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Abstract. Let ξ be a real number and b ≥ 2 be an integer. Let vb(ξ)
(resp. v′

b(ξ)) denote the supremum of the real numbers v for which the
equation ||bnξ|| ≤ (bn)−v (resp. ||br(bs − 1)ξ|| ≤ (br+s)−v) has infinitely
many solutions in positive integers n (resp. r and s). Here, ||·|| stands for
the distance to the nearest integer. Let also v1(ξ) denote the supremum
of the real numbers v for which the equation ||qξ|| < q−v has infinitely
many solutions in positive integers q. Motivated by the question whether
one can read the irrationality exponent of a real number on its b-ary
expansion, we establish various results on the set of values taken by the
triple of functions (v1, vb, v

′
b) evaluated at real points.

1. Introduction

Let ξ be an irrational real number. For convenience, we assume that 0 < ξ < 1.
The irrationality exponent of ξ, commonly denoted by µ(ξ), is the supremum of the real
numbers µ for which

0 <

∣

∣

∣

∣

ξ − p

q

∣

∣

∣

∣

<
1

qµ

has infinitely many rational solutions p/q. It follows from the theory of continued fractions
(or from Dirichlet’s Schubfachprinzip) that µ(ξ) is at least equal to 2. In other words, there
are infinitely many rational numbers that approximate ξ at order at least two. Moreover,
µ(ξ) is exactly equal to two for almost all real numbers ξ. Here and below, ‘almost all’
always refers to the Lebesgue measure.

A very näıve way to produce good rational approximations to ξ is to write ξ in some
integer base b, with b ≥ 2, that is to consider its expansion

ξ =
∑

j≥1

aj

bj
, (1.1)
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where aj ∈ {0, 1, . . . , b − 1} for j ≥ 1. If aJ+1 = . . . = aJ+r = 0 for some integers J, r,

then ξ is quite close to the rational number
∑J

j=1 aj/bj , namely

∣

∣

∣

∣

ξ −
J

∑

j=1

aj

bj

∣

∣

∣

∣

<
1

bJ+r
.

However, a classical argument based on the Cantelli lemma shows us that almost all real
numbers have only finitely many very large blocks of zeros occurring near the beginning
of their b-ary expansion. More precisely, for any ε > 0 and almost all real numbers ξ,
there are only finitely many pairs (J, pJ) of integers such that |ξ − pJ/bJ | < (bJ)−1−ε.
Consequently, this very näıve approach based on the b-ary expansion only yields that the
irrationality exponent of ξ is at least equal to 1, which is a trivial result.

A slightly less näıve method to construct good rational approximations to ξ consists
in locating periodic motives in its b-ary expansion (1.1), that is, in finding integers J, r, m
such that aJ+h+ir = aJ+h for h = 1, . . . , r and i = 1, . . . , m. With such a triple (J, r, m) of
integers, we associate the rational number ξJ whose b-ary expansion is defined as follows:
Truncate the expansion of ξ after the J-th digit aJ and complete by repeating infinitely
many copies of the finite word aJ+1 . . . aJ+r. Clearly, ξJ is a good rational approximation
to ξ which satisfies

|ξ − ξJ | <
1

bJ+(m+1)r
.

The same argument as above shows us that almost all real numbers have only finitely
many very large repetitions occurring near the beginning of their b-ary expansion, and this
slightly less näıve approach only yields that the irrationality exponent of ξ is at least equal
to 1, which is a trivial result.

This short discussion shows that, apparently, there is in general no relation between
the b-ary expansion of a number and its irrationality exponent. Thus, the answer to the
following question, that motivates the present note, is essentially negative:

Can one read the irrationality exponent of a real number on its expansion in some
integer base?

To investigate more closely this question, we are led to introduce new exponents of
approximation. Throughout the present paper, || · || denotes the distance to the nearest
integer and ⌊·⌋ stands for the integer part function.

Definition 1. Let ξ be an irrational real number. Let b be an integer with b ≥ 2. We
denote by vb(ξ) the supremum of the real numbers v for which the equation

||bnξ|| < (bn)−v

has infinitely many solutions in positive integers n. We denote by v′
b(ξ) the supremum of

the real numbers v for which the equation

||br(bs − 1)ξ|| < (br+s)−v

2



has infinitely many solutions in positive integers r and s.

The exponents v′
b are closely related to the Diophantine exponent of an infinite word

introduced in [1].
For consistency, we denote by v1(ξ) the supremum of the real numbers v for which

the equation
||qξ|| < q−v

has infinitely many solutions in positive integers q. The exponent v1, usually denoted
by w1, is equal to the irrationality exponent decreased by 1. Jarńık [15] established that
the function v1 takes every value between 1 and +∞. As already noticed, v1(ξ) = 1 and
v′

b(ξ) = vb(ξ) = 0 hold for every integer b ≥ 2 and for almost all real numbers ξ.
Let ξ be an irrational number. We have v′

b(ξ) ≥ vb(ξ) ≥ 0 for b ≥ 2, and

v1(ξ) ≥ max{v′
b(ξ), 1} ≥ max{vb(ξ), 1}, for b ≥ 2.

Furthermore, it is not difficult to check that

vb(ξ) = vbt(ξ), and v′
b(ξ) = v′

bt(ξ), for t in Z≥1 and b ≥ 2. (1.2)

Moreover, the value vb2(ξ) is related to the value vb1(ξ) if the set of prime factors of b1 is
a subset of the set of prime factors of b2.

To see this, let m1 and m2 be positive integers such that bm1
1 divides bm2

2 . Let ε be a
positive real number. Then there exist arbitrarily large integers n such that

||bn
1 ξ|| < (bn

1 )−v+ε, v = vb1(ξ).

Setting n = (k − 1)m1 + r with 0 ≤ r < m1, we have

||bm2k
2 ξ|| < (b1)

(m1−r)(v+1−ε)(bm2
2 /bm1

1 )k(bm1k
1 )−v+ε,

which implies that

vb2(ξ) + 1 ≥ m1 log b1

m2 log b2
(vb1(ξ) + 1).

Hence, we have

vb2(ξ) + 1 ≥
(

sup
m1,m2:b

m1
1 |bm2

2

m1

m2

)

log b1

log b2
(vb1(ξ) + 1),

where, as indicated, the supremum ranges over all positive integers m1, m2 such that bm1
1

divides bm2
2 .

This supremum can be easily expressed in terms of b1 and b2. To see this, write

b1 = pe1
1 . . . peℓ

ℓ , b2 = pf1

1 . . . pfℓ

ℓ · b′2,
where p1, . . . , pℓ are distinct prime numbers, ei, fi are positive integers and b′2 is coprime
to p1 . . . pℓ. Since bm1

1 divides bm2
2 if and only if m1ei ≤ m2fi for all i, we deduce that

sup
m1,m2:b

m1
1 |bm2

2

m1

m2
= min

1≤i≤ℓ

fi

ei
,

which leads us to define

ρ(b1, b2) := min
1≤i≤ℓ

fi

ei
.

