
PERFECT POWERS WITH THREE DIGITS

MICHAEL A. BENNETT AND YANN BUGEAUD

Abstract. We solve the equation xa + xb + 1 = yq in positive integers x, y, a, b and q with a > b

and q ≥ 2 coprime to φ(x). This requires a combination of a variety of techniques from effective

Diophantine approximation, including lower bounds for linear forms in complex and p-adic loga-

rithms, the hypergeometric method of Thue and Siegel applied p-adically, local methods, and the

algorithmic resolution of Thue equations.

1. Introduction

The problem of digital representations of integers from special sequences is, in many cases, one

of considerable subtlety. By way of example, the classification of perfect powers with precisely two

binary digits was solved in antiquity, whilst the analogous solution for three digits is of a much more

recent vintage (see Szalay [15]), that for four such digits is incomplete (but partially understood; see

[2, 10]), and, for five or more digits, even finiteness results for the problem are unavailable. In a pair

of recent papers [2], [3], the authors, with Mignotte, have derived a number of results on equations of

the shape

xa1 + xb2 + 1 = yq and xa1 + xb2 + xc3 + 1 = yq,

where x1, x2 and x3 are positive integers with the property that gcd(x1, x2) > 1 or gcd(x1, x2, x3) > 1,

respectively. Such equations are shown to have, effectively, no solutions in exponents a, b and c and

integers y and q ≥ q0 = q0(xi). In the particular case where x1 = x2 = x, the first equation is proven

to have no solutions whatsoever, provided q exceeds some effectively computable absolute constant,

at least under the assumption that gcd(q, φ(x)) = 1. In the paper at hand, we will sharpen this last

result, proving the following :
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Theorem 1. Let x be a positive integer and suppose that there exist nonnegative integers a, b, y and

q ≥ 2 such that

(1) xa + xb + 1 = yq, a > b > 0, with gcd(q, φ(x)) = 1.

Then

(x, a, b, yq) = (2, 5, 4, 72), (2, 9, 4, 232), (3, 7, 2, 133) or (2, 2t, t+ 1, (2t + 1)2),

for some integer t ≥ 2.

The case x = q = 2 is the main result (Theorem 1) of Szalay [15], whilst the more general situation

with x ∈ {2, 3} is a consequence of the following :

Theorem 2. (Bennett et al, Theorem 1 of [3]) If there exist integers a > b > 0 and q ≥ 2 for which

xa + xb + 1 = yq, with x ∈ {2, 3},

then (x, a, b, yq) is one of (2, 5, 4, 72), (2, 9, 4, 232) or (3, 7, 2, 133), or (x, a, b, yq) = (2, 2t, t+1, (2t+1)2),

for some integer t ≥ 2.

Theorem 1 is, in fact, a special case of our next result, in conjunction with Theorem 2 :

Theorem 3. Let x be a positive integer and suppose that there exist positive integers a, b, y and an

odd prime q such that

(2) xa + xb + 1 = yq, a > b > 0.

If we write x = x0 · x1, where x0 is comprised solely of prime factors p of x for which y ≡ 1 (mod p),

then either (x, a, b, yq) = (3, 7, 2, 133) or x0 < x31.

We remark here that we can in fact prove a like result to this theorem with the inequality x0 < x31

replaced by x0 < xt1, for any

t > min
2≤m≤q

m∈Z

{
m2 −m+ 2q

2mq −m2 +m− 2q

}
,

provided we have xb suitably large (depending, effectively, upon t and q). In particular, as a simple

exercise in calculus, we have such a result for any t >
√

2
q + 4

q . To prove this requires appeal to multi-

point Padé approximations to (1− z)i/q for 0 ≤ i ≤ m− 1 and introduces an assortment of technical

difficulties. We restrict our attention to the case t = 3 for simplicity and to make our conclusions as

explicit as possible.
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To see how Theorem 1 follows from Theorem 3, in case q has an odd prime factor, observe that the

condition gcd(q, φ(x)) = 1 implies, with equation (2), that y ≡ 1 (mod x) and hence that x0 = x and

x1 = 1, whereby (x, a, b, yq) = (3, 7, 2, 133).

It follows from Theorem 1 that every solution (x, a, b, yq) with x ≥ 4 and q prime to equation (2)

satisfies x ≥ 2q + 1.

In case q = 2, it is possible to somewhat generalize the aforementioned result of Szalay (classifying

solutions to (1) with x = q = 2) :

Theorem 4. Let x be a positive integer and suppose that there exist positive integers a, b and y such

that

(3) xa + xb + 1 = y2, a > b > 0.

If we write x = x0 · x1, where x1 is the largest odd divisor of x, then either

(x, a, b, y) = (2, 5, 4, 7), (2, 9, 4, 23), or (2, 2t, t+ 1, 2t + 1), for t ≥ 2,

or we have x0 < x41.

Luca [12] (see also Scott [14]) proved that equation (3) has no solutions with x = p an odd prime. In

this case, if a solution existed, one would necessarily have either gcd(x, y−1) = 1 or gcd(x, y+1) = 1.

One way to generalize this result is thus the following :

Theorem 5. Let x be an odd positive integer and suppose that there exist positive integers a, b and y

such that

xa + xb + 1 = y2, a > b > 0.

Then

min {gcd(x, y − 1), gcd(x, y + 1)} > x1/6.

Here, the exponent 1/6 may be replaced by any number smaller than 1/4, for sufficiently large x;

again, our statement is as given to ensure that it is as clean as possible. We observe that our proof of

this theorem, being based on techniques from Diophantine approximation, is of an entirely different

flavour to that given in [12] (which relies upon the arithmetic of quadratic fields).

