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Abstract

We prove that if q > 5 is an integer, then every q-th power of an integer contains

at least 5 nonzero digits in its binary expansion. This is a particular instance of one of

a collection of rather more general results, whose proofs follow from a combination of

refined lower bounds for linear forms in Archimedean and non-Archimedean logarithms

with various local arguments.

1. Introduction

The present paper may be viewed as a computational companion to [3], where we

established effective (but inexplicit) upper bounds for solutions to certain classes of Dio-

phantine equations. The goal of the paper at hand is to demonstrate the degree to which

our approach leads to sharp, explicit upper bounds, which can be combined with sieve

methods to completely solve exponential and polynomial-exponential equations.

Let x > 2 be an integer. The starting point for this paper is the problem of finding all

perfect powers whose base-x representation contains relatively few non-zero digits. It is

notable that if we permit as many as four such digits, it is apparently beyond current

technology to even determine whether the corresponding set of powers is finite (or finite

outside of certain parametrized families). As an example of the latter situation, from the

identity (1 +x`)2 = 1 + 2x` +x2`, we observe that there are infinitely many squares with

three non-zero digits in base x; a theorem of Corvaja and Zannier [6] implies that, for

x fixed, all such squares may be classified via like identities, with at most finitely many

exceptions. For bases x > 2, an analogous result for squares with four non-zero digits is

unknown.

Generalizing this problem, the main results of [3] are effective upper bounds upon

integer q for which equations of the shape

xa1 + xb2 + 1 = yq or xa1 + xb2 + xc3 + 1 = yq

have solutions. Here, x1 and x2 (or, in the second case, x1, x2 and x3) are positive

integers which, importantly for our techniques, fail to be coprime. In the special case of
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the first equation with x1 = x2 = q = 2, odd squares with three binary digits have been

completely classified by Szalay [13].

Theorem S. All solutions of the equation

2a + 2b + 1 = y2, with a > b > 0 (1·1)

are given by (a, b, y) = (5, 4, 7), (9, 4, 23) or (2t, t+ 1, 2t + 1), for some t > 2.

This result was subsequently extended by Scott [12] and Luca [11] to show that there

are no squares of the form pa + pb + 1, where p is an odd prime and a > b > 0.

In the present paper, we will provide completely explicit versions of special cases of

Theorems 1, 2 and 3 of [3]. We begin by completely solving the Diophantine equation

xa + xb + 1 = yq for x ∈ {2, 3} and q > 2.

Theorem 1. If there exist integers a > b > 0 and q > 2 for which

xa + xb + 1 = yq, with x ∈ {2, 3},

then (x, a, b, y, q) is one of

(2, 5, 4, 7, 2), (2, 9, 4, 23, 2), (3, 7, 2, 13, 3), (2, 6, 4, 3, 4), (4, 3, 2, 9, 2), or (4, 3, 2, 3, 4),

or (x, a, b, y, q) = (2, 2t, t+ 1, 2t + 1, 2), for some integer t = 2 or t > 4.

Similarly, in the case of perfect powers with four binary digits, we have

Theorem 2. If there exist positive integers a, b, c, y and q such that

2a + 2b + 2c + 1 = yq, (1·2)

then q 6 4.

A computer search shows that equation (1·2) has at least five solutions not corresponding

to equation (1·1) (i.e. with a, b and c distinct), namely those given by

(a, b, c, q, y) = (4, 3, 1, 3, 3), (7, 5, 3, 2, 13), (7, 6, 5, 2, 15), (11, 7, 5, 2, 47), (13, 12, 5, 2, 111),

(1·3)

where we assume that a > b > c. We conjecture that there are no other solutions;

by recent work of Corvaja and Zannier [7], there exist at most finitely many with q ∈
{2, 3, 4}. In [7], the authors independently establish that (1·2) has no solution when q

exceeds some effectively computable q0.

Finally, in the case of an equation considered by Corvaja and Zannier [6], we prove

Theorem 3. If there exist positive integers a, b, y and q > 2 for which

6a + 2b + 1 = yq, (1·4)

then q ∈ {2, 3, 6}.

For the remaining untreated cases q = 2, 3 and 6, it should be noted that the afore-

mentioned result of Corvaja and Zannier [6], based upon Schmidt’s Subspace Theorem,

implies that equation (1·4) has, in each case, at most finitely many solutions. The only

ones known correspond to

(a, b, yq) = (1, 0, 23), (0, 1, 22), (1, 1, 32), (3, 3, 152) and (3, 9, 36). (1·5)
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Their argument depends crucially upon the fact that 6 and 2 have a common prime

divisor and, in particular, fails to yield a like result for the similar equation

3a + 2b + 1 = yq.

