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1. Introduction

The Subspace Theorem, whose name will be clear from its statement, was proved by
Wolfgang Schmidt around forty years ago. It provides us with a multidimensional extension
of Roth’s Theorem and was originally developed for the study of two classical problems,
namely algebraic approximation to algebraic numbers and norm form equations (a class
of Diophantine equations which includes the Thue equations). Subsequent applications
(of suitable extensions of the Subspace Theorem) to unit equations and linear recurrence
sequences were published some ten years later, as well as a proof of a conjecture of Lang
and many further applications to families of Diophantine equations which include norm
form equations.

During the last decade, several quite unexpected applications of the Subspace Theorem
were found, some of which have been discussed by Yuri Bilu in his talk at the Séminaire
Bourbaki [14]. These include new transcendence criteria, finiteness results for the number
of solutions to families of exponential Diophantine equations, and the work of Corvaja
and Zannier (with subsequent developments by Autissier and Levin) on integral points on
curves and surfaces.

Roughly speaking, the Subspace Theorem asserts that, for every n ≥ 2, all the integral
solutions (x1, . . . , xn) to a given system of linear equations with real algebraic coefficients
are, under some necessary conditions, contained in a finite union S1 ∪ . . . ∪ St of proper
rational subspaces of Qn. Like Roth’s Theorem, it is ineffective, in the sense that its proof
does not give an upper bound for the height of the subspaces S1, . . . ,St. However, Schmidt
was able in 1989 to establish an explicit upper bound for t, the number of proper rational
subspaces which contain all the solutions. Such a statement is called the Quantitative
Subspace Theorem. One of the purposes of this expository text is to show the importance
of this quantitative statement and to display some of its (sometimes rather unexpected)
consequences.

In Sections 2 and 3 we state the Subspace Theorem and discuss some of its most
classical applications. Section 4 is concerned with several recent applications, mainly to
transcendence theory. We continue in Section 5 with a statement of a version of the Quan-
titative Subspace Theorem and mention its applications to equations with unknowns in
a finitely generated multiplicative group and to linear recurrence sequences. In Section 6,
we show how a quantitative version of Roth’s Theorem can be used to improve, under an
extra hypothesis, the conclusion of Roth’s Theorem itself in two different directions. We
further explain that similar ideas can be worked out with the Quantitative Subspace The-
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orem. Finally, in the last section, we survey several new applications of the Quantitative
Subspace Theorem, again mainly to transcendence questions.

We warn the reader that we do not seek for exhaustivity. For instance, we only briefly
mention the important works by Evertse, Győry and their coauthors on decomposable
form equations and other families of Diophantine equations. As of the recent results, we
have chosen not to quote the deep recent works on integral points on curves and surfaces,
for which the reader is directed to [14]. Moreover, throughout this text (including the
present section), we simply write Subspace Theorem even if we mean an extension of the
first version of this theorem. Lastly, the reader is invited to consult the books [67, 70, 15,
74], which are very good references on the subject.

Throughout this text, θ (resp. ξ) usually denotes a real number (resp. a real algebraic
number).

2. Roth’s Theorem and the Schmidt Subspace Theorem

It follows from the theory of continued fractions that, for any irrational real number
θ, there are infinitely many rational numbers p/q with q ≥ 1 and∣∣∣∣θ − p

q

∣∣∣∣ < 1

q2
.

Let ε be a positive real number. Since the sum∑
q≥1

q
2

q2+ε

converges, the set of real numbers θ in (0, 1) such that∣∣∣∣θ − p

q

∣∣∣∣ < 1

q2+ε

holds for infinitely many rational numbers p/q with q ≥ 1 has zero Lebesgue measure.
This can be rephrased by saying that almost all (throughout the present paper, ‘almost
all’ refers to the Lebesgue measure) real numbers are approximable by rational numbers
at order 2 and to no better order. In 1955, Roth [59] established that every algebraic
irrational number cannot be approximated by rationals at an order greater than 2 and, in
this respect, behaves like almost all real numbers.

Theorem (Roth, 1955). Let ξ be an irrational, algebraic real number. Let ε be a positive
real number. Then there are only finitely many rational numbers p/q with q ≥ 1 such that∣∣∣∣ξ − p

q

∣∣∣∣ < 1

q2+ε
· (2.1)

If we impose additional arithmetical conditions on the numerators and on the de-
nominators of the rational numbers that are good approximations to ξ, even a weaker
inequality than (2.1) has only finitely many solutions. This was worked out by Ridout [58].
For a prime number ` and a non-zero rational number x, we set |x|` := `−u, where u is the
exponent of ` in the prime decomposition of x. Furthermore, we set |0|` = 0.
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Theorem (Ridout, 1957). Let S be a finite set of prime numbers. Let ξ be an irrational,
algebraic real number. Let ε be a positive real number. The inequality

∏
`∈S

|pq|` ·min

{
1,

∣∣∣∣ξ − p

q

∣∣∣∣} <
1

q2+ε

has only finitely many solutions in non-zero integers p, q.

