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Abstract. Let Θ be a point in Rn. We are concerned with the approximation to Θ by

rational linear subvarieties of dimension d for 0 ≤ d ≤ n−1. To that purpose, we introduce

various convex bodies in the Grassmann algebra Λ(Rn+1). It turns out that our convex

bodies in degree d are the d-th compound, in the sense of Mahler, of convex bodies in

degree one. A dual formulation is also given. This approach enables us both to split and

to refine the classical Khintchine transference principle.

1. Introduction

Let n be a positive integer and let Θ = (θ1, . . . , θn) be a point in Rn. We shall

assume in all the forthcoming statements that the real numbers 1, θ1, . . . , θn are linearly

independent over the field Q of rational numbers. Khintchine’s transference principle

relates the sharpness of the rational simultaneous approximation to θ1, . . . , θn with the

measure of linear independence over Q of 1, θ1, . . . , θn. Let us first quantify these notions

by introducing the exponents ω0(Θ) and ωn−1(Θ) (the meaning of the indices 0 and n− 1

will be explained afterwards).

Definition 1. We denote respectively by ω0(Θ) and ωn−1(Θ) the supremum, possibly

infinite, of the real numbers ω for which there exist infinitely many integer (n + 1)-tuples

(x0, . . . , xn) satisfying respectively the inequation

max
1≤i≤n

|x0θi − xi| ≤
(

max
0≤i≤n

|xi|
)−ω

or |x0 + x1θ1 + · · · + xnθn| ≤
(

max
0≤i≤n

|xi|
)−ω

.

Now we can state Khintchine’s transference principle [12] (see [15] for an alternative

proof, and the monographs [6, 18, 8]) as follows:

Theorem K. The inequalities

(1.1)
ωn−1(Θ)

(n − 1)ωn−1(Θ) + n
≤ ω0(Θ) ≤ ωn−1(Θ) − n + 1

n
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hold for any point Θ = (θ1, . . . , θn) in Rn with 1, θ1, . . . , θn linearly independent over Q.

Moreover, Jarńık [10, 11] established that both inequalities in (1.1) are optimal, and,

consequently, that Theorem K is best possible. It is the main purpose of the present paper

to show that, however, Theorem K can be refined if we introduce two further quantities

associated with Θ.

Following the general “hat” notations of [3], let us introduce the uniform analogues

of the exponents ω0(Θ) and ωn−1(Θ).

Definition 2. We denote respectively by ω̂0(Θ) and ω̂n−1(Θ) the supremum of the real

numbers ω such that for all sufficiently large real number X , there exists a non-zero integer

(n + 1)-tuples (x0, . . . , xn) with supremum norm

max
0≤i≤n

|xi| ≤ X,

satisfying respectively the inequation

max
1≤i≤n

|x0θi − xi| ≤ X−ω or |x0 + x1θ1 + · · · + xnθn| ≤ X−ω.

We establish the following refinement of Khintchine’s theorem, which involves the

uniform exponents associated with Θ.

Theorem 1. Suppose n ≥ 2. The inequalities

(ω̂n−1(Θ) − 1)ωn−1(Θ)

((n − 2)ω̂n−1(Θ) + 1)ωn−1(Θ) + (n − 1)ω̂n−1(Θ)
≤ ω0(Θ)

and

ω0(Θ) ≤ (1 − ω̂0(Θ))ωn−1(Θ) − n + 2 − ω̂0(Θ)

n − 1

hold for any point Θ = (θ1, . . . , θn) in Rn with 1, θ1, . . . , θn linearly independent over Q.

The above inequalities are stronger than (1.1), since

ω̂n−1(Θ) ≥ n and ω̂0(Θ) ≥ 1

n
,

by the Dirichlet Box Principle. Theorem 1 was first established when n = 2 in [13] and its

statement was announced in [5] and in [14]. It follows from the description given in [13] of

the set of all possible quadruples

(

ω1(Θ), ω0(Θ), ω̂1(Θ), ω̂0(Θ)
)

,

where Θ ranges over R2, that Theorem 1 is optimal in dimension two.
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Theorem K was extended by Dyson [7] to transfer inequalities between approximation

to a system of linear forms and approximation of the tranpose system. It would be

interesting to establish a suitable extension of Theorem 1.