It is worth noting that Theorem 1 is directly analogous to a result of Bugeaud, Mignotte and Roy

[6], classifying solutions to the Nagell-Ljunggren equation

xn − 1

x− 1
= yq
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under the constraint that every prime divisor of x divides y − 1.

The techniques of this paper may be applied somewhat more generally than to just equations of

the shape xa + xb + 1 = yq. Indeed, one may complement Theorem 2 of [1] (where the first author

studied perfect powers with few ternary digits), combining lower bounds for linear forms in two or

three Archimedean logarithms with estimates for linear forms in two 3-adic logarithms to compute an

integer q0 with the property that no qth power with q ≥ q0 has at most three ternary digits. Applying

then a result of Corvaja and Zannier [9] leads to the conclusion that, beside the integers of the form

(3t + 1)2 = 32t + 2 · 3t + 1, there exist only finitely many perfect powers with at most three ternary

digits.

Whilst the techniques of [2] and [3] are based almost entirely upon the theory of lower bounds

for linear forms in logarithms (p-adic and complex), here we will proceed by combining bounds for

non-Archimedean logarithms with the hypergeometric method of Thue and Siegel, applied p-adically.

Such arguments have been used previously in, for example, work of Beukers [4] and Corvaja and

Zannier [10].

The outline of this paper is as follows. In Section 2, we begin by appealing to results from linear

forms in non-Archimedean logarithms to prove Theorem 3 for suitably large prime exponent q. The

quality of our bounds in this section will prove to be of importance later. In Section 3, we will introduce

Padé approximants to the binomial function. Applying these p-adically will enable us to derive upper

bounds for x in Theorem 3, essentially reducing the proof to a finite computation. Section 4 continues

and sharpens this argument, leaving us with a (feasible) finite computation, the details of which are

discussed in Section 5. Finally, in Section 6, we treat the cases with exponent q = 2 (i.e. Theorems 4

and 5).

2. Linear forms in two logarithms

In this section, we will begin the proof of Theorem 3 by applying estimates for linear forms in two

non-Archimedean logarithms to deduce explicit upper bounds for q in equation (2), under the given

constraints on x0.

The assumptions of the theorem we will use (a special case of Theorem 3 of [5]) appear rather

restrictive, but are satisfied in our situation. If an integer m > 1 has the factorization m = pj11 · · · p
jk
k ,

where the pi’s are distinct primes and ji ∈ N, we define, for a nonzero integer x,

νm(x) = min
1≤i≤k

[
νpi(x)

ji

]
,

where νp(x) is defined to be the largest integer k such that pk | x.
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Theorem 6. Let α1 and α2 be positive rational numbers with α1 6= 1, b1 and b2 be positive integers

and set

Λ = αb22 − α
b1
1 .

For any set of distinct primes p1, . . . , pk and positive integers j1, . . . , jk, we let m = pj11 · · · p
jk
k and

suppose that there exists a positive integer g such that for each i, we have either

νpi(α
g
1 − 1) ≥ ji and νpi(α

g
2 − 1) ≥ 1, if pi ≥ 2,

or

νpi(α
g
1 − 1) ≥ 2 and νpi(α

g
2 − 1) ≥ 2, if pi = 2.

Then, if m, b1 and b2 are relatively prime, and α1 and α2 are multiplicatively independent, we may

conclude that

νm(Λ) ≤ 53.6 g

(logm)4
(
max{log b′ + log(logm) + 0.64, 4 logm}

)2
logA1 logA2,

where

b′ =
b1

logA2
+

b2
logA1

and logAi ≥ max{h(αi), logm}.

For the remainder of this section, we will suppose that we have a solution to the Diophantine

equation (2), where x = x0x1 with x0 ≥ x31. Let p be a prime divisor of x such that p divides y−1 and

define u to be the largest integer such that pu divides xb. If p 6= q, then pu divides y − 1. Otherwise,

max{p, pu−1} divides y − 1.

We apply Theorem 6 with α1 = y, α2 = xb + 1, b1 = q, b2 = 1 and m = xb0q
−δ, where δ = 1, if q

divides x0 (whereby, necessarily, q2 divides xb0), and δ = 0 otherwise. We therefore have y ≡ 1 (mod m)

and may take g = 2 if b = 1 and x is even but not divisible by 4. Otherwise, g = 1. Clearly, α1 and

α2 are multiplicatively independent.

Put A2 = xb + 1 and A1 = y. Since y ≡ 1 (mod m), we deduce that A1 ≥ max{y,m}. We then

have

(4) νm(Λ) ≤ 53.6g

(logm)4
(
max{log b′ + log(logm) + 0.64, 4 logm}

)2
logA1 logA2,

where

b′ =
b1

logA2
+

b2
logA1

and logAi ≥ max{h(αi), logm}.

In the other direction, note that

νm(Λ) ≥ ba/bc ≥ (a/b)− 1 ≥ q log y

b log x
− log 2

b log x
− 1.
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Let us assume first that the maximum in inequality (4) is equal to 4 logm. Then

νm(Λ) ≤ 857.6 g

(logm)2
(log(xb + 1))(log y)

and

q ≤ 857.6 g

(logm)2
(log xb) log(xb + 1) +

log 2

log y
+
b log x

log y
.

From x0 ≥ x31, we deduce that x40 ≥ x30x31 = x3.

When q does not divide x0, set ν = 0. Otherwise, define ν by q = (xb)ν . We therefore have both

0 ≤ ν ≤ 1/2 and

q ≤ 857.6 g

(3/4− ν)2
· log(xb + 1)

log xb
+

log 2

log y
+
b log x

log y
.

Very roughly,

(5) y ≥ m ≥ xb/20 ≥ x3b/8,

and so

(6) q ≤ 857.6 g

(3/4− ν)2
· log(xb + 1)

log xb
+

11

3
.