In particular, it follows from Ridout’s Theorem that, for every integer b ≥ 2, every
irrational, algebraic real number ξ, every positive integers s, t, and every positive ε, the
inequality ∣∣∣∣ξ − p

sbn

∣∣∣∣ < 1

t(bn)1+ε
· (2.2)

has only finitely many integer solutions (p, n) with n ≥ 1.
Roth’s Theorem has been subsequently generalized by Wolfgang Schmidt [63, 64, 65,

66]. The first versions of the Schmidt Subspace Theorem that take also non-Archimedean
valuations into account were established independently by Dubois and Rhin [32] and
Schlickewei [60, 61]. We quote below a special case of a result from [62].

Theorem (Subspace Theorem). Let n ≥ 2 be an integer. Let S be a finite set of prime
numbers. Let L1,∞, . . . , Ln,∞ be n linearly independent linear forms in n variables with
real algebraic coefficients. For any prime number ` in S, let L1,`, . . . , Ln,` be n linearly
independent linear forms with integer coefficients. Let ε be a positive real number. Then,
the set of solutions x = (x1, . . . , xn) in Zn to the inequality

n∏
i=1

|Li,∞(x)| ·
∏
`∈S

n∏
i=1

|Li,`(x)|` ≤ (max{1, |x1|, . . . , |xn|})−ε

lies in finitely many proper subspaces of Qn.

We conclude this section by reformulating Roth’s Theorem in order to point out that
it is a consequence of the Subspace Theorem.

Theorem (Roth, 1955). Let ξ be a real algebraic number. Let ε be a positive real
number. The integer solutions (p, q) to

q · |qξ − p| < |q|−ε (2.3)

are contained in a finite union of proper subspaces of Q2.

The above formulation of Roth’s Theorem asserts that there is a finite set of equations
x1X+y1Y = 0, . . . , xtX+ytY = 0 such that, for every solution (p, q) to (2.3), there exists
an integer k = 1, . . . , t with xkp + ykq = 0. This means that, if ξ is irrational, then there
are only finitely many rational solutions to |ξ − p/q| < |q|−2−ε.
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3. Some classical applications of the Subspace Theorem

We begin with the extension of Roth’s Theorem to the approximation to real algebraic
numbers by real algebraic numbers of bounded degree established in [65]. Throughout this
text, the height H(ξ) of an algebraic number ξ is the maximum of the absolute values of
the coefficients of its minimal defining polynomial over the integers.

Theorem (Schmidt, 1970). Let n be a positive integer. Let ξ be a real algebraic number
of degree greater than n. Let ε be a positive real number. Then, there exist only finitely
many algebraic numbers α of degree at most n such that

|ξ − α| < H(α)−n−1−ε.

Furthermore, there exist infinitely many algebraic numbers α of degree at most n such
that

|ξ − α| < H(α)−n−1+ε.

The former assertion of the above theorem is a direct application of the Subspace
Theorem, while the latter one rests also on a classical transference principle. As far as
approximation by real algebraic numbers of degree at most n is concerned, real algebraic
numbers of degree exceeding n behave like almost all real numbers. However, and surpris-
ingly, for every even positive integer n, there exist complex non-real algebraic numbers of
degree n+ 2 which are much better approximable by complex algebraic numbers of degree
n than are almost all complex numbers. See [22] for a study of the approximation to com-
plex algebraic numbers by algebraic numbers of bounded degree. This problem remains,
at the moment, not completely solved.

We continue by a deep extension of Thue’s finiteness result to a more general class of
equations. Let L(X1, . . . , Xn) = α1X1 + . . .+αnXn be a linear form with coefficients in a
number field K. By means of his Subspace Theorem, Schmidt [66] established a necessary
and sufficient condition on the norm form NK/Q(L(X1, . . . , Xn)) that ensures that the
norm form equation

NK/Q(L(x1, . . . , xn)) = m, (x1, . . . , xn) ∈ Zn, (3.1)

has only finitely many solutions for every non-zero integer m.
Recall that if S is a finite set of valuations (on a given number field K) which contains

all the infinite valuations, then an S-unit x in K is characterised by |x|v = 1 for all v /∈ S.
We continue this section with an important result on S-unit equations from [57, 33]. We
point out that numerous Diophantine problems can be reduced to equations belonging to
this class.

Theorem (Schlickewei and van der Poorten, 1982, and Evertse, 1984). Let K
be a number field and S a finite set of places of K containing all Archimedean places. Let
q ≥ 2 be an integer. Let χ be the set of solutions to

x1 + . . .+ xq = 1
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such that x1, . . . , xq are S-units in K and no proper subsum of x1 + . . . + xq vanishes.
Then, χ is a finite set.

We conclude this section with a very brief overview of subsequent development be-
tween 1982 and 1998. In 1984, Laurent [51] applied the Subspace Theorem to establish a
conjecture of Lang. A few years later, Evertse and Győry [38] extended Schmidt’s results on
norm form equations and proved finiteness criteria for decomposable form equations (which
is a class of Diophantine equations which includes norm form equations, discriminant form
equations and index form equations).