The present paper is organized as follows. In Section 2, we define further exponents

ωd(Θ) for d = 1, . . . , n − 2, measuring the accuracy with which Θ can be approximated

by rational linear subvarieties of dimension d. We state in Theorems 2 and 3 transference

inequalities linking ωd(Θ) and ωd+1(Θ), the composition of which gives Theorem K. This

was already known [17, 14], but our proof, based on the second theorem of Minkowski, is

new. Furthermore, our method allows us to refine inequalities between ω0(Θ) and ω1(Θ)

(resp. between ωn−1(Θ) and ωn−2(Θ)), by taking also ω̂0(Θ) (resp. ω̂n−1(Θ)) into account.

Using this, we get Theorem 1, as is explained in Section 7. Section 3 is devoted to some

preliminaries of multilinear algebra. In Section 4 and at the beginning of Section 6, we give

alternative definitions of the exponents ωd. Theorems 2 and 3 are established in Sections

5 and 6, respectively.

2. Going-up and going-down transfers

It is convenient to view Rn as a subset of Pn(R) via the usual embedding

(x1, . . . , xn) 7→ (1, x1, . . . , xn). We shall identify Θ = (θ1, . . . , θn) with its image in Pn(R).

Following [14], let us introduce for each integer d with 0 ≤ d ≤ n−1 an exponent ωd(Θ)

which measures the approximation to the point Θ ∈ Pn(R) by rational linear projective

subvarieties of dimension d, in terms of their height. Denote by d the projective distance

on Pn(R) (it will be defined in §4 below ; notice however that the normalization used there

does not matter for our purpose). For any real linear subvariety L of Pn(R), we denote by

d(Θ, L) = min
P∈L

d(Θ, P )

the minimal distance between Θ and the real points P of L. When L is rational over Q,

we indicate moreover by H(L) its height, that is the Weil height of any system of Plücker

coordinates of L. It is convenient to normalize the height by using the Euclidean norm at

the Archimedean place of Q. We refer to §1 of [17] for more information on the notion of

height of a linear subspace.

Definition 3. Let d be an integer with 0 ≤ d ≤ n−1. We denote by ωd(Θ) the supremum

of the real numbers ω for which there exist infinitely many rational linear subvarieties

L ⊂ Pn(R) such that

dim(L) = d and d(Θ, L) ≤ H(L)−1−ω.

Definitions 1 and 3 are consistent, since d(Θ, L) compares respectively with

max
1≤i≤n

∣

∣

∣
θi −

xi

x0

∣

∣

∣
and

|y0 + y1θ1 + · · ·+ ynθn|
max

0≤i≤n
|yi|
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when L is either the rational point (case d = 0) with homogeneous coordinates

(1, x1/x0, . . . , xn/x0), or the hyperplane (when d = n − 1) with homogeneous equation

y0X0 + · · ·+ ynXn = 0.

Theorem 1 is a consequence of the following two statements.

Theorem 2 (Going-up transfer). Let Θ = (θ1, . . . , θn) be in Rn with 1, θ1, . . . , θn

linearly independent over Q. For any integer d with 0 ≤ d ≤ n − 2, we have the lower

bound

(2.1) ωd+1(Θ) ≥ (n − d)ωd(Θ) + 1

n − d − 1
.

Furthermore,

(2.2) ω1(Θ) ≥ ω0(Θ) + ω̂0(Θ)

1 − ω̂0(Θ)
.

Theorem 3 (Going-down transfer). Let Θ = (θ1, . . . , θn) be in Rn with 1, θ1, . . . , θn

linearly independent over Q. For any integer d with 1 ≤ d ≤ n − 1, we have the lower

bound

(2.3) ωd−1(Θ) ≥ d ωd(Θ)

ωd(Θ) + d + 1
.

Furthermore,

(2.4) ωn−2(Θ) ≥ (ω̂n−1(Θ) − 1)ωn−1(Θ)

ωn−1(Θ) + ω̂n−1(Θ)
.

The lower bounds (2.1) and (2.3) are implicit in [17] and are stated in [14]. It is

shown in [14] that their composition produces Khintchine’s theorem. The same splitting

principle is used here. We prove Theorem 1 in §7 by iterating successively the finer Going-

up estimates (2.2) and (2.1), and in the other direction the Going-down inequalities (2.4)

and (2.3). Note that ω̂0(Θ) ≤ 1 if at least one of the θk’s is irrational [12]. The right hand

side of (2.2) is then understood to be +∞ when ω̂0(Θ) = 1.

