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Abstract

We prove a general result which implies that the period of the continued
fraction expansion of v/227*1 + 1 tends to infinity when n tends to infinity.

1 Introduction

Given a parametrized, infinite family of rational numbers, it is, in general,
very hard to predict whether the lengths of their continued fraction expan-
sions are uniformly bounded. However, for a rational function p(X)/q(X),
Schinzel [13] (see also Mendeés France [9] for a more precise statement) estab-
lished that the maximum of the lengths of the continued fraction expansions
of the rational numbers p(n)/q(n) is finite, when n runs through the set of
positive integers. As proved recently by Corvaja and Zannier [3], quite the
opposite happens when the rational function p(X)/q(X) is replaced by a
quotient of power sums f/g which satisfy certain assumptions. Recall that



a power sum f is a function defined on the set of positive integers and of
the form
f(n) =a1b} + ...+ asby,

where ¢ > 1 is an arbitrary integer, the a;’s are non-zero rational numbers
and the b;’s are distinct positive integers. The main result from [3] is that
if f and g satisfy certain very mild (albeit necessary) assumptions, then the
length of the continued fraction of the rational number f(n)/g(n) tends to
infinity with n.

It is well-known that the continued fraction expansion of v/d, where d is

a positive integer which is not a square, is of the form [co;c1, ..., ¢ —1, 2¢0],
where {7} is used to emphasize the period of the expansion. Further-
more, we recall that c1,...,c-_1 is a palindrome; i.e., ¢; = ¢,_; holds for all
i =1,...,7—1. The length r of the period is at least 1 (and this is achieved,
for example, for square free numbers d of the form k% + 1 for some positive
integer k), and it satisfies 7 < v/dlogd (see [7]). Here, and in all what
follows, we use the Vinogradov symbols < and >, as well as the Landau
symbols O and o, with their usual meanings.

The aforementioned results from [3] and [13] suggest to us to investigate
the following question: given a parametrized, infinite family of quadratic
numbers, what can be said about the lengths of the periods of their continued
fraction expansions? This was first studied by Schinzel (see [12], [13]), who
proved that, if p(X) is a non constant polynomial with integer coefficients
and positive leading term satisfying certain assumptions (for example, of
odd degree, or of even degree but of which the leading term is not a square
of a positive integer), then the length of the continued fraction expansion of
v/p(n) can become arbitrarily large as n goes to infinity. In the present work,
we replace the polynomial p(X) by a power sum f. Among other results, we
establish that the length of the period of the continued fraction expansion
of v/22n+1 1+ 1 tends to infinity when n tends to infinity. Our main result,
which is Theorem 2.1, provides a partial affirmative answer to a question
specifically raised at the end of [3], where it was conjectured that the period
of the continued fraction expansions of \/f(n) tends to infinity with n if
f satisfies certain technical assumptions. As predicted by the concluding
remarks of [3], the proof of our main theorem uses the Schmidt Subspace
Theorem, much in the spirit of the papers [2] and [3]. We point out that
a complete characterization of those power sums f such that the period of
the continued fraction expansion of 1/ f(n) does not tend to infinity with n
has been obtained recently by Scremin (see [17] and the last section of the
present paper).
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2 Results

First, we introduce our notation. Let £ > 1, a; and b; be non zero integers
fori=1,...,¢, with by > by > --- > b, > 1, and set

)4
f(n) =) ab?,  (n21). (1)
=1
We call by, ...,by the roots of the form f and ay,...,as its coefficients. To

follow standard notation (see e.g. [2]), we write £z for the ring of all such
forms together with the constant O form. If R is any subring of C, we write
REz for the ring R ®z £z, which is the ring of power sums f given by
formula (1), but where the coefficients a; are allowed to be in R. As usual,
we write @ for the field of algebraic numbers. In order to prove our main
result, we shall assume that our form f is in Q€7 and satisfies the following
condition:

Condition (x). There do not exist an integer j € {0,1}, a number
0 < 1/2, and forms g and h in Q€z, such that both the relation

f2n+j) = h(n)* + g(n)
and the estimate
lg(n)| < [f(n)[°
hold for all positive integers n.

