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Abstract. Let n and d be integers with 1 ≤ d ≤ n − 1. Let ξ be a
real number which is not algebraic of degree at most n. We establish
that there exist an effectively computable constant c, depending only
on ξ and on n, an integer k with 1 ≤ k ≤ d, and infinitely many
integer polynomials P (X) of degree m at most equal to n whose roots
α1, . . . , αm can be numbered in such a way that

|(ξ − α1) . . . (ξ − αk)| ≤ cH(P )−
d

d+1n−
1

d+1−1.

This extends a well-known result of Wirsing who delt with the case
d = 1.

1. Introduction and result

It follows from the theory of continued fractions that every irrational real number ξ
is approximable at order at least two by rational numbers, in the sense that there exist
infinitely many rational numbers p/q such that |ξ − p/q| < 1/q2. A natural question
then occurs: what can be said on the rate of approximation to ξ by algebraic numbers of
bounded degree? This problem has been first considered in a seminal paper of Wirsing
[11], who proved Theorem 1.1 below.

Throughout this text, the height H(P ) of a complex polynomial P (X) is the maximum
of the moduli of its coefficients and the height H(α) of an algebraic number α is the height
of its minimal defining polynomial over Z.

Theorem 1.1. Let n be a positive integer. For any real number ξ which is not algebraic
of degree at most n, there exist an effectively computable constant c and infinitely many
real algebraic numbers α of degree at most equal to n satisfying

|ξ − α| ≤ cH(α)−
n+3
2 . (1.1)

Theorem 1.1 has been subsequently slightly improved, see Chapter 3 of [1]. Let us
just mention that Tishchenko [10] established that its conclusion holds with the exponent
−n+3

2 in (1.1) replaced by −n2 − γn, where γn tends to 3 as n tends to infinity.
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It is often believed that the statement of Theorem 1.1 remains true with the exponent
−n+3

2 in (1.1) replaced by −n− 1 + ε, with ε arbitrarily small, or even by −n− 1. This is
indeed the case when n = 2, as was proved by Davenport and Schmidt [4] (see also [9]).

Theorem 1.2. For any real number ξ which is neither rational, nor quadratic, and for
any real number c greater than 160/9, there exist infinitely many rational or quadratic
real numbers α satisfying

|ξ − α| ≤ c max{1, |ξ|2}H(α)−3.

Theorem 1.2 has been subsequently extended by Davenport and Schmidt [5] (up to
the value of the numerical constant) as follows.

Theorem 1.3. Let n ≥ 2 be an integer and let ξ be a real number which is not algebraic
of degree at most n. Then there exist an effectively computable constant c, depending only
on ξ and on n, an integer k with 1 ≤ k ≤ n − 1, and infinitely many integer polynomials
P (X) of degree n whose roots α1, . . . , αn can be numbered in such a way that

|(ξ − α1) . . . (ξ − αk)| ≤ cH(P )−n−1. (1.2)

The goal of this note is to establish the following theorem, which could be viewed as
an intermediate result between Theorem 1.1 and Theorem 1.3 (although Theorem 1.3 does
not follow from Theorem 1.4).

Theorem 1.4. Let n and d be integers with 1 ≤ d ≤ n − 1. Let ξ be a real number
which is not algebraic of degree at most n. Then there exist an effectively computable
constant c, depending only on ξ and on n, an integer k with 1 ≤ k ≤ d, and infinitely
many integer polynomials P (X) of degree m at most equal to n whose roots α1, . . . , αm
can be numbered in such a way that

|(ξ − α1) . . . (ξ − αk)| ≤ cH(P )−
d

d+1n−
1

d+1−1.

By taking d = 1 in Theorem 1.4 we recover Theorem 1.1. By taking d = n − 1 in
Theorem 1.4 we recover a weaker form of Theorem 1.3, namely with the exponent −n− 1
in (1.2) replaced by −n − 1

n . Theorem 1.3 follows from a general result on linear forms
with real coefficients, whose proof is rather subtle.

The conclusion of Theorem 1.4 is not a surprise. It is not unexpected to improve
the value n+3

2 obtained in (1.1) by taking into account more algebraic numbers. Indeed,
a comparable phenomenon occurs for the closely related question of root separation of
integer, irreducible polynomials, which we briefly survey below.