Denoting by P(b) the set of prime factors of an integer b ≥ 2, we have established the
following fact.
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Fact. For every real irrational number ξ, for every integers b1, b2 satisfying b1 ≥ 2, b2 ≥ 2
and P(b1) ⊆ P(b2) we have

vb2(ξ) + 1 ≥ ρ(b1, b2)
log b1

log b2
(vb1(ξ) + 1).

Throughout this text, we denote by B the set consisting of all positive integers which
are not perfect powers, thus B = {2, 3, 5, 6, 7, 10, . . .}, and we set B1 = {1} ∪ B.

We are mainly concern with the following two questions.

Problem 1. Let (vb)b∈B1
and (v′

b)b∈B be sequences of real numbers or +∞ satisfying

v1 ≥ 1, 0 ≤ vb ≤ v′
b ≤ v1, for every b ∈ B,

and

vb2 + 1 ≥ ρ(b1, b2)
log b1

log b2
(vb1 + 1), for every b1, b2 ∈ B such that P(b1) ⊆ P(b2).

To prove that there exist real numbers ξ such that

v1(ξ) = v1, vb(ξ) = vb and v′
b(ξ) = v′

b, for every b ∈ B.

Problem 1 in its full generality seems to be quite out of reach. More modestly, we also
focus on the following question.

Problem 2. Let b ≥ 2 be an integer. Let v1, vb, v′
b be elements of R ∪ {+∞} with

v1 ≥ 1, 0 ≤ vb ≤ v′
b ≤ v1.

To prove that there exist real numbers ξ with

v1(ξ) = v1, vb(ξ) = vb and v′
b(ξ) = v′

b.

In other words, a base b being given (which is not assumed to be in B), Problem 2
asks for the joint spectrum of the triple of functions (v1, vb, v

′
b). Problems 1 and 2 should

be compared with the Main Problem studied in [7], where, besides rational approximation,
the quality of approximation by algebraic numbers of bounded degree is also considered.
It is a well-known fact that most difficulties arise for determining the small values of the
spectrum, see the discussion in Section 7.8 of [7].

The present paper is organized as follows. Our main contributions towards Problems
1 and 2 are stated in Section 2 and established in Sections 3 to 7. One key tool is a
version of the Folding Lemma for continued fractions given in Section 4. In Section 8, we
use our version of the Folding Lemma to construct explicitly real numbers with prescribed
irrationality exponent that are normal in a given base.

2. Main results

We begin with a general result that solves partially Problem 1.
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Theorem 1. Let (vb)b∈B1
be a sequence of elements of R ∪ {+∞} satisfying

1 +
√

5

2
≤ vb ≤ v1, for every b ∈ B, (2.1)

and

vb2 + 1 ≥ ρ(b1, b2)
log b1

log b2
(vb1 + 1), for every b1, b2 ∈ B such that P(b1) ⊆ P(b2). (2.2)

There exist uncountably many real numbers ξ such that

vb(ξ) = vb, for every b ∈ B1.

The proof of Theorem 1 is postponed to Section 3. The idea is the following: We
construct real numbers ξ together with all the rational numbers p/q such that |ξ − p/q| ≪
q−(3+

√
5)/2. Here and throughout the present paper, the notation ≪ and ≫ means that

some absolute positive numerical constant is implicit. If A ≪ B and A ≫ B hold simul-
taneously, then we write A ≍ B. The main tool for computing the exact values of the
various exponents of approximation is then simply triangle inequalities. The lower bound
(1 +

√
5)/2 occurring in (2.1) is therefore not surprising. It already appeared in earlier

works [7, 18] and may be briefly explained as follows. Let ξ be a real number and p/q and
p′/q′ be two rational numbers with

|ξ − p/q| ≍ q−τ , |ξ − p′/q′| ≍ q′−τ , and q′ ≍ qτ ,

for some real number τ ≥ 1. To guarantee that no rational number a/b with q < b < q′

approximates ξ at an order greater than τ , we argue as follows (the correctness of the
argument depends on the hidden constant if b ≍ qτ−1). For b ≪ qτ−1, we note that

∣

∣

∣

∣

ξ − a

b

∣

∣

∣

∣

≫
∣

∣

∣

∣

p

q
− a

b

∣

∣

∣

∣

−
∣

∣

∣

∣

ξ − p

q

∣

∣

∣

∣

≫ 1

qτ
≫ 1

bτ
,

while, for b ≫ q′1/(τ−1), we observe that
∣

∣

∣

∣

ξ − a

b

∣

∣

∣

∣

≫
∣

∣

∣

∣

p′

q′
− a

b

∣

∣

∣

∣

−
∣

∣

∣

∣

ξ − p′

q′

∣

∣

∣

∣

≫ 1

bq′
≫ 1

bτ
.

To cover all the interval q < b < q′, we need to have q′1/(τ−1) ≪ qτ−1, that is τ ≥
(3 +

√
5)/2. If τ is smaller, we cannot exclude that there are better approximations to ξ

with a denominator between q and q′.
We can go through the proof of Theorem 1 with sequences that do not satisfy (2.1).

Our construction would then even yield the existence of real numbers ξ such that

v1(ξ) ≥ v1, vb(ξ) ≥ vb and v′
b(ξ) ≥ v′

b, for every b ∈ B.

We will not be able to show that these inequalities are indeed equalities, since we are not
certain to know all the best rational approximations to ξ.

One way to overcome this difficulty is to construct simultaneously the continued frac-
tion expansion of ξ and its expansion in base b. This was already done in [9] to solve a
problem of Mahler on rational approximation to elements of Cantor sets. By means of
a suitable extension of a lemma of Amou [2] and using ideas of Mahler [19, 20, 21], we
establish the following significant partial result on Problem 2.
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Theorem 2. Let b ≥ 2 be an integer. Let v1, vb, v′
b be elements of R ∪ {+∞} with

v1 ≥ 1, 1 ≤ vb ≤ v′
b ≤ v1

or
v1 ≥ 1, vb = 0, and either v′

b = 0, or 1 ≤ v′
b ≤ v1.

There exist uncountably many real numbers ξ with

v1(ξ) = v1, vb(ξ) = vb and v′
b(ξ) = v′

b.

To point out the main ideas of its proof, Theorem 2 is established step by step. We
begin (see Theorem 5 in Section 4) by the case where v1 = vb = v′

b. Then, in the subsequent
section, we treat the case where v1 ≥ b−1 and vb = v′

b = 0 (see Theorem 6). The remaining
steps are explained in Section 5.

Unfortunately, Theorem 2 gives nothing when one of the prescribed values vb, v′
b is

strictly between 0 and 1. To tackle this case, we can use again triangle inequalities, but
we need then to assume that v1 is sufficiently large.

Theorem 3. Let b ≥ 2 be an integer. Let v1, vb and v′
b be real numbers such that

0 ≤ vb ≤ v′
b ≤

v′
b + 1 +

√

(v′
b)

2 + 6v′
b + 5

2
≤ v1.

Then, there exist uncountably many real numbers ξ such that

vb(ξ) = vb, v′
b(ξ) = v′

b and v1(ξ) = v1.