In contrast with the previous works [13, 14, 17], our approch is based here on the use

of the second theorem of Minkowski on the successive minima of a convex body, combined

with Mahler’s theory of compound convex bodies [16].

We conclude this section by formulating the transfer inequalities between ωd(Θ) and

ωd′(Θ) that easily follow from repeated applications of (2.1) and (2.3).

Corollary 1. Let Θ = (θ1, . . . , θn) be in Rn with 1, θ1, . . . , θn linearly independent over

Q. For any integers d, d′ with 0 ≤ d < d′ ≤ n − 1, we have

(d + 1)ωd′(Θ)

(d′ − d)ωd′(Θ) + d′ + 1
≤ ωd(Θ) ≤ (n − d′)ωd′(Θ) − d′ + d

n − d
.
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3. Multilinear algebra

We collect in this section some classical results of multilinear algebra and their

geometrical interpretation in terms of join and intersection of linear varieties in the space

Rn+1. For more details, we refer to [1].

First, we equip the real vector space Rn+1 with the usual scalar product

x · y = x1y1 + · · · + xn+1yn+1, x = (x1, . . . , xn+1), y = (y1, . . . , yn+1),

and extend it naturally to the Grassmann algebra Λ(Rn+1), by requiring that for any

orthonormal basis {ei}1≤i≤n+1 of Rn+1, the family of wedge products

ei1 ∧ . . . ∧ eir
; 1 ≤ i1 < · · · < ir ≤ n + 1, 0 ≤ r ≤ n + 1,

is an orthonormal basis of Λ(Rn+1). Then, the Cauchy-Binet formula shows that

(3.1) X · Y = det
(

xi · yj

)

1≤i,j≤r

for any pair of decomposable r-vectors X = x1 ∧ . . .∧xr and Y = y1 ∧ . . .∧yr. The scalar

product · enables us to identify the dual of the real vector space Λr(Rn+1) with itself. For

any multivector X ∈ Λ(Rn+1), we denote by |X| =
√

X ·X the Euclidean norm of X.

Let X ∈ Λr(Rn+1) and Y ∈ Λs(Rn+1) be two multivectors of respective degree r and

s with s ≤ r. We define the internal product (also called contraction ) of X by Y, as the

unique multivector

Y X ∈ Λr−s(Rn+1)

for which the equality

(3.2) Z · (Y X) = (Z ∧Y) · X

holds for any Z ∈ Λr−s(Rn+1). In other words, the application X 7→ Y X is the transpose

of the linear map Z 7→ Z ∧Y with respect to the dot pairing.

Assume now that X = x1∧. . .∧xr and Y = y1∧. . .∧ys are decomposable multivectors.

When s = 1, we deduce from (3.1) and (3.2) the explicit formula

(3.3) y X =
r

∑

j=1

(−1)r−j(y · xj)x1 ∧ . . . ∧ x̂j ∧ . . . ∧ xr

for any vector y ∈ Λ1(Rn+1). It formally follows from (3.2) that

(3.4) (Y ∧Y′) X = Y (Y′ X)
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for any pair of multivectors Y and Y′ with respective degree s and s′ such that s+ s′ ≤ r.

Starting with (3.3) and using (3.4), we obtain by induction on s the formula

(3.5) Y X =
∑

sgn(σ)(y1 · xσ(r−s+1)) · · · (ys · xσ(r))xσ(1) ∧ . . . ∧ xσ(r−s)

where the sum is taken over all the substitutions σ of {1, . . . , r} such that σ(1) < · · · <

σ(r − s).

Let {e1, . . . , en+1} be any positively oriented (meaning that det(e1, . . . , en+1) = 1)

orthonormal basis of Rn+1. Remark that the volume form e1 ∧ . . .∧en+1 does not depend

upon the choice of such a basis.

Definition 4. For every X in Λr(Rn+1), we denote by

∗X = X (e1 ∧ . . . ∧ en+1) ∈ Λn+1−r(Rn+1)

the Hodge dual of X.

