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Abstract. We prove that, for any sequence of positive real numbers

(gn)n≥1 satisfying gn ≥ 1 for n ≥ 1 and limn→+∞ gn = +∞, for any

real number θ in [0, 1] and any irrational real number ξ, there exists an

increasing sequence of positive integers (an)n≥1 satisfying an ≤ ngn for

n ≥ 1 and such that the sequence of fractional parts ({anξ})n≥1 tends to

θ as n tends to infinity. This result is best possible in the sense that the

condition limn→+∞ gn = +∞ cannot be weakened, as recently proved

by Dubickas.

For an increasing sequence a = (an)n≥1 of positive integers, let Ea denote the set of
irrational real numbers ξ such that the sequence ({anξ})n≥1 is not everywhere dense in
[0, 1). Here, and throughout the present note, {x} stands for the fractional part of the real
number x. Weyl [4] established in 1916 that Ea has Lebesgue measure zero. No refined
general metrical result can be proved since, on the one hand, Ea is empty when a is the
sequence of all positive integers or of all integers of the form 2k3ℓ (with k, ℓ ≥ 0), and, on
the other hand, Ea has full Hausdorff dimension if there exists some τ greater than 1 for
which an+1 ≥ τan for n ≥ 1. We refer to [1,3] for references and further results.

In a recent paper, Dubickas [1] investigated how slowly such a sequence a can increase
for which the set Ea is not empty. More precisely, for any real quadratic number α, he
constructed a very slowly increasing sequence a such that the sequence of fractional parts
({anα})n≥1 tends to 0. His proof is quite intricate and makes use of recurrence sequences
related to some algebraic integer in the quadratic number field generated by α. In his
note Dubickas asked whether, a transcendental real number (or a real algebraic number
of degree at least 3) ξ being given, there exists a slowly increasing sequence of positive
integers (an)n≥1 such that limn→+∞ {anξ} = 0.

In the present note, we give a positive answer to (a strong form of) his question.

Theorem. Let ξ be an irrational real number. Let S be a finite, non-empty set of distinct

real numbers in [0, 1]. Let (gn)n≥1 be a sequence of real numbers such that gn ≥ 1 for

n ≥ 1 and limn→+∞ gn = +∞. Then there exists an increasing sequence of positive

integers (an)n≥1 satisfying an ≤ ngn for n ≥ 1 and such that the set of limit points of the

sequence of fractional parts ({anξ})n≥1 is equal to S.
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The Theorem extends Theorems 1 and 5 of [1]. Our proof is much simpler; it uses
only basic results from the theory of continued fractions and the fact the sequence (tξ)t≥1

is dense modulo 1 when ξ is irrational.
The Theorem is best possible in the sense that its conclusion fails if (gn)n≥1 does not

tend to infinity. Namely, Theorem 2 of Dubickas [1] asserts that, for any irrational real
number ξ and any increasing sequence (an)n≥1 satisfying lim infn→+∞ an/n < +∞, the
sequence of fractional parts ({anξ})n≥1 has infinitely many limit points.

Proof of the Theorem. Let (pk/qk)k≥1 be the sequence of convergents to ξ and set

εk := {qkξ}, k ≥ 1.

Classical results on continued fraction expansions (see e.g., [2]) imply that

0 < ε2k+2 < ε2k < 1/3, k ≥ 1.

Since ξ is irrational, the sequence (tξ)t≥1 is dense modulo 1. This fact (see e.g. [4]) will
be implicitly used at several places below.

As explained in [1], we can assume that g1, g2, . . . are integers and that (gn)n≥1 is
non-decreasing. Set n1 = q2. For k ≥ 2, let nk be the smallest index ℓ such that ℓ > nk−1

and gℓ ≥ q2k + 1. Note that the sequence (nk)k≥1 may increase very rapidly.
We proceed now to construct inductively an auxiliary integer sequence (mk)k≥2 and

a sequence (an)n≥1 with the required property.
Let j be the integer such that q2j ≥ n2 > q2j−2. Observe that j ≥ 2 and set m2 = q2j .