Theorem 3 is proved in Section 6, where we mention another similar partial result on
Problem 2 that can be established following the same method.

We end this section with a further (small) contribution towards the resolution of
Problem 1.

Theorem 4. For any non-negative real number v, there exist uncountably many real
numbers ξ such that

v1(ξ) = 2v + 1

and
vb(ξ) = v′

b(ξ) = v, for every b ≥ 2.

The proof of Theorem 4, outlined in Section 7, uses methods from metric number
theory.

Theorem 4 may be compared with Theorem 5.8 from [7], where the theory of inter-
sective sets is applied to other exponents of approximation that generalize the exponent
v1.

3. On explicit constructions: continued fraction expansions

The proof of Theorem 1 rests on the following lemma.
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Lemma 1. Let b ≥ 2 be an integer and µ ≥ (3 +
√

5)/2 be a real number. Let m be a
positive integer. Let P/Q and R/S be reduced fractions with positive denominators such
that

Sµ ≤ Q < bSµ (3.1)

and
1

Q
≤

∣

∣

∣

∣

P

Q
− R

S

∣

∣

∣

∣

≤ m

Q
. (3.2)

Then, for any reduced fraction A/B with S ≤ B < Q, we have

∣

∣

∣

∣

P

Q
− A

B

∣

∣

∣

∣

>
1

b(2m)1.7Bµ
. (3.3)

Proof. Assume first that S ≤ B ≤ Sµ−1/(2m). Since this with (3.1) gives BS ≤
Sµ/(2m) ≤ Q/(2m), using

∣

∣

∣

∣

P

Q
− A

B

∣

∣

∣

∣

≥
∣

∣

∣

∣

A

B
− R

S

∣

∣

∣

∣

−
∣

∣

∣

∣

P

Q
− R

S

∣

∣

∣

∣

together with (3.2), we obtain

∣

∣

∣

∣

P

Q
− A

B

∣

∣

∣

∣

≥ 1

BS
− m

Q
≥ 1

2BS
≥ 1

2B2
.

Assume next that Sµ−1/(2m) < B < Q. Since this with (3.1) gives Q < b(2mB)µ/(µ−1),
we obtain

∣

∣

∣

∣

P

Q
− A

B

∣

∣

∣

∣

≥ 1

BQ
>

1

bB(2mB)µ/(µ−1)
,

which implies (3.3), since µ/(µ − 1) < 1.7 and 1 + µ/(µ − 1) ≤ µ. Thus the lemma is
proved.

Remark. In Lemma 1, if m/Sµ < 1/(2S2), that is, if S > (2m)1/(µ−2), then R/S is a
convergent to P/Q. This is in particular the case if S > (2m)2.

Proof of Theorem 1. Let us take a sequence (bj)j≥1 with bj ∈ B1 such that b1 = 1, bj ≤ j
and, for every b ∈ B1, there are infinitely many j satisfying bj = b. Let R0/S0 be a reduced
fraction with S0 > 100. Assume that we have already constructed reduced fractions Pi/Qi

and Ri/Si for i = 1, ..., j − 1 with j ∈ N. (Note that we do not have P0/Q0.) Then we
construct inductively reduced fractions Pj/Qj and Rj/Sj as follows.

We first take Qj = b
nj

j (resp. Qj prime) with nj ≥ 1 if bj ≥ 2 (resp. if bj = 1) such
that the triple (S, Q, b) = (Sj−1, Qj, bj) (resp. (S, Q, b) = (Sj−1, Qj, 2)) satisfies (3.1) with
µ = (3 +

√
5)/2, and next take an integer Pj such that Pj/Qj is reduced and that the

pair (R/S, P/Q) = (Rj−1/Sj−1, Pj/Qj) satisfies (3.2) with m = m(b) := 2b + 2. Denoting
a continued fraction expansion of Pj/Qj by [a0; a1, ..., ak], we define a reduced fraction
Rj/Sj by

Rj

Sj
:= [a0; a1, ..., ak, ⌊Qv−1

j ⌋],
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where v = vbj
if vbj

< +∞ and v = j if vbj
= +∞.

By the construction we can define a real number ξ by

ξ := lim
j→+∞

Pj

Qj
,

whose continued fraction expansion has Pj/Qj and Rj/Sj (j ∈ N) among its convergents.
We claim that this ξ satisfies the conditions given in the theorem. To this end we consider
rational approximations to ξ.

Let j be a positive integer and set v = vbj
. Under the above notation, since

[a0; a1, ..., ak, ⌊Qv−1
j ⌋ − 1]

is the only possible convergent to ξ between Pj/Qj and Rj/Sj , we have

1

Qj(Sj + Qj)
<

∣

∣

∣

∣

ξ − Pj

Qj

∣

∣

∣

∣

<
1

Qj(Sj − Qj)
,

which implies
1

2Qv+1
j

<

∣

∣

∣

∣

ξ − Pj

Qj

∣

∣

∣

∣

<
2

Qv+1
j

. (3.4)

For the same reason, for any reduced fraction A/B with Qj < B < Sj (j ∈ N), we have

∣

∣

∣

∣

ξ − A

B

∣

∣

∣

∣

≥ 1

2B2
.

Let A/B be a reduced fraction with Sj−1 ≤ B < Qj (j ∈ N). Since

∣

∣

∣

∣

Pj

Qj
− A

B

∣

∣

∣

∣

≥ 1

BQj
,

∣

∣

∣

∣

ξ − Pj

Qj

∣

∣

∣

∣

≤ 2

Qv+1
j

,

and since BQj < Qv+1
j /4, we have

∣

∣

∣

∣

ξ − A

B

∣

∣

∣

∣

≥
∣

∣

∣

∣

Pj

Qj
− A

B

∣

∣

∣

∣

−
∣

∣

∣

∣

ξ − Pj

Qj

∣

∣

∣

∣

>
1

2

∣

∣

∣

∣

Pj

Qj
− A

B

∣

∣

∣

∣

.

We then infer from Lemma 1 that
∣

∣

∣

∣

ξ − A

B

∣

∣

∣

∣

>
1

2b(2m(b))1.7Bµ
,

where b = bj and m(b) = 2b + 2.
Consequently, on noting that bj = O(j), these estimates prove our claim.
In each step of the inductive procedure, there are at least two choices of Pj/Qj hav-

ing the same denominator Qj ; one is less than Rj−1/Sj−1, and the other is greater than
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Rj−1/Sj−1. Hence we have an infinite directed binary tree of reduced fractions whose infi-
nite paths correspond to real numbers ξ, which are different from each other and have the
conditions given in the assertion. This ensures the uncountability of the desired numbers,
and completes the proof of the theorem.