Evertse, Győry, Stewart, and Tijdeman [40, 41] established by means of the Subspace
Theorem that most of the S-unit equations in two unknowns have at most two solutions.
More precisely, let K be a number field and S a finite set of valuations on K contain-
ing all the infinite valuations. Let a1, a2, a3 be non-zero elements in K and consider the
equation a1x + a2y = a3 in the unknown S-units x, y in K. Two such equations are said
to be S-equivalent if their coefficient sets become equal after a possible permutation and
multiplication by S-units. In [40] the authors prove that there is a finite set of classes such
that any equation not belonging to it has at most two solutions.

4. Some more recent applications of the Subspace Theorem

Many new applications of the Subspace Theorem were found by Corvaja and Zannier,
in a series of papers starting in 1998 with [25]. We content ourselves to quote four of their
numerous results.

Let K be a field included in the set of complex numbers. We call a K-power sum any
expression of the form

u(n) = b1a
n
1 + . . .+ bma

n
m,

where a1, . . . , am are distinct non-zero elements of K (called the roots) and b1, . . . , bm are
in K. We begin with a result from [26].

Theorem (Corvaja and Zannier, 2002). Let u be a Q-power sum with positive roots
and P (X,Y ) ∈ Q[X,Y ] be a polynomial non-constant in Y . Assume that the equation
P (u(n), y) = 0 has infinitely many solutions in integers n and y. Then, there exists a
Q-power sum v with positive real coefficients such that P (u(n), v(n)) = 0 for all integers
n.

We continue with an arithmetical application of the Subspace Theorem extracted from
[20].

Theorem (Bugeaud, Corvaja and Zannier, 2003). Let a and b be coprime integers
with a > b ≥ 2. For any positive real number ε, there exists an integer n0(ε) such that

gcd(an − 1, bn − 1) < 2εn, for every n ≥ n0(ε).

This theorem was subsequently generalized in various directions, and its extension
[27] implies a positive answer to a conjecture of Győry, Sárközy and Stewart [48] asserting
that if a, b, c are positive integers with a > b > c, then P [(ab+ 1)(bc+ 1)(ca+ 1)] tends to
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infinity as a tends to infinity, where P [x] denotes the greatest prime factor of the integer
x ≥ 2.

Theorem (Corvaja and Zannier, 2003). If a, b, c are positive integers with a > b > c,
then

P [(ab+ 1)(ac+ 1)] −→∞ (4.1)

as a tends to infinity.

Independently, Hernández and Luca [49] established the conjecture of Győry, Sárközy
and Stewart [48], but not under the strong form in the above theorem.

We end this section with several recent results on transcendence. A first one, estab-
lished in [26], asserts that lacunary series take transcendental values at algebraic arguments.

Theorem (Corvaja and Zannier, 2002). Let (nj)j≥1 be a strictly increasing sequence
of positive integers satisfying

lim inf
j→+∞

nj+1

nj
> 1.

Then, the function f defined for z in the open unit disc by

z 7→ f(z) =
∑
j≥1

znj

takes transcendental values at every non-zero algebraic point in the open unit disc.

A second result is a combinatorial transcendence criterion derived from the Subspace
Theorem and established in [8]. Let b ≥ 2 be an integer. For a non-zero real number θ,
write

θ = ±
∑

k≥−k0

ak
bk

= a−k0 . . . a0 · a1a2 . . . ,

where k0 ≥ 0, a−k0 6= 0 if k0 > 0, the ak’s are integers from {0, 1, . . . , b − 1} and ak
is different from b − 1 for infinitely many indices k. The sequence (ak)k≥−k0 is uniquely
determined by θ: it is its b-ary expansion.

Theorem (Adamczewski, Bugeaud and Luca, 2004). Keep the above notation. If
there exist a positive real number ε and infinitely many triples of positive integers (j, k, `)
such that

aj+i = aj+k+i, i = 1, . . . , `, (4.2)

and

` ≥ ε(j + k), ` ≤ k (4.3)

then θ is either rational, or transcendental.

The assumption of the above theorem means that there are blocks of arbitrarily large
length ` that occur twice very near to the beginning of the b-ary expansion of θ.
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Proof. Assume for simplicity that 0 < θ < 1. Let (j1, k1, `1), (j2, k2, `2), . . . be an infinite
sequence of triples of positive integers satisfying (4.2), (4.3) and k1 < k2 < . . . Let m be a
positive integer. Define the rational number

θm = 0 · a1a2 . . . ajmajm+1 . . . ajm+kmajm+1 . . . ajm+km . . . ajm+1 . . . ajm+km . . .

with preperiod a1a2 . . . ajm and period ajm+1 . . . ajm+km . There exists an integer pm such
that

θm =
pm

bjm(bkm − 1)
.

Furthermore, since, by (4.2),

θ = 0 · a1a2 . . . ajmajm+1 . . . ajm+kmajm+1 . . . ajm+`m . . . ,

the real numbers θm and θ have (at least) their first jm + km + `m digits in common, and

|θ − θm| =
∣∣∣∣θ − pm

bjm(bkm − 1)

∣∣∣∣ < 1

bjm+km+`m
.

