Yann BUGEAUD (Strasbourg)

Abstract. We prove that, for any sequence of positive real numbers $(g_n)_{n\geq 1}$ satisfying $g_n \geq 1$ for $n \geq 1$ and $\lim_{n\to +\infty} g_n = +\infty$, for any real number θ in [0,1] and any irrational real number ξ , there exists an increasing sequence of positive integers $(a_n)_{n\geq 1}$ satisfying $a_n \leq ng_n$ for $n \geq 1$ and such that the sequence of fractional parts $(\{a_n\xi\})_{n\geq 1}$ tends to θ as n tends to infinity. This result is best possible in the sense that the condition $\lim_{n\to +\infty} g_n = +\infty$ cannot be weakened, as recently proved by Dubickas.

For an increasing sequence $\mathbf{a} = (a_n)_{n \geq 1}$ of positive integers, let $E_{\mathbf{a}}$ denote the set of irrational real numbers ξ such that the sequence $(\{a_n\xi\})_{n\geq 1}$ is not everywhere dense in [0, 1). Here, and throughout the present note, $\{x\}$ stands for the fractional part of the real number x. Weyl [4] established in 1916 that $E_{\mathbf{a}}$ has Lebesgue measure zero. No refined general metrical result can be proved since, on the one hand, $E_{\mathbf{a}}$ is empty when \mathbf{a} is the sequence of all positive integers or of all integers of the form $2^k 3^\ell$ (with $k, \ell \geq 0$), and, on the other hand, $E_{\mathbf{a}}$ has full Hausdorff dimension if there exists some τ greater than 1 for which $a_{n+1} \geq \tau a_n$ for $n \geq 1$. We refer to [1,3] for references and further results.

In a recent paper, Dubickas [1] investigated how slowly such a sequence **a** can increase for which the set $E_{\mathbf{a}}$ is not empty. More precisely, for any real quadratic number α , he constructed a very slowly increasing sequence **a** such that the sequence of fractional parts $(\{a_n\alpha\})_{n\geq 1}$ tends to 0. His proof is quite intricate and makes use of recurrence sequences related to some algebraic integer in the quadratic number field generated by α . In his note Dubickas asked whether, a transcendental real number (or a real algebraic number of degree at least 3) ξ being given, there exists a slowly increasing sequence of positive integers $(a_n)_{n\geq 1}$ such that $\lim_{n\to+\infty} \{a_n\xi\} = 0$.

In the present note, we give a positive answer to (a strong form of) his question.

Theorem. Let ξ be an irrational real number. Let S be a finite, non-empty set of distinct real numbers in [0,1]. Let $(g_n)_{n\geq 1}$ be a sequence of real numbers such that $g_n \geq 1$ for $n \geq 1$ and $\lim_{n\to+\infty} g_n = +\infty$. Then there exists an increasing sequence of positive integers $(a_n)_{n\geq 1}$ satisfying $a_n \leq ng_n$ for $n \geq 1$ and such that the set of limit points of the sequence of fractional parts $(\{a_n\xi\})_{n\geq 1}$ is equal to S.

²⁰⁰⁰ Mathematics Subject Classification : 11J71, 11K06 Keywords: Distribution modulo 1

The Theorem extends Theorems 1 and 5 of [1]. Our proof is much simpler; it uses only basic results from the theory of continued fractions and the fact the sequence $(t\xi)_{t\geq 1}$ is dense modulo 1 when ξ is irrational.

The Theorem is best possible in the sense that its conclusion fails if $(g_n)_{n\geq 1}$ does not tend to infinity. Namely, Theorem 2 of Dubickas [1] asserts that, for any irrational real number ξ and any increasing sequence $(a_n)_{n\geq 1}$ satisfying $\liminf_{n\to+\infty} a_n/n < +\infty$, the sequence of fractional parts $(\{a_n\xi\})_{n\geq 1}$ has infinitely many limit points.