For sake of clarity, we add a few words on (2.2). Let b and b′ be distinct elements of B
such that P(b′) ⊆ P(b). Then, for any Q′

j = (b′)n′

with some positive integer n′, we have
to estimate from below

∣

∣

∣

∣

∣

ξ −
P ′

j

Q′
j

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

ξ − Pj

Qj

∣

∣

∣

∣

with Qj = bn and Pj = P ′
j(Qj/Q′

j) provided that Q′
j divides Qj . Since, by (3.4),

∣

∣

∣

∣

∣

ξ −
P ′

j

Q′
j

∣

∣

∣

∣

∣

>
1

2(Q′
j)

vb′+1
,

we have
∣

∣

∣

∣

ξ − Pj

Qj

∣

∣

∣

∣

>
1

2
(Qj)

−n′ log b′

n log b
(vb′+1).

On noting that n′/n ≤ ρ(b′, b), we get
∣

∣

∣

∣

ξ − Pj

Qj

∣

∣

∣

∣

>
1

2
(Qj)

−ρ(b′,b) log b′

log b
(vb′+1).

In view of the assumption (2.2), this shows that vb(ξ) = vb. To see this, one should add
that, if j is such that bj = 1, then, by assumption, Qj is a prime number and there are at
most finitely many such j for which P(Qj) is contained in P(b).

To conclude this section, we explain why the approach followed in the proof of Theorem
1 cannot be applied to construct real numbers ξ with prescribed values for v′

b(ξ), where
b ∈ B. The point is that we do not control all the rational approximations that give the
value of v′

b(ξ). Indeed, with the above notation, let us consider the fractions Pj/Qj for the
indices j with bj = 1. Let b be in B. Then, there exist integers Tj , rj and sj such that

Pj

Qj
=

Tj

brj (bsj − 1)
,

where the latter fraction may not be written in reduced form. It may happen that brj (bsj −
1) is not much greater than Qj . If this is the case for infinitely many j, we may even get
that v′

b(ξ) = v1(ξ). Since there are no ways to control rj and sj , we cannot get the exact
value of v′

b(ξ).

4. On explicit constructions: the Folding Lemma

Our goal in this section is to describe a general method for constructing numbers ξ
with prescribed exponents v1(ξ) and vb(ξ) for some integer b ≥ 2. Since the value of v1(ξ)
can be read on the continued fraction expansion of ξ, we aim at constructing real numbers
whose continued fraction and b-ary expansions are simultaneously explicitly known. The
key tool for this is the Folding Lemma [23, 24, 25].
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Lemma F. Let n, a1, . . . , an be positive integers. Let t ≥ 2 be an integer. If pn/qn =
[a0; a1, a2, . . . , an] with an ≥ 2, then

pn

qn
+

(−1)n

tq2
n

= [a0; a1, a2, . . . , an−1, an, t − 1, 1, an − 1, an−1, . . . , a2, a1].

We display an immediate consequence of Lemma F.

Lemma 2. Let t ≥ 2 be an integer. If a/m = [0; 1, 1, a3, . . . , ah−1, ah] with h ≥ 4 and
ah ≥ 2, then

tma + (−1)h

tm2
= [0; 1, 1, a3, . . . , ah−1, ah, t − 1, 1, ah − 1, ah−1, . . . , a3, 2].

Lemma 2 is the main tool for the proof of Theorem 5 below, which settles a particular
case of Theorem 2.

Theorem 5. Let b ≥ 2 be an integer. For any real number v > 1, there exist uncountably
many real numbers ξ such that

v1(ξ) = vb(ξ) = v′
b(ξ) = v.

Proof. Observe that in the open real interval with endpoints [0; 1, 1, 1, 2] and [0; 1, 1, 1, 3]
there are rational numbers whose denominator is a power of b. Consequently, there exist
positive integers a and ℓ, with 1 ≤ a ≤ bℓ and a coprime with b, such that the continued
fraction of a/bℓ reads

a

bℓ
= [0; 1, 1, a3, . . . , ah−1, ah],

with h ≥ 4 and ah ≥ 2.
Let (un)n≥1 be a sequence of positive integers. Applying Lemma 2 first with t = bu1 ,

then with t = bu2 , and so on, we obtain that the real number

ξ =
a

bℓ
± 1

bu1+2ℓ
− 1

bu2+2u1+4ℓ
− . . .− 1

buk+2uk−1+...+2k−1u1+2kℓ
− . . .

satisfies

∣

∣

∣

∣

ξ − pk

buk+2uk−1+...+2k−1u1+2kℓ

∣

∣

∣

∣

≍ 1

buk+1+2(uk+2uk−1+...+2k−1u1+2kℓ)
, for k ≥ 1,

where pk is the closest integer to (buk+2uk−1+...+2k−1u1+2kℓ)ξ. These rational approxima-
tions to ξ are the best possible because buk+1 − 1 is the largest partial quotient at the
beginning of the continued fraction expansion of ξ.

Let v > 1 be given. Choose inductively uk such that

uk+1 ≍ (v − 1)(uk + 2uk−1 + . . . + 2k−1u1 + 2kℓ).

10



It is sufficient to take u1 = ⌊(v − 1)ℓ⌋ and

uk+1 = ⌊(v − 1)(uk + . . . + 2kℓ)⌋, for k ≥ 1.

We are done, since we perfectly control the best rational approximations. We obtain at
once that

vb(ξ) = v and v1(ξ) = v.

This completes the proof of the theorem.

Theorem 5 will be considerably improved upon in the next section, thanks to the
following far-reaching extension of Lemma 2 that takes its source in [2].

Lemma 3. Let τ be a positive number with τ ≥ 2. Let (An)n≥1 be a strictly increasing
sequence of positive integers and (Bn)n≥1 be a sequence of nonzero integers. For n ≥ 1,
set

Sn = (An+1/|Bn+1|)/(An/|Bn|)2

and denote by dn the denominator of Sn. Furthermore, we set

Dn =
n

∏

ν=0

d2n−ν

ν

for n ≥ 0, where d0 = |B1|. Assume that the following conditions are satisfied:

(i) Sn ≥ 2 holds for any sufficiently large n;

(ii) lim sup
n→∞

log An+1

log An
= τ ;

(iii) |Bn| = A
o(1)
n as n → ∞;

(iv) Dn = A
o(1)
n as n → ∞.

Then, the irrationality exponent of the number

ω =

∞
∑

n=1

Bn

An

is equal to τ .

Before establishing Lemma 3 we point out that the Folding Lemma remains true if
the components of the continued fraction are positive real numbers.

In what follows, for any finite or infinite continued fraction ζ = [a0; a1, a2, . . .] whose
components are real numbers, we define pk = pk(ζ) and qk = qk(ζ) as usual by

p0 = a0, q0 = 1, p1 = a0a1 + 1, q1 = a1,

and
pk = akpk−1 + pk−2, qk = akqk−1 + qk−2 for k ≥ 2.

11



Lemma F’. Let ζ = [a0; a1, . . . , an] be a continued fraction whose components ak are all
real numbers with ak ≥ 1 for k = 1, . . . , n. For any real number t with t ≥ 1 we have

ζ +
(−1)n

tq2
n

= [a0; a1, a2, . . . , an−1, an, t − 1, 1, an − 1, an−1, . . . , a1] =: ζ+

and

ζ − (−1)n

tq2
n

= [a0; a1, a2, . . . , an−1, an − 1, 1, t − 1, an, an−1, . . . , a1] =: ζ−.