In this paper, we prove the following result.

Theorem 2.1. Assume that f in Ez satisfies Condition (x). Then \/ f(n)
18 a rational number for at most finitely many positive integers n. Moreover,
the length r(n) of the period of the continued fraction expansion of \/f(n)
tends to infinity with n.



It is likely that Theorem 2.1 remains true even for certain forms f in
Ez (or Q€z) which do not satisfy the above Condition (x). However, some
restrictions must be imposed as, for example, \/h(n)? + 1 = [h(n);2h(n)]
holds for all forms h in £z whose coefficients a; are positive for i = 1,..., ¢,
while the example f(n) = h(n)? with h in Q€7 shows that \/f(n) can be
a rational number with a bounded denominator for all positive integers n.
See Section 5 for further remarks.

While the above Condition (*) seems cumbersome to verify for a given
power sum f, we display an immediate consequence of Theorem 2.1.

Corollary 2.2. Let ¢ > 1, a; and b; be non-zero integers fori =1,...,¢,
with by > by > -+ > by > 1. Assume that neither a1 nor ai1by is a square
and set

J4
fln) =Y "a;by, (n>1).
=1

Then \/ f(n) is a rational number for at most finitely many positive integers
n. Moreover, the length r(n) of the period of the continued fraction expansion

of \/f(n) tends to infinity with n.

It follows, from Corollary 2.2 applied to the form f(n) =2-4™ 41, that
the length of the period of the continued fraction expansion of /227+1 + 1
tends to infinity when n tends to infinity. We emphasize that Corollary 2.2
applies to a much wider class of power sums.

3 Preparations

In this section, we review some standard notions of algebraic number theory
(see, for example, [1, 10, 18]) and of Diophantine approximation.

Let IL be an algebraic number field of degree D over Q. Denote its ring
of integers by Or, and its collection of places by My,. For a fractional ideal
7 of I, we denote by Nmp,(Z) its norm. We recall that Nmy,(Z) = #(Or/T)
if Z is an ideal of Or,, and the norm map is extended multiplicatively (using
unique factorization) to all the fractional ideals of IL.

For a prime ideal P, we denote by ordp(x) the order at which it appears
in the factorization of the principal ideal [z] generated by z inside IL.

For pn € My, and z € I, we define the absolute value |z|, as follows:

(i) |z|, = |o(z)|"/P if u corresponds to the embedding o : I — IR;

(ii) |z], = |o(z)|*P = [5(z)|*P if p corresponds to the pair of complex
conjugate embeddings o, : IL — C;



(i) ||, = Nmp,(P)~°" 7@ if ;4 corresponds to the nonzero prime ideal P
of O]L.

In case (i) or (ii) we say that u is real infinite or complex infinite, respec-
tively; in case (iii) we say that u is finite.
These absolute values satisfy the product formula

H ||, =1, for all z € IL™.
pEMy,

Our basic tool is the following simplified version of a result of Schlickewei
(see [14], [15]), which is commonly known as the Subspace Theorem.

Lemma 3.1. Let IL be an algebraic number field of degree D. Let S be a fi-
nite set of places of I containing all the infinite places. Let {L1,,..., Ly}
for p € S be linearly independent sets of linear forms in M variables with
coefficients in IL. Then, for every fired 0 < € < 1, the set of solutions
x = (z1,...,237) € ZM\{0} to the inequality

M
ITITILen()l < maxfas] [ i=1,...,M} < (2)

peS i=1

is contained in finitely many proper linear subspaces of QM.

4 Proofs

Throughout this section, C7,Chs,... are effectively computable constants
which are either absolute, or depend on the given data (usually, a form f in
Ez).

The following result is a variation of Lemma 1 from [2].

Lemma 4.1. If the positive integer b and the power sum f in Ez (not nec-
essarily satisfying Condition (x)) are such that for infinitely many positive
integers n the denominator of the rational number f(n)/b™ is less than 2™/?,

then b | b; for alli=1,... L.

