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Abstract

We give transcendence measures for p-adic numbers ξ, having good rational (resp., integer)

approximations, that force them to be either p-adic S-numbers or p-adic T -numbers.
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1. Introduction

In 1955, Roth [12] proved that irrational real algebraic numbers cannot be approximable by

rational numbers at an order greater than 2.

Theorem 1.1 (Roth [12], 1955). Let ξ be a real number and ε be a positive real number. Suppose

that there exists a sequence (pn/qn)
∞
n=1 of rational numbers such that 2 ≤ q1 < q2 < · · · and

0 <

∣∣∣∣ξ − pn
qn

∣∣∣∣ < q−2−εn (n = 1, 2, . . .).

Then ξ is transcendental.

In 1964, under an additional assumption on the growth of the sequence (qn)n≥1 in Theorem

1.1, Baker [2] obtained a more precise conclusion than the simple transcendence of ξ. Before stating

his result, we shall recall the classifications of transcendental real numbers defined by Mahler [9]

in 1932 and by Koksma [7] in 1939. Let d be a positive rational integer and ξ a real number.

Then, wd(ξ) is defined as the supremum of the real numbers wd for which there exist infinitely

many polynomials P (X) with rational integral coefficients and of degree at most d satisfying the

inequalities

0 < |P (ξ)| ≤ H(P )−wd ,

where H(P ) denotes the height of the polynomial P (X), that is, H(P ) is the maximum of the

absolute values of the coefficients of P (X). On the other hand, w∗d(ξ) is defined as the supremum

of the real numbers w∗d for which there exist infinitely many real algebraic numbers α of degree at

most d satisfying the inequalities

0 < |ξ − α| ≤ H(α)−w
∗
d−1,

where H(α) denotes the height of α, that is, H(α) is the height of the minimal polynomial of α

over Z. Setting w(ξ) = lim supd→∞ (wd(ξ)/d), Mahler [9] called ξ
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• an S-number if 0 < w(ξ) <∞,

• a T -number if w(ξ) =∞ and wd(ξ) <∞ for all positive rational integers d,

• a U -number if w(ξ) =∞ and wd(ξ) =∞ from some d onward.

Exactly in the same manner, setting w∗(ξ) = lim supd→∞ (w∗d(ξ)/d), and using w∗(ξ) and w∗d(ξ)

instead of w(ξ) and wd(ξ), Koksma [7] defined the classes of S∗-, T ∗-, and U∗-numbers and proved

that they coincide with those of S-, T -, and U -numbers, respectively. Thus, the real transcendental

numbers are divided into three disjoint classes. (See Bugeaud [3] for details of the classifications

of Mahler and Koksma.) Now we can state the result of Baker.

Theorem 1.2 (Baker [2], 1964). Let ξ be a real number and ε a positive real number. Suppose

that there exists a sequence (pn/qn)
∞
n=1 of rational numbers with gcd (pn, qn) = 1 (n = 1, 2, . . .)

such that 2 ≤ q1 < q2 < · · · and

0 <

∣∣∣∣ξ − pn
qn

∣∣∣∣ < q−2−εn (n = 1, 2, . . .).

If

lim sup
n→∞

log qn+1

log qn
<∞,

then there exists a real number c, depending only on ξ and ε, such that

w∗d(ξ) ≤ exp exp{cd2} (d = 1, 2, . . .).

In particular, ξ is either an S-number or a T -number.

Recently, in 2010, Adamczewski and Bugeaud [1, Théorème 3.1] gave a new proof of Theorem

1.2, based on a new application (Théorème EL in [1]) of a quantitative version of Theorem 1.1

obtained by Evertse [6] and Locher [8]. Moreover, the result of Adamczewski and Bugeaud [1,

Théorème 3.1] improves the transcendence measure given by Theorem 1.2. In Theorem 1.4, we

give a p-adic analogue of Theorem 1.2 by following the method of the proof of Théorème 3.1 in [1].

Before stating our new result, we recall the classifications of p-adic numbers in analogy with the

classifications of Mahler and Koksma of real numbers.

Throughout the present paper, p denotes a fixed prime number, and | · |p denotes the p-adic

absolute value on the field Q of rational numbers, normalized such that |p|p = p−1. We also denote

the unique extension of | · |p to the field Qp of p-adic numbers, the completion of Q with respect

to | · |p, by the same notation | · |p.

In 1958, Ridout [11] proved the p-adic analogue of Theorem 1.1. For coprime non-zero integers

x, y, write |x, y| for the maximum of |x| and |y|, that is, for the height of the rational number x/y.