From Theorem 2, we may suppose that xb ≥ 5 (and, more generally, that xb is not a power of 2 or

of 3). If xb ≤ 1500 and q > 1500, then ν = 0 and we infer from (6) that

q ≤ 1524.7
log(xb + 1)

log xb
g +

11

3
< 1702 g.

If xb > 1500, then (6) implies that

(7) q ≤ 857.7

(3/4− ν)2
g +

11

3
.

All these bounds are under the assumption that the maximum in (4) is equal to 4 logm. If this

condition is not fulfilled, then we obtain

νm(Λ) ≤ 53.6g

(logm)4
(log b′ + log(logm) + 0.64)2(log(xb + 1))(log y).

Since, by (5),

log b′ + log(logm) ≤ log(q + 8/3),

we therefore have

q log y

b log x
≤ log 2

b log x
+ 1 +

53.6 g

(logm)4
(log(q + 8/3) + 0.64)2(log(xb + 1))(log y).

Consequently,

(8) q ≤ 53.6 g

(3/4− ν)4(log xb)2
(log(q + 8/3) + 0.64)2 · log(xb + 1)

log xb
+

11

3
.
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If g = 1, xb ≤ 1500 and q > 1500, then ν = 0 and we infer from (8) that

q ≤ 170
log(xb + 1)

log xb

( log(q + 8/3) + 0.64

log xb

)2
+

11

3
.

For xb = 5, 6, 7, 10, 11, 12, 13, 14 and 15, we obtain the bounds 6500, 4800, 3800, 2400, 2120, 1915, 1755,

1625 and 1520, respectively.

Assume now that g = 1, xb > 1500 and q > 1500. If δ = 1, then xb ≥ q2 ≥ 15002 and, since

ν ≤ 1/2, (8) implies that

(9) q ≤ 7.2g (log(q + 8/3) + 0.64)2 +
11

3
.

If δ = 0, then ν = 0 and we get from (8) that

(10) q ≤ 3.2g (log(q + 8/3) + 0.64)2 +
11

3
.

To summarize, in the case g = 1, we may conclude that q ≤ q0, where

(11)

xb q0 xb q0 xb q0

5 6500 11 2120 15 ≤ xb ≤ 29 1577

6 4800 12 1915 30 ≤ xb ≤ 1500 1543

7 3800 13 1755 xb > 1500 857.7
(3/4−ν)2 + 11

3

10 2400 14 1625

For g = 2 (which can occur only if b = 1, x is even and not divisible by 4), we have essentially to

replace the values of q0 in (11) by 2q0. In the worst case, when q | x and g = 2, we therefore have

q ≤ 27449, while q | x and g = 1 implies q ≤ 13723. If q fails to divide x and xb > 1500, we have

q ≤ 1523 or q ≤ 3049, if g = 1 or 2, respectively.

3. Applications of Padé approximants to hypergeometric functions

Our goal in the next few sections will be to derive an absolute bound for x satisfying (2) with the

additional assumption that x0 ≥ x31. To do this, we will appeal to the theory of Padé approximants to

binomial functions. Such an approach is reasonably common in a variety of number theoretic contexts,

see e.g. [10, 11, 13].

Let us define Padé approximants to (1 + z)1/q, for q ≥ 2 prime. If n1 and n2 are nonnegative

integers, we set

(12) Pn1,n2
(z) =

n1∑
k=0

(
n2 + 1/q

k

)(
n1 + n2 − k

n2

)
zk



8 MICHAEL A. BENNETT AND YANN BUGEAUD

and

(13) Qn1,n2(z) =

n2∑
k=0

(
n1 − 1/q

k

)(
n1 + n2 − k

n1

)
zk.

Then (see e.g. [7]), we have that

(14) Pn1,n2(z)− (1 + z)
1/q

Qn1,n2(z) = zn1+n2+1En1,n2(z),

where

(15) En1,n2
(z) =

(−1)n2 Γ(n2 + (q + 1)/q)

Γ(−n1 + 1/q)Γ(n1 + n2 + 2)
F (n1 + (q − 1)/q, n2 + 1, n1 + n2 + 2,−z),

for F the hypergeometric function given by

F (a, b, c,−z) = 1− a · b
1 · c

z +
a · (a+ 1) · b · (b+ 1)

1 · 2 · c · (c+ 1)
z2 − · · · .

Appealing twice to (14) and (15) with, in the second instance, n2 replaced by n2 + 1, and eliminating

(1+z)1/q, we find that Pn1,n2+1(z)Qn1,n2
(z)−Pn1,n2

(z)Qn1,n2+1(z) is a polynomial of degree n1+n2+1

with a zero at z = 0 of order n1 + n2 + 1 (and hence monomial). It follows that we may write

(16) Pn1,n2+1(z)Qn1,n2
(z)− Pn1,n2

(z)Qn1,n2+1(z) = czn1+n2+1,

with, a short calculation reveals, c 6= 0.

We will consider (14) with z = xb and choose nonnegative integers n1 and n2 such that n1 ≥ n2.

Let us write x = x0 · x1 where x0 is comprised of the primes p dividing x for which y ≡ 1 (mod p),

and x1 consists of the largest factor of x coprime to x0. It is useful for us to observe (see e.g. Lemma

3.1 of Chudnovsky [8]) that (
n± 1

q

k

)
q[

qk
q−1 ] ∈ Z,

so that, in particular, since n1 ≥ n2, defining Cn1,n2 by

Cn1,n2
= gcd

{
numerator

((
n2 + 1/q

k

)(
n1 + n2 − k

n2

))
, k = 0, . . . , n1

}
,

we have

qκ C−1n1,n2
Pn1,n2

(xb) and qκ C−1n1,n2
Qn1,n2

(xb) ∈ Z,

where

κ =


[
qn1

q−1

]
if gcd(x, q) = 1

0 if q | x and max{νq(x), b} > 1.