Define
an = n, n = 1, . . . , m2,

and observe that

{m2ξ} = {am2
ξ} ≤ ε2, am2

≤ m2q4 ≤ m2(gm2
− 1), gm2

≥ gn2
≥ q4 + 1.

Let us proceed with the induction step. Set ε0 = 1. Let k ≥ 2 be an integer and
assume that mk and amk

have been constructed such that

{amk
ξ} ≤ ε2k−2, amk

≤ mk(gmk
− 1), gmk

≥ gnk
≥ q2k + 1.

Set b0 = amk
and let b1 < b2 < . . . be the (infinite) increasing sequence of all integers t

satisfying t > amk
and {tξ} ≤ ε2k−2. Observe that if the integer t satisfies {tξ} ≤ ε2k−2,

then
{(t + q2k)ξ} = {tξ} + ε2k < 2ε2k−2

and we have either
{(t + q2k)ξ} ≤ ε2k−2

or
{(t + q2k − q2k−2)ξ} ≤ ε2k−2.
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From this, we deduce that

bj+1 ≤ bj + q2k, for j ≥ 0,

and
bj ≤ mk(gmk

− 1) + jq2k ≤ (mk + j)(gmk+j − 1), for j ≥ 0.

Let mk+1 be the smallest integer ℓ satisfying ℓ ≥ max{mk + 1, nk+1} and

{bℓ−mk
ξ} ≤ ε2k.

This integer is well defined since the sequence (tξ)t≥1 is dense modulo 1. Setting

amk+j = bj , j = 1, . . . , mk+1 − mk,

we thus have

{anξ} ≤ ε2k−2, an ≤ n(gn − 1), n = mk + 1, . . . , mk+1,

and
{amk+1

ξ} ≤ ε2k, gmk+1
≥ gnk+1

≥ q2k+2 + 1.

This completes the inductive set.
To summarize, we have constructed inductively an increasing sequence (an)n≥1 of

positive integers satisfying

an = n, for n = 1, . . . , m2 − 1,

an ≤ n(gn − 1), for n ≥ m2,

and
lim

n→+∞
{anξ} = 0.

This proves the Theorem when S = {0}.

Assume now that S 6= {0}. For θ in (0, 1], let (d
(θ)
n )n≥1 be an increasing sequence

of non-negative integers such that d
(θ)
1 = 0, limn→+∞ {d

(θ)
n ξ} = θ and {d

(θ)
n ξ} < θ,

for n ≥ 1. Let also (d
(0)
n )n≥1 be an increasing sequence of positive integers such that

limn→+∞ {d
(0)
n ξ} = 0. Assume that S = {θ1, . . . , θr} for some positive integer r, and

denote by (dn)n≥1 the increasing sequence of integers obtained by taking the union of the

r sequences (d
(θ1)
n )n≥1, . . . , (d

(θr)
n )n≥1. For every d in (dn)n≥1, let f(d) denote an inte-

ger i such that d belongs to the sequence (d
(θi)
n )n≥1. Note that this integer is uniquely

determined when d is sufficiently large.
Let n0 be an integer such that n0 ≥ m2 and {anξ} < θ for every non-zero θ in S and for

every n ≥ n0. Let (cn)n≥n0
be a non-decreasing sequence of integers from {d1, d2, d3, . . .}

such that limn→+∞ cn = +∞,

cn ≤ n, |θf(cn) − {cnξ}| > {anξ}, for n ≥ n0,
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and, for every i = 1, . . . , r, the set Ni := {n ≥ n0 : f(cn) = i} is infinite.
Setting bn = an for n = 1, . . . , n0 − 1 and bn = an + cn for n ≥ n0, we check that

bn ≤ ngn, for n ≥ 1,

and that, for every i = 1, . . . , r, we have

lim
Ni∋n→+∞

{bnξ} = θi.

In particular, the set of limit points of ({bnξ})n≥1 is equal to the set S. This ends the
proof of the Theorem.
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