Multiplying by the denominator and using (4.3), this gives

|bjm+kmθ − bjmθ − pm| < (bjm+km)−`m/(jm+km) ≤ (bjm+km)−ε. (4.4)

Consider the following three linearly independent linear forms with real algebraic coeffi-
cients:

L1,∞(X1, X2, X3) =X1,

L2,∞(X1, X2, X3) =X2,

L3,∞(X1, X2, X3) =θX1 − θX2 −X3.

Let S be the set of prime divisors of b. For any prime number ` in S, consider the following
three linearly independent linear forms with integer coefficients:

L1,`(X1, X2, X3) =X1,

L2,`(X1, X2, X3) =X2,

L3,`(X1, X2, X3) =X3.

We deduce from (4.4) that

3∏
i=1

|Li,∞((bjm+km , bjm , pm))| ·
∏
`∈S

3∏
i=1

|Li,`((bjm+km , bjm , pm))|` ≤ (bjm+km)−ε.

Assume that θ is algebraic. It then follows from the Subspace Theorem that the set
of triples (bjm+km , bjm , pm), m ≥ 1, is contained in a finite union of rational subspaces of
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Q3. Consequently, there exist a non-zero triple (z1, z2, z3) of integers and an infinite set
M of positive integers such that

z1b
jm+km + z2b

jm + z3pm = 0, (4.5)

for m inM. If (km)m∈M is bounded, then there is a positive integer k and arbitrarily large
integers m such that

|θ − θm| =
∣∣∣∣θ − pm

bjm(bk − 1)

∣∣∣∣ < 1

bk(bjm)1+ε
,

and it follows from Ridout’s Theorem (see (2.2)) that θ must be rational. Thus, we may
assume that k1 < k2 < . . . Dividing both sides of (4.5) by bjm(bkm − 1) and letting m tend
to infinity, we conclude that θ is rational. This completes the proof of the transcendence
criterion.

A similar application of the Subspace Theorem was used previously by Troi and Zan-
nier [73] to prove the transcendence of the number α =

∑
a∈S 2−a, where S denotes the

set of integers which can be represented as sums of distinct terms of the form 2k + 1 with
k being a positive integer. Also, Mahler [54] suggested explicitly to apply the Subspace
Theorem exactly as in the above proof to investigate whether the middle third Cantor set
contains or not irrational algebraic elements ! Other applications of the Subspace Theorem
to transcendence can be found in [63, 56, 24].

Very little is known about the expansion of an irrational algebraic number to an
integer base. It is, however, believed that every algebraic irrational ξ shares most of the
properties of almost all numbers. In particular, its b-ary expansion is likely to be normal.
This means that, for every positive n, each combination of n digits from {0, 1, . . . , b − 1}
is likely to occur with the same frequency, namely 1/bn, in the b-ary expansion of ξ.

One of the many ways to measure the complexity of a real number is to use the block
complexity. For a real number θ, an integer b ≥ 2, and a positive integer n, denote by
p(n, θ, b) the total number of distinct blocks of n digits in the b-ary expansion of θ, that is,

p(n, θ, b) = Card{(ah+1, . . . , ah+n) : h ≥ 0}.

Obviously, we have
1 ≤ p(n, θ, b) ≤ bn, for n ≥ 1.

It is shown in [2] with the help of the above combinatorial transcendence criterion that the
complexity function n 7→ p(n, ξ, b) of an irrational algebraic number ξ grows faster than any
linear function. A weaker result from [44, 10], which follows from a weaker transcendence
criterion (namely Ridout’s Theorem), asserts that p(n, ξ, b)− n tends to infinity with n.

Theorem (Adamczewski and Bugeaud, 2007). If ξ is an algebraic irrational real
number, then

lim
n→∞

p(n, ξ, b)

n
= +∞. (4.6)
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The key combinatorial (and easy) lemma for this proof asserts that if for a sequence
(ah)h≥1 of elements from {0, 1, . . . , b − 1} there exist a positive C and arbitrarily large
integers n such that

Card{(ah+1, . . . , ah+n) : h ≥ 0} ≤ Cn,
then there are a positive real number ε and infinitely many triples of positive integers
(j, k, `) with (4.2) and (4.3).

Similar ideas yield new examples of transcendental continued fractions. The next
statement is extracted from [1].

Theorem (Adamczewski and Bugeaud, 2005). Let (dj)j≥1 be a bounded sequence
of positive integers such that there exist a positive real number ε and arbitrarily large
integers ` such that

d`+i = di, for all integers i with 1 ≤ i ≤ ε`.

Then, the real number [0; d1, d2, . . .] is either quadratic, or transcendental.

Further results can be found in [3, 4, 7]. Recall that we still do not know whether
there exist algebraic numbers with an unbounded sequence of partial quotients in their
continued fraction expansion, nor whether there exist algebraic numbers of degree at least
three with a bounded sequence of partial quotients.

5. Quantitative statements and some of their applications

Unfortunately, the proof of Roth’s Theorem does not enable us to get explicit upper
bounds for the height of the solutions to (2.1). Nevertheless, it can be used to derive an
explicit upper bound for the number of reduced solutions to (2.1). This was first done in
1955 by Davenport and Roth [31].