Note that we cannot have νq(x) = b = 1, since yq ≡ 1 (mod q) implies that yq ≡ 1 (mod q2).
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We suppose that p is a prime divisor of x. Setting η =
(
1 + xb

)1/q
, since (1 + xbz)1/q, qκPn1,n2

(z)

and qκQn1,n2(z) each have p-adic integral coefficients, the same is necessarily true of qκEn1,n2(z) and

so, via equation (14),∣∣qκ C−1n1,n2
Pn1,n2

(xb)− η qκ C−1n1,n2
Qn1,n2

(xb)
∣∣
p
≤ p−νp(x)b(n1+n2+1).

On the other hand, since ηq ≡ yq (mod pνp(x)a), if we assume that y ≡ 1 (mod p) (i.e. that p | x0),

we may conclude, if p | x and (p, q) 6= (2, 2), that

η ≡ y (mod pνp(x)a−δ) for δ =

 1 if p = q,

0 if p 6= q.

If x is even and q = 2, we have

η ≡ ±y (mod 2ν2(x)a−1).

for some choice of sign. It follows, in case p | x and (p, q) 6= (2, 2), that

(17)
∣∣qκ C−1n1,n2

Pn1,n2
(xb)− y qκ C−1n1,n2

Qn1,n2
(xb)

∣∣
p
≤ p−min{νp(x)a−δ,νp(x)b(n1+n2+1)}.

Defining

κ1 =


[
qn1

q−1

]
if gcd(x, q) = 1

0 if gcd(x, q) = q,

if

Pn1,n2
(xb) 6= y Qn1,n2

(xb)

we may therefore conclude, assuming q ≥ 3 and n1 + n2 + 1 ≥ a/b, that

(18) Λn1,n2 :=
∣∣qκ1 C−1n1,n2

Pn1,n2(xb)− y qκ1 C−1n1,n2
Qn1,n2(xb)

∣∣ ≥ xa0 .
We choose

n1 =

⌈
(q + 1)a

2qb

⌉
and n2 =

⌈
(q − 1)a

2qb

⌉
− δ

for δ ∈ {0, 1}, where dxe denotes the smallest integer ≥ x, so that, in particular, we have the desired

inequality (n1 + n2 + 1)b ≥ a. Equation (16) readily implies that for at least one of δ ∈ {0, 1}, we

must have Pn1,n2(xb) 6= y Qn1,n2(xb) and hence inequality (18).

Let us assume for the remainder of this section that xb ≥ 106. Before we proceed further, we will

have use of a pair of (preliminary) lower bounds upon a/b. Note that y − 1 is divisible by q−δ xb0,

where δ = 1 if q | x0 and 0 otherwise. Further, if δ = 1, then necessarily q2 | xb0. Since we have

assumed x0 ≥ x31, we have x0 > x3/4. Using only that a ≥ 3, q ≥ 3 and x ≥ 5, we find that

(19) y < 1.06502xa/q,
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and so

xa/q > q−δ 1.06502−1 x3b/4,

whence we have the inequality

(20) a >

(
3q

4
− q log(1.06502 q)

log(xb)

)
b.

We next consider Λ1,0, which divides
∣∣q + xb − qy

∣∣. We begin by showing that Λ1,0 6= 0, which is

obviously true if q fails to divide x. If q | x, say x = qνq(x) · z, then if Λ1,0 = 0, necessarily

y = 1 + qbνq(x)−1 · zb

and hence the equation xa + xb + 1 = yq becomes

(21) qaνq(x) za = q(bνq(x)−1)qzqb + · · ·+
(
q

2

)
q(bνq(x)−1)2z2b.

If we have q = 3 and bνq(x) = 2, then

3aνq(x)−3 za−2b = zb + 1,

whence

3a−3 za−4 = a2 + 1 or 32a−3 za−2 = z + 1.

In either case, we easily obtain a contradiction. Otherwise, from (21), aνq(x) = 2bνq(x) − 1, so that

νq(x) = 1 (whereby b ≥ 2) and a = 2b− 1. Comparing terms in (21), we find that

q2b−1z2b−1 > q(b−1)qzqb ≥ q3b−3z3b,

contradicting b ≥ 2. We conclude, as desired, that Λ1,0 6= 0.

Since a ≥ 2b (which follows, with care, from (20)), we thus have

min{νp(x)a, νp(x)b(n1 + n2 + 1)} = min{νp(x)a, 2νp(x)b} ≥ 2b,

for each prime divisor p of x, whereby, from (17),

Λ1,0 ≥ x2b0 ≥ x3b/2.

We therefore have qy > x3b/2, and so

(22) xa/q > (1.06502 q)−1 x3b/2,

i.e.

(23) a >

(
3q

2
− q log(1.06502 q)

log(xb)

)
b.
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We are now ready to proceed. Inequality (18) provides us with a strong lower bound upon Λn1,n2
.

On the other hand, following Saradha and Shorey [13] (see the proof of Lemma 18), we have

(24)
∣∣Pn1,n2(xb)

∣∣ < (n1 + n2
2

+ 1

)
2n1+n2−1

(
1 +

xb

2

)n1

≤
( a

2b
+ 2
)

2a/b+1

(
1 +

xb

2

) (q+1)a
2qb +1

.

Let us suppose first that 17 ≤ q ≤ 27449. Combining (20), (24) and the fact that xb ≥ 106, it

follows, after a little work, that∣∣Pn1,n2
(xb)

∣∣ < 0.66 · 22a/3b x(q+1)a/(2q)+b.