Expanding

X =
∑

1≤i1<···<ir≤n+1

Xi1,...,ir
ei1 ∧ . . . ∧ eir

in the induced orthonormal basis of Λr(Rn+1), we find

∗X =
∑

1≤i1<···<ir≤n+1

εi1,...,ir
Xi1,...,ir

ej1 ∧ . . . ∧ ejn+1−r
,

where {j1, . . . , jn+1−r} = {1, . . . , n + 1} \ {i1, . . . , ir} with j1 < · · · < jn+1−r,

and εi1,...,ir
stands for the signature of the shuffle substitution (1, . . . , n + 1) 7→

(j1, . . . , jn+1−r, i1, . . . , ir). The Hodge star operator

∗ : Λr(Rn+1)
∼−→ Λn+1−r(Rn+1)

is clearly an isometry for the dot scalar product and iterating twice the Hodge star, we get

(3.6) ∗ ◦ ∗ = (−1)r(n+1−r)Id.

Lemma 1. Let X = x1∧ . . .∧xr be a system of Plücker coordinates (♮) of a r-dimensional

subspace

V =< x1, . . . ,xr >

(♮) The word “coordinates” classically refers to the canonical basis of Λr(Rn+1).
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in Rn+1. Then ∗X is a system of Plücker coordinates of the orthogonal V ⊥ of V .

Proof. That is the assertion of Theorem I of Chapter VII §3 in [9]. Using the notion of

contraction, we may argue as follows. Take any orthonormal basis {e1, . . . , er} of V and

extend it to an orthonormal basis {e1, . . . , en+1} of Rn+1. Then

X = ρ(e1 ∧ . . . ∧ er)

for some non-zero real number ρ. Now, it follows from (3.5) that

∗X = ±ρ(er+1 ∧ . . . ∧ en+1).

Remark. The same argument shows more generally that if Y = y1 ∧ . . .∧ ys is a system

of Plücker coordinates of an s-dimensional vector space W =< y1, . . . ,ys > with s ≥ r,

then X Y is a system of Plücker coordinates of the intersection W ∩ V ⊥, provided that

this intersection has dimension s − r.

Lemma 2. For any X ∈ Λr(Rn+1) and Y ∈ Λs(Rn+1) with r + s ≤ n + 1, we have the

duality formula

∗(Y ∧ X) = Y (∗X)

Proof. Using (3.4), we find

∗(Y ∧ X) = (Y ∧ X) (e1 ∧ . . . ∧ en+1) = Y (X (e1 ∧ . . . ∧ en+1)) = Y (∗X).

4. Alternative definition of the intermediate exponents

Let P and Q be points in Pn(R) with homogeneous coordinates x and y. As in [14],

we define the projective distance d(P, Q) between P and Q by

d(P, Q) =
|x ∧ y|
|x||y| .

It has been shown in Lemma 1 of [14] that for any point Θ in Pn(R) with homogeneous

coordinates y = (1, θ1, . . . , θn) and any linear subvariety L of Pn(R) with Plücker

coordinates X, the minimal distance d(Θ, L) between Θ and the set of real points of

L is equal to

(4.1) d(Θ, L) =
|y ∧ X|
|y||X| .

We can now reformulate Definition 3 in terms of integer solutions of the following system

of linear inequations.
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Proposition. For any integer d with 0 ≤ d ≤ n − 1, the exponent ωd(Θ) is the

supremum of the real numbers ω for which there exist infinitely many integer multivectors

X ∈ Λd+1(Zn+1) such that

|y ∧ X| ≤ |X|−ω.

In relation with Definition 4 of [14], we do not assume here that the multivectors X

occurring in the Proposition are decomposable. To suppress this additional condition, we

expand the remark given on page 312 of [14]. The following lemma will be as well our main

ingredient to prove Theorem 2.

Lemma 3. Let y = (1, θ1, . . . , θn) ∈ Rn+1 and let U, V be positive real numbers with

V ≤ U . The convex body C of Λd+1(Rn+1) consisting of the Z such that

(4.2) |Z| ≤ UV d and |y ∧ Z| ≤ V d+1

is comparable (†) to the (d + 1)-th compound of the convex body C′ consisting of the

z ∈ Rn+1 such that

(4.3) |z| ≤ U and |y ∧ z| ≤ V.

Proof. The convex body C′ is comparable to the parallelepiped P defined by

|x0| ≤ U, |x0θi − xi| ≤ V, 1 ≤ i ≤ n.

However, P is comparable to the convex hull of the points

±Uy,±V e1, . . . ,±V en,

where

e1 = (0, 1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1).