Theorem DR (Davenport and Roth, 1955). Let ξ be an algebraic real number of
degree d and height at most H. Let ε be a positive real number with ε ≤ 1/3. Then there
are no more than

2(2H)2/ε + 4ε−1 log log(1 + 2Hd) + exp{285d2ε−2}

reduced rational numbers p/q with q ≥ 1 such that

0 <

∣∣∣∣ξ − p

q

∣∣∣∣ < 1

q2+ε
·

The above theorem was subsequently improved by several authors and the best known
result is established in the Appendix of [21].

The Subspace Theorem suffers from the same lack of effectivity as Roth’s Theorem;
nonetheless, Schmidt [68] was able to give explicit bounds for the number of exceptional
subspaces. To avoid a too technical statement, we quote a theorem of Schmidt with the
first result of this type. The height of a linear form L = α1x1 + . . .+ αnxn with algebraic
coefficients is denoted by H(L) and satisfies H(L) ≤ nd/2 (d+ 1)n/2H(α1)× . . .×H(αn),
where d is the degree of a number field containing α1, . . . , αn.
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Theorem (Schmidt, 1989). Let n ≥ 2 be an integer. Let L1, . . . , Ln be linearly inde-
pendent linear forms in n variables with coefficients in a real algebraic number field of
degree d. Let ε be a real number satisfying 0 < ε < 1. Then there are proper rational
subspaces S1, . . . ,St of Qn, where

t =
[
(2d)2

26nε−2]
,

such that all integer solutions x = (x1, . . . , xn) to

|L1(x) · · ·Ln(x)| < |det(L1, . . . , Ln)| · (max{1, |x1|, . . . , |xn|})−ε

lie in the union of S1, . . . ,St and of the ball

max{|x1|, . . . , |xn|} ≤ max{(n!)8/ε, H(L1), . . . ,H(Ln)}.

A more general result, including non-Archimedean places, has been established by
Schlickewei and improved by Evertse and Schlickewei [42]. A further improvement has
been obtained by Evertse and Ferretti [37]; see the expository paper by Evertse [36].

As a first application of his Quantitative Subspace Theorem, Schmidt [69] derived an
explicit, uniform bound for the number of solutions to norm-form equations (3.1) depending
only on n, m and the degree of the field K. His result was subsequently generalized to
decomposable form equations by Győry [45, 46] and Evertse and Győry [39]. Using results
from [46], Győry [47] established a very nice theorem on irreducibility of neighbouring
polynomials; namely, if P (X) is an integer polynomial, then there exists an effectively
computable number c, depending only on the degree of P (X) and on its leading coefficient,
and a rational integer b of absolute value at most c for which the polynomial P (X) + b
is irreducible over the rationals. Perhaps, the same statement holds with a constant c
depending only on the degree of P (X), this is an interesting open problem.

A further application of the Quantitative Subspace Theorem is concerned with S-unit
equations. We quote a more general result, established in [43].

Theorem (Evertse, Schlickewei and Schmidt, 2002). Let a0, . . . , aq be complex
numbers. Let Γ be a multiplicative subgroup of (C×)q of rank r. Then, the equation

a0x0 + . . .+ aqxq = 0

in projective points (x1, . . . , xq) with coordinates in Γ has at most

exp{(6q)3q(r + 1)} (5.1)

solutions where no proper, nonempty subsum of a0x0 + . . .+ aqxq vanishes.

The bound (5.1) has been very recently reduced to

(8q)4q
4(q+r+1)

by Amoroso and Viada [11]. Their improvement comes from a better estimate for the
number of solutions of ‘very small height’, a step of the proof which is independent of the
Quantitative Subspace Theorem.

To conclude this section, we quote a striking result on linear recurring sequences [71].
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Theorem (Schmidt, 2000). Let u be a linear recurrence sequence of order t of complex
numbers, which may be degenerated. Then the set of subscripts k with uk = 0 is the union
of at most

exp exp exp(20t) (5.2)

arithmetic progressions and single numbers.

We emphasize that the upper bound (5.2) depends only on the order of the recurrence.
It has been reduced to

exp exp(t
√
11t)

by Allen [9], using a better bound in an auxiliary lemma dealing with the linear indepen-
dence of certain vectors. A subsequent sharpening can be found in [12].

6. Two old results as consequences of the quantitative statements

Roth’s Theorem (1955) has a long history. Liouville established in 1844 that a non-zero
real algebraic number cannot be approximated by rational numbers at an order greater
than its degree. His result was subsequently improved by Thue (1909), Siegel (1921) and
later by Dyson (1947) and Gelfond (1948). In the meantime, in 1936, Schneider [72] proved
an important, and almost forgotten, result.

Theorem (Schneider, 1936). Let ξ be an irrational, algebraic real number. Let ε be a
positive real number. Let (pj/qj)j≥1 be the sequence of reduced rational solutions of∣∣∣∣ξ − p

q

∣∣∣∣ < 1

q2+ε
,

ordered such that 3 ≤ q1 < q2 < . . . Then either the sequence (pj/qj)j≥1 is finite, or

lim sup
j→+∞

log qj+1

log qj
= +∞.

Looking at the theorem of Schneider, let us rewrite Roth’s Theorem under the follow-
ing form.