Throughout, the numerical constants implied by the signs � and � depend at most
on the degree of the polynomial involved. In 1964, Mahler [8] established that

|α1 − α2| � H(P )−n+1, (1.3)

for any distinct roots α1 and α2 of the integer polynomial P (X) of degree n. This is sharp
for n = 2 and for n = 3. For n ≥ 4, it has been shown in [2] that the exponent −n+ 1 in
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(1.3) cannot be replaced by something greater than −n2 −
n−2

4(n−1) , when P (X) is irreducible

(a stronger result has been established in [3] for reducible polynomials).
Actually, (1.3) is a special case of the lower bound∏

1≤i<j≤d

|αi − αj | � H(P )−n+1, (1.4)

valid for any integer polynomial P (X) of degree n having at least d ≥ 2 distinct roots
α1, . . . , αd. It has been shown in [2] that the exponent −n+ 1 in (1.4) cannot be replaced
by −νdn, for a real number νd less than (d − 1)/d, when P (X) is irreducible (a stronger
result has been established in [3] for reducible polynomials).

Roughly speaking, in the problem of Wirsing and in the question of root separation
of integer, irreducible polynomials, the truth lies somewhere between n/2 and n. And this
interval can be reduced by taking several roots into consideration.

The proof of Theorem 1.4 is a slight extension of Wirsing’s proof of Theorem 1.1. The
idea is as follows. We construct an infinite family of pairs (Pk(X), Qk(X))k≥1 of coprime
integer polynomials of degree at most n and taking small values at ξ. Then, considering
the resultant of Pk(X) and Qk(X), Wirsing showed that Pk(X) or Qk(X) has a root quite
close to ξ. By studying every possible distribution of the roots of Pk(X) and Qk(X) in
the ball of radius 1 centered at ξ, we get Theorem 1.4.

2. Proof of Theorem 1.4

We begin by reproducing Lemma A.3 of [1], often referred to as Gelfond’s lemma (see
Lemma II on page 135 of [7]).

Lemma 2.1. Let P1(X), . . . , Pr(X) be non-zero complex polynomials of degree n1, . . . , nr,
respectively, and set n = n1 + . . .+ nr. We then have

2−nH(P1) . . . H(Pr) ≤ H(P1 . . . Pr) ≤ 2nH(P1) . . . H(Pr).

If the conclusion of Theorem 1.4 holds for a real number ξ, then it also holds for any
real number of the form ξ + p

q , where p, q are integers with q ≥ 1. Consequently, we may

assume that 0 < ξ < 1/10.
We infer from Minkowski’s first theorem and Lemma 2.1 that there exist infinitely

many irreducible, primitive, integer polynomials P (X) of degree at most n satisfying

0 < |P (ξ)| � H(P )−n.

Let P (X) be such a polynomial. If R(X) is an integer polynomial of degree at most
n which is a multiple of P (X), then, again by Lemma 2.1, there exists a positive constant
c, depending only on n and less than 1, such that H(R) ≥ 2cH(P ). By Minkowski’s first
theorem, the system of inequalities

|bnξn + . . .+ b0| ≤ c−nH(P )−n

|b1|, . . . , |bn| ≤ cH(P ).
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has a non-zero integer solution (b0, . . . , bn). Set Q(X) = bnX
n + . . . + b1X + b0. If

H(P ) ≥ 2c−1, it follows from the assumption 0 < ξ < 1/10 that H(Q) is at most equal
to cH(P ). Consequently, by our choice of c, the polynomials P (X) and Q(X) have no
common factor.

Hence, one can build two sequences (Pk)k≥1 and (Qk)k≥1 of non-zero integer polyno-
mials of degree at most n, such that the height of Pk(X) tends to infinity with k,

|Pk(ξ)| � H(Pk)−n, H(Qk)� H(Pk), |Qk(ξ)| � H(Pk)−n (k ≥ 1), (2.1)

and
Pk(X) and Qk(X) are coprime (k ≥ 1).

We need an auxiliary result, which extends a lemma of Wirsing [11]. Notice that in
Lemma 2.2 below and in its proof, the constant implied in � depends only on t.