Proof of the Theorem. Let $(p_k/q_k)_{k\geq 1}$ be the sequence of convergents to ξ and set

$$\varepsilon_k := \{q_k\xi\}, \quad k \ge 1.$$

Classical results on continued fraction expansions (see e.g., [2]) imply that

$$0 < \varepsilon_{2k+2} < \varepsilon_{2k} < 1/3, \quad k \ge 1.$$

Since ξ is irrational, the sequence $(t\xi)_{t\geq 1}$ is dense modulo 1. This fact (see e.g. [4]) will be implicitly used at several places below.

As explained in [1], we can assume that g_1, g_2, \ldots are integers and that $(g_n)_{n\geq 1}$ is non-decreasing. Set $n_1 = q_2$. For $k \geq 2$, let n_k be the smallest index ℓ such that $\ell > n_{k-1}$ and $g_\ell \geq q_{2k} + 1$. Note that the sequence $(n_k)_{k\geq 1}$ may increase very rapidly.

We proceed now to construct inductively an auxiliary integer sequence $(m_k)_{k\geq 2}$ and a sequence $(a_n)_{n>1}$ with the required property.

Let j be the integer such that $q_{2j} \ge n_2 > q_{2j-2}$. Observe that $j \ge 2$ and set $m_2 = q_{2j}$. Define

$$a_n = n, \quad n = 1, \dots, m_2$$

and observe that

$$\{m_2\xi\} = \{a_{m_2}\xi\} \le \varepsilon_2, \quad a_{m_2} \le m_2q_4 \le m_2(g_{m_2}-1), \quad g_{m_2} \ge g_{n_2} \ge q_4+1.$$

Let us proceed with the induction step. Set $\varepsilon_0 = 1$. Let $k \ge 2$ be an integer and assume that m_k and a_{m_k} have been constructed such that

$$\{a_{m_k}\xi\} \le \varepsilon_{2k-2}, \quad a_{m_k} \le m_k(g_{m_k}-1), \quad g_{m_k} \ge g_{n_k} \ge q_{2k}+1.$$

Set $b_0 = a_{m_k}$ and let $b_1 < b_2 < \ldots$ be the (infinite) increasing sequence of all integers t satisfying $t > a_{m_k}$ and $\{t\xi\} \le \varepsilon_{2k-2}$. Observe that if the integer t satisfies $\{t\xi\} \le \varepsilon_{2k-2}$, then

$$\{(t+q_{2k})\xi\} = \{t\xi\} + \varepsilon_{2k} < 2\varepsilon_{2k-2}$$

and we have either

$$\{(t+q_{2k})\xi\} \le \varepsilon_{2k-2}$$

or

$$\{(t+q_{2k}-q_{2k-2})\xi\} \le \varepsilon_{2k-2}$$

From this, we deduce that

$$b_{j+1} \leq b_j + q_{2k}$$
, for $j \geq 0$,

and

$$b_j \le m_k (g_{m_k} - 1) + jq_{2k} \le (m_k + j)(g_{m_k + j} - 1), \text{ for } j \ge 0.$$

Let m_{k+1} be the smallest integer ℓ satisfying $\ell \geq \max\{m_k + 1, n_{k+1}\}$ and

$$\{b_{\ell-m_k}\xi\} \le \varepsilon_{2k}.$$

This integer is well defined since the sequence $(t\xi)_{t\geq 1}$ is dense modulo 1. Setting

$$a_{m_k+j} = b_j, \quad j = 1, \dots, m_{k+1} - m_k,$$

we thus have

$$\{a_n\xi\} \le \varepsilon_{2k-2}, \ a_n \le n(g_n-1), \ n = m_k + 1, \dots, m_{k+1},$$

and

$$\{a_{m_{k+1}}\xi\} \le \varepsilon_{2k}, \quad g_{m_{k+1}} \ge g_{n_{k+1}} \ge q_{2k+2} + 1.$$

This completes the inductive set.