The convex compound C′d+1 is then comparable to the convex hull in Λd+1(Rn+1) of

the exterior products of d + 1 of these points, that is, of

±V d+1ei0 ∧ . . . ∧ eid
, 1 ≤ i0 < · · · < id ≤ n,

(†) We say that two families C1 and C2 of symmetrical convex bodies, parametrized by

(say) U and V , are comparable if there exists a real number κ > 1, such that the inclusions

κ−1 C1(U, V ) ⊆ C2(U, V ) ⊆ κC1(U, V ) hold for any parameters U, V . Accordingly, the

constants implied in the forthcoming symbols ≪, ≫ and ≍ may depend on n and Θ, but

not on U and V . The relation f ≍ g means that we have both f ≪ g and f ≫ g.
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and

±UV dy ∧ ei1 ∧ . . . ∧ eid
, 1 ≤ i1 < · · · < id ≤ n.

The points Z of this form satisfy

|Z| ≪ UV d, |y ∧ Z| ≪ V d+1.

Conversely, let Z be in Λd+1(Rn+1) for which (4.2) holds and express it in the base

composed of the d + 1 exterior products of the base (y, e1, . . . , en), that is,

Z =
∑

ai0,i1,...,id
ei0 ∧ . . . ∧ eid

+
∑

bi1,i2,...,id
y ∧ ei1 ∧ . . . ∧ eid

.

Then, we have the estimates

∑

|ai0,i1,...,id
| +

∑

|bi1,i2,...,id
| ≍ |Z| ≤ UV d and

∑

|ai0,i1,...,id
| ≍ |y ∧ Z| ≤ V d+1.

This completes the proof of the lemma.

With this lemma, we are able to establish our Proposition.

Proof of the Proposition. Let ω be a real number with ω ≥ −1 and let X be a non-zero

point in Λd+1(Zn+1) such that

|y ∧ X| ≤ |X|−ω.

The first minimum of the convex body C composed of the Z ∈ Λd+1(Rn+1) such that

|Z| ≤ |X| and |y ∧ Z| ≤ |X|−ω

is therefore at most equal to 1 since X belongs to C. Setting

(4.4) U = |X|(dω+d+1)/(d+1), V = |X|−ω/(d+1),

we observe that V ≤ U and that

|X| = UV d, |X|−ω = V d+1.

By Lemma 3, the convex C is comparable to the (d + 1)-th compound of the convex body

C′ ⊂ Rn+1 defined by the inequalities (4.3). Now, Mahler’s theory on compound convex

bodies tells us that the integer point where C reaches its first minimum is essentially

obtained as the wedge product x1 ∧ . . . ∧ xd+1 of the integer points xi, 1 ≤ i ≤ d + 1,

where C′ reaches its i-th minimum. We may therefore assume that X = x1 ∧ . . . ∧ xd+1.
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Let L ⊂ Pn(R) be the d-dimensional rational linear subvariety L = P(V ) where

V = 〈x1, . . . ,xd+1〉. By (4.1), we obtain

d(Θ, L) =
|y ∧ X|
|y||X| ≤ |y|−1|X|−1−ω ≪ H(L)−1−ω,

so that ωd(Θ) ≥ ω.

Conversely, if L satisfies d(Θ, L) ≤ H(L)−1−ω, choose a system of coprime integer

Plücker coordinates X of L, so that H(L) = |X|. Then (4.1) shows that the upper bound

|y ∧X| ≪ |X|−ω holds true.

Our Proposition enables us to recover the following corollary, which was already

obtained in [14] and earlier in [17], using different arguments.

Corollary 2. For any integer d with 0 ≤ d ≤ n − 1, we have the lower bound

ωd(Θ) ≥ d + 1

n − d
.

Proof. The linear map Λd+1(Rn+1) −→ Λd+2(Rn+1) which sends X 7→ y ∧ X has rank

M =
(

n+1
d+1

)

−
(

n
d

)

. Now, view the coordinates of y∧X in the canonical basis of Λd+2(Rn+1)

as linear forms in the N =
(

n+1
d+1

)

coordinates of X, and select among them M linearly

independent forms L1(X), . . . , LM (X). By Minkowki’s first theorem on convex bodies, the

system of linear inequalities

|X| ≤ H, |L1(X)| ≤ cH−(N−M)/M , . . . , |LM(X)| ≤ cH−(N−M)/M

has a non-zero integer solution X for any H ≫ 1 and for some positive coefficient c

independent of H. It follows that

ωd(Θ) ≥ N − M

M
=

(

n
d

)

(

n+1
d+1

)

−
(

n
d

) =
d + 1

n − d
,

as claimed.