Furthermore, we have q2n+2(ζ+) = q2n+2(ζ−) = tq2
n.

Lemma F’ was established by Shallit [25] when the components are integers, but his
proof remains valid for the continued fractions as stated above. It is understood that

[a0; a1, . . . , ak, 1, 0, ak+1, ak+2, . . .] = [a0; a1, . . . , ak, ak+1 + 1, ak+2, . . .].

Proof of Lemma 3. We may assume that S0 := A1/B1 ≥ 3 and that Sn ≥ 2 for all n ≥ 1.
Set

ωk :=

k
∑

ν=1

Bν

Aν

for k ≥ 1. Starting from ω1 = [0; S0] we have by Lemma F’,

ω2 = [0; S0 − 1, 1, S1 − 1, S0]

or
ω2 = [0; S0, S1 − 1, 1, S0 − 1]

according as the sign of B2 is plus or minus. Then, for k ≥ 2, we have inductively by
Lemma F’ again,

ωk+1 = [0; a′
1, ..., a

′
e(k), Sk − 1, 1, a′

e(k) − 1, a′
e(k)−1, ..., a

′
1]

or
ωk+1 = [0; a′

1, ..., a
′
e(k) − 1, 1, Sk − 1, a′

e(k), a
′
e(k)−1, ..., a

′
1]

according as the sign of Bk+1 is plus or minus, where

ωk = [0; a′
1, ..., a

′
e(k)], e(k) = 3 · 2k−1 − 2.

Thus we get a continued fraction expansion

ω = [0; a1, a2, ..., an, ...]

as the limit of the above expansion of ωk’s, where the ai’s are rational numbers. We can
analyse rational approximations to ω from this expansion. To this end we summarize
several notations and properties concerning this expansion.

12



For n ≥ 1, let pn = pn(ω), qn = qn(ω), and observe that we have

qnpn−1 − pnqn−1 = (−1)n (4.1)

and
1

(qn+1 + qn)qn
<

∣

∣

∣

∣

ω − pn

qn

∣

∣

∣

∣

<
1

qn+1qn
. (4.2)

We set pn/qn = p′n/q′n, where p′n and q′n are relatively prime positive integers. It is
important to notice that

q′n = q1+o(1)
n (4.3)

as n → ∞. To show this, under the assumption n ≥ 2, let k be the integer such that
e(k) ≤ n < e(k + 1). It follows from the construction of ωk and the definition of Dk that
Dkpm and Dkqm are integers for m ≤ n. This with (4.1) implies that the greatest common
divisor of Dkpn and Dkqn is at most D2

k. Hence, we have Dkqn ≥ q′n ≥ D−1
k qn, which with

(iv) implies (4.3).
We now prove that µ(ω) ≥ τ . To this end we set, for k ≥ 1,

Pk = pe(k), Qk = qe(k) or Pk = pe(k)+1, Qk = qe(k)+1

according as the sign of Bk+1 is plus or minus. Then we have

Qk+1 = SkQ2
k =

Ak+1

|Bk+1|
(4.4)

by Lemma F’, and
1

(Sk + 1)Q2
k

<

∣

∣

∣

∣

ω − Pk

Qk

∣

∣

∣

∣

<
1

(Sk − 1)Q2
k

(4.5)

by (4.2). Let ε > 0 be given. It follows from (ii) that Ak+1 ≥ Aτ−ε
k holds for infinitely

many indices k. Hence (4.5) together with (4.4) and (iii) implies that

0 <

∣

∣

∣

∣

ω − Pk

Qk

∣

∣

∣

∣

<
1

Qτ−2ε
k

holds for infinitely many k. Since ε can be taken arbitrarily small, we deduce that µ(ω) ≥ τ
from (4.3).

We next prove the upper bound µ(ω) ≤ τ . In the sequel let ε > 0 be given, and denote
by nj(ε) with 1 ≤ j ≤ 5 positive integers depending only on ε. Let p/q be any reduced
fraction with sufficiently large q. Assume first that p/q = pn/qn for some n. Then we have

∣

∣

∣

∣

ω − p

q

∣

∣

∣

∣

>
1

3an+1q2
n

(4.6)

by (4.2). Let k be the integer such that e(k) ≤ n < e(k + 1). Since

an+1 ≤ max{ae(k), ..., ae(k+1)} ≤ max{S0, ..., Sk},
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we deduce an+1 ≤ Aτ−2+ε
k from the definition of Sk, (ii) and (iii) provided that n ≥ n1(ε).

Since Qk = qe(k) or Qk = qe(k) + qe(k)−1 according as the sign of Bk+1 is plus or minus,
we have qe(k) ≥ Qk/2. Hence qn ≥ Ak/(2|Bk|) by (4.4). Thus, on noting (iii), we get
an+1 ≤ qτ−2+2ε

n provided that n ≥ n2(ε). Combined with (4.3) and (4.6), this implies

∣

∣

∣

∣

ω − p

q

∣

∣

∣

∣

>
1

qτ+3ε
(4.7)

provided that q ≥ n3(ε).
Assume next that p/q 6= pn/qn for all n. It follows from (4.2) that

∣

∣

∣

∣

ω − p

q

∣

∣

∣

∣

≥
∣

∣

∣

∣

pn

qn
− p

q

∣

∣

∣

∣

−
∣

∣

∣

∣

ω − pn

qn

∣

∣

∣

∣

≥ 1

q′nq
− 1

qn+1qn

for any n. We now take n such that q1−ε
n /2 ≤ q < q1−ε

n+1/2. Since q′n ≤ q1+ε
n by (4.3)

provided that n ≥ n4(ε), we have q′nq ≤ q1+ε
n q1−ε

n+1/2 ≤ qnqn+1/2. Hence we get

∣

∣

∣

∣

ω − p

q

∣

∣

∣

∣

≥ 1

2q′nq
≥ 1

2q(2q)1/(1−ε)

provided that q ≥ n5(ε). Combined with (4.7), this implies that µ(ω) ≤ τ , since ε can be
taken arbitrarily small. This completes the proof of the lemma.

5. On explicit constructions: Mahler’s numbers

In 1937 Mahler [19, 20] established that the Champernowne number

ξc = 0.1234567891011121314 . . . ,

whose sequence of decimals is given by the concatenation of the integers ranged by increas-
ing order, is a transcendental number. This is a particular case of a more general result;
further extensions of which have been given in [21, 26, 27].

The key lemma for Mahler’s approach is the following.

Lemma 4. Let b ≥ 2 be an integer. Let a and n be positive integers. Let Wb,n,a be the
integer, written in base b, whose digits are the concatenation of a copies of every integer
having exactly n digits in base b. Then, Wb,n,a has exactly

Db,n,a := nabn−1(b − 1)

digits, and

Wb,n,a =
bna+n−1 − bn−1 + 1

(bn − 1)(bna − 1)
bDb,n,a − bna+n − bn + 1

(bn − 1)(bna − 1)
. (5.1)

Lemma 4 is established along the lines of [21], see on page 722.
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We stress that in the statement of Lemma 4 the base b is not assumed to be in B.
This will also be the case throughout this section.