This last equation, in case q = 2, has been completely solved by Leitner [10], essentially

by observing that integers of the shape 3a + 2b + 1 are quadratic nonresidues modulo

N = 24 ·32 ·5 ·7 ·13, provided a > 4 and b > 2 (note that gcd(212−1, 312−1) = 5 ·7 ·13).

The key tool in all our proofs is lower bounds for linear forms in two logarithms, both

Archimedean and non-Archimedean, specifically the refinements given in [5]. The relative

sharpness of these bounds is absolutely crucial in obtaining results of the flavour of those

given here.

The outline of the remainder of the paper is as follows. In Section 2, we record a

number of lower bounds available on the literature for linear forms in two logarithms.

Sections 3 and 4 are devoted to the proof of Theorem 1, in case x = 2 or x = 3,

respectively. Section 5 contains the proof of Theorem 3. Finally, in Section 6, we prove

Theorem 2 (which represents the main achievement of this paper, from a computational

and technical viewpoint).

2. Linear forms in two logarithms

In this section, we will collect various estimates for linear forms in two logarithms, both

Archimedean and non-Archimedean. Let us first state a special version of a corollary ob-

tained in [8]. In the sequel, if r = m/n is a nonzero rational (withm and n relatively prime

integers), we will define the logarithmic height of r to be h(r) = max {log |m|, log |n|, 1}.

Theorem 4. Let α1 and α2 be multiplicatively independent positive rational numbers,

and b1 and b2 be positive integers. Define

Λ = |b2 log α2 − b1 log α1| .

Then

log Λ > −25.2
(
max

{
log b′ + 0.38, 10

})2
h(α1)h(α2),

where

b′ =
b1

h(α2)
+

b2
h(α1)

.

We will also appeal to the most general version of the main result of [8] :

Theorem 5. Let α1 and α2 be nonzero algebraic numbers, with, say, |α1|, |α2| > 1

and

D = [Q(α1, α2) : Q] / [R(α1, α2) : R] .

Let b1 and b2 be positive integers. Define

Λ = |b2 log α2 − b1 log α1| .

Further, let K > 2 be an integer, L,R1, R2, S1 and S2 be positive integers, and choose ρ

and µ to be real numbers with ρ > 1 and 1/3 6 µ 6 1. Put

R = R1 +R2 − 1, S = S1 + S2 − 1, N = KL, g =
1

4
− N

12RS
, σ =

1 + 2µ− µ2

2
,
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and set

β =
(R− 1)b2 + (S − 1)b1

2

(
K−1∏
k=1

k!

)−2/(K2−K)

.

Let a1 and a2 be positive real numbers such that

ai > ρ | log αi| − log |αi|+ 2Dh(αi),

for i ∈ {1, 2}, and suppose that

Card {αr1αs2 : 0 6 r < R1, 0 6 s < S1} > L,

Card {rb2 + sb1 : 0 6 r < R2, 0 6 s < S2} > (K − 1)L,
(2·1)

and

K(σL− 1) log ρ− (D + 1) log N −D(K − 1) log β − gL(Ra1 + Sa2) > ε(N),

where

ε(N) =
2

N
log
(
N ! N−N+1

(
eN + (e− 1)N

))
.

Then

Λ max

{
LSeLS|Λ|/(2b2)

2b2
,
LReLR|Λ|/(2b1)

2b1

}
> ρ−µKL.

We now state the non-Archimedean results we require. Let α1 and α2 be multiplica-

tively independent positive rational numbers. Define g as the smallest positive integer

for which both νp(α
g
1 − 1) and νp(α

g
2 − 1) are positive. Finally, choose E for which

νp(αi − 1) > E >
1

p− 1
, for i = 1, 2.

A special case of Theorem 2 of [5] is the following.

Theorem 6. Let α1 and α2 be multiplicatively independent positive rational numbers,

and b1 and b2 be positive integers. Consider the “linear form”

Λ = αb22 − α
b1
1 .

Then, for any fixed prime number p,

νp(Λ) 6
36.1 g

E3(log p)4

(
max{log b′ + log (E log p) + 0.4, 6E log p, 5}

)2
(log A1) (log A2) ,

(2·2)

if p is odd or if p = 2 and ν2(α2 − 1) > 2, where

b′ =
b1

log A2
+

b2
log A1

and log Ai > max{h(αi), E log p}.

If p = 2 and ν2(α2 − 1) 6 1, then

νp(Λ) 6 208
(
max{log b′ + 0.04, 10}

)2
(log A1) (log A2) ,

Finally, we state a strong, general version of a lower bound for linear forms in two

p-adic logarithms, from [5].

