. By (5.1), the Archimedean places

yield a contribution of at most

r+1
∏

j=1

|L(0)
2j (β(0)

j
)|δdj ≪ crn+sn

0

ℓ
∏

j=1

|βj |−δdj(w−1)sn , (5.7)
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for a certain real number c0 > 1 that will be later on selected to be sufficiently close to 1.
By (5.2), the contribution of the non-Archimedean places yields

t
∏

i=1

π(pi)
∏

j=1

|L(i)
2j (β(i)

j
)|d(pij)

pij
≪ crn+sn

0

ℓ′
∏

j=1

|β|−(w−1)snd(pj)
pj

. (5.8)

Consequently, choosing c = c
1/3
0 in (5.5), we infer from (5.4), (5.6), (5.7) and (5.8)

that the product

Π :=
r+1
∏

j=1

2
∏

k=0

|L(0)
kj (β(0)

j
)|dj

|β(0)

j
|dj

·
t

∏

i=1

π(pi)
∏

j=1

2
∏

k=0

|L(i)
kj (β(i)

j
)|d(pij)

pij

|β(i)

j
|d(pij)
pij

of all the linear forms is

≪ HK(β)−3 c
3(rn+sn)
0

(

∏

|βj |>1

|βj |−δdj(w−1)sn ·
ℓ′
∏

j=1

|β|−(w−1)snd(pj)
pj

)

.

Since w > 1, we infer from condition (ii) in the definition of a stammering sequence
that there exists a positive real number η such that

2η(rn + sn) < (w − 1)sn,

for every large positive integer n. Now, we choose c0 close enough to 1 to ensure that

c1 := HK(β)/c
3/η
0 satisfies c1 > 1. Since δ > 1, we obtain

Π ≪ HK(β)−3 c
3(rn+sn)
0

( ℓ
∏

j=1

|βj |dj ·
ℓ′
∏

j=1

|β|d(pj)
pj

)−2η(rn+sn)

≪ HK(β)−3
(

c
−3/η
0 HK(β)

)−η(rn+sn)
( ℓ

∏

j=1

|βj |dj ·
ℓ′

∏

j=1

|β|d(pj)
pj

)−η(rn+sn)

≪ HK(β)−3

(

c1 ·
ℓ

∏

j=1

|βj |dj ·
ℓ′

∏

j=1

|β|d(pj)
pj

)−η(rn+sn)

.

It thus follows from Lemma 2 that

Π ≪ HK(β)−3−η.

This shows that we have produced infinitely many algebraic solutions to inequality (4.1).
Applying Theorem S, we reach the conclusion that there exists a non-zero triple (z1, z2, z3)
in K3 and an infinite set N of positive integers, such that

z1β
rn+sn + z2β

rn + z3Pn(β) = 0, (5.9)

12



for all n ∈ N . Since sn tends to infinity with n, the number z3 ∈ K is non-zero. If z1 6= 0,
then dividing (5.9) by βrn+sn and letting n tend to infinity along N , we get that

lim
n→+∞

Pn(β)

βrn+sn
= fa(α)

belongs to K. If z1 = 0, we divide (5.9) by βrn and argue similarly to reach the same
conclusion.

Given any integer j with 2 ≤ j ≤ ℓ, we can replace α by αj all along the above
proof, and thus derive that fa,j(α) belongs to L(αj). The last statement about fa,j(α) =
σj(fa(α)) follows immediately by conjugating relation (5.9) by σj for all n ∈ N and then
arguing as above.

This concludes the proof of our Theorem 1.

6. Proofs of Theorem 2 and Corollary 3

This section is devoted to the proofs of Theorem 2 and Corollary 3.

Proof of Theorem 2. We may assume that a0 6= 0, since otherwise we may elimi-
nate a0 and reindex the sequence (clearly, the new sequence obtained in this way is still
stammering).

Set

α =

∞
∑

k=0

ak

bk
·

Assume that α ∈ Q. Since the complex conjugation is continuous, we get that

α =
∞
∑

k=0

ak

b
k
·

Hence, α ∈ Q. By Theorem 1, we have that α ∈ Q[b]. In fact, Theorem 1 shows that more
is true, namely (we keep the notation used in the proof of this theorem) that there exist
a non-zero triple (z1, z2, z3) in K3 = Q[b]3 and an infinite set of positive integers N1 such
that

z1b
rn+sn − z2b

rn − z3Pn(b) = 0 (6.1)

holds for every n ∈ N1. Here,

Pn(X) =

rn−1
∑

k=0

akXrn−k(Xsn − 1) +

sn−1
∑

k=0

arn+kXsn−k ∈ Z[X ],

as in Lemma 1. Dividing by brn+sn both sides of (6.1) and letting n tend to infinity along
N1, we get that z1 = z3α. Hence, if z3 = 0, then z1 = 0, and now relation (6.1) shows that
z2 = 0 as well, which is impossible.