Similarly, ∣∣Qn1,n2(xb)
∣∣ < 2n1+n2−1

(
1 +

xb

2

)n2

< 0.13 · 22a/3b x(q−1)a/(2q)+b

and so, from (19), ∣∣qκ1Pn1,n2
(xb)− y qκ1Qn1,n2

(xb)
∣∣ < qκ1 22a/3b x(q+1)a/(2q)+b.

Since

qκ1 ≤ q(q+1)a/(2(q−1)b)+q/(q−1)

and Cn1,n2
≥ 1, we thus may conclude from (18) that

xb0 < 22/3 q(q+1)/(2(q−1))+bq/a(q−1) xb(q+1)/(2q)+b2/a,

i.e., since x0 > x3/4, that

xb <
(

22/3 q(q+1)/(2(q−1))+bq/a(q−1)
)( 1

4−
1
2q−

b
a )

−1

.

This, with inequality (23), contradicts the assumption that xb ≥ 106 for 17 ≤ q ≤ 317 and, for

331 ≤ q ≤ 27449, implies, in each case, that xb < 1062 q3/2.

4. Sharper lower bounds for a/b

To derive absolute upper bounds upon xb, for the remaining values of q, i.e. 3 ≤ q ≤ 13, we require

rather stronger lower bounds for a/b. We assume, as we may, that x is divisible by a prime exceeding

3. Note that Λ2,0 divides ∣∣∣∣q2 + qxb −
(
q − 1

2

)
x2b − q2y

∣∣∣∣ .
Since y ≥ 3 and xb ≥ 1, this quantity is necessarily nonzero and so, since a > qb ≥ 3b,

x9b/4 ≤ x3b0 <

(
q − 1

2

)
x2b + q2y.
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For q ≤ 13, this, together with the assumption that xb ≥ 106, implies that q2y > 0.8x9b/4 and so

xa/q > (4 q2/3)−1 x9b/4,

i.e.

(25) a >

(
9q

4
− q log(4 q2/3)

log(xb)

)
b, for 3 ≤ q ≤ 13.

Inequality (25) is sufficiently strong for what we have in mind, provided q ∈ {11, 13}. Indeed, arguing

as in the preceding section contradicts xb ≥ 106 in either case. For 3 ≤ q ≤ 7, (25) and xb ≥ 106

implies that 
a > 6.21 b if q = 3,

a > 9.98 b if q = 5,

a > 13.63 b if q = 7.

We next observe that Λ3,1 divides
∣∣81 + 81xb + 9x2b − x3b − 81y − 54xby

∣∣, if q = 3, and

2−α
∣∣∣∣2q3 +

1

2
(3q2(q + 1))xb +

1

2
(q(q + 1))x2b − 1

12
(q2 − 1)x3b − 2q3y − 1

2
(3q3 − q2)xby

∣∣∣∣ ,
otherwise, where α = 0, if q = 5, or α = 1, if q = 7. Again, in each case, the quantity inside the

absolute value is negative, whence, appealing to the preceding lower bounds upon a/b, we arrive at

the inequalities

x15b/4 ≤ x5b0 < x3b + 81y + 54xby, if q = 3,

or

x15b/4 ≤ x5b0 < 2−α
(
q2 − 1

12
x3b + 2q3y +

3q3 − q2

2
xby

)
, if q > 3.

Our assumption that xb ≥ 106 thus implies inequalities of the shape
a > 7.37 b if q = 3,

a > 11.85 b if q = 5,

a > 16.43 b if q = 7.

In case q = 7, we consider n1 = 5 and n2 = 3, to find that Λ5,3 divides |P − yQ| where

P = 470596 + 924385xb + 565950x2b + 107800x3b + 1540x4b − 66x5b

and

Q = 470596 + 857157xb + 472311x2b + 74970x3b.

Our lower bound upon xb implies that P − yQ is negative and so, since a > 16.43b > 9b, we find that

x27b/4 ≤ x9b0 < 66x5b + y
(
470596 + 857157xb + 472311x2b + 74970x3b

)
,
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which, with xb ≥ 106, yields y > 74971−1x15b/4. Arguing as previously, we conclude that a > 20.53 b,

if q = 7. Feeding this inequality back into the arguments of the preceding section lead to the conclusion

that xb < 2× 106.

In case q = 5, we also consider n1 = 5 and n2 = 3, to find that Λ5,3 divides |P − yQ| where

P = 109375 + 218750xb + 137500x2b + 27500x3b + 550x4b − 22x5b

and

Q = 109375 + 196875xb + 106875x2b + 16625x3b.

Again, P − yQ is negative and so, since a > 11.85b > 9b, we find that

x27b/4 ≤ x9b0 < 22x5b + y
(
109375 + 196875xb + 106875x2b + 16625x3b

)
,

which yields y > 16626−1x15b/4 and so a > 15.20b. We next consider Λ10,4. As before, the leading

coefficient of P10,4(z) is negative, so that we are led to an inequality of the shape

x45b/4 ≤ x15b0 < 456x10b + 58 y Q,

where

Q = 8125 + 22750xb + 23100x2b + 10010x3b + 1547x4b.

After a little work, we conclude that a > 28.90 b. We finally consider Λ14,6 (where again the leading

coefficient of P14,6(z) is negative) which leads to the inequality

x63b/4 ≤ x21b0 < 290377x14b + 59 y Q,

where Q < 5.3 × 107x6b. With xb ≥ 106, we conclude that a > 37.04 b and hence, as in the previous

section, after some work, that again xb < 2× 106.

The case q = 3 is necessarily more involved, since we require a much larger lower bound upon a/b.

In the following table, we use two shorthands to indicate why Λn1,n2 6= 0. If we write (1), it indicates

that the sign of zn1 in Pn1,n2(z) is negative. If, instead, we write (2), it means that y is known to be

suitably larger than x(n1−n2)b. In either case, appealing to our assumed lower bound for xb, the term

inside the absolute value in the definition of Λn1,n2
is negative and hence nonzero.