Proof. Without any loss of generality, we may assume that ged(by, ..., by) =
1. We then have to prove that b = 1. Assume that this is not so, and assume
further that b is prime (if not, we replace b by a prime factor of it). Finally,



it is clear that we may assume that none of the roots of f is a multiple of b,
for, if not, we may replace f(n) by

1<i<t
b /b

We now apply Lemma 3.1 as in the proof of Lemma 1 in [2]. We let I = @,
M = {, and S be the set of places of 1. consisting of oo, b, and all prime
factors of b; for i = 1,...,¢. For p € S\{b} and a vector x = (z1,...,xy) we
put L; ,(x) = x; for i = 1,...,¢, while for y = b we put Ly ;(x) = Zle a;x;
and L; j(x) = x; for i = 2,...,¢. We evaluate the double product appearing
in the statement of Lemma 3.1 for x = (b7,...,b}). We note that z; are
integers for all ¢ = 1,...,¢. Our assumption and the calculation from page
322 in [2] show that, for infinitely many positive integers n, we have

Y/
TTTT Lol = 1Ers(x)ls < b 272 <52 = (1), (3)
neS i=1

where g9 = (logb)/(2log by). Since b} = max{|z;| | i = 1,...,¢}, it follows
easily that the above inequality (3) implies that our points x and linear
forms L;,, for i =1,...,¢, and p € S fulfill inequality (2) with e = 5. Now
Lemma 3.1 asserts that there are only finitely many proper subspaces of Q!
of equations of the form Zle cix; =0 with ¢; € Q for i = 1,...,¢, not all
zero, such that every point x € Z* satisfying the above inequality (3) lies
on one of these subspaces. This in turns gives us equations of the form

¢
i=1

Since each one of the above equations gives the set of zeros of a linear
recurrent sequence having a dominant root (note that at least one of the
coefficients ¢; is non zero), it follows that each one of these equations can
have only finitely many positive integer solutions n. This contradiction
shows that b must be equal to 1 and proves the lemma. O

Let f be a form in Q€z, not necessarily satisfying Condition (x). Re-
placing f(n) by f(2n + j) for j = {0,1}, it follows that we may replace b;
by b? and a; by a;b! for i = 1,... (. In particular, we may assume that by
is a square throughout this section.



Lemma 4.2. Let f be a form in QEz satisfying Condition (x). Then there
exists a computable positive constant C1, depending only on f, such that if
Cy is any fized constant and if X(n), Y (n) are positive integers such that
the inequality

X (n)® = f(n)Y ()’ < Cy

holds, then Y (n) > exp(Cin) holds for all positive integers n with only
finitely many exceptions.

Proof. We write f(n) = a1b}(1 + d(n)), where
¢ n
a; (b
=35 ()
Note that 6(n) = 0 in Q€7 if, and only if, £ = 1. If £ > 2, we then
let 3 = b1/b2, and observe that § > 1 and that 6(n) = O(8™"). We

let k be a positive integer such that 5% > b;. Clearly, we can choose k =
|log b1/ log B]+1. Writing o = /a7, we note that we have the approximation

fin) = ab™*\/1+6(n)

k
_ (Z (1{ 2>5(n)i + 0(5(n)k+1))

i=0
k
n 1/2 7 -n —-n
= abl/QZ( f )5(n) +0 (5,287,
i=0
Note that .
/2 1/2 i fi(n)
ab Z( i >5(”) =ar 1720
i=0 1

where f; is in Q€z. Thus, we may write

/ o
f(n)zab?l%w(bl 2g), 5

where we take fi(n) = 0 if £ = 1. Note also that all the prime factors of
the roots of fi are among the prime factors of the roots of f. Assume now
that Co is some fixed positive constant and that (X(n),Y (n)) is a pair of
positive integers such that

X (n)? = f(M)Y (n)?] < Ca. (6)



Then, since

2 2
fln) = (a% + 0(6;"/25-”>> - o? (%) +0 (57,
1 1
we get that

2
X(m)? = fn)Y (n)? = X(n)? - a? (%) Y(n)? 40 (¥ ()87
1

We choose C7 < (log 8)/2, and we infer that, if Y(n) < exp(Cin), then
inequality (6) leads to the conclusion that the inequality