13



Thus, z3 6= 0 and by multiplying by z−1
3 both sides of (6.1), it follows that we may

assume that z3 = 1. Since z1 = z3α, we get that z1 = α. Inserting this into relation (6.1)
and dividing both sides of the resulting relation by brn+sn we get

α − z2

bsn
=

Pn(b)

brn+sn
=

sn+rn−1
∑

k=0

ak

bk
−

rn−1
∑

k=0

ak

bsn+k
·

Substituting α for its formula, performing the obvious cancellations and multipliying both
sides of the resulting formula by bsn , we get

z2 =

rn−1
∑

k=0

ak

bk
+

∑

k≥rn

asn+k

bk
·

Since the above relation is true for every n lying in N1, it follows easily that α = z2 because
the right hand side of the above relation tends to α when n tends to infinity along N1.
Replacing z1 = z2 = α in (6.1), we get that

αbrn(bsn − 1) = Pn(b), (6.2)

for every n ∈ N1.

Assume first that α = 0. We then get that Pn(b) = 0. Note that

Pn(X) =

rn+sn−1
∑

k=0

ckXrn+sn−k,

where ck = ak if k = 0, . . . , sn − 1, and ck = ak − ak−sn
if k = sn, . . . , rn + sn − 1. Since

a0 6= 0, it follows that Pn(X) is not the zero polynomial. Note that each of its coefficients
is either of the form ai, or of the form aj − ah for some appropriate indices i, j and h.
Dividing both sides of equation (6.2) by an appropriate power of b to emphasize a constant
term (i.e., a term which is not a multiple of b), we get a relation of the form

c0,nbdn + c1,nbdn−1 + . . . + cdn,n = 0,

where dn > 0, the coefficients cj,n are integers, c0,n = a0 6= 0, cdn,n 6= 0, and the absolute
values of all coefficients ci,n does not exceed |b|2 − 1. However, the above relation implies
that the polynomial

Qn(X) = c0,nXdn + c1,nXdn−1 + . . . + cdn,n ∈ Z[X ]

is a multiple of the minimal polynomial of b over Z. Since the constant term of the minimal
polynomial over Z of b is |b|2 = b · b, and this number must divide the non-zero integer
cdn,n of absolute value ≤ |b|2 − 1, we get a contradiction.

From now on, we assume that α 6= 0.
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Let n1 < n2 < . . . be an infinite sequence of positive integers in N1. Thus, relation
(6.2) holds for n = ni with some i ≥ 1. The sequence (rn)n≥1 might be bounded or
not. If it is unbounded, we may assume, up to discarding some values for the ni’s, that
rni+1

> sni
+ rni

for all i ≥ 1, while if it is bounded, we may assume that rni
is a constant

for all i ≥ 1. We also assume that sni+1
> rni

+ sni
for all i ≥ 1. This is possible because

the sequence (sn)n≥1 is increasing. From now on, we write m = nj and n = ni for some
j > i ≥ 1. Dividing the two relations (6.2) obtained for m and n, we get

brm(bsm − 1)

brn(bsn − 1)
=

Pm(b)

Pn(b)
,

which gives
brm−rn(bsm − 1)Pn(b) − (bsn − 1)Pm(b) = 0.

The expression appearing in the left hand side of the last equation above is a polynomial in
b (note that rm ≥ rn). Put D = (rm − rn)+ sm + rn + sn = rm + sm + rn. Note that since
a0 6= 0, it follows that D is the common degree of the polynomials Xrm−rn(Xsm −1)Pn(X)
and (Xsn − 1)Pm(X). We show that if n is fixed and m is very large, then one of the
polynomials

Qm,n(X) = Xrm−rn(Xsm − 1)Pn(X) − (Xsn − 1)Pm(X) ∈ Z[X ] (6.3)

is not the zero polynomial, and then later that Qm,n(X) is of the form XλRm,n(X), where
Rm,n(0) is non-zero and of the form ±ai or aj − ah for some appropriate indices i, j and
h, which leads to the same final contradiction as in the case when α = 0.