To implement our arguments, at each stage we require a ≥ (n1 + n2 + 1) b (note that this is the

reverse of the inequality we had for our choices of n1 and n2 in Section 3) and suppose throughout
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that xb ≥ 2× 107.

(n1, n2) Λn1,n2
6= 0 Cn1,n2

y ≥ a/b ≥

(4, 2) (1) 1 1
1200x

13b/4 8

(5, 2) (2) 7 1
892x

4b 10

(6, 3) (2) 7 1
15148x

9b/2 11

(7, 3) (1) 20 1
28918x

21b/4 14

(8, 4) (1) 5 1
665100x

23b/4 15

(9, 5) (1) 26 1
5986000x

25b/4 16

(10, 5) (2) 13 1
74395200x

7b 18

(11, 5) (1) 208 1
26257200x

31b/4 20

(13, 6) (2) 532 (1.03× 109)−1x9b 23

(15, 7) (1) 3344 (1.65× 1010)−1x41b/4 26

(17, 8) (2) 5225 (3.57× 1011)−1x23b/2 29

(20, 8) (1) 55 (4.44× 1016)−1x55b/4 35

We carry on in this vein, with results as follows (details are available from the authors upon request);

in all cases, we use (1) to conclude that Λn1,n2
6= 0.

(n1, n2) a/b ≥ (n1, n2) a/b ≥ (n1, n2) a/b ≥ (n1, n2) a/b ≥ (n1, n2) a/b ≥

(23, 9) 40 (49, 19) 81 (101, 39) 164 (211, 81) 340 (419, 163) 671

(27, 11) 44 (57, 23) 93 (117, 45) 190 (243, 95) 389 (482, 188) 770

(30, 12) 50 (65, 25) 106 (136, 52) 221 (279, 109) 446 (553, 215) 883

(35, 13) 59 (75, 29) 123 (158, 62) 253 (320, 124) 514 (635, 247) 1016

(41, 15) 69 (88, 34) 142 (182, 70) 293 (367, 143) 586 (730, 284) 1167

In conclusion, we have that

(26) a ≥ 1167 b, if q = 3 and xb ≥ 2× 107.

Inequality (24) now implies that∣∣Pn1,n2
(xb)

∣∣ < 0.01 · 20.67a/b x2a/3+b

and we also have that ∣∣Qn1,n2
(xb)

∣∣ < 0.07 · 20.67a/b xa/3+b.

From (19), ∣∣qκ1Pn1,n2(xb)− y qκ1Qn1,n2(xb)
∣∣ < qκ1 20.67a/b x2a/3+b,



POWERS WITH THREE DIGITS 15

whereby, from (18),

(27) xb0 < 20.67 31+3b/2a x2b/3+b
2/a,

i.e., since x0 > x3/4, that

(28) xb <
(

20.67 31+3b/2a
)( 1

12−
b
a )

−1

.

Appealing to (26), we conclude that xb < 2× 108.

5. A finite computation

Collecting our results from the previous two sections, it remains to treat the values xb with

2× 107 ≤ xb < 2× 108 if q = 3 and (27) is satisfied,

xb < 2× 107 if q = 3,

xb < 2× 106 if q = 5 or 7,

xb < 106 if 11 ≤ q ≤ 317,

x ∈ {2q2, 6q2} if 331 ≤ q ≤ 27449,

x < 373 q3/2, b = 1 if 331 ≤ q ≤ 3049, q 6 | x, x ≡ 2 (mod 4),

xb < 276 q3/2 if 331 ≤ q ≤ 1523, q 6 | x, xb 6≡ 2 (mod 4).

In the first case, we write x0 = xθ where 3/4 < θ ≤ 1 (so that x1 = x1−θ). Inequality (27) thus

becomes

(29) xb <
(

20.67 31+3b/2a
)(θ− 2

3−
b
a )

−1

.

Since xb ≥ 2× 107 and a ≥ 1167b, it follows that 3/4 < θ < 0.761 (so that x0.239 < x1 < x0.25). Since

the smallest positive integer x which can be factored as x = x0 · x1 with x1 odd, coprime to x0 and

satisfying x0.239 < x1 < x0.25, is x = 84, it follows from xb < 2 × 108 that b ≤ 4. More precisely, we

have, from (27), that either b = 1, or x1 = 3, b = 4, x ∈ {84, 87, 93, 96}.

If b = 1, we necessarily have 59 ≤ x1 ≤ 113, for x1 odd, x1 6≡ ±3 (mod 9). In total, we find that

there are precisely 2467984 pairs (x, b) for which x = x0 ·x1 with x0 > x31, gcd(x0, x1) = 1, ν3(xb) 6= 1,

x1 odd, 2× 107 ≤ xb < 2× 108, satisfying (27) with q = 3.

For the other cases remaining, we begin by observing that there are 20004842 pairs (x, b) with

x ≥ 5 and xb < 2 × 107, 2001586 pairs (x, b) with x ≥ 5 and xb < 2 × 106, and 1001132 pairs (x, b)

with x ≥ 5 and xb < 106. There are rather more triples (x, b, q) corresponding to, for instance, the

cases with xb < 373 q3/2 and 331 ≤ q ≤ 3049, but, all told, we are left with fewer than 1010 triples to

treat. More careful analysis of our various inequalities reduces this number by roughly half.
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To handle the remaining triples (x, b, q), we begin by noting that this is indeed a finite computation

since we may consider equation (1) as a special case of the family of Thue equations

(30) yq − xδzq = xb + 1, δ ∈ {1, 2, . . . , q − 1}.