2
X(n)? - ao? (b({l%) Y (n)?| < 2C,
1

holds for all but finitely many positive integers n. In turn, the above in-
equality implies that

1
b2y (n)

afi(n)

1

(7)

The constant understood in < above depends on C5 and on the form f.
The above inequality (7) is equivalent to

b(k—l)n

‘bg’“—l/”"X(n)—afl(n)Y(n)] < ;(n) . ®)

We now write p
filn) =" al(®h)",
i=1

where by > by > --- > by > 1. Note that 1 < ¢/ <1+ (0 —1)+---+ (£ — 1)k,
and that b] = b} (recall that b; is a square). We are now all set to apply
Lemma 3.1. We choose IL. = Q(a), M = 1+ ¢, and S to be the set of
all places of IL (which is either @, or a real quadratic field, respectively)
consisting of the infinite ones (one, or two of them, respectively), and the
finite ones corresponding to primes in I lying above the prime factors of
the product by ...b,. Note that all the prime factors of the b}’s are among
the prime factors of the b;’'s. Denote by D the degree of IL (D = 1 or



D = 2, respectively). When p € S is finite, we then put L;,(x) = z;
for i =1,..., M, while if u is infinite corresponding to the real embedding
o:IL— IR, we then put L; , = x; if i # 2, and L; , = x1 — o~ a)(ayzs +
o-Fapxp ) if i = 2. Note that if z; are rational integers, then |L; ,(x)|, =
|71 — a(a) @2 + -+ + alxpy1)|Y/P holds for all the infinite places u € S. We
begin by verifying that if we take x = (z1,...,2z)) as 1 = bgk_l/z)nX(n),
and z; = (b;_;)"Y (n) for i = 2,..., M, then inequality (8) implies that the
inequality
M YV (n)M-1

H H |Li ()] < (:%/2

peS i=1 1
holds. To this end, observe first that if ¢ # 2, then

H | L (%) | = H @il s

neS HES

(9)

and by the product formula, the fact that z; € Z* for all i =1,..., M, and
the fact that S contains all infinite places and all the places corresponding

to all the prime divisors of by and of b for j = 2,...,¢, it follows easily
from (6) and the definition of f that
[T 120060k = [T 2l < X (n) < 612 (m), (10)
HES HES
while
I 1w, =] lzilu <Y(n)  fori=3,... M. (11)
HES HES

Finally, when i = 2, and D = 1, we have, by inequality (8), that
1 kb g
G Y(n) ~ o

TT 120l - [Laoo(x)lso <

HES
pu<oo

because b) = b¥, while when i = 2 and D = 2, we have, again by inequal-
ity (8), that

H | Lo, (%) + [ L2,001 (%) ooy * [L2,005 (X) ooy

HES
p<oo

1/2 1/2
I A A ]
~ bk Y (n) Y (n) -y




which is again inequality (12) but for the case D = 2. Inequality (9) follows
now easily by multiplying inequalities (10), (11) and (12). We now choose
C1 < (logby)/(4(M — 1)), and conclude that if Y(n) < exp(Cin), then

Y(n)M-1 < b?/ %, and therefore inequality (9) implies that the inequality

M 1
TGl < (13)
1

peS 1=1

holds. Since C1 < klogby, we get that
max{|z;| [i=1,..., M} < 0"V (n) < b7 = (b)/4)%F,

Assume that we have Y (n) < exp(Cin) for infinitely many n. It follows
easily that the above inequality (13) implies that Lemma 3.1 holds for our
field IL, the points x corresponding to these values of n, the set of valuations
S and the forms L;, for i = 1,...,M, and p € S, with ¢ = 1/(8k + 1).
The conclusion of Lemma 3.1 is that there exist only finitely many proper
subspaces of QM of equations Zf\i 1 iz = 0, with not all the coefficients ¢;
being zero, and such that all points x satisfying the above inequality (13)
belong to one of these subspaces.

Assume now that x is on one of these subspaces of equation Zf\i 1GiT; =
0. Suppose first that ¢; = 0. We then get the equation

M
ci(bi—)" =0,
i=2
which gives the set of zeros of a linear recurrence sequence having a dominant
root (note that at least one ¢; for i > 2 is nonzero), and as such it can have
only finitely many positive integer solutions n.
Assume now that c; # 0. In this case, we get that

X(n) = 120y ().