5. Proof of Theorem 2

We use the Proposition as a more convenient characterization of the exponents ωd(Θ)

and take again the notations of Section 4. Let ω be a real number with −1 ≤ ω < ωd(Θ)

and let X ∈ Λd+1(Zn+1) be such that

|y ∧ X| ≤ |X|−ω,
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where y denotes the homogeneous coordinates of Θ. Recall that U and V are given by

(4.4) and that the convex bodies C and C′ are defined by (4.2) and (4.3), respectively.

The first minimum λ1 of the convex body C is at most equal to 1 since X belongs to C.

Replacing, if necessary, X by an integer point where this first minimum is reached, and

suitably increasing ω, we may assume that λ1 = 1.

By Lemma 3, the convex C is comparable to the (d + 1)-th compound of the convex

body C′ of volume

vol(C′) ≍ UV n = |X|(−(n−d)ω+d+1)/(d+1).

By Minkowski’s Theorem, the successive minima λ′
1 ≤ . . . ≤ λ′

n+1 of C′ satisfy

λ′
1 × . . .× λ′

n+1 ≍ vol(C′)−1 ≍ |X|((n−d)ω−d−1)/(d+1).

Since C is comparable to the (d + 1)-th compound of C′, Mahler’s theorem on compound

convex bodies asserts that λ1, the first minimum of C, is comparable to the product

λ′
1 × . . .× λ′

d+1. Consequently,

(5.1) λ′
1 × . . . × λ′

d+1 ≍ 1

and

(λ′
d+2)

n−d ≤ λ′
d+2 × . . . × λ′

n+1 ≍ |X|((n−d)ω−d−1)/(d+1),

whence

(5.2) λ′
d+2 ≪ |X|((n−d)ω−d−1)/((d+1)(n−d)).

Now, since the (d + 2)-th compound of C′ has its first minimum comparable to

λ′
1 × . . .× λ′

d+2 ≍ λ′
d+2,

it follows from Lemma 3 with d + 1 in place of d that there exists X̃ ∈ Λd+2(Zn+1) such

that

|X̃| ≪ λ′
d+2UV d+1, |y ∧ X̃| ≪ λ′

d+2V
d+2.

A rapid computation using (5.2) yields that

λ′
d+2UV d+1 ≪ |X|(n−d−1)/(n−d)

and

λ′
d+2V

d+2 ≪ |X|−((n−d)ω+1)/(n−d).

This gives

|y ∧ X̃| ≪ |X̃|−((n−d)ω+1)/(n−d−1),
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and we get (2.1) since ω can be taken arbitrarily close to ωd(Θ).

To establish (2.2), let us first observe that (5.2) with d = 0 gives

(5.3) λ′
2 ≪ |X|ω−1/n.

One can get a better upper bound for λ′
2 when d = 0 by taking the uniform exponents into

account, as we show now. In that case C = C′ and λ′
1 = λ1 = 1. The vector X is necessarily

primitive in Zn+1, since the convex body C′ attains its first minimum at that point. Let ω̂

be a real number with ω̂ < min(ω, ω̂0(Θ)). By Definition 2, there exists a non-zero integer

point x such that

|x| < |X|, |y ∧ x| ≤ |X|−ω̂.

Since X is primitive, the vectors x and X are linearly independent. Furthermore, we have

|x| < |X| ≤ |X|1+ω−ω̂ = U |X|ω−ω̂,

since ω ≥ ω̂, and

|y ∧ x| ≤ |X|−ω̂ = |X|−ω+ω−ω̂ = V |X|ω−ω̂.

This gives

(5.4) λ′
2 ≪ |X|ω−ω̂.

Note that the upper estimate (5.4) may be sharper than (5.3) since ω̂0(Θ) ≥ 1/n.

Observing that U = |X| and V = |X|−ω and proceeding as above, we infer from (5.4)

that

λ′
2UV ≪ |X|1−ω̂

and

λ′
2V

2 ≪ |X|−(ω+ω̂),

whence

|y ∧ X̃| ≪ |X̃|−(ω+ω̂)/(1−ω̂).

Letting ω tends to ω0(Θ) and ω̂ tends to ω̂0(Θ) ≤ ω0(Θ), this gives

ω1(Θ) ≥ ω0(Θ) + ω̂0(Θ)

1 − ω̂0(Θ)
.