We will, in fact, typically solve the remaining equations of the shape (1) by much more elementary

methods; our computations, whilst somewhat laborious, took only a few weeks on the first author’s

laptop.

5.1. A local sieve. For each remaining triple (x, b, q), we begin by searching for an integer N such

that the congruence

xa + xb + 1 ≡ yq (mod N)

has no solution in integers a and y. This is rather simpler than the sieve employed in [3], where an

analogous problem is treated with only the value x predetermined, though we have many more cases

to consider. As in [3], we consider primes pi ≡ 1 (mod q) for which ordx(pi) = mq with m a “suitably

small” integer. By ordl(pi), we mean the smallest positive integer k for which lk ≡ 1 (mod pi). Fixing

M ∈ N, for each such pi with m | M , we let the exponent a range over integers from 1 to Mq and

store the a for which either xa + xb + 1 ≡ 0 (mod pi) or(
xa + xb + 1

)(pi−1)/q ≡ 1 (mod pi).

Denoting by Si the set of values of a corresponding to a prime pi, then our goal is to find primes

p1, p2, . . . , pk with ordx(pi)/q dividing M and

(31)

k⋂
i=1

Si = ∅.

Checking that we have such sets of primes (with M reasonably small) for most triples (x, b, q) is

a reasonably straightforward, if time-consuming computation. Full details are available from the

authors upon request. Indeed, we are able to achieve this, with certain exceptions. These exceptions

correspond to two particular families of values of x and b, namely

x = tq − 2, b = 1, where t ≥ 2,

and

x = (tq − 1)/2, b = 1, where t ≥ 2 is odd,

and to the triples

(x, b, q) = (18, 1, 3), (18, 2, 3) and (11, 2, 5).
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The above local argument fails for the two families here because xδ + x+ 1 = tq with δ = 0 or δ = 1,

respectively, whilst the other three triples arise from the identities

182 + 18 + 1 = 73 and 112 + 112 + 1 = 35.

We can still rule out a number of these cases locally, however, by considering the corresponding

equations

(32) (tq − 2)a + tq − 1 = yq

and

(33) ((tq − 1)/2)a + (tq − 1)/2 + 1 = yq,

modulo q2, appealing to the fact that a ≥ 2. Indeed, if we suppose that t ≡ 2 (mod q), then equation

(32) implies that

yq ≡ (2q − 2)a + 2q − 1 ≡ 2q − 1 (mod q2).

It follows that yq ≡ 1 (mod q) and hence yq ≡ 1 (mod q2), so that

2q−1 ≡ 1 (mod q2),

a contradiction for the primes q under consideration except q = 1093 and q = 3511 (where our upper

bounds upon xb are exceeded). Similarly, if t ≡ 3 (mod q), then (32) implies

yq ≡ (3q − 2)a + 3q − 1 (mod q2).

Since the right hand side of this congruence is 3 (mod q), writing 3q = Aq + 3, we have

Aq + 3 = 3q ≡ (Aq + 1)a +Aq + 2 ≡ 3 + (a+ 1)Aq (mod q2)

and hence aA ≡ 0 (mod q), so that either

3q−1 ≡ 1 (mod q2),

a contradiction for 3 ≤ q < 106, q 6= 11, or q | a. In the latter case, (32) implies, writing a = qa0,

tq − 1 = yq − (tq − 2)qa0 ≥ ((tq − 2)a0 + 1)q − (tq − 2)qa0 ≥ (tq − 1)q − (tq − 2)q > (2q − 1) tq(q−1),

contradicting q ≥ 3.
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All told, after employing local arguments and appealing to our upper bounds upon xb, we are left

to solve equation (1) for

(x, b, q) = (797161, 1, 13), (88573, 1, 11), (177145, 1, 11), (1093, 1, 7), (16382, 1, 7), (39062, 1, 7),

(78123, 1, 7), (279934, 1, 7), (411771, 1, 7), (823541, 1, 7), (11, 2, 5), (121, 1, 5), (1022, 1, 5),

(1562, 1, 5), (3123, 1, 5), (7774, 1, 5), (8403, 1, 5), (29524, 1, 5), (59047, 1, 5), (80525, 1, 5),

(99998, 1, 5), (161049, 1, 5), (185646, 1, 5), (379687, 1, 5), (537822, 1, 5), (709928, 1, 5),

(759373, 1, 5), (1048574, 1, 5), (1238049, 1, 5), (18, 2, 3), (18, 1, 3),

(27k3 + 27k2 + 9k − 1, 1, 3) and (4k3 + 6k2 + 3k, 1, 3).

In the last two cases, k is an integer with, respectively, 1 ≤ k ≤ 90 and 1 ≤ k ≤ 170. In the first

case with (x, b, q) = (797161, 1, 13), we rework the arguments of Section 3, using the fact that 797161

is prime (so that we may assume x0 = 797161, x1 = 1), to obtain a contradiction. For the remaining

triples, we use the computational package Pari to solve the corresponding Thue equations (30) (where

now the degrees of the corresponding number fields are small enough to make this computation

feasible). In each case only trivial solutions occur. This completes the proof of Theorem 3.

6. The case q = 2 : Theorems 4 and 5

Let us begin by proving Theorem 5. Suppose that we have gcd(x, y + 1) ≤ x1/6, say, so that

gcd(x, y− 1) ≥ x5/6. The case with gcd(x, y− 1) ≤ x1/6 proceeds in a similar fashion, with y replaced

by −y. Arguing as in Section 3, we find, if n1 + n2 + 1 ≥ a/b, setting

(34) Λn1,n2
:=
∣∣4n1 C−1n1,n2

Pn1,n2
(xb)− y 4n1 C−1n1,n2

Qn1,n2
(xb)

∣∣ ,
that either Λn1,n2

= 0 or Λn1,n2
≥ x5a/6. where∣∣Pn1,n2(xb)
∣∣ < (n1 + n2

2
+ 1

)
2n1+n2−1

(
1 +

xb

2

)n1

and ∣∣Qn1,n2
(xb)

∣∣ < 2n1+n2−1
(

1 +
xb

2

)n2

.