Theorem 7. Let α1 and α2 be two rational numbers which are multiplicatively inde-

pendent, of respective logarithmic height h1 and h2. Consider the “linear form”

Λ = αb11 − α
b2
2 ,
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where b1 and b2 are non-zero integers. Let p be a prime number which does not divide

b1b2. Assume that

νp(αi − 1) > E >
1

p− 1
, i = 1, 2,

and also that νp(α2 − 1) > 2 if p = 2. Let K > 3, L > 2 and R1, R2, S1 and S2 be

positive integers. Put R = R1 +R2 − 1, S = S1 + S2 − 1 and N = KL. Assume that

R1S1 > L and Card{rb2 + sb1, 0 6 r < R2, 0 6 s < S2} > (K − 1)L.

Put also

γ =
1

2
− N

6RS
, β =

(R− 1)b2 + (S − 1)b1
2

(
K−1∏
k=1

k !

)−2/(K2−K)

.

Then, under the condition

K(L− 1)E log p− 3 log N − (K − 1) log β − γL(Rh1 + Sh2) > 0, (2·3)

we have

νp(Λ) 6 E(KL− 1/2).

3. The equation 2a + 2b + 1 = yq

In light of Theorem S, to complete the proof of Theorem 1 in case x = 2, it remains

to show that the Diophantine equation

2a + 2b + 1 = yq (3·1)

has no solutions with a > b > 1 and q > 3 odd. In this section, we will refine the

arguments that lead to Theorem 1 of [3] (which provide an effectively computable upper

bound for q in (3·1)), to show that, in fact, q 6 7. Before we proceed, it is worth noting

that the proof of Theorem S appeals to a result of Beukers [4] on restricted approximation

to
√

2, obtained via the hypergeometric method, while the resolution of (3·1) will, as with

all the theorems of the paper at hand, depend primarily upon the theory of linear forms

in logarithms.

3·1. Preliminaries

Our goal in this subsection is to deduce a strong lower bound upon y in equation

(3·1), which will lead to good upper bounds for q via lower bounds for linear forms

in logarithms. From (3·1), it is immediate that yq ≡ 1 (mod 2b) and, since q is odd,

that y ≡ 1 (mod 2b). Write y = 1 + h2b. Since (3·1) implies that gcd(2b + 1, y) = 1,

necessarily h > 1 is odd, whereby y > 3 · 2b, and hence, modulo 8, we may suppose that

y > 11.

Substituting the relation y = 1 + 2bh in (3·1), we have that

2a + 2b + 1 = (2bh)q +

(
q

1

)
(2bh)q−1 +

(
q

2

)
(2bh)q−2 + · · ·+

(
q

q − 1

)
(2bh) + 1,

and hence the inequality

bq < a. (3·2)
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Simplifying the previous equality gives

2b(q−1)hq +

(
q

1

)
2b(q−2)hq−1 + · · ·+ qh = 2a−b + 1,

which shows that 2b | (qh− 1) and hence

h > (2b + 1)/q.

It follows that

2b(q−1)

(
2b + 1

q

)q
< 2a−b,

which implies the inequality 22bq < qq2a, and so

b <
log q

2 log 2
+

a

2q
. (3·3)

Appealing to the Taylor expansion

(1 + x)1/q = 1 +
x

q
− q − 1

2q2
x2 +

(q − 1)(2q − 1)

6q3
x3 + · · ·

with x = 2b + 2a considered as a 2–adic integer, we have that

ν2(q2y − q2 − 2bq + (q − 1) 22b−1) > 3b,

for b > 2. More precisely, if we suppose that b > ν2(q − 1), we have that

ν2(q2y − q2 − 2bq + (q − 1) 22b−1) = 3b,

which implies

q2y > 23b − (q − 1) 22b−1 + 2b + q2,

and so

y >
23b

q2
− q − 1

2q2
22b. (3·4)

3·2. Bounds on q

We first consider the Archimedean linear form

Λ = a log 2− q log y.

From (3·1), we obtain the inequality

|Λ| < 2b + 1

2a
.

If we had 2b + 1 > y, then, since 2b + 1 and y are coprime, necessarily 2b + 1 > y + 1

whereby, via inequality (3·2),

yq 6 2bq 6 2a−1,

a contradiction. It follows that 2b + 1 6 y − 1 and so

log |Λ| < −(q − 1) log y. (3·5)

A direct application of Theorem 4 yields

log |Λ| > −25.2

(
max

{
log

(
q +

a

log y

)
+ 0.38, 10

})2

log y,
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whence

q < 25.2

(
max

{
log

(
q +

a

log y

)
+ 0.38, 10

})2

+ 1.

If we suppose that y > 11 and q > 200, say, then

a

log y
< 1.45 q

and so either

max
{

log

(
q +

a

log y

)
+ 0.38, 10

}
= 10,

whence q 6 2520, or

q < 25.2 (1.28 + log q)
2

+ 1,

whereby q 6 1985. In either case, we necessarily have that q 6 2520.