We have proved (2.2).

6. Proof of Theorem 3

The proof is parallel to that of Theorem 2. We use Hodge duality to reverse the Going-

down transfer into a Going-up transfer, noting that the duality permutes the dimension

with the codimension.

Let us start with the following dual version of the above Proposition.
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Lemma 4. For d = 0, . . . , n−1, the exponent ωd(Θ) of a point Θ in Rn with homogeneous

coordinates y is the supremum of the real numbers ω such that there are infinitely many

X ∈ Λn−d(Zn+1) with

|y X| ≤ |X|−ω.

Proof. By Lemma 2 and (3.6), we have

∗(y ∧ ∗X) = (−1)(d+1)(n−d)(y X),

for every X in Λn−d(Rn+1). Note that ∗ maps Λn−d(Zn+1) isometrically onto Λd+1(Zn+1),

so that

| ∗ X| = |X| and |y ∧ ∗X| = |y X|.

Now, replace X by ∗X in the Proposition to conclude the proof.

Here is now the dual version of Lemma 3.

Lemma 5. Let d be an integer with 0 ≤ d ≤ n− 1 and let U, V be positive real numbers

with V ≤ U . The convex body C of Λn−d(Rn+1) consisting of the Z such that

(6.1) |Z| ≤ Un−d and |y Z| ≤ Un−d−1V

is comparable to the (n−d)-th compound of the convex body C′ composed of the z ∈ Rn+1

such that

(6.2) |z| ≤ U and |y · z| ≤ V.

Proof. Let {e1, . . . , en} be an orthonormal basis of the orthogonal of y in Rn+1. The

convex body C′ is comparable to the parallelepiped P consisting of the points

x0y + x1e1 + · · ·+ xnen where |x0| ≤ V, |xi| ≤ U, 1 ≤ i ≤ n.

Note that P is comparable to the convex hull of the points

±V y,±Ue1, . . . ,±Uen.

The compound convex body C′n−d is then comparable to the convex hull in Λn−d(Rn+1)

of the exterior products of n − d of these points, that is, of

(6.3) ±Un−dei1 ∧ . . . ∧ ein−d
, 1 ≤ i1 < · · · < in−d ≤ n,

and

(6.4) ±Un−d−1V ei1 ∧ . . . ∧ ein−d−1
∧ y, 1 ≤ i1 < · · · < in−d−1 ≤ n.
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Express now any point Z in Λn−d(Rn+1) in the base composed of the n − d exterior

products of the base (e1, . . . , en,y), that is,

Z =
∑

ai1,...,in−d
ei1 ∧ . . . ∧ ein−d

+
∑

bi1,...,in−d−1
ei1 ∧ . . . ∧ ein−d−1

∧ y.

Then, formula (3.3) shows that

y Z = |y|2
(

∑

bi1,...,in−d−1
ei1 ∧ . . . ∧ ein−d−1

)

.

Therefore, the points Z of the form (6.3) or (6.4) satisfy

(6.5) |Z| ≤ Un−d and |y Z| ≤ |y|2Un−d−1V.

Conversely, for any point Z satisfying (6.5), the coefficients ai1,...,in−d
(resp. bi1,...,in−d−1

)

are bounded in absolute value by Un−d (resp. by Un−d−1V ). This completes the proof of

the lemma.

With these two lemmata, we are able to establish Theorem 3.

Proof of Theorem 3. Let ω be a positive real number with ω < ωd(Θ). By Lemma 4,

there exist infinitely many points X ∈ Λn−d(Zn+1) such that

|y X| ≤ |X|−ω.

Fix such a point X with large norm |X| and consider the convex body C composed of the

multivectors Z ∈ Λn−d(Rn+1) such that

|Z| ≤ |X| and |y Z| ≤ |X|−ω.

It contains the integer point X. Replacing possibly X by a smaller point and enlarging

suitably ω, one can assume that X is the smallest non-zero integer point in C. Thus, we

may assume that the first minimum of C is equal to 1. Setting

U = |X|1/(n−d) and V = |X|−((n−d)ω+n−d−1)/(n−d),

we observe that V ≤ U and that

|X| = Un−d, |X|−ω = Un−d−1V.