- bgk—l /2)n

where fo is the form in Q€7 given by

M

fo(n) = = ey (B )"

1=2

Thus, if we write b = blfflp, then fo(n)/b" = X(n)/Y (n). Assume that
Cy < (log2)/2. Then, if Y(n) < exp(Cin), and if the above equation has

10



infinitely many positive integer solutions n, it follows, by Lemma 4.1, that
b divides every root of fa(n). In particular, we get that Y (n) is bounded.
Since we are assuming that this is so for infinitely many values of n, it
follows that there exists a constant value A such that Y(n) = A holds
for infinitely many values of the positive integer n. Since the inequality
|X(n)? — f(n)Y(n)?| < Oy also holds for all these positive integers n, it
follows that there exists a fixed integer B such that both relations X (n)? —
f(n)Y(n)? = B and Y (n) = A hold. In particular, we conclude that the
Diophantine equation f(n) = 2% — B/A? admits infinitely many solutions
(n,z), with a positive integer n, and a rational number z (namely, all the
pairs (n,z) = (n, X(n)/A)). Then, by Theorem 3 from [2], the form f does
not satisfy Condition (x). This contradicts our assumption that Y (n) <
exp(Cyn) holds for infinitely many n.

The above argument does show that if we choose C1 to be sufficiently
small, then indeed, for every fixed value of the positive real number Cs, all
positive integer solutions (X (n),Y(n)) of the inequality (6) have Y(n) >
exp(C1n) for all but finitely many values of n. O

Remark. It is easy to see that Lemma 4.2 remains true even for forms f in
Q&7 satisfying a weaker hypothesis then Condition (), namely such that
there do not exist 7 in {0, 1}, a form A in Q€7 and a rational number A such
that f(2n + j) = h(n)? + X holds identically for all positive integers n.

Assume now that f in Q€z satisfies Condition (x). For every positive
integer n, we write \/f(n) = [ag(n);...,aj(n),...] for the continued frac-
tion expansion of \/f(n). We also write pj(n)/q;(n) for the jth convergent
of \/f(n). The next Lemma is the key ingredient of the proof of our The-
orem 2.1, as it will show that the first ‘sufficiently many’ partial quotients
aj(n) are ‘small’ for all but finitely many positive integers n.

Lemma 4.3. Let f be a form in Q€7 satisfying Condition (x). Then there
exist positive computable positive constants Cs < 0.3 and Cy > 3 depending
only on f, such that the following holds.

Assume that e € (0,C3) is fized. Let j be a positive integer.

(1) If ¢j(n) < exp(Csen), then the inequality

Miom=l

n)

1
> ) op(en) 0

holds with at most finitely many exceptions in the positive integer n
(depending on €).

11



(i1) If exp(Csen) < gj(n) < exp(Csn), then the inequality

_ pi(n)
‘Vf(") ()

1
> 15
qj(n) (15)
holds with at most finitely many exceptions in the positive integer n
(depending on ).

n

Proof. We will deal with both inequalities (14) and (15) simultaneously. We
write Q;(n) = g;j(n)exp(en) in case (i) and Q;(n) = ¢;j(n)“~! in case (ii).
With the notations from Lemma 4.2, we established (see (5)) in the course
of its proof that

) = o + 007577
1

Thus, the inequality

< 1
qj(n)Q;(n)

FCET

n)

leads to the inequality

O‘bgk—l/z)n a;(n)

<

‘ fi1(n) pj(n) (16)

1
qj(n)Qj(n)’

provided that the inequality (bi/gﬂ)" > ¢j(n)Qj(n) holds. In case (i) this
last inequality is satisfied if (2C5 + 1)e < log(bi/ ) and in case (i) it is
satisfied if C5Cy < log(b1/?B). Since £ < Cs < 1, it follows that in the first
case the inequality is fulfilled if 3C5 < log(b}/ 26), and, since Cy > 3, we see

that it suffices that the inequality C5Cy < log(bimﬂ) holds. jFrom (16), we
get the inequality

