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Abstract. We discuss the following general question and some of its
extensions. Let (εk)k≥1 be a sequence taking its values in {0, 1}, which is
not ultimately periodic. Define ξ :=

∑
k≥1 εk/2

k and ξ′ :=
∑
k≥1 εk/3

k.
Let P be a property valid for almost all real numbers. Is it true that at
least one among ξ and ξ′ satisfies P ?

1. Introduction

The main motivation for the present note comes from the following problem appeared
at the end of a paper of Mendès France [15]. According to him (see the discussion in [4],
page 403) it was proposed by Mahler; however, we were unable to find any mention of it
in Mahler’s works.

Problem (Mahler–Mendès France). For an arbitrary infinite sequence (εk)k≥1 of 0’s
and 1’s, prove that the real numbers

+∞∑
k=1

εk
2k

and
+∞∑
k=1

εk
3k

are algebraic if, and only if, both are rational.

The resolution of this problem seems to be far beyond our current knowledge. Nonethe-
less, in this note, we discuss the following more general question. Throughout, ‘almost all’
always refers to the Lebesgue measure.

Problem 1. Let P be a property valid for almost all real numbers. Let b ≥ 2 be an
integer. Let b1 and b2 be distinct integers, at least equal to b. Let (εk)k≥1 be a sequence
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taking its values in {0, 1, . . . , b − 1}, which is not ultimately periodic. Is it true that at
least one among the numbers

ξ1 :=
∑
k≥1

εk
bk1

and ξ2 :=
∑
k≥1

εk
bk2

satisfies property P?

If P is the property ‘being transcendental’, b = b1 = 2 and b2 = 3, then to give a
positive answer to Problem 1 is equivalent to solve the Mahler–Mendès France problem.
The aim of this note is to discuss Problem 1 for other properties P, including ‘not being
a Liouville number’ or ‘not being badly approximable’.

Recall that the irrationality exponent of an irrational real number ξ, denoted by µ(ξ),
is the supremum of the real numbers µ for which the inequality |ξ−p/q| < q−µ has infinitely
many solutions in rational numbers p/q with q ≥ 1. A real number ξ is a Liouville number
if, and only if, µ(ξ) is infinite. The irrationality exponent of every irrational real number
is at least equal to 2. Recall also that an irrational real number ξ for which there exists
a positive real number c such that |ξ − p/q| ≥ c/q2 for every pair (p, q) of integers with
q ≥ 1 is called a badly approximable number.

For both properties mentioned above, the answer to Problem 1 is negative. Indeed, it
is easy to check that ∑

k≥1

1

bk!

is a Liouville number for every integer b ≥ 2. Furthermore, Shallit [20] has shown that∑
k≥1

1

b2k

is a badly approximable number for every integer b ≥ 2. For this, he used a version of the
Folding Lemma for continued fractions, which was first established by Mendès France [14]
and then rediscovered by several authors [11, 12, 17, 21, 18, 19] (this list is not exhaustive).

Furthermore, it has been proved recently [6], again using the Folding Lemma, that

µ

(∑
k≥1

1

bbckc

)
= c,

for every real number c ≥ 2 and every integer b ≥ 2. Here and below, bxc denotes the
greatest integer less than or equal to x.

More generally, most of the recent Diophantine results on real numbers expressed as∑
k≥1

εk
bk

depend on combinatorial properties of the sequence of digits (εk)k≥1, but are independent
of the integer base b (here, it is assumed that εk is in {0, 1, . . . , b − 1} for k ≥ 1), see for
example [1, 2, 7, 8, 9].

All these results motivate the following problems.
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Problem 2. Let b ≥ 2 be an integer. Let b1 and b2 be distinct integers, at least equal to
b. Does there exist a sequence (εk)k≥1 taking its values in {0, 1, . . . , b− 1} such that

µ

(∑
k≥1

εk
bk1

)
= +∞ and µ

(∑
k≥1

εk
bk2

)
is finite ?

Since the set of Liouville numbers has zero Hausdorff dimension, metric arguments do
not seem to help to solve Problem 2.

Problem 3. Let b ≥ 2 be an integer. Let b1 and b2 be distinct integers, at least equal to
b. To find explicitly a sequence (εk)k≥1 taking its values in {0, 1, . . . , b− 1} such that∑

k≥1

εk
bk1

is badly approximable, while ∑
k≥1

εk
bk2

is not badly approximable.

With the notation of Problem 3, the Hausdorff dimension of the set of badly approx-
imable real numbers of the form ∑

k≥1

εk
bk1
,

with εk in {0, 1, . . . , b− 1} for k ≥ 1, is equal to the Hausdorff dimension of the set of real
numbers of this form, that is, to (log b)/(log b1) (see for example [10]). This implies that
sequences (εk)k≥1 satisfying the properties requested in Problem 3 do exist when b1 is less
than b2. The difficult point is to provide an explicit construction of such a sequence.