Theorem 1.3 (Ridout [11], 1958). Let ξ be a p-adic number and ε a positive real number. Suppose

that there exists a sequence (xn/yn)
∞
n=1 of rational numbers with gcd (xn, yn) = 1 (n = 1, 2, . . .)
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such that 2 ≤ |x1, y1| < |x2, y2| < · · · and

0 <

∣∣∣∣ξ − xn
yn

∣∣∣∣
p

< |xn, yn|−2−ε (n = 1, 2, . . .).

Then ξ is transcendental.

Unlike in the real case, we cannot replace |xn, yn| by |yn| in the statement of Theorem 1.3

since, for any irrational p-adic number ξ and any positive real number ε, there exists an integer x

such that |ξ − x/y|p is less than ε.

Mahler [10], in 1934, proposed a classification of transcendental p-adic numbers in analogy

with his classification of transcendental real numbers. Let d be a positive rational integer and ξ

a transcendental p-adic number. Then wd(ξ) is defined as the upper limit of the real numbers wd

for which there exist infinitely many polynomials P (X) with rational integral coefficients and of

degree at most d satisfying the inequalities

0 < |P (ξ)|p ≤ H(P )−wd−1.

Setting w(ξ) = lim supd→∞ (wd(ξ)/d), we then call ξ

• a p-adic S-number if 0 < w(ξ) <∞,

• a p-adic T -number if w(ξ) =∞ and wd(ξ) <∞ for all positive rational integers d,

• a p-adic U -number if w(ξ) =∞ and wd(ξ) =∞ from some d onward.

The p-adic transcendental numbers are divided into the three disjoint classes S, T , and U . (See

Bugeaud [3] for more information about Mahler’s classification in Qp.) On the other hand, in

analogy with Koksma’s classification of real numbers, let define w∗d(ξ) as the upper limit of the

real numbers w∗d for which there exist infinitely many p-adic algebraic numbers α of degree at most

d satisfying the inequalities

0 < |ξ − α|p ≤ H(α)−w
∗
d−1.

Setting w∗(ξ) = lim supd→∞ (w∗d(ξ)/d), we define the p-adic S∗-numbers, T ∗-numbers, and U∗-

numbers, respectively, exactly as in the real case. Again, the classes S, T , and U are the same as

the classes S∗, T ∗, and U∗, respectively. (See Bugeaud [3] and Schlickewei [13].)

A first goal of the present paper is to establish the following p-adic analogue of Baker’s

Theorem 1.2.

Theorem 1.4. Let ξ be a p-adic number and ε a positive real number. Suppose that there exists

a sequence (xn/yn)
∞
n=1 of rational numbers with gcd (xn, yn) = 1 (n = 1, 2, . . .) such that 2 ≤

|x1, y1| < |x2, y2| < · · · and

(1.1) 0 <

∣∣∣∣ξ − xn
yn

∣∣∣∣
p

< |xn, yn|−2−ε (n = 1, 2, . . .).
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If

(1.2) lim sup
n→∞

log |xn+1, yn+1|
log |xn, yn|

<∞,

then ξ is transcendental and there exists a real number c, depending only on ξ and ε, such that

w∗d(ξ) ≤ (2d)c log log 3d (d = 1, 2, . . .).

In particular, ξ is either a p-adic S-number or a p-adic T -number.

We point out that the bound on w∗d(ξ) in Theorem 1.4 does not depend on p. It has the same

shape as the bound obtained in the real case in Theorem 3.1 of [1]. The same remarks hold for

our next result.

Theorem 1.5. Let ξ be a p-adic number and let ξ =
∑
k≥−k0 akp

k =
∑
j≥1 anjp

nj denote its

Hensel expansion, where k0 ≥ 0, a−k0 6= 0 if k0 > 0, (nj)j≥1 is strictly increasing, and anj is in

{1, . . . , p − 1} for j ≥ 1. Let ε be a positive real number. Suppose that there exists an increasing

sequence J = (jk)k≥1 of positive integers such that nj+1 ≥ (1 + ε)nj for j in J and

lim sup
k→∞

jk+1

jk
<∞.

Then, ξ is transcendental and there exists a real number c, depending only on ξ and ε, such that

w∗d(ξ) ≤ (2d)c log log 3d (d = 1, 2, . . .).

In particular, ξ is either a p-adic S-number or a p-adic T -number.

We display a straightforward application of Theorem 1.5.