Lemma 2.2. Let t ≥ 2 be an integer and let P (X) and Q(X) be coprime polynomials
with integer coefficients of degrees less than or equal to t. Let d be a positive integer at
most equal to t. Let ξ be a real number with |ξ| ≤ 1 and which is not algebraic of degree
less than or equal to t. Assume that there exist a root of P (X) and a root of Q(X) in the
open disk centered at ξ of radius 1. Then, we either have

1� max{|P (ξ)|d+1 ·H(P )t−d−1 ·H(Q)t, |Q(ξ)|d+1 ·H(Q)t−d−1 ·H(P )t}, (2.2)

or there exist roots α1, . . . , αu, with u ≤ d, of the polynomial P (X) or roots β1, . . . , βv,
with v ≤ d, of the polynomial Q(X) such that one of the following six cases holds:

|ξ − α1| · · · |ξ − αu| � |P (ξ)| ·H(P )−1, (2.3)

|ξ − β1| · · · |ξ − βv| � |Q(ξ)| ·H(Q)−1, (2.4)

(|ξ − α1| · · · |ξ − αd|)d+1 � |P (ξ)|d+1 · |Q(ξ)| ·H(P )t−d−1 ·H(Q)t−1, (2.5)

(|ξ − α1| · · · |ξ − αd|)d+1 � |P (ξ)| · |Q(ξ)|d+1 ·H(P )t−1 ·H(Q)t−d−1, (2.6)

(|ξ − β1| · · · |ξ − βd|)d+1 � |P (ξ)| · |Q(ξ)|d+1 ·H(P )t−1 ·H(Q)t−d−1, (2.7)

(|ξ − β1| · · · |ξ − βd|)d+1 � |P (ξ)|d+1 · |Q(ξ)| ·H(P )t−d−1 ·H(Q)t−1. (2.8)

Proof. We denote by α1, . . . , αm the roots of P (X) and by β1, . . . , βn those of Q(X),
numbered in such a way that, if pi := |αi − ξ| and qj := |βj − ξ| for i = 1, . . . ,m and
j = 1, . . . , n, we have p1 ≤ . . . ≤ pm and q1 ≤ . . . ≤ qn. Let δ and δ′ be the largest indices
such that pδ ≤ 1 and qδ′ ≤ 1, respectively.

Corollary A.1 of [1] applied with ρ = 1 gives

|P (ξ)| � H(P )
∏

1≤i≤δ

pi � |P (ξ)| (2.9)

and
|Q(ξ)| � H(Q)

∏
1≤j≤δ′

qj � |Q(ξ)|. (2.10)

4



If δ ≤ d, then, by (2.9), we get

p1 . . . pδ � H(P )−1 |P (ξ)|,

and (2.3) holds with u = δ. Likewise, if δ′ ≤ d, then, by (2.10), we get

q1 . . . qδ′ � H(Q)−1 |Q(ξ)|,

and (2.4) holds with v = δ′. Thus, we can assume that m,n, δ and δ′ are all at least equal
to d+ 1.

Denote by am the leading coefficient of P (X) and by bn that of Q(X). Denoting by
R the resultant of the polynomials P (X) and Q(X), we have

1 ≤ |R| = |am|n|bn|m
∏

1≤i≤m
1≤j≤n

|αi − βj | � |ambn|t
∏

1≤i≤m
1≤j≤n

max{pi, qj} =: AB, (2.11)

where
A =

∏
1≤i≤δ

∏
1≤j≤δ′

max{pi, qj} (2.12)

and
B ≤ |ambn|t

∏
1≤i≤m
1≤j≤n

(
max{1, pi}max{1, qj}

)
� H(P )tH(Q)t.

We distinguish several cases, which cover all the possible configurations of the roots
of P (X) and Q(X). We assume that p1 ≤ q1.
• First case: p1 ≤ q1 < . . . < qd+1 < pd+1.
Observe that ∏

1≤j≤δ′
max{p1, qj} =

∏
1≤j≤δ′

qj � |Q(ξ)| ·H(Q)−1, (2.13)

by (2.10), and that, for j = 1, . . . , d+ 1,∏
2≤i≤δ

max{pi, qj} ≤
∏

d+1≤i≤δ

pi.