We choose

(35) n1 =

⌈
3a

4b

⌉
and n2 =

⌈
a

4b

⌉
− δ

for δ ∈ {0, 1}, so that (n1+n2+1)b ≥ a. Equation (16) again implies that for at least one of δ ∈ {0, 1},

we must have Pn1,n2(xb) 6= y Qn1,n2(xb) and so Λn1,n2 6= 0. We have

Λn1,n2
≤ 43a/4b+1 2a/b+1

(
(a/2b+ 2)

(
1 +

xb

2

)3a/4b+1

+ y

(
1 +

xb

2

)a/4b+1
)
.
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We can solve xa + xb + 1 = y2 locally for x = 5 and 6. Let us therefore assume that x ≥ 7 and,

say, xb ≥ 106. After a little work, if we assume that a > 156 b (whereby y < 1.01xa/2), we find that

x5a/6 < 4.8a/b x3a/4+b,

i.e.

(36) xb < 4.813 < 7.2× 108.

To see that the supposition a > 156 b is without loss of generality, let us note first that the

assumption that gcd(x, y − 1) := x0 > x5/6 implies that y > x5b/6 and so

xa + xb + 1 > x5b/3,

whereby a > 3b/2. If a < 2b, noting that Λ1,0 = |2 + xb − 2y| is nonzero (since x is odd), we find that

x5a/6 < |2 + xb − 2y| < max{xb, 2y}.

It follows that y > 1
2 x

5a/6, contradicting y < 1.01xa/2. We may thus suppose that a ≥ 2b and so

x2b0 < |2 + xb − 2y| < max{xb, 2y},

whereby y > 1
2 x

2b
0 > 1

2 x
5b/3 and so, after a little work, a ≥ 3b.

We proceed in a similar fashion. From Λ2,0, we find that

min{x5b/2, x5a/6} ≤ min{x3b0 , x5a/6} ≤
∣∣8 + 4xb − x2b − 8 y

∣∣ < x2b + 8y

and so y > 1
8

(
x5b/2 − x2b

)
, whereby a > 4.9 b. From considering Λ3,0, we find that

x10b/3 ≤ x4b0 ≤
∣∣16 + 8xb − 2x2b + x3b − 16 y

∣∣ < 16 y,

whence a > 6.6 b. Continuing along these lines, with

(n1, n2) = (4, 0), (6, 1), (8, 1), (10, 2), (12, 3), (15, 3), (18, 5), (21, 5), (26, 6), (30, 9), (35, 10),

(40, 13), (46, 14), (53, 16), (60, 19), (68, 21), (77, 25), (86, 27), (97, 31), (113, 32),

we eventually conclude that a > 156 b, as desired.

It remains to handle the pairs (x, b) satisfying (36). As before, our local sieve serves, after lengthy

computations to eliminate all pairs except for those corresponding to equations of the shape (32) with

q = 2 and t odd. Considering the latter equations modulo 4, we find that necessarily a is even, say

a = 2a0, whereby

t2 − 1 = y2 − (t2 − 2)2a0 ≥ ((t2 − 2)a0 + 1)2 − (t2 − 2)2a0 ≥ (t2 − 1)2 − (t2 − 2)2 > 2t2,
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a contradiction.

To prove Theorem 4, we suppose that x = x0 · x1 with x0 = 2ν2(x), x1 ≡ 1 (mod 2) and x1 < x
1/4
0 .

Then, arguing as before (17), we may choose δ1 ∈ {0, 1} such that

(37)
∣∣C−1n1,n2

Pn1,n2
(xb) + (−1)δ1y C−1n1,n2

Qn1,n2
(xb)

∣∣
2
≤ 2−min{ν2(x)a−1, ν2(x)b(n1+n2+1)}.

For n1 and n2 as in (35), and some corresponding choice of δ ∈ {0, 1}, it follows that

(38)
∣∣C−1n1,n2

Pn1,n2
(xb) + (−1)δ1y C−1n1,n2

Qn1,n2
(xb)

∣∣ ≥ 1

2
xa0 ,

and so

x4a/5 ≤ xa0 ≤ 2a/b+2

(
(a/2b+ 2)

(
1 +

xb

2

)3a/4b+1

+ y

(
1 +

xb

2

)a/4b+1
)
.

Assuming that a ≥ 40 b, we have, after some work, that

xb < 1.740 < 1.7× 109.

Since we suppose x0 > x4/5, it follows, if 230 < xb < 1.7 × 109, then 225 | xb, whence xb = 225k for

33 ≤ k ≤ 50. Similarly, if 451452826 ≤ xb ≤ 230, then 224 | xb, so that xb = 224k for 27 ≤ k ≤ 64.

7. Concluding remarks

The Diophantine equation we have studied in this paper

xa + xb + 1 = yq, a > b > 0,

likely has only the solutions

(x, a, b, yq) = (2, 5, 4, 72), (2, 9, 4, 232), (3, 7, 2, 133), (18, 2, 1, 73), (72, 3, 1, 6112)

or (2, 2t, t + 1, (2t + 1)2), t ≥ 2, in positive integers x, y and q ≥ 2. We are, however, unaware of

techniques that would enable one to prove this, without additional assumptions. As a rough indication

of the level of difficulty involved, one might observe that for this equation, only with b = 0, it is still

unknown whether the number of solutions in integers x, y, a, q with a, q ≥ 2 is finite.
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