To summarize, we have constructed inductively an increasing sequence $(a_n)_{n\geq 1}$ of positive integers satisfying

$$a_n = n$$
, for $n = 1, \dots, m_2 - 1$,
 $a_n \le n(g_n - 1)$, for $n \ge m_2$,

and

$$\lim_{n \to +\infty} \left\{ a_n \xi \right\} = 0$$

This proves the Theorem when $S = \{0\}$.

Assume now that $S \neq \{0\}$. For θ in (0,1], let $(d_n^{(\theta)})_{n\geq 1}$ be an increasing sequence of non-negative integers such that $d_1^{(\theta)} = 0$, $\lim_{n\to+\infty} \{d_n^{(\theta)}\xi\} = \theta$ and $\{d_n^{(\theta)}\xi\} < \theta$, for $n \geq 1$. Let also $(d_n^{(0)})_{n\geq 1}$ be an increasing sequence of positive integers such that $\lim_{n\to+\infty} \{d_n^{(0)}\xi\} = 0$. Assume that $S = \{\theta_1, \ldots, \theta_r\}$ for some positive integer r, and denote by $(d_n)_{n\geq 1}$ the increasing sequence of integers obtained by taking the union of the r sequences $(d_n^{(\theta_1)})_{n\geq 1}, \ldots, (d_n^{(\theta_r)})_{n\geq 1}$. For every d in $(d_n)_{n\geq 1}$, let f(d) denote an integer i such that d belongs to the sequence $(d_n^{(\theta_i)})_{n\geq 1}$. Note that this integer is uniquely determined when d is sufficiently large.

Let n_0 be an integer such that $n_0 \ge m_2$ and $\{a_n\xi\} < \theta$ for every non-zero θ in S and for every $n \ge n_0$. Let $(c_n)_{n\ge n_0}$ be a non-decreasing sequence of integers from $\{d_1, d_2, d_3, \ldots\}$ such that $\lim_{n\to+\infty} c_n = +\infty$,

$$c_n \le n, \quad |\theta_{f(c_n)} - \{c_n\xi\}| > \{a_n\xi\}, \quad \text{for } n \ge n_0,$$

and, for every i = 1, ..., r, the set $\mathcal{N}_i := \{n \ge n_0 : f(c_n) = i\}$ is infinite.

Setting $b_n = a_n$ for $n = 1, ..., n_0 - 1$ and $b_n = a_n + c_n$ for $n \ge n_0$, we check that

$$b_n \leq ng_n$$
, for $n \geq 1$,

and that, for every $i = 1, \ldots, r$, we have

$$\lim_{\mathcal{N}_i \ni n \to +\infty} \left\{ b_n \xi \right\} = \theta_i.$$

In particular, the set of limit points of $(\{b_n\xi\})_{n\geq 1}$ is equal to the set S. This ends the proof of the Theorem.

Acknowledgements. I am pleased to thank the referee for having written quickly a detailed report.

Bibliography

- [1] A. Dubickas, On the limit points of $(a_n\xi)_{n=1}^{\infty}$ mod 1 for slowly increasing integer sequences $(a_n)_{n=1}^{\infty}$, Proc. Amer. Math. Soc. 137 (2009), 449–456.
- [2] G. H. Hardy and E. M. Wright, An introduction to the theory of numbers. Fifth edition. The Clarendon Press, Oxford University Press, New York, 1979.
- [3] O. Strauch and S. Porubský, Distribution of sequences: a sampler. Schriftenreihe der Slowakischen Akademie der Wissenschaften, 1. Peter Lang, Frankfurt am Main, 2005.
- [4] H. Weyl, Uber die Gleichverteilung von Zahlen mod. Eins, Math. Ann. 77 (1916), 313–352.

Yann Bugeaud Université Louis Pasteur U. F. R. de mathématiques 7, rue René Descartes 67084 STRASBOURG FRANCE

bugeaud@math.u-strasbg.fr