(k-1/2) A

b " pi(n) — afi(n)g;(n)| < . (17)

1 J J Qj (n)
Comparing (17) with (8), we see that (17) is obtained from (8) by replac-
ing X(n) and Y (n) by p;j(n) and gj(n), respectively, and the upper bound
bgk_l)n/Y(n) on (8) by the upper bound bgk_l/Q)n/Qj(n). We now apply
again Lemma 3.1 with the same choices of field IL, set of places S, forms

12



L;,, and integer indeterminates vector x, as in the proof of Lemma 4.2.
Inequality (9) now becomes

n/ﬂf
TLTT sl < O (1)

peES i=1

In case (i), the right hand side of (18) is ¢;(n)"~!/exp(en). Imposing
that C3 < 1/(2(M — 1)), then g;(n)™~! < exp(en/2), and therefore the
above inequality (18) becomes

M
H H | L (%)

neS i=1

S o) (19)

Assume that € is such that Cse < klogb;. Since € < Cs, it suffices that
C2 < klogb;. In this case, since g;(n) < exp(Csen) < bi", we get that

max{|z;| | i =1,..., M} < ¢;(n)bi"™ < b3 = exp(en/2)° 5, (20)
where C5 = 4k log by. Hence, from inequalities (19) and (20), we get

1 Li ! Jli=1,...,M} <% (21

ggl )l € oy < maxflai] [i= 1. MY, (21)

where C5 = 05_1.
In case (ii), we may choose Cy = M +2, and then inequality (18) becomes

1 1
H H i)l < q;(n) = exp(Csen)’ (22)

peS i=1

Since C3 < klogby, for any positive integer n with ¢;(n) < exp(Csn), we
have

max{lz;| [ i =1,..., M} < bi"q;(n) < 07" = exp(Csen)® 7,
where C7 = (2k logby)/Cs. Thus, inequality (22) implies that the inequality
] ! ) — —eCg

gglLi,u(x)lﬂ < m < max{|x;| |[i=1,..., M} (23)

holds with Cg = C; .

13



In either one of the two cases (i) or (ii) we may apply Lemma 3.1, and
derive that there exist only finitely many subspaces of Q™ of equations
Z£1 cr; = 0, and not all the coefficients ¢; being zero, and such that
every point x € ZM satisfying either inequality (21) or (23) lies on one of
these subspaces. Consider now the subspace of equation Zf\i 1cizg = 0. If
¢ = 0, we then get the equation Zﬁg ¢;(b;_1)™ = 0, which has only finitely
many positive integer solutions n because at least one of the coefficients ¢;

is non-zero for i = 2,..., M. Assume now that ¢; # 0. In this case, we get
that

pi(n) _ fa(n)

gj(n) o7

where b = bgkflm, and fo(n) = oM, ciey H(¥;_,)™. Since C3 < (log2)/2,
if the above equation has infinitely many positive integer solutions n, then
Lemma 4.1 implies that ¢;(n) is bounded for all such n and thus, for large
n, we are in case (i). It now follows that there exists a constant A such
that gj(n) = A holds for infinitely many n, and we are therefore led to the
conclusion that the inequality

pj(n)
VT - 2

<
exp(en)

holds for infinitely many positive integers n. Theorem 3 from [2] tells us
that f does not satisfy Condition (x). This proves that (14) (resp. (15))
holds with only finitely many exceptions. O

We can now prove our Theorem 2.1.

Proof of Theorem 2.1. We assume again that b; is a perfect square. We
keep the notation C4y, Cs, Cy for the constants appearing in the state-
ments of Lemmas 4.1, 4.2 and 4.3, respectively. We first note that if \/ f(n)
is a rational number for infinitely many values of the positive integer n,
then, by Theorem 3 from [2], that there exists a form h in Q€z such
that f(n) = h(n)?. In particular, f does not satisfy Condition (). As-
sume now that f(n) is not a square of an integer. In this case, \/f(n) =

lap(n);ai(n),...,ammn)—1,2a0(n)]. Assume that r(n) does not tend to infin-
ity. Then there exists a fixed positive integer r such that r = r(n) holds
for infinitely many positive integers n. It is known that p,_1(n)/g,—1(n)
gives the fundamental unit in the quadratic order @[/ f(n)]. In particular,
we have the equation p,_1(n)? — f(n)g.—1(n)?> = £1. By Lemma 4.2 with
Cy = 1.5, it follows that infinitely many positive integers n exist such that
gr—1(n) > exp(C1n). Let € be a very small number in the interval (0, C3) to