To see that Qm,n(X) is non-zero, note that the coefficient of XD−rn−sn−t, where
t = 0, 1, . . . , sm − sn − rn is simply asn+t − at. If this coefficient is zero for all t in the
above range and for arbitrarily large values of m, we then get that the sequence (ak)k≥0

is periodic with period sn, which is a contradiction.

We now look at the last non-zero coefficient of Qm,n(X). Note that if rm − rn > sn,
then the last non-zero coefficient of Qm,n(X) is arm+sm−1−arm−1 and it is the coefficient of
X . If arm+sm−1−arm−1 is non-zero, we have already obtained the desired contradiction. If
not, we divide both sides of relation (6.3) by X and work with the polynomial Qm,n(X)/X .
Continuing in this way rm − rn times, we may assume that asm+rm−t = arm−t for all
t = 1, . . . , rm − rn. At this point, Qm,n(X) is replaced by polynomial Qm,n(X)/Xrm−rn

given by

Qm,n(X)/Xrm−rn = (Xsm − 1)Pn(X) − (Xsn − 1)Pm(X)/Xrm−rn . (6.3)

Note that if rm = rn, then the above discussion is unnecessary and the polynomial shown
at (6.3) is just Qm,n(X). In what follows, we study the above polynomial. Note that

Sm,n(X) =(Xsm − 1)Pn(X)

=a0X
sm+rn+sn + a1X

sm+rn+sn−1 + . . .

+ asn−1X
sm+rn+1 + (asn

− a0)X
sm+rn + . . .

+ (asn+rn−1 − arn−1)X
sm+1 − a0X

rn+sn + . . .

− asn−1X
rn+1 − (asn

− a0)X
rn − . . .− (asn+rn−1 − arn−1)X.
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Thus, with D1 = sm + sn + rn, it follows that

Sm,n(X) =

D1−1
∑

k=0

ckXD1−k,

where ck is given by:

(i) ak if k = 0, . . . , sn − 1;
(ii) ak − ak−sn

if k = sn, . . . , sn + rn − 1;
(iii) 0 if k = sn + rn, . . . , sm − 1;
(iv) −ak−sm

if k = sm, . . . , sm + sn − 1;
(v) −(ak−sm

− ak−sm−sn
) if k = sm + sn, . . . , sm + sn + rn − 1.

For the second polynomial appearing in the formula (6.3)

Tm,n(X) = (Xsn − 1)Pm(X)/Xrm−rn ,

a similar calculation gives that

Tm,n(X) =

D1−1
∑

k=0

dkXD1−k,

where the coefficients dk are given by:

(i) ak if k = 0, . . . , sn − 1;
(ii) ak − ak−sn

if k = sn, . . . , sm − 1;
(iii)’ ak − ak−sm

− ak−sn
if k = sm, . . . , sm + rn − 1;

(iv)’ −ak−sn
if k = sm + rn, . . . , sm + sn − 1;

(v)’ −(ak−sn
− ak−sn−sm

) if k = sm + sn, . . . , sm + sn + rn − 1,
provided that sn > rn. When sn = rn, the same holds except that (iv)’ does not exist,
while if sn < rn, then the group (iii)’–(v)’ above needs to be replaced by

(iii)” ak − ak−sm
− ak−sn

if k = sm, . . . , sm + sn − 1;
(iv)” ak − ak−sm

− (ak−sn
− ak−sn−sm

) if k = sm + sn, . . . , sm + rn − 1;
(v)” −(ak−sn

− ak−sn−sm
) if k = sm + rn, . . . , sm + rn + sn − 1.

It is now easy to obtain the list of coefficients of Qm,n(X). Namely, ck − dk equals (inde-
pendently of the fact that sn > rn, sn = rn or sn < rn):

(i) 0 if k = 0, 1, . . . , sn + rn − 1;
(ii) −(ak − ak−sn

) if k = sn + rn, . . . , sm + rn − 1;
(iii) −(ak−sm

− ak−sn
) if k = sm + rn, . . . , sm + sn + rn − 1,

which confirms the claim about the coefficients of Qm,n(X). Thus, Theorem 2 is proved.

Proof of Corollary 3. Let a′ be the sequence a0, 0, a1, 0, a2, 0, . . .. It is clear that a′ is
also stammering. Now the result follows by applying Theorem 2 to the pair (a′, b1/2i).
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