Problem 4. Let b ≥ 2 be an integer. Let b1 and b2 be distinct integers, at least equal to
b. Let µ1 and µ2 be real numbers at least equal to 2. Does there exist a sequence (εk)k≥1
taking its values in {0, 1, . . . , b− 1} such that

µ

(∑
k≥1

εk
bk1

)
= µ1 and µ

(∑
k≥1

εk
bk2

)
= µ2?

Surprisingly, it even does not seem to be easy to construct a sequence (εk)k≥1 taking
its values in {0, 1, . . . , b− 1} such that

µ

(∑
k≥1

εk
bk1

)
6= µ

(∑
k≥1

εk
bk2

)
,

see Theorem 1 below for a contribution to this question.
Problem 4 is difficult since, in most cases, knowing the b-ary expansion of a real

number gives no information on its irrationality exponent, see [5]. However, if the sequence
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(εk)k≥1 contains long repetitions which occur unexpectedly early, then, by truncating
and completing by periodicty, one can construct very good rational approximations to∑
k≥1 εk/b

k
1 of the form P (b1)/(br1(bs1− 1)), for r, s positive integers and P (X) an integral

polynomial. However, it is not clear at all whether P (b1)/(br1(bs1 − 1)) is written under its
reduced form. Furthermore, P (b2)/(br2(bs2 − 1)) is then a good rational approximation to∑
k≥1 εk/b

k
2 , but we as well do not know whether it is written under its reduced form. Such

an information is crucial when one wishes to determine the exact value of the irrationality
exponent. Otherwise, we get only a lower bound for it. A related question has been
discussed by Mahler [13].

We conclude this section with an extension of the Mahler–Mendès France problem.

Problem 5. Let b ≥ 2 be an integer. Let b1 and b2 be distinct integers, at least equal to
b. Let (εk)k≥1 be a sequence taking its values in {0, 1, . . . , b− 1}, which is not ultimately
periodic. Are the real numbers

ξ1 :=
∑
k≥1

εk
bk1

and ξ2 :=
∑
k≥1

εk
bk2

algebraically independent?

Under strong additional assumptions on the sequence (εk)k≥1, a positive answer to
Problem 5 has been given using the so-called Mahler method, see for example Chapter 3
of Nishioka’s monograph [16]. In particular, the real numbers∑

k≥1

1

b2k
, b ≥ 2,

are algebraically independent.

2. Result

Our small contribution towards Problem 4 is the following result.

Theorem 1. Let b ≥ 2 and b1 > b be integers with b1 6= b2. Let a be a real number and
w an integer such that a ≥ 3 and w ≥ 3a. For k ≥ 1, set nk = b(aw)kc. Let (εk)k≥1 be
the sequence of integers defined as follows. We set εk = b if, and only if, there exist h ≥ 1
and m = 0, 1, . . . , w − 1 such that k = nh + 1 +m(2nh + 1). We set εk = 1 if, and only if,
there exist h ≥ 1 and m = 1, 2, . . . , w such that k = m(2nh+ 1). Otherwise, we set εk = 0.
Define

ξ :=
∑
k≥1

εk
(b2)k

and ξ1 :=
∑
k≥1

εk
bk1

Then we have

µ(ξ) =
a(2w + 1)

a+ 2

and

µ(ξ1) =
a(2w + 1)

2(a+ 1)
.
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The conclusion of Theorem 1 also holds if the real number a satisfies a > 2 + 1/w
with a sufficiently large integer w.

Observe that for every real number µ sufficiently large, there are integers w, w1 and
real numbers a, a1 with 3 ≤ a ≤ w/3, 3 ≤ a1 ≤ w1/3 such that

µ =
a(2w + 1)

a+ 2
=
a1(2w1 + 1)

2(a1 + 1)
.

The proof of Theorem 1 is elementary. The basic idea is to truncate the b2-ary
expansion to ξ (resp. the b1-ary expansion to ξ1) and then to complete by periodicity
to construct good rational approximants to ξ (resp. to ξ1). The denominators of these
rationals, when written under their lowest form, are essentially of the form br(bs−1) (resp.
br1(bs1 − 1)), where r and s are positive integers.

Proof. The key point is the observation that

b× b2n + 1

b2(2n+1) − 1
=

1

b2n+1 − 1
,

while the fraction
b× bn1 + 1

b2n+1
1 − 1

is nearly written under its reduced form.
To be more precise, observe that

(b× bn1 + 1)(bn+1
1 − 1) = b(b2n+1

1 − 1) + (b1 − b)bn1 + b− 1,

thus gcd(b× bn1 + 1, b2n+1
1 − 1) divides (b1 − b)bn1 + b− 1. Since

(b1 − b)(b× bn1 + 1)− b((b1 − b)bn1 + b− 1) = b1 − b2,

we get that gcd(b× bn1 + 1, b2n+1
1 − 1) divides b1 − b2, hence, this greatest common divisor

is bounded indepedently of n.
Observe that

ξ =
∑
k≥1

(
b(b2)−nk−1 + (b2)−2nk−1

)(
1 + (b2)−2nk−1 + . . .+ (b2)−(w−1)(2nk+1)

)
and

ξ1 =
∑
k≥1

(
b× b−nk−1

1 + b−2nk−1
1

)(
1 + b−2nk−1

1 + . . .+ b
−(w−1)(2nk+1)
1

)
.