Corollary 1.1. For any real number c > 1, the p-adic number
∑+∞
i=0 p

bcic is either an S-number

or a T -number.

The proof of Theorems 1.4 and 1.5 follow a method introduced in [1] and depend on a quan-

titative version of Ridout’s theorem given in Theorem 2.1 in the next section.

We take this opportunity to give, in addition, an application of Theorem 2.1 to the number

of digit changes in the Hensel expansion of irrational algebraic p-adic numbers, thereby improving

[4, Theorem 2].

Let ξ be a p-adic number and denote by

ξ =

+∞∑
k=−k0

akp
k, (ak ∈ {0, 1, . . . , p− 1}, k0 ≥ 0, a−k0 6= 0 if k0 > 0),

its Hensel expansion. For a positive integer n, set

nbdc(n, ξ, p) = Card{1 ≤ k ≤ n : ak 6= ak+1},
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and

S(n, ξ, p) =

n∑
k=1

ak.

Theorem 1.6. Let p be a prime number. Let ξ be an algebraic irrational number in Qp. For any

positive real number δ with δ < 1/2 and any sufficiently large integer n, we have

nbdc(n, ξ, p) ≥ (log n)1+δ,

and there are at least (log n)1+δ non-zero digits among the first n digits of the Hensel expansion of

ξ, and, moreover,

(log n)1+δ ≤ S(n, ξ, p) ≤ n(p− 1)− (log n)1+δ.

The proof of Theorem 1.6 follows the same lines as that of [5, Theorem 3.1]. We omit

the details. The good approximations to ξ are obtained by truncating its Hensel expansion and

repeating the last digit. They are rational numbers, whose denominator divides p − 1, and we

apply Theorem 2.1 to (p− 1)ξ.

Corollary 1.2. For every real numbers c > 1 and η > 2/3, the p-adic number∑
j≥1

pbc
jη c

is transcendental.

2. Auxiliary result

The following theorem is a consequence of [5, Proposition A.1] and is the key point in the

proof of Theorems 1.4 and 1.5. It can be regarded as a p-adic analogue of Théorème EL in [1].

Theorem 2.1 (Bugeaud and Evertse [5], 2008). Let α be a p-adic algebraic number of degree d

and height H, and let ε be a positive real number. Then the inequality∣∣∣∣α− x

y

∣∣∣∣
p

≤ |x, y|−2−ε

has at most

226(1 + 2/ε)3 log(2d+ 4) log ((1 + 2/ε) log(2d+ 4))

solutions (x, y) ∈ Z2 with gcd(x, y) = 1 and

|x, y| ≥ max

((
2
√
d+ 1H

)1/((d+1)(d+2))

, 42/ε
)
.

Likewise, the inequality

|α− x|p ≤ |x|
−1−ε

has at most

226(1 + 1/ε)3 log(2d+ 4) log ((1 + 1/ε) log(2d+ 4))
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solutions x ∈ Z with

|x| ≥ max

((
2
√
d+ 1H

)1/((d+1)(d+2))

, 41/ε
)
.

Theorem 2.1 follows from [5, Proposition A.1] in a same way as [5, Corollary 5.2] eventually

follows from [5, Proposition A.1]. We omit the details.

3. Proof of Theorem 1.4

Let all the hypotheses of Theorem 1.4 be satisfied. It follows from Theorem 1.3 that ξ is a

p-adic transcendental number. By (1.2), there exists a real number c > 1 such that

(3.1) |xn, yn| < |xn+1, yn+1| ≤ |xn, yn|c (n = 1, 2, . . .).

Let d be a positive rational integer and α be a p-adic algebraic number of degree d. We choose

α with sufficiently large height H(α) so that

|x1, y1| ≤
(

2
√
d+ 1H(α)

)1/((d+1)(d+2))

is satisfied. Let j ≥ 2 be the unique integer satisfying

(3.2) |xj−1, yj−1| ≤
(

2
√
d+ 1H(α)

)1/((d+1)(d+2))

< |xj , yj | .

We suppose that we choose α with sufficiently large height H(α) so that the inequality

(3.3) |xj , yj | > max
(

42/ε, 4c(d+ 1)c
)

is satisfied. Let χ be the real number defined by

|ξ − α|p = H(α)−χ.

We suppose that χ > 1 and we will bound χ from above.

Let K be the largest of the positive integers h satisfying |xj+h, yj+h|2+ε < H(α)χ. Then

(3.4) |ξ − α|p = H(α)−χ < |xj+h, yj+h|−2−ε (h = 1, 2, . . . ,K).