Theorem (Roth, 1955). Let θ be an irrational real number. Let ε be a positive real
number. If there is an infinite sequence (pj/qj)j≥1 of reduced rational solutions of∣∣∣∣θ − p

q

∣∣∣∣ < 1

q2+ε
,

then θ is transcendental.

It is natural to ask what kind of results could be obtained if we add in Roth’s Theorem
an assumption on the denseness of the infinite sequence of solutions, like in Schneider’s
Theorem.
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We may hope to replace in Schneider’s Theorem ε by a function q 7→ ε(q) tending
to zero as q increases to infinity. We may also hope to improve the conclusion of Roth’s
Theorem, that is, to say something more than the mere fact that ξ must be transcendental,
for instance, to give transcendence measures for ξ.

This is exactly what happens ! We first quote a result found by Cugiani [28] in 1958,
that improves Schneider’s Theorem.

Theorem (Cugiani, 1958). Let ξ be a real algebraic number of degree d. For an integer
q ≥ 16, set

ε(q) =
9d

(log log log q)1/2
· (6.1)

Let (pj/qj)j≥1 be the sequence of reduced rational solutions of∣∣∣∣ξ − p

q

∣∣∣∣ < 1

q2+ε(q)
,

ordered such that 16 ≤ q1 < q2 < . . . Then either the sequence (pj/qj)j≥1 is finite, or

lim sup
j→+∞

log qj+1

log qj
= +∞.

The above theorem was subsequently generalized by Cugiani [29, 30] and Mahler [53]
to include non-Archimedean valuations, and is now referred to as the Cugiani–Mahler
Theorem.

The other strengthening of Schneider’s Theorem evoked above was worked out by
Alan Baker [13]. Following Koksma [50], for a real number θ and a positive integer d, we
denote by w∗d(θ) the supremum of the real numbers w∗ for which the inequality

0 < |θ − α| < H(α)−w
∗−1

has infinitely many solutions in algebraic numbers α of degree at most d. By means of the
exponents w∗d, Koksma divided the set of transcendental numbers into three disjoint classes
S∗, T ∗ and U∗. He proved that these classes coincide, respectively, with the classes S, T
and U defined by Mahler [52]. A U∗-number is precisely a transcendental real number θ for
which there exist a positive integer d and, for every positive real number w, an algebraic
number α of degree d such that |θ−α| < H(α)−w. Liouville numbers are U∗-numbers. See
Chapter 3 from [16] for more information.

Theorem (Baker, 1964). Let θ be an irrational real number. Let ε be a positive real
number. Assume that there is an infinite sequence (pj/qj)j≥1 of reduced rational solutions
to ∣∣∣∣θ − p

q

∣∣∣∣ < 1

q2+ε

that satisfies

lim sup
j→+∞

log qj+1

log qj
< +∞. (6.2)
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Then, there exists a constant κ, depending only on θ and on ε, such that

w∗d(θ) ≤ exp expκd2,

for every integer d ≥ 1. Consequently, θ is either an S-number, or a T -number.

The original proofs of the Cugiani–Mahler Theorem and of the Baker Theorem are
quite intricate: the authors performed some suitable modifications in the heart of the proof
of Roth’s Theorem.

It was shown recently (resp. in [17] and in [5]) that both the theorems of Cugiani–
Mahler and of Baker can be easily deduced from a quantitative version of Roth’s Theorem.
Of course, one cannot claim that the resulting new proofs are easier than the original ones,
since the difficulties are hidden in the proof of a quantitative version of Roth’s Theorem.
Nevertheless, keeping in mind that we have a quantitative version of the Subspace Theorem
at our disposal, they provide us with a natural way to establish multidimensional extensions
of the theorems of Cugiani–Mahler and of Baker, worked out in [17] and in [5], respectively.

We show below how to derive a version of the Cugiani–Mahler Theorem from a quan-
titative version of Roth’s Theorem.

Deduction of a slightly weaker version of the Cugiani–Mahler Theorem from the theorem
of Davenport and Roth.

Let η : Z≥1 → R>0 be a non-increasing function. Let (pj/qj)j≥1 be the sequence of
reduced rational solutions of ∣∣∣∣ξ − p

q

∣∣∣∣ < 1

q2+η(q)
,

ordered such that 16 ≤ q1 < q2 < . . . Assume that this sequence is infinite and that there
exists an integer c ≥ 2 such that qj+1 ≤ qcj for j ≥ 1.

Let T be a positive integer and set η = η(qT ). Since η is non-increasing, there are at
least T reduced rational solutions p/q to∣∣∣∣ξ − p

q

∣∣∣∣ < 1

q2+η
.

Furthermore, our assumption implies that

qT ≤ qc
T

1 .

We infer from the theorem of Davenport and Roth that

T ≤ exp{c(ξ)η−2},

for some positive real number c(ξ) depending only on ξ. With the choice

η(q) = (log log log q)−1/2+δ,

where δ is an arbitrary positive real number, one obtains

T ≤ exp{c(ξ)(log T + log log cq1)1−δ},

13



and we have reached a contradiction when T is sufficiently large. We have thus obtained a
slightly weaker form of Cugiani’s Theorem, with a function η that decreases slightly slower
than the function ε defined in (6.1).