To find a (much) better upper bound for q, we combine Theorem 5 with the inequality

y > 11. We further write a = qs+ r, with |r| 6 q−1
2 , so that

Λ = r log 2− q log (y/2s).

The advantage of doing this is that the height of y/2s is still, essentially, log y, while

the logarithm of this number is absolutely bounded (i.e. we may choose a rather smaller

value for a1 in Theorem 5). In particular, we may take α1 = y/2s, α2 = 2, b1 = q, b2 = r

(considering −Λ in the case r < 0),

a2 = 2 + (ρ− 1) log 2 and a1 = 2 log y +
ρ+ 3

2
log 2.

We specify values for L, ρ, µ and k and, in each case, choose

K = dkLa1a2e, R1 =
⌈√

La2
a1

⌉
, R2 =

⌈√
(K−1)La2

a1

⌉
,

S1 =
⌈√

La1
a2

⌉
, S2 =

⌈√
(K−1)La1

a2

⌉
.

(3·6)

Note that, since y is odd, the first inequality in (2·1) is immediately satisfied. To ensure

the second inequality, we will, in all cases assume that q is prime and that q > R2. To see

that this is sufficient, note that the equality r1r+s1q = r2r+s2q implies that q | r (r2−r1)

and hence q < R2, unless (r1, s1) = (r2, s2), at least provided 0 6 r1, r2 < R2.

For reasonably small values of q, we can calculate the quantity β in Theorem 5 ex-

plicitly; in many cases it simplifies matters to use an upper bound derived from the

inequality(
K−1∏
k=1

k!

)−2/(K2−K)

6 exp

{
− log (K − 1) +

3

2
− log (2π(K − 1)/

√
e)

K − 1
+

log K

6K(K − 1)

}
(see line 11, page 307 of [9]). Choosing our parameters L = 10, ρ = 6.6, µ = 1/3 and

k = 0.31 (for 397 6 q < 450), k = 0.36 (for 450 6 q < 650), or k = 0.51 (for 650 6
q 6 2520), Theorem 5, inequality (3·5) and some routine calculus imply that necessarily

q 6 389. A brute force computation (of around 40 seconds on a home computer), using

this upper bound and calculating binary expansions of yq, shows that y > 104. Appealing

a second time to Theorem 5, this time with L = 8, ρ = 6.6, µ = 1/3 and values of k with

0.375 6 k 6 0.46, we find that q 6 199. A second computation (of less than 25 minutes)
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using this new upper bound leads to the conclusion that y > 106. A third application of

Theorem 5, now with L = 8, ρ = 7, µ = 1/3 and k = 0.316, then implies that q 6 181.

We are now in a good position to apply Theorem 7 with p = 2. Here we consider the

“linear form”

Λ = yq −B, where B = 1 + 2b,

which satisfies ν2(Λ) = a, and for which both B and y are 2-adically close to 1 (a situation

which is essentially optimal for application of Theorem 7). Since B and y are coprime

and > 1, they are multiplicatively independent. We choose α1 = y, α2 = B (or α1 = −y
and α2 = −B, if b = 1), so that E = max{b, 2}, b1 = q, b2 = 1, h1 = log y, h2 = log B,

and may take

a1 =
log y

log 2
and a2 =

log B

log 2
.

Appealing to Theorem 7, with suitably chosen parameters, we obtain upper bounds of

the shape q 6 q0, where

b q0 b q0 b q0

1 173 4 61 7 29

2 181 5 43 8 29

3 101 6 37 > 9 23

We provide full details for the case b = 1; for larger values of b, data is available at the

website

http://math.ubc.ca/∼bennett/BeBuMi-data. For 106 6 y 6 1680342, we readily check

that the choices

K = 198, L = 9, R1 = 1, R2 = 12, S1 = 9, S2 = 148, b = 1, q = 179

lead to the desired contradiction (and hence to the conclusion that q 6 173). For values

of y with 1680343 6 y < 1011, we, in each case, take L = 10, R1 = 1, R2 = 12, S1 = 10,

and choose our pair (K,S2) satisfying

(K,S2)∈ {(185, 154), (191, 159), (198, 165), (205, 171), (213, 177), (224, 186), (236, 196),

(244, 203), (252, 210), (260, 216), (272, 226), (293, 244), (316, 263)} .

For example, the choice (K,S2) = (185, 154) does the trick for 1680343 6 y 6 2672042.

Finally, for y > 1011, we may choose K,R1, R2, S1 and S2 as in (3·6) with L = 10 and

k = 0.56. Verifying inequality (2·3), while admittedly painful, is a reasonably routine

exercise.