14



be chosen later. Let m < r — 1 be the largest index such that the inequality
gm(n) < exp(Csen) holds. Since r is fixed and we have infinitely many values
for n, we may assume that m is also fixed. In this case, by inequality (14),
we get that ¢m41(n) < gm(n)exp(en) < exp((Cs + 1)en), but by the defini-
tion of m, we also have g, +1(n) > exp(Csen). By inequality (15), we get
that the inequality gn,492 < qSLj—ll holds once ¢ is sufficiently small, and, in
general, that the inequality ¢is11(n) < @rgs(n)*~! holds provided that
gm+s(n) < exp(Csn). Assuming therefore that gp,4s(n) < exp(Csn), we
get that guysi1(n) < @ua1(n)© 1 < exp((Cy — 1)%(C3 + 1)en). Taking
s =1 — 1, we get that the inequality

3r(n) < G (r—1)11(n) < exp ((Cy — 1)"H(C5 + 1)en)

holds, provided that (Cy — 1)"~*(C5 + 1)e < C3. Thus, it suffices to choose

€ such that this last inequality is fulfilled. However, we also know that

gr(n) > gr—1(n) > exp(C1n). Hence, if we choose € such that the inequality
(Cy —1)"Y(C3 + 1)e < C7 holds as well, we then obtain a contradiction.

Thus, r(n) tends to infinity with n and Theorem 2.1 is therefore proved.

O

5 Comments and Remarks

We do not know whether Condition (x) is needed, although it is clear that
some assumption is necessary in order to get the conclusion of Theorem 2.1.

Indeed, it is easily checked that for v, w in £z and f(n) = v(n)?w(n)? +
2w(n), the relation

f(n) = [v(n)w(n);v(n), 2v(n)w(n)]

holds for all sufficiently large positive integers n.

Scremin [17] showed that if f € £z is such that the length 7(n) of the
period of the continued fraction expansion of \/f(n) remains bounded for
infinitely many n, there must exist j € {0,1} and fo,..., fr—1 in Q€7 such
that the relation

f@n+j) = [fo(n); fi(n),..., frm1(n), 2fo(n)]

holds for all sufficiently large positive integers n (note that the above ‘con-
tinued fraction” may differ from the actual continued fraction as f;(n) are
rational numbers with bounded denominators, but not necessarily positive
integers).
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Very recently, Corvaja and Zannier [4] applied the Schmidt Subspace
Theorem to prove that, under suitable (necessary) assumptions on the real
quadratic number «, the length of the period of the continued fraction ex-
pansion of o™ tends to infinity with n.

In the literature, there exist explicit versions of Lemma 3.1 (see, for ex-
ample, [5] and [6]), which bound the number of possible subspaces occurring
in its conclusion. Usually, such a bound is of the form Cy6~¢10. The con-
stant C1g9 depends only on the number of indeterminates M, and the number
of places #S5, while the constant Cg depends also on the heights of the linear
forms L; , fori=1,...,M, and p € S.

It is likely that one could use such results instead of the present formula-
tion of Lemma 3.1, in conjunction with upper bounds for the zero multiplic-
ities of linearly recurrent sequences (such as the results from [11] and [16]),
to get that there exists a function X +— ¢(X) tending to infinity with X,
such that if f in £z satisfies Condition (%) and if X tends to infinity, then
r(n) > g(X) holds for all positive integers n < X with o(X) exceptions. We
point out that a result establishing a lower bound for the exponent of the
group E(IF;n) of points on an elliptic curve E defined over the finite field
with ¢ elements IF;, and valid for almost all n, has been recently established
in [8] by a method similar to the one described above.
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