Following this approach, the use of Evertse’s estimate [35] in place of the theorem of
Davenport and Roth allows us [17] to show that Cugiani’s Theorem remains true with the
funtion ε given by

ε(q) =
log log log q

(log log q)1/3
, for q ≥ 16. (6.3)

An even better result (with, essentially, the exponent 1/3 in (6.3) replaced by 1/2) follows
from [36, 37].

By means of the Quantitative Subspace Theorem, it is possible to extend Cugiani’s
Theorem to approximation by algebraic numbers of bounded degree and to do a first
step towards a (small) improvement on the result of Schmidt quoted at the beginning of
Section 3.

Theorem (Bugeaud, 2007). Let n be a positive integer and ξ be a real algebraic number
of degree greater than n. Let ε : Z≥1 → R>0 be a non-increasing function satisfying

lim
H→+∞

ε(H)

(log logH)−1/(2n+6)
= +∞. (6.4)

Let (αj)j≥1 be the sequence of distinct algebraic numbers of degree at most n that satisfy

|ξ − α| < H(α)−n−1−ε(H(α)),

ordered such that 1 ≤ H(α1) ≤ H(α2) ≤ . . . If this sequence is infinite, then

lim sup
j→+∞

logH(αj+1)

logH(αj)
= +∞.

Applying the new result of Evertse and Ferretti [37] in place of [42], it is possible to
replace the exponent 1/(2n+ 6) in (6.4) by an absolute constant.

We conclude this section by a sketch of a new proof of Baker’s Theorem. It rests on
an apparently slight, nevertheless important, improvement of the theorem of Davenport
and Roth that was obtained in 1974 by Mignotte [55].

Theorem (Mignotte, 1974). Let ξ be an algebraic real number of degree d and of height
at most H, with H ≥ 2. Let ε be a positive real number with ε < 0.01. Then there exist
positive constants

c1(d, ε) = exp{2ε−2(log 2d)} (6.5)

and

c2(d, ε) = exp{exp{100ε−2(log 2d)}} (6.6)
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such that there are no more than c1(d, ε) reduced rational numbers p/q with q ≥ Hc2(d,ε)

and

0 <

∣∣∣∣ξ − p

q

∣∣∣∣ < 1

q2+ε
·

Mignotte’s result asserts that the number of solutions to (2.1) whose denominator
exceeds some function of ε, the height of ξ and its degree is bounded from above only in
terms of ε and the degree of ξ. Actually, this also follows from the proof of the theorem of
Davenport and Roth, but these authors did not make the distinction between ‘small’ and
‘large’ solutions. Otherwise, they would have established a weaker version of the theorem of
Mignotte in which the factor (log 2d) occurring in (6.5) and (6.6) would have been replaced
at both places by d2 times some numerical constant. The improved dependence on d in
the theorem of Mignotte is due to the use of a refined auxiliary lemma in the heart of the
proof of Roth’s Theorem, see Appendix A from [53].

Deduction of an improved version of the theorem of Baker from the theorem of Mignotte.
By (6.2), there exists a positive real number c such that

qj+1 ≤ qcj , for j ≥ 1. (6.7)

We begin by showing that θ is not a Liouville number. To this end, observe that pj/qj
and pj+1/qj+1 are convergents to θ with qj+1 > qj . Since the theory of continued fractions
implies that any convergent p/q to θ with qj ≤ q < qj+1 satisfies∣∣∣∣θ − p

q

∣∣∣∣ > 1

2qqj+1
≥ 1

2q1+c
,

we get the upper bound w∗1(θ) ≤ c. Hence, θ is not a Liouville number.
Assume that ε < 0.01 and that q1 is sufficiently large in order that∣∣∣∣θ − pj

qj

∣∣∣∣ < 1

2q
2+ε/2
j

, (j ≥ 1). (6.8)

Let d be an integer, d ≥ 2, and let ξ be an algebraic real number of degree d and height
H(ξ) ≥ 2. Let j be such that

qj−1 ≤ H(ξ)c2(d,ε/2) < qj , (6.9)

where c2(d, ε/2) = exp{exp{400ε−2(log 2d)}.
Define the real number χ by

|θ − ξ| = H(ξ)−χ.

We will bound χ from above in terms of d.
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Set v = 2 + ε/2. Let T be the greatest integer for which 2qvc
T−1

j < H(ξ)χ. For any

integer h = 0, . . . , T − 1, we have 2qvj+h ≤ 2qvc
T−1

j and, by (6.8),∣∣∣∣ξ − pj+h
qj+h

∣∣∣∣ ≤ ∣∣∣∣θ − pj+h
qj+h

∣∣∣∣+ |θ − ξ|

≤ 1

2qvj+h
+H(ξ)−χ <

1

qvj+h
.