Armed with the preceding upper bounds upon q, there are two different approaches we

can employ to finish the proof of Theorem 1, in case x = 2. Both rely upon elementary

arguments working modulo suitably chosen primes congruent to 1 modulo q. In the

first case, we can use such techniques to eliminate many cases for b fixed, with, say,

1 6 b 6 1000. By way of example, if, say, q = 13, we can eliminate all such small values

of b from consideration by showing that the congruence 2a + 2b + 1 ≡ yq (mod N) has

no solutions for N some product of the primes

p ∈ {53, 79, 131, 157, 313, 521, 937}.

Continuing in this fashion enables us to suppose that b > 1000, whereby a final applica-

tion of Theorem 7 with parameters chosen as in (3·6) (with k proportional to 1/b2 and tak-
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ing full advantage of the very large lower bound upon y implicit in (3·4)) enables us to con-

clude that q 6 7. Again, the details are available at http://math.ubc.ca/∼bennett/BeBuMi-

data.

3·3. The ‘coup de grâce’

Alternatively (or in any case to handle the remaining values q ∈ {3, 5, 7}), we can treat

equation (3·1) for fixed q 6 181 by local means. Specifically, we consider primes pi ≡ 1

(mod q) for which ord2(pi) = mq with m a “suitably small” integer. Here, by ordl(pi),

we mean the smallest positive integer k for which lk ≡ 1 (mod pi). Fixing some integer

M , for each such pi with m | M , we let a and b loop over integers from 1 to Mq and

store the resulting pairs (a, b) with the property that either 2a+ 2b+ 1 ≡ 0 (mod pi) or(
2a + 2b + 1

)(pi−1)/q ≡ 1 (mod pi).

For a given prime pi, if we denote by Si the set of corresponding pairs (a, b), then our

hope is to find primes p1, p2, . . . , pk corresponding to M with

k⋂
i=1

Si = ∅. (3·7)

Checking that we have such sets of primes (with M reasonably small) for each prime

3 6 q 6 181 is a short calculation of a few minutes on a laptop (particularly if one uses

the fact that b ∈ {1, 2} provided q > 101). By way of example, for q = 3 and M = 60,

we obtain (3·7) for

pi ∈ {7, 19, 37, 61, 73, 109, 151, 181, 331, 1321}.

For q = 5 or 7, we may take M = 20 and

pi ∈ {11, 31, 41, 101, 251, 601}

and

pi ∈ {29, 43, 71, 113, 127},

respectively. Once more, full details (including our code) are available at

http://math.ubc.ca/∼bennett/BeBuMi-data.

4. The equation 3a + 3b + 1 = yq

We will argue in a similar fashion to the preceding section; the complication that arises

here is that local arguments prove insufficient to tackle the case q = 3 (where we find a

solution with a = 7 and b = 2). Appealing, as in the preceding section, to Theorems 5

and 7, we find that if there exist solutions to the equation

3a + 3b + 1 = yq, (4·1)

then necessarily q < 1160 (using only that y > 2). A short calculation allows us to

assume therefore that y > 50, whereby our lower bounds for linear forms in logarithms

now imply that q < 100. We will thus assume that we have a solution to equation (4·1),

where a > b, and q < 100 is prime. From the aforementioned work of Scott [12] (cf Luca

[11]), we may suppose further that q is odd.

We first treat the case q = 3. As previously remarked, here the behaviour is different

than for larger values of q, since we have a solution to (4·1), namely 37 +32 +1 = 2197 =
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133. Our treatment of this equation relies upon a result from an old paper of the first

author [2], which itself depends upon Padé approximation to the binomial function (and

hence has more in common with the techniques used to prove Theorem S than to those

of the rest of this paper).

Let us begin by noting that if b = 0 or b = 1, then we have 3a + k = y3 for k ∈ {2, 4},
in each case an immediate contradiction modulo 9. We may thus suppose that b > 2.

Also, since the congruence 2 · 3b + 1 ≡ y3 (mod 13) has no solutions, we may further

assume that a > b. From the fact that

gcd

(
y − 1,

y3 − 1

y − 1

)
∈ {1, 3},

it follows that y ≡ 1 (mod 3b−1), and so y > 3b−1 + 1, whereby

3a = y3 − 3b − 1 > 33b−3.

We thus have a > 3b− 2.