By (1.1) and (3.4),∣∣∣∣α− xj+h
yj+h

∣∣∣∣
p

≤ max

(∣∣∣∣ξ − xj+h
yj+h

∣∣∣∣
p

, |ξ − α|p

)
< |xj+h, yj+h|−2−ε

for h = 1, 2, . . . ,K. As a result, the inequality∣∣∣∣α− x

y

∣∣∣∣
p

< |x, y|−2−ε

has at least K rational solutions x/y with gcd(x, y) = 1 and |x, y| > |xj , yj |. Hence, by (3.2), (3.3),

and Theorem 2.1,

(3.5) K ≤ 226(1 + 2/ε)3 log(2d+ 4) log ((1 + 2/ε) log(2d+ 4)) .
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On the other hand, by χ > 1 and the choice of K, the inequalities (3.1), (3.2), and (3.3) imply

that

|xj , yj |(2+ε)c
K+1

≥ |xj+K+1, yj+K+1|2+ε ≥ H(α)χ ≥ 2−χ(d+ 1)−χ/2 |xj , yj |χ/c ≥ |xj , yj |χ/(2c) ,

and so

(3.6) χ ≤ 2(2 + ε)cK+2.

It follows from (3.5) and (3.6) that there exists a real number c′, depending only on ξ and ε, such

that

w∗d(ξ) ≤ (2d)c
′ log log 3d (d = 1, 2, . . .).

Then ξ is either a p-adic S-number or a p-adic T -number. This completes the proof of Theorem

1.4.

4. Proof of Theorem 1.5

Let all the hypotheses of Theorem 1.5 be satisfied. It follows from Theorem 2.1 that ξ is a

p-adic transcendental number. For J ≥ 1, set ξJ :=
∑J
j=1 anjp

nj . By assumption, there exists a

real number c > 1 such that

(4.1) ξj < ξj+1 ≤ ξcj (j = 1, 2, . . .).

Without loss of generality, we assume that k0 = 0. Consequently, we have

(4.2) 1 ≤ ξj < p1+nj (j = 1, 2, . . .)

and there exists j0 such that

(4.3) |ξ − ξj |p = p−nj+1 < ξ
−nj+1/(1+nj)
j < ξ

−1−ε/2
j (j ≥ j0).

Let d be a positive rational integer and α be a p-adic algebraic number of degree d. We choose

α with sufficiently large height H(α) so that

ξ1 ≤
(

2
√
d+ 1H(α)

)1/((d+1)(d+2))

is satisfied. Let j ≥ 2 be the unique integer satisfying

(4.4) ξj−1 ≤
(

2
√
d+ 1H(α)

)1/((d+1)(d+2))

< ξj .

We suppose that we choose α with sufficiently large height H(α) so that the inequality

(4.5) ξj > max
(

42/ε, 4c(d+ 1)c
)

is satisfied. Let χ be the real number defined by

|ξ − α|p = H(α)−χ.

We suppose that χ > 1 and we will bound χ from above.
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Let K be the largest of the positive integers h satisfying ξ
1+ε/2
j+h < H(α)χ. Then

(4.6) |ξ − α|p = H(α)−χ < ξ
−1−ε/2
j+h (h = 1, 2, . . . ,K).

By (4.3) and (4.6),

|α− ξj+h|p ≤ max
(
|ξ − ξj+h|p , |ξ − α|p

)
< ξ
−1−ε/2
j+h

for h = 1, 2, . . . ,K. As a result, the inequality

|α− x|p < x−1−ε/2

has at least K solutions in positive integers x with x > ξj . Hence, by (4.4), (4.5), and Theorem

2.1,

(4.7) K ≤ 226(1 + 2/ε)3 log(2d+ 4) log ((1 + 2/ε) log(2d+ 4)) .

On the other hand, by χ > 1 and the choice of K, the inequalities (4.1), (4.4), and (4.5) imply

that

ξ
(1+ε/2)cK+1

j ≥ ξ1+ε/2j+K+1 ≥ H(α)χ ≥ 2−χ(d+ 1)−χ/2ξ
χ/c
j ≥ ξχ/(2c)j ,

and so

(4.8) χ ≤ 2(1 + ε/2)cK+2.

It follows from (4.7) and (4.8) that there exists a real number c′, depending only on ξ and ε, such

that

w∗d(ξ) ≤ (2d)c
′ log log 3d (d = 1, 2, . . .).

Then ξ is either a p-adic S-number or a p-adic T -number. This completes the proof of Theorem

1.5.
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