To construct good rational approximants to ξ (resp. to ξ1), we simply truncate the sum-
mation and complete by periodicity. For K ≥ 2, define

ξK :=
K−1∑
k=1

(
b(b2)−nk−1 + (b2)−2nk−1

)(
1 + (b2)−2nk−1 + . . .+ (b2)−(w−1)(2nk+1)

)
+
b(b2)−nK−1 + (b2)−2nK−1

1− (b2)−2nK−1

=
mK

(b2)w(2nK−1+1)
+

b(b2)nK + 1

(b2)2nK+1 − 1
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and

ξ1,K :=

K−1∑
k=1

(
b× b−nk−1

1 + b−2nk−1
1

)(
1 + b−2nk−1

1 + . . .+ b
−(w−1)(2nk+1)
1

)
+
bb−nK−1

1 + b−2nK−1
1

1− b−2nK−1
1

=
m1,K

(b1)w(2nK−1+1)
+

b(b1)nK + 1

(b1)2nK+1 − 1
,

for some integers mK and m1,K . It follows from the key point explained at the beginning
of the proof that there exist an integer pK such that

ξK =
pK

(b2)w(2nK−1+1)(b2nK+1 − 1)
,

in its lowest form, and an integer p1,K such that

ξ1,K =
p1,K

b
w(2nK−1+1)
1 (b2nK+1

1 − 1)
,

and the greatest common divisor of p1,K and b
w(2nK−1+1)
1 (b2nK+1

1 − 1) is bounded inde-
pendently of K.

Since a > 2 + 1/w, the inequality nK+1 + 1 > nK + 1 + w(2nK + 1) is satisfied if K
is sufficiently large. If this is the case, then we check that

b(b2)−nK−1−w(2nK+1) ≤ |ξ − ξK | ≤ 2b(b2)−nK−1−w(2nK+1) (2.1)

and
bb
−nK−1−w(2nK+1)
1 ≤ |ξ1 − ξ1,K | ≤ 2bb

−nK−1−w(2nK+1)
1 . (2.2)

Since we know, up to a bounded numerical constant, the reduced form of the rational
numbers ξK and ξ1,K , it then follows from (2.1) and (2.2) that

|ξ − ξK | � (den(ξK))−2(nK+1+w(2nK+1))/(2w(2nK−1+1)+2nK+1)

and
|ξ1 − ξ1,K | � (den(ξ1,K))−(nK+1+w(2nK+1))/(w(2nK−1+1)+2nK+1),

where the notation AK � BK means that the ratio AK/BK is bounded from above and
from below by positive constants independent of K.

This gives the lower bounds

µ(ξ) ≥ a(2w + 1)

a+ 2
and µ(ξ1) ≥ a(2w + 1)

2(a+ 1)
. (2.3)

It remains to show that the inequalities in (2.3) are indeed equalities. To do this, we use a
classical lemma whose proof is based on triangle inequalities (see for example Lemma 4.1
of [3]).
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Lemma 2. Let ξ be a real number such that there exist positive real numbers c1, c2, µ, θ
and reduced rational numbers (pk/qk)k≥1 such that

c1
qµk
≤
∣∣∣∣ξ − pk

qk

∣∣∣∣ ≤ c2
qµk
, k ≥ 1,

and
qk ≤ qk+1 ≤ qθk.

If θ ≤ (µ− 1)2, then the irrationality exponent of ξ is equal to µ.

We check that

lim
K→+∞

∣∣∣∣ log den(ξK+1)

log den(ξK)
− 2w(2nK + 1) + 2nK+1 + 1

2w(2nK−1 + 1) + 2nK + 1

∣∣∣∣ = 0

and

lim
K→+∞

∣∣∣∣ log den(ξ1,K+1)

log den(ξ1,K)
− w(2nK + 1) + 2nK+1 + 1

w(2nK−1 + 1) + 2nK + 1

∣∣∣∣ = 0.

Consequently, by the definition of (nk)k≥1, the sequences

(log den(ξK+1)/ log den(ξK))K≥1 and (log den(ξ1,K+1)/ log den(ξ1,K))K≥1

both tend to aw as K tends to infinity. Since

aw ≤
(
a(2w + 1)

2(a+ 1)
− 1

)2

for a ≥ 3 and w ≥ 3a, the theorem follows from Lemma 2.
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7, rue René Descartes
67084 STRASBOURG (FRANCE)

bugeaud@math.unistra.fr

8