If 3 | a, say a = 3a0 for a positive integer a0, then y > 3a0 + 1 and so

3a + 3b + 1 > 3a + 32a/3 + 1

which implies that b > 2a/3, contradicting a > 3b − 2 and b > 2. We thus have a ≡ ±1

(mod 3). Writing a = 3a0 + δ, for δ = ±1, it follows that∣∣∣y3 − 3 · (3a0)
3
∣∣∣ = 3b + 1

or ∣∣∣3y3 − 3 (3a0)
3
∣∣∣ = 3b+1 + 3,

for δ = 1 or −1, respectively. Applying the inequality∣∣A3 − 3B3
∣∣ > max{|A|, |B|}0.24, (4·2)

valid for all integers A and B (see Theorem 6.1 of Bennett [2]), it follows, in either case,

that

3b + 1 > 30.08a−0.92, (4·3)

which implies the following upper bounds upon a :

b a

2 6 37

3 6 49

4 6 61

> 5 6 25(b+ 1)/2

It is convenient at this time to dispose of a few more small values of b; a short check,

using the bounds in the table above shows that the only solution to (4·1) with q = 3 and

b 6 4 corresponds to 37 + 32 + 1 = 133. We will assume henceforth that

b > max{5,−1 + 2a/25}. (4·4)

Considering the Taylor series

(1 + x)1/3 = 1 +
x

3
− x2

9
+

5x3

81
− 10x4

243
+

22x5

729
− 154x6

6561
+ · · · ,
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and viewing 3a + 3b as a 3-adic integer, we have, from (4·4) and a > 3b− 2, that

ν3(y − 1− 3b−1) = 2b− 2.

We thus have

y > 32b−2 + 3b−1 + 1

and so, after a little work, a > 6b− 5. Returning to our Taylor expansion,

ν3(y − 1− 3b−1 + 32b−2) = 3b− 4

and so

y > 33b−4 − 32b−2 + 3b−1 + 1

which implies, from (4·4), that a > 9b− 13. We thus have

ν3(y − 1− 3b−1 + 32b−2 − 5 · 33b−4) = 4b− 5,

and so

y > 34b−5 + 5 · 33b−4 − 32b−2 + 3b−1 + 1

and a > 12b− 14. Finally, we have

ν3(y − 1− 3b−1 + 32b−2 − 5 · 33b−4 + 10 · 34b−5) = 5b− 6,

whence

y > 35b−6 − 10 · 34b−5 + 5 · 33b−4 − 32b−2 + 3b−1 + 1.

It follows that a > 15b − 19, contradicting (4·4), for b > 15. Computing 3a + 3b + 1 for

each pair (a, b) with 5 6 b 6 14 and 15b − 19 6 a 6 25(b + 1)/2, we find no further

solutions to the equation 3a + 3b + 1 = y3.

For the remaining primes values of q, with 5 6 q < 100, local methods suffice, in

each case, to show that equation (4·1) has no solutions in integers. As in the case of

equation (3·1), we simply search over primes pi ≡ 1 (mod q) with the property that

ord3(pi) = mq for m a “suitably small” integer. With the notation of the preceding

section, by way of example, if q = 5, then, taking M = 20, we find

pi ∈ {11, 61, 101, 151, 1181, 8951},

with corresponding S1, . . . , S6 having between 1608 and 2580 elements (note that (j, k) ∈
Si implies the same for (k, j)), and

⋂6
i=1 Si = ∅. This completes the proof of Theorem 1.

5. The equation 6a + 2b + 1 = yq

Presumably, the only solutions to the equation

6a + 2b + 1 = yq (5·1)

are as given in (1·5). In this section, we will prove Theorem 3, whereby all solutions to

(5·1) necessarily have q ∈ {2, 3, 6}.
To begin, note that the case of equation (5·1) with ab = 0 is all but immediate; the only

solutions are with yq ∈ {4, 8}. We will therefore suppose that q > 5 is prime (returning to

the cases q ∈ {4, 9} later), and that a and b are positive integers. If y = 3 then necessarily

min{a, b} = 1. If b = 1, there are no solutions modulo 9, while a = 1 implies, modulo 7,

that q is even. We may thus suppose that y > 5.
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As in the preceding section, we will split our argument, depending on the relative sizes

of the exponents a and b. Specifically, we will consider two cases : (i) a > b/1.3, and (ii)

b > 1.3 a. In the first of these, we have

|6ay−q − 1| 6 2by−q 6 21.3ay−q 6 y−0.497 q,

and work with

Λ = r log 6− q log (y/6s), where a = qs+ r, |r| 6 q − 1

2
.

An immediate application of Theorem 4 yields the upper bond q 6 17331. Turning to

Theorem 5, with the choices ρ = 3.1, L = 4 and µ = 1/3, (whereby, after a short

computation, we may assume that y > 100), we obtain the (much sharper) bound q <

130.

In case (ii), we distinguish between two subcases: 6a > 2b or 6a < 2b, and apply

Theorem 7 with 4 6 L 6 9. After a little work, we obtain bounds of the shape

q < 620 when a = 1

q < 450 when a = 2

q < 120 when a = 3

q < 60 when a > 4.