Thus, the inequality ∣∣∣∣ξ − p

q

∣∣∣∣ < 1

qv

has at least T solutions in reduced rational numbers p/q with q ≥ H(ξ)c2(d,ε/2). By the
theorem of Mignotte, we have

T < c1(d, ε/2) = exp{8ε−2(log 2d)}. (6.10)

Our choice for T and the inequalities (6.7), (6.9) and (6.10) imply that

2qvc
T

j ≥ H(ξ)χ ≥ qχ/(cc2(d,ε))j ,

and thus
χ ≤ 2vc1+c1(d,ε)c2(d, ε). (6.11)

We then infer from (6.11) that there are c3 and c4, depending only on ε and c, such that
c3 ≥ c and

χ ≤ exp{c3dc4}.
Recalling that w∗1(θ) does not exceed c, we have established the transcendence measure

w∗d(θ) ≤ exp{c3dc4}, (d ≥ 1), (6.12)

and proved that θ is not a U -number. Our result is slightly better than the theorem of
Baker. As already noticed above, the improvement comes ultimately from a sharpening of
an auxiliary lemma occurring in the proof of Roth’s Theorem.

Following this approach, the use of Evertse’s estimate [35] in place of the theorem of
Davenport and Roth allows us [5] to show that, under the assumption of Baker’s Theorem,
there exists a constant c5, depending only on θ and on ε, such that

w∗d(θ) ≤ (2d)c5 log log 3d, (d ≥ 1).

The improvement upon (6.12) rests essentially on the improvement of Roth’s lemma ob-
tained by Evertse [34].

7. Some recent applications of the Quantitative Subspace Theorem

Our first result, extracted from [19], deals with the approximation to algebraic numbers
by algebraic numbers. It refines the second part of the theorem of Schmidt stated in
Section 3.
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Theorem (Bugeaud, 2009). Let n be a positive integer. Let ξ be an algebraic real
number of degree greater than n. Then, there are a positive constant c, depending only on
ξ, and infinitely many algebraic numbers α of degree n such that

|ξ − α| < H(α)−n−1+c(log log 3H(α))−1/(2n+6)

. (7.1)

The key ingredient in the proof of this theorem is a multidimensional extension of the
Cugiani–Mahler Theorem. Again, using the new result of Evertse and Ferretti [37], it is
possible to replace the exponent 1/(2n+ 6) in (7.1) by an absolute constant.

Now, we mention a few applications to the complexity of algebraic numbers, beginning
with a result from [21]. Recall that the complexity function n 7→ p(n, θ, b) has been defined
in Section 4.

Theorem (Bugeaud and Evertse, 2008). Let b ≥ 2 be an integer and ξ an algebraic
irrational number. Then, for any real number η such that η < 1/11, we have

lim sup
n→+∞

p(n, ξ, b)

n(log n)η
= +∞.

The main tools for the proof are a suitable extension of the Cugiani–Mahler Theorem
and a suitable version of the Quantitative Subspace Theorem, which allows us to get an
exponent of log n independent of the base b.

In the next statement, proved in [6], we say that a real number θ is of sublinear
complexity if there exists a constant C and an integer base b ≥ 2 such that the complexity
function of θ in base b satisfies

p(n, θ, b) ≤ Cn, for all n ≥ 1.

Recall that a Liouville number is an irrational real number θ such that for every real
number w, there exists a rational number p/q with |θ − p/q| < 1/qw.

Theorem (Adamczewski and Bugeaud, 2011). Any irrational real number of sub-
linear complexity is either an S-number, or a T -number, or a Liouville number.

As already said, one of the main features of the theorems of Roth and Schmidt is
that they are ineffective, in the sense that we cannot produce an explicit upper bound for
the denominators of the solutions to (2.1) or for the height of the subspaces containing
the solutions to (2.3). Consequently, the theorem of Adamczewski and Bugeaud on the
complexity of algebraic numbers is ineffective, as are the weaker results from [10, 44]. It
is shown in [18] that, by means of the Quantitative Subspace Theorem, it is possible to
derive an explicit form of a much weaker statement.

Theorem (Bugeaud, 2008). Let b ≥ 2 be an integer. Let ξ be a real algebraic irrational
number of degree d and height at most H with H ≥ ee. Set

M = exp{10190(log(8d))2(log log(8d))2}+ 232 log(240 log(4H)).
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Then we have

p(n, ξ, b) ≥
(

1 +
1

M

)
n, for n ≥ 1.

Unfortunately, the present methods do not seem to be powerful enough to get an
effective version of (4.6).

We conclude by an explicit statement from [23] which confirms the conjecture of Győry,
Sárközy and Stewart [48].

Theorem (Bugeaud and Luca, 2004). Let A be a finite set of cardinality |A| at least
two of triples of positive integers (a, b, c) with a > b > c. There exists a triple (a, b, c) in A
such that

P
[
(ab+ 1)(ac+ 1)(bc+ 1)

]
> 10−7 log |A| log log |A|.

To quantify (4.1) remains an open problem.

Acknowledgements. The author wishes to thank Jan-Hendrik Evertse and Kálmán
Győry for their remarks on a preliminary version of this text.
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d’irrationalité et de transcendance, J. reine angew. Math. À parâıtre.
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169, Ed. C. Tanburini, Milano, pagg. 5 (1958).
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[47] K. Győry, On the irreducibility of neighbouring polynomials, Acta Arith. 67 (1994),
283–294.
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