By Lemma 5, the convex body C is therefore comparable to the (n − d)-th compound of

the convex body C′ consisting of the real (n + 1)-tuples z such that

|z| ≤ U and |y · z| ≤ V.
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Let

λ′
1 ≤ . . . ≤ λ′

n+1

be the successive minima of the convex body C′. Since the Euclidean volume of C′ is ≍ UnV ,

the second theorem of Minkowski gives

λ′
1 × . . .× λ′

n+1 ≍ (UnV )−1 = |X|((n−d)ω−d−1)/(n−d).

Since the first minimum of the (n − d)-th compound of C′ is comparable to 1, one gets

λ′
1 × . . .× λ′

n−d ≍ 1,

hence

λ′
n−d+1 × . . .× λ′

n+1 ≍ |X|((n−d)ω−d−1)/(n−d).

Consequently,

(6.6) (λ′
n−d+1)

d+1 ≪ |X|((n−d)ω−d−1)/(n−d),

and

λ′
n−d+1U ≪ |X|ω/(d+1).

Since the first minimum of the (n−d+1)-th compound of C′ is comparable to the product

λ′
1 × . . . × λ′

n−d+1, hence to λ′
n−d+1, we infer from Lemma 5 that there exists a non-zero

integer point X̃ ∈ Λn−d+1(Zn+1) such that

|X̃| ≪ λ′
n−d+1U

n−d+1 = λ′
n−d+1U |X| ≪ |X|(ω+d+1)/(d+1)

and

|y X̃| ≪ λ′
n−d+1U

n−dV = λ′
n−d+1U |X|−ω ≪ |X|−dω/(d+1).

Since ω can be taken arbitrarily close to ωd(Θ), Lemma 4 gives (2.3).

For d = n − 1, it is possible to get a sharper result. In that case C = C′ is a convex

body in Rn+1 and (6.6) reads

(6.7) λ′
2 ≪ |X|−1+ω/n.

Enlarging possibly ω, we may assume that

|y ·X| = |X|−ω.

The vector X is necessarily primitive in Zn+1, since the convex body C′ attains its first

minimum at that point. Let ω̂ be a positive real number with ω̂ < min(ω, ω̂n−1(Θ)). By

Definition 2, there exists a non-zero integer point x ∈ Zn+1 such that

|x| ≤ |X|ω/ω̂
and |y · x| < |X|−ω.
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Since X is primitive, the vectors x and X are linearly independent ; otherwise x should be

an integer multiple of X and |y · x| should be greater than or equal to |y · X| = |X|−ω.

Thus, we obtain the upper bound

(6.8) λ′
2 ≪ |X|−1+ω/ω̂,

which may be better than (6.7) since ω̂n−1(Θ) ≥ n. Now, we take again the preceding

arguments. Noting that U = |X| and V = |X|−ω, we obtain a non-zero point X̃ ∈ Λ2(Zn+1)

satisfying

|X̃| ≪ λ′
2U

2 ≪ |X|1+ω/ω̂

and

|y X̃| ≪ λ′
2UV ≪ |X|−ω+ω/ω̂.

Then, Lemma 4 gives

ωn−2(Θ) ≥ (ω̂ − 1)ω

ω + ω̂
.

Letting ω and ω̂ tend respectively to ωn−1(Θ) and ω̂n−1(Θ), we have established (2.4).

7. Proof of Theorem 1

It is a formal consequence of the finer estimates (2.1)–(2.4).

Using the second inequality of Corollary 1 with d = 1 and d′ = n − 1, we get the

estimate

ωn−1(Θ) ≥ (n − 1)ω1(Θ) + n − 2,

which, combined with (2.2), yields the second claimed estimate of Theorem 1, namely

ωn−1(Θ) ≥ (n − 1)
ω0(Θ) + ω̂0(Θ)

1 − ω̂0(Θ)
+ n − 2 =

(n − 1)ω0(Θ) + ω̂0(Θ) + n − 2

1 − ω̂0(Θ)
.

Using now the first inequality of Corollary 1 with d = 0 and d′ = n − 2, we get

ω0(Θ) ≥ ωn−2(Θ)

(n − 2)ωn−2(Θ) + n − 1

which, combined with (2.4), yields the first claimed inequality of Theorem 1, namely

ω0(Θ) ≥ (ω̂n−1(Θ) − 1)ωn−1(Θ)

((n − 2)ω̂n−1(Θ) + 1)ωn−1(Θ) + (n − 1)ω̂n−1(Θ)
.
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