As previously, we appeal to local arguments to handle the remaining (prime) values

of q (and for q ∈ {4, 9}), considering equation (5·1) modulo various p ≡ 1 (mod q). For

example, we treat q = 4 with

p ∈ {13, 17, 37, 41, 61, 97, 181, 193, 241, 401, 577, 1153, 1601, 4801, 9601, 14401, 55201, 57601}

and q = 5 using

p ∈ {11, 41, 61, 101, 151, 181, 251, 401, 601, 751, 1201, 1801, 2251, 3001, 4801, 9001}.

No effort has been made here to find what is in any sense a “minimal” set of such

primes p. As noted previously, our code and output are available at the web address

http://math.ubc.ca/∼bennett/BeBuMi-data.

6. The equation 2a + 2b + 2c + 1 = yq

In this section, we will prove Theorem 2. Here, the interplay between theory and

computation is at its most intriguing; even with the full strength of Theorems 5 and 7,

the remaining calculations are highly nontrivial.

Without loss of generality, via Theorem 1, we may suppose that a > b > c > 1.

We begin by noting that a short computer verification shows that the only solutions to

equation (1·2) with a 6 100 are those given in (1·3). We may thus suppose a > 100;

we will also assume, for the time being, that q > 420 is an odd prime. Our goal is to

deduce an absolute upper bound of the shape q 6 q0 where q0 is small enough that the

remaining cases of equation (1·2) can be treated by local arguments.

We begin by eliminating some “easy cases”. The following very elementary remark will

prove useful.

Remark. If y ≡ 7 (mod 8) then b = 2 and c = 1. Moreover, if y ≡ 15 (mod 16)

then there is no solution to equation (1·2) with q > 2 prime.
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To see this, note that if y ≡ −1 (mod 2k) and q is odd then yq ≡ −1 (mod 2k), and

apply this observation with k = 3 and k = 4.

With this in mind, we will begin by showing that equation (1·2) has no solutions with

a > 100, q > 420 and y ≡ 7 (mod 8). In case y = 7, by the preceding remark, we

necessarily have

7q = 7 + 2a.

Here a > 2q. It follows that 2a divides 7q−1 − 1, whereby 2a−3 | q − 1 for a > 3 (a

contradiction for a > 100).

The case y ≡ 7 (mod 16) with y > 7 is more difficult, but still requires only appeal

to bounds for Archimedean logarithms. We have

yq = 2a + 2b + 2c + 1 = 2a + 7

whereby

|2ay−q − 1| 6 7 · y−q

and hence

|a log 2− q log y| < 8 y−q. (6·1)

In fact, as previously, we do better to write Λ as

Λ = r log 2− q log (y/2s), where a = qs+ r, |r| 6 q − 1

2
. (6·2)

Then we apply Theorem 5 with the lower bound y > 15, L = 9 and ρ = 10 to deduce

an upper bound of the shape q < 430 for y ≡ 7 (mod 16) A very quick computer

verification shows that there is no solution for our problem for y = 23 and a second

application of Theorem 5, using now y > 39 improves our upper bound, as desired, to

q < 420. Here, we choose the other parameters in Theorem 5 by “optimizing” over the

possibilities corresponding to (3·6) (in practice, we try about 104 different pairs (k, µ)

and select the one that leads to the best bound).

The second straightforward case to treat is when y and 2c + 1 are multiplicatively

dependent. Under this assumption, after a little work, we find that either

(i) 2a + 2b + 9 = 3q

or

(ii) 2a + 2b + C = Cq,

where C = 2c + 1 and c 6= 3. In the first case, it follows that 3q−2 ≡ 1 (mod 2b), which,

with b > 2, contradicts the fact that q is odd. In case (ii), we write q − 1 = 2kQ where

Q is odd, so that

ν2

(
C2k

− 1
)

= b.

On the other hand, expanding via the binomial theorem, it is easy to see that

ν2

(
C2k

− 1
)
6 c+ k + 2,

whereby b 6 c+ k + 2. Since (ii) implies that a > cq, we thus have

b 6 c+ k + 2 6
a

q
+

log q

log 2
+ 2 6

a

q
+

log a

log 2
+ 2.
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Since we assume that a > 100 and q > 420, it follows that a > 11b, whereby, arguing as

previously with Theorem 5 applied to (6·2) leads to a contradiction.

We may therefore suppose that y 6≡ 7 (mod 8) and that y and 2c + 1 are multiplica-

tively independent. For these remaining values, we must also appeal to estimates for

linear forms in non-Archimedean logarithms. Let θ be a fixed real number, 0.2 6 θ < 1,

to be chosen later. We distinguish two cases, depending on whether θa > b or θa 6 b. In

the first case, we have

|2ay−q − 1| 6
(
3 · 2b−1 + 1

)
y−q,

and thus

|a log 2− q log y| < 2 · 2aθy−q 6 2 y−q(1−θ), (6·3)

whereby we may apply Theorem 4 to the linear form Λ = a log 2− q log y, to obtain an

upper bound on q. As usual, we rewrite Λ as

Λ = r log 2− q log (y/2s), where a = qs+ r, |r| 6 q − 1

2
.