The important fact in Lemma 4 is that all the integers occurring in (5.1), except
bDb,n,a , are much smaller than bDb,n,a . Consequently, the Champernowne number ξc can
be expressed as a lacunary sum

∑

n≥1

cn

10g(n)
,

where g is a rapidly increasing integer valued function and cn is a rational number whose
denominator and numerator are small compared with 10g(n).

Throughout this section, we use capital letters W, X, . . . to denote finite words over
the alphabet {0, 1, . . . , b − 1}, that we may also view as rational integers, like in Lemmas
4 and 5. This should not cause any confusion. Furthermore, since the proof of Theorem
2 is slightly technical, we prefer to begin with establishing several partial results before
explaining how to get a complete proof.

Definition 2. Let b ≥ 2 be an integer. For a function a taking positive integer values, let
ξb,a be the real number whose b-ary expansion is given by

ξb,a = 0.Wb,1,a(1)Wb,2,a(2) . . .Wb,n,a(n) . . . .

By means of his version of the Folding Lemma, Amou [2] established that

v1(ξb,1) = b − 1, for every b ≥ 2,

where 1 denotes the constant function equal to 1.
Using Lemma 3, we are able to extend this result and construct real numbers with

prescribed irrationality exponents. We begin with a particular case of Theorem 2.

Theorem 6. Let b ≥ 2 be an integer. For any real number v ≥ b − 1, there exist
uncountably many real numbers ξ such that

v1(ξ) = v and vb(ξ) = v′
b(ξ) = 0.

Proof. Let τ ≥ 1 be a real number. Consider the function a defined by a(n) = ⌊τn⌋ for
n ≥ 1. For a ≥ 1 and n ≥ 1, set

c1(b, n, a) =
bna+n−1 − bn−1 + 1

(bn − 1)(bna − 1)
and c2(b, n, a) =

bna+n − bn + 1

(bn − 1)(bna − 1)
,

and observe that, in view of Lemma 4, the real number ξb,a can be written as a lacunary
series, namely

ξb,a = c1(b, 1, a(1)) +
∑

n≥1

c1(b, n + 1, a(n + 1)) − c2(b, n, a(n))

b
∑

n

k=1
Db,k,a(k)

.

For n ≥ 1, set

An := b
∑

n

k=1
Db,k,a(k)
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and
Bn := c1(b, n + 1, a(n + 1)) − c2(b, n, a(n)).

Since Bn is very small compared to An for n ≥ 1, and

∑n+1
k=1 Db,k,a(k)

∑n
k=1 Db,k,a(k)

→ τb,

Lemma 3 can be applied to ξb,a − c1(b, 1, a(1)) and it yields that

v1(ξb,a) = τb − 1.

Furthermore, by construction, there are no too long repetitions that occur too early in the
b-ary expansion of ξ, hence, vb(ξ) = v′

b(ξ) = 0. This proves the theorem.

Theorem 6 is quite restrictive because of the assumption v ≥ b−1. For the remaining
values of v, we need a modified version of Lemma 4, which incorporates the ideas from
[20]. Namely, instead of concatenating integers in some non-decreasing order, we take an
integer polynomial f and concatenate the integers f(j). We have the following analogue
of Lemma 4, whose proof is implicitly given in [20].

Lemma 5. Let b ≥ 2 be an integer. Let a, m and n be positive integers. Let Wb,n,a,m be
the integer, written in base b, whose digits are the concatenation of a copies of every m-th
power having exactly n digits in base b. Then, Wb,n,a,m has

D′
b,n,a,m ≍ nabn/m

digits, and
Wb,n,a,m = c1(b, n, a, m) bD′

b,n,a,m − c2(b, n, a, m),

where c1(b, n, a, m) and c2(b, n, a, m) are rational numbers whose denominators and nu-
merators are ≪ ban(m+1).

Like in Definition 2, for a given function a and a given positive integer m, we define
numbers ξb,a,m by

ξb,a,m = 0.Wb,1,a(1),mWb,2,a(2),m . . .Wb,n,a(n),m . . . .

We choose again the function a defined by a(n) = ⌊τn⌋, for a real number τ ≥ 1. It is
clear from Lemma 3 that assumption (iii) of Lemma 3 is satisfied. As for assumption (iv),
a rapid calculation shows that it holds as soon as b1/m ≥ 2. We then infer from Lemma 3
that

v1(ξb,a,m) = τb1/m − 1.

Selecting for m the largest integer such that b1/m ≥ 2, we establish Theorem 2 for vb =
v′

b = 0 and v1 ≥ b1/m − 1.
To complete the proof of Theorem 2 for vb = v′

b = 0, the trick consists in working
in the base bt, where t is an arbitrarily large integer. Indeed, recall that almost all real
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numbers ξ satisfy vb(ξ) = v′
b(ξ) = 0 and v1(ξ) = 1, and let v be a real number with v > 1.

There exist positive coprime integers t and m such that 2 < (bt)1/m < v + 1. Choosing
now τ = (v + 1)(bt)−1/m, the above construction shows that

v1(ξbt,a,m) = τbt/m − 1 = v, vbt(ξbt,a,m) = v′
bt(ξbt,a,m) = 0.

We conclude by using (1.2).

The complete proof of Theorem 2 follows the same general lines as that of Theorem 6.
Besides Lemma 5, the new ingredient is that we insert large blocks of 0 and of 10 between
the words Wb,n,a(n),m.

Definition 3. Let b ≥ 2 be an integer. For a positive integer n, denote by Xn the word
composed of n digits 0 and denote by Yn the word composed of the concatenation of n
copies of the block 10. Viewed as an integer, we have

Yn =
b2n+1 − b

b2 − 1
=

1

b2 − 1
· b2n+1 − b

b2 − 1
.

For the same function a as above and for a positive integer m, we consider real numbers
whose b-ary expansions are given by

ξb,n,s,a,m = 0.Wb,n1,a(n1),mXs1
Wb,n2,a(n2),mYs2

Wb,n3,a(n3),mXs3
. . . ,

for integer sequences n = (nj)j≥1, and s = (sj)j≥1.
For j ≥ 1, denote by rj the length of the word Wb,nj ,a(nj),m occurring in the definition

of ξ, and let (uj)j≥1 be the sequence r1, r1 + s1, r1 + s1 + r2, r1 + s1 + r2 +2s2, . . .. In view
of Lemma 5, there is a sequence (cj)j≥0 of rational numbers such that

ξ = c0 +
∑

j≥1

cj

buj
.