Consequently, it follows from (2.9), (2.12) and (2.13) that

(p1 . . . pd)
d+1A� |Q(ξ)| ·H(Q)−1

∏
1≤i≤δ

pd+1
i

� |Q(ξ)| ·H(Q)−1 (|P (ξ)| ·H(P )−1)d+1.

Thus, by (2.11), we get

(p1 . . . pd)
d+1 � |P (ξ)|d+1 |Q(ξ)|H(P )t−d−1H(Q)t−1,
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giving (2.5).

• Second case: p1 < . . . < pd+1 ≤ q1.
Then, we have by (2.10) that

A� (q1 . . . qδ′)
d+1 � |Q(ξ)|d+1 ·H(Q)−d−1,

thus
1 ≤ AB � |Q(ξ)|d+1 ·H(Q)t−d−1H(P )t,

which corresponds to (2.2).

• Third case: q1 < pd+1 and p1 ≤ q1 < . . . < pd+1 ≤ qd+1.
Then, observe that, for i = 2, . . . , d+ 1,∏

2≤j≤δ′
max{pi, qj} ≤

∏
d+1≤j≤δ′

qj .

Combined with ∏
2≤i≤δ

max{pi, q1} ≤ pd+1 . . . pδ

and (2.13), this gives

(p1 . . . pd)(q1 . . . qd)
dA� |Q(ξ)| ·H(Q)−1

∏
1≤j≤δ′

qdj
∏

1≤i≤δ

pi

� (|Q(ξ)| ·H(Q)−1)d+1 |P (ξ)| ·H(P )−1.

If p1 . . . pd ≤ q1 . . . qd, then we get

(p1 . . . pd)
d+1 � |Q(ξ)|d+1 |P (ξ)|H(Q)t−d−1H(P )t−1,

namely (2.6), and, otherwise,

(q1 . . . qd)
d+1 � |Q(ξ)|d+1 |P (ξ)|H(Q)t−d−1H(P )t−1,

which corresponds to (2.7).

If q1 < p1, then, by distinguishing three cases as above, we get (2.7), (2.2), (2.8) or
(2.5). This completes the proof of the lemma.

Completion of the proof of Theorem 1.4. If there are infinitely many integer polynomials
P (X) of degree at most n such that |P (ξ)| ≤ H(P )−2n, then, by (3.11) of [1], there exist
infinitely many algebraic numbers α of degree at most n such that |ξ − α| ≤ H(α)−n−1

and the theorem clearly holds in that case.
Consequently, we assume that there are only finitely many integer polynomials P (X)

of degree at most n such that |P (ξ)| ≤ H(P )−2n. Since the height of Pk(X) tends to
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infinity with k, it then follows from the last inequality of (2.1) that the height of Qk(X)
also tends to infinity with k

Let k be sufficiently large such that |Pk(ξ)| < 1 and |Qk(ξ)| < 1. Then, the polyno-
mials Pk(X) and Qk(X) have a root in the open disk centered at ξ of radius 1. Apply
Lemma 2.2 to the pairs of polynomials (Pk, Qk). By (2.1), we get

max{|Pk(ξ)|d+1 ·H(Pk)n−d−1H(Qk)n, |Qk(ξ)|d+1 ·H(Qk)n−d−1H(Pk)n} � H(Pk)−1.

Thus, (2.2) cannot hold for k large enough.
Furthermore, we derive from (2.1) that

|Qk(ξ)|d+1 |Pk(ξ)|H(Qk)n−d−1H(Pk)n−1 � H(Pk)−(nd+d+2) � H(Qk)−(nd+d+2)

and

|Pk(ξ)|d+1 |Qk(ξ)|H(Pk)n−d−1H(Qk)n−1 � H(Pk)−(nd+d+2) � H(Qk)−(nd+d+2).

Combined with (2.5) to (2.10), this shows that there are roots α1, . . . , αd of Pk(X) such
that

(|ξ − α1| · · · |ξ − αd|)d+1 � H(Pk)−(nd+d+2)

or there are roots β1, . . . , βd of Qk(X) such that

(|ξ − β1| · · · |ξ − βd|)d+1 � H(Qk)−(nd+d+2).

This completes the proof of the theorem.
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