From Theorem 4, noticing that

h(y/2s) = log max{y, 2s} < log
(√

2 y
)
,

we obtain

log |Λ| > −25.2
(
max

{
log b′ + 0.38, 10

})2
log
(√

2 y
)
,

where

b′ = q +
|r|

log
(√

2 y
) .

We thus have

log |Λ| > −25.2

(
max

{
log

(
q +

q − 1

2 log
(√

2 y
))+ 0.38, 10

})2

log
(√

2y
)
,

and hence, for each fixed θ, an bound of the shape q 6 q0(θ) 6 q0(0.2).

In the second case, we have θa 6 b, and so

ν2

(
2a + 2b

)
= ν2 (yq − (2c + 1)) = b > θa > θ

(
q log y

2 log 2
− 1

)
.

On the other hand, one can deduce an upper bound for ν2 (yq − (2c + 1)) using Theorem

7.

From our initial bounds, we now apply Theorems 5 and 7 to obtain a sharpened upper

bound of the shape q < 1230, using only the inequality y > 11. After a routine verification

that there are no further solutions with y < 3000, we apply again the same strategy and

we obtain now the inequality q < 730. After a rather more painful calculation, we find

that there are no (new) solutions for y 6 105.

Now, as we may, we suppose y > 105 and use that y 6= 2c + 1 (so that y > 3 · 2c). To

obtain good results, we choose a suitable value for θ, say θc, for each value of c. And we
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find that q 6 q0, where

c θc q0 c θc q0 c θc q0

1 0.47 499 2 0.54 597 3 0.39 413

4 0.34 381 5 0.32 367 > 6 0.35 363

(6·4)

Here we have chosen one of the two pairs (L, ρ) = (9, 10) or (8, 11) in the Archimedean

case and L = 10 for the 2–adic lower bound. The (extensive) details of our parameter

choices are available, as before at the website http://math.ubc.ca/∼bennett/BeBuMi-

data. Note that, for c > 3, these upper bounds contradict our assumption that q > 420.

We finish the proof of Theorem 2 by finding suitable local obstructions to solvability

of equation (1·2) for the remaining quadruples (a, b, c, q) under consideration, namely

a > b > c > 1, with q ∈ {5, 6, 7, 8, 9} or 11 6 q 6 419 prime, (6·5)

a > b > c = 1, with 421 6 q 6 499 prime (6·6)

and

a > b > c = 2, with 421 6 q 6 593 prime. (6·7)

Our local arguments in this situation are necessarily more involved than for those with

only 3 “digits”. As previously, for fixed q, with either q ∈ {6, 8, 9} or q > 5 prime, we

choose a prime p1 ≡ 1 (mod q) dividing 2Mq − 1 for relatively small M , and then pro-

duce a set of triples (a, b, c) such that (1·2) is solvable modulo p1. Constructing such a

set requires us to test � q3 such triples which can prove computationally taxing. Sub-

sequently, we determine for which of these triples equation (1·2) passes a local solubility

test modulo a number of further pi dividing, in each case, 2Miq−1 for suitably small Mi.

By way of example, if q = 167, we start with p1 = 2349023 for which ord2(p1) = 167; our

set of (a, b, c) modulo 167 contains 4705 triples (where we assume a > b > c). Taking

(p2, p3, p4) = (514361, 6020351, 7322617),

where, in each case, we have Mi = 7, we find that the only triples for which (1·2) is

solvable modulo p1 · p2 · p3 · p4 are

(a, b, c) ≡ (1113, 809, 373) or (1015, 527, 201) (mod 7 · 167).

Choosing p5 = 304609 and p6 = 223318747 (with M5 = M6 = 6) then leads to the desired

contradiction. We argue similarly to handle tuples (a, b, c, q) with q < 421, finishing case

(6·5). The computation required to extend this approach to treat the particular case

q = 421 for arbitrary (a, b, c) appears to be disproportionally large. For the tuples in

(6·6) and (6·7), we apply the same arguments; the larger values of q here are feasible due

to the fact that c is no longer variable.

Full details of our computations are again available at the following web address :

http://math.ubc.ca/∼bennett/BeBuMi-data. These calculations are really quite time-

consuming and are only within range due to the strength of the bounds inherent in

Theorems 5 and 7.
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et déterminants d’interpolation. J. Number Theory 55 (1995), 285–321.

[10] D. J. Leitner. Two exponential Diophantine equations. J. Théor. Nombres Bordeaux 23
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