Furthermore, it follows from Lemma 5 and Definition 3 that the denominator and numer-
ator of cj are small compared with buj . Lemma 3 is then applicable provided that there
exists a positive real number η such that

uj+1 ≥ (2 + η)uj , for all j ≥ 1. (5.2)

This explains why we need to assume that vb and v′
b are both at least equal to 1 (to settle

the case where vb = 0 and v′
b ≥ 1, we simply choose s2j+1 = 0 for every j ≥ 0.) This,

however, is not enough to deal with the case v1 = 1. Fortunately, (5.2) can be slightly
weakened: there exists a sequence (cj)j≥1 satisfying lim infj cj = 2 and cj > 2 for j ≥ 1,
and such that the property uj+1 = cjuj is sufficient to apply Lemma 3. We omit the
technical details, which come from assumption (iv) of Lemma 3.

Observe furthermore that

vb(ξ) = lim sup
j→+∞

u4j+2

u4j+1
, (5.3)
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v′
b(ξ) = max

{

vb(ξ), lim sup
j→+∞

u4j

u4j−1

}

, (5.4)

and
v1(ξ) = lim sup

j→+∞

uj+1

uj
,

by Lemma 3. To justify (5.3), we simply note that, by construction, there are no too
long blocks of zero occurring near the beginning of the b-ary expansion of ξ, except the
blocks Xs2j+1

. Likewise, to justify (5.4), we note that, by construction, there are no too
long repetitions of a same block occurring near the beginning of the b-ary expansion of
ξ, except those corresponding to the blocks Xs2j+1

and Ys2j
. Consequently, and since

our construction is flexible enough, for any choice of v1, vb and v′
b as in the statement of

Theorem 2, we can find uncountably many suitable choices for the sequences (nj)j≥1 and
(sj)j≥1 such that the corresponding real number ξ satisfies v1(ξ) = v1, vb(ξ) = vb and
v′

b(ξ) = v′
b.

6. Further results on Problem 2

Our Theorem 2 is not powerful enough to give a complete answer to Problem 2.
However, we are able to treat some of the remaining cases by combining Mahler’s con-
structions with the näıve approach, namely, triangle inequalities. Consequently, in all the
results stated below, we are not able to remove the assumption v1 ≥ (1 +

√
5)/2, which is

crucial for the argument based on triangle inequalities.
We keep the notation of the end of Section 5. We set

ξb,n,s,a,m = 0.Wb,n1,a(n1),mXs1
Wb,n2,a(n2),mYs2

Wb,n3,a(n3),mXs3
. . . ,

for integer sequences n = (nj)j≥1, and s = (sj)j≥1. Again, by Lemma 5, there are a
sequence (cj)j≥0 of rational numbers and an increasing sequence (uj)j≥1 of integers such
that

ξb,n,s,a,m = c0 +
∑

j≥1

cj

buj
.

For J ≥ 1, define

ξJ = ξb,n,s,a,m,J = c0 +
∑

1≤j≤J

cj

buj
=:

pJ

qJ
.

Proof of Theorem 3. For simplicity, write ξ instead of ξb,n,s,a,m. Let v ≥ 1 and w ≥ 2 be
real numbers with w ≥ v. Assume that the parameters occurring in the definition of ξ are
chosen in such a way that

lim
j→+∞

u2j+1

u2j
= w and lim

j→+∞
u2j

u2j−1
≤ v.

Assume further that we are in the following situation:

|ξ − p2J/q2J | ≍ q−1
2J+1 ≍ q−w

2J , |ξ − p2J+1/q2J+1| ≫ q−v
2J+1, |ξ − p2J+2/q2J+2| ≍ q−w

2J+2,
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and
q2J+1 ≍ qw

2J , q2J+2 ≪ qv
2J+1. (6.1)

Take a rational p/q with q2J < q < q2J+2. Using triangle inequalities, we have

|ξ − p/q| ≫ q−w (6.2)

when
q ≪ qw−1

2J . (6.3)

Likewise, using that
|ξ − p/q| ≫ |1/(qq2J+2) − 1/qw

2J+2|,

we have (6.2) as soon as

q
1/(w−1)
2J+2 ≪ q ≪ qw−1

2J+2. (6.4)

Recall that, by assumption,
q2J+2 ≪ qvw

2J .

To get (6.2) for any q between q2J and q2J+2, we need that qw−1
2J ≫ q

1/(w−1)
2J+2 . This is

satisfied as soon as we have
w2 − (v + 2)w + 1 ≥ 0,

or, equivalently,

w ≥ (v + 2 +
√

v2 + 4v)/2.

Selecting w = v1 + 1 and v = v′
b + 1, and choosing (uj)j≥1 such that

lim
j→+∞

u4j+2

u4j+1
= vb + 1 and lim

j→+∞
u4j

u4j−1
= v′

b + 1,

we check that v1(ξ) = v1, vb(ξ) = vb and v′
b(ξ) = v′

b. This completes the proof of the
theorem.

In the above proof of Theorem 3, we have only used the rational numbers p2J/q2J and
p2J+2/q2J+2. If v is not too small, we can do a little better by taking also p2J+1/q2J+1

into account.
Indeed, using p2J+1/q2J+1 and triangle inequality, we get (6.2) for q such that

q
1/(w−1)
2J+1 ≪ q ≪ qv−1

2J+1.

Clearly, this can be used only if v is not too small, since v − 1 ≥ 1/(w − 1) is required.

This can be combined with (6.3) if qw−1
2J ≫ q

1/(w−1)
2J+1 ≍ q

w/(w−1)
2J , that is, under the

assumption that w ≥ (3 +
√

5)/2. It then remains to deal with q such that qv−1
2J+1 ≪ q ≪

q2J+2. Combined with (6.4), we see that one needs

qv−1
2J+1 ≫ q

1/(w−1)
2J+2

19



By (6.1), this is achieved if
w ≥ 2 + 1/(v − 1),

a weaker assumption than in Theorem 3 when v is not too small.

7. Metric results

Throughout this section, we denote by dim the Hausdorff dimension. A classical
result, established independently by Jarńık [14] and Besicovitch [4], asserts that

dim{ξ : v1(ξ) ≥ v} =
2

v + 1
, for v ≥ 1. (7.1)

Furthermore, for b ≥ 2, it follows from a general result of Borosh and Fraenkel [5] that

dim{ξ : vb(ξ) ≥ v} =
1

v + 1
, for v ≥ 0. (7.2)

For both assertions, the upper bound for the dimension is an easy consequence of the
Cantelli lemma, and to establish that the upper bound is actually the exact value of the
dimension requires some work.

To get metrical results for sets of real numbers ξ with prescribed values for vb(ξ) for
all positive integers b, the only available tool is the theory of intersective sets, introduced
by Falconer [12, 13] and continued by Bugeaud [8] and Durand [11]. We take the notation
from [11] with some simplification.

Let U be an open real interval. Let (xi)i≥1 be points in U and (ri)i≥1 be a sequence of
positive real numbers that tends to zero as i tends to infinity. Then, the family (xi, ri)i≥1

is a homogeneous ubiquitous system in U if the set

{x ∈ U : |x − xi| < ri for i.m. i ≥ 1}

has full Lebesgue measure in U . Here and below, we write ‘i.m.’ for ‘infinitely many’.
Let g : R>0 → R>0 be non-decreasing on a neighbourhood of 0 and such that

limx→0 g(x) = 0 and x 7→ g(x)/x is positive and non-increasing on a neighbourhood
of 0. For any nonempty open real set V , Durand [11] defines the class Gg(V ) composed of
the sets with large intersection in V . We refer to [11] for a precise definition, and content
ourselves to stress that the class Gg(V ) is stable by countable intersection and that a lower
bound for the Hausdorff dimension of any element of Gg(V ) can be given in terms of the
growth of the function g. In particular, Durand [11] establishes the following result.

Theorem D. Let τ be a real number with τ ≥ 1 and let g be the function x 7→ x1/τ .
With the above notation, if the family (xi, ri)i≥1 is a homogeneous ubiquitous system in
U , then the set

{x ∈ U : |x − xi| < rτ
i for i.m. i ≥ 1}

belongs to the class Gg(U). In particular, its Hausdorff dimension is at least equal to 1/τ .

Since every irrational number can be approximated at order (at least) two by ratio-
nals, the family (p/q, q−2), where p/q runs over all the rational numbers of (0, 1), is a
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homogeneous ubiquitous system in (0, 1). Then, the difficult half of (7.1) easily follows
from Theorem D.

Furthermore, for b ∈ B, the family (p/q, q−1), where p/q runs over all the rational
numbers of (0, 1) with q being a power of b, is as well a homogeneous ubiquitous system
in (0, 1). Again, the difficult half of (7.2) easily follows from Theorem D.

Since the class Gg(V ) is stable by countable intersection, we get from the above
discussion that

dim

(

{ξ : v1(ξ) ≥ 2v + 1} ∩
⋂

b∈B
{ξ : vb(ξ) ≥ v}

)

=
1

v + 1
. (7.3)

Using (7.1), (7.2) and standard arguments (like the Hausdorff–Cantelli lemma), we
deduce from (7.3) our first result.

Theorem 7. For any non-negative real number v, we have

dim

(

{ξ : v1(ξ) = 2v + 1} ∩
⋂

b∈B
{ξ : vb(ξ) = v}

)

=
1

v + 1
.

Since (7.2) also holds with the exponent vb replaced by v′
b, the theory of intersective

sets yields the following, stronger result.

Theorem 8. For any non-negative real number v, we have

dim

(

{ξ : v1(ξ) = 2v + 1} ∩
⋂

b∈B
{ξ : vb(ξ) = v} ∩

⋂

b∈B
{ξ : v′

b(ξ) = v}
)

=
1

v + 1
.

We choose not to give detailled proofs of Theorems 7 and 8, since they are easy
applications of the theory of intersective sets, which is not the main purpose of the present
note.

Clearly, Theorem 4 follows from (1.2) and Theorem 8.

8. Normal numbers with prescribed irrationality exponent

Let b ≥ 2 be an integer. By definition, a real number ξ is normal in base b if, for
every positive integer n, every block of n digits occurs with the same frequency in the b-ary
expansion of ξ. It follows from the Borel–Cantelli lemma that almost all real numbers ξ
are normal in every integer base and satisfy v1(ξ) = 1.

It was established in [6] that there exist uncountably many Liouville numbers (recall
that a Liouville number ξ is a real number with v1(ξ) = +∞) that are normal in every
integer base. Furthermore, by combining [17] (resp. [16]) with [10], we get that there exist
real numbers with arbitrarily large, finite irrationality exponent (resp. badly approximable
real numbers) that are normal in every integer base. These statements are obtained by
means of metric arguments; consequently, they do not provide us with explicit examples
of real numbers with the required properties. Furthermore, to prove that there exist real
numbers with arbitrary irrationality exponent that are normal in every integer base remains
an open problem; see Problem 33 from [7].

Combining the Folding Lemma with a result of Bailey and Crandall [3], we are able
to give a partial, positive answer to this question.
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Theorem 9. Let b ≥ 2 be an integer and let v ≥ 1 be a real number. There exist real
numbers ξ that are normal in base b and satisfy v1(ξ) = v.

This complements the main result of [9], which implies that, for every base b ≥ 2,
there exist real numbers with arbitrary irrationality exponent that are not normal in base
b.

We stress that the proof of Theorem 9 is constructive. It relies on the following result
of Bailey and Crandall [3].

Theorem BC. Let b ≥ 2 and c ≥ 2 be coprime integers. Let (mk)k≥1 and (nk)k≥1 be
strictly increasing sequences of positive integers. Assume that the sequence (nk−nk−1)k≥2

is non-decreasing and there exists a constant γ > 1/2 such that

mk − mk−1

cγnk
≥ mk−1 − mk−2

cγnk−1
,

for sufficiently large k. Then the real number

αb,c,m,n =
∑

k≥1

1

bmkcnk

is normal in base b.

Proof of Theorem 9. Let b ≥ 3 be an integer. We apply Theorem BC with c = 2. Let
v > 1 be given. For k ≥ 1, set mk = ⌊(1 + v)k⌋ and nk = k. The assumption of Theorem
BC is then satisfied with γ = 2/3 and we conclude that the real number

ξv,b :=
∑

k≥1

1

b⌊(1+v)k⌋2k

is normal in base b. It follows from Lemma 3 that v1(ξv,b) = v.
Likewise, the real number

ξv,2 :=
∑

k≥1

1

2⌊(1+v)k⌋3k

is normal in base 2 and it satisfies v1(ξv,2) = v.
To settle the case v = 1, we can either invoke the metric theory (see the first paragraph

of this section) or proceed as above with mk = k2k instead of mk = 2k, in order to be on
the safe side for applying Lemma 3.

To conclude this section, we point out that a real number ξ satisfying vb(ξ) > 0 for
some integer b ≥ 2 cannot be normal in base b, for at least one among the digits 0 and b−1
does not occur with frequency 1/b in its b-ary expansion. It then follows from Theorem 1
that, for any real number v ≥ (1 +

√
5)/2, there exist real numbers ξ with v1(ξ) = v that

are normal to no integer base b ≥ 2. This complements a result of Martin [22].

22



Acknowledgements. We are grateful to Arnaud Durand for his comments on Section 7.

References

[1] B. Adamczewski and Y. Bugeaud, Dynamics for beta-shifts and Diophantine approx-
imation, Ergod. Theory and Dynamical Syst. 27 (2007), 1695–1711.

[2] M. Amou, Approximation to certain transcendental decimal fractions by algebraic
numbers, J. Number Theory 37 (1991), 231–241.

[3] D. H. Bailey and R. E. Crandall, Random Generators and Normal Numbers, Exper-
imental Math. 11 (2002), 527–546.

[4] A. S. Besicovitch, Sets of fractional dimension (IV): on rational approximation to
real numbers, J. London Math. Soc. 9 (1934), 126–131.

[5] I. Borosh and A. S. Fraenkel, A generalization of Jarńık’s theorem on Diophantine
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[15] V. Jarńık, Über die simultanen Diophantische Approximationen, Math. Z. 33 (1931),
505–543.

[16] R. Kaufman, Continued fractions and Fourier transforms, Mathematika 27 (1980